1
|
Flanagan Pritz CM, Johnson BL, Willacker JJ, Kennedy CM, Daniele NR, Eagles-Smith CA. Forest cover influences fish mercury concentrations in national parks of the western U.S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176936. [PMID: 39414044 DOI: 10.1016/j.scitotenv.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The global prevalence of mercury (Hg) contamination and its complex biogeochemical cycling has resulted in elevated Hg concentrations in biota in remote and pristine environments. However, there is uncertainty in the relative importance of Hg deposition and landscape factors that control Hg cycling and bioaccumulation. To address this, we measured total mercury (THg) concentrations in 1344 fish across 60 subalpine lakes from 12 national parks (NPs). These parks represent three distinct high-elevation regions across the western U.S.: Cascades and Olympic Peninsula, Sierra Nevada and Great Basin, and Rocky Mountains. Within these regions, three NPs (Mount Rainier, Yosemite, and Rocky Mountain) were intensively studied representatives of each region. This study aimed to (1) assess the magnitude of mercury contamination in a collection of remote, small catchment lakes; (2) quantify the variability of fish THg concentrations among and within parks; and (3) test the relative importance of Hg inputs in comparison to landscape characteristics on lake-specific fish THg concentrations. The spatial variability in fish THg concentrations was 2.6-fold higher than variation in deposition to watersheds, suggesting that factors other than Hg delivery are important determinants of Hg accumulation in these environments. Spatially, fish THg concentrations (ng/g ww ± standard error) were lower in the Rockies (46.2 ± 5.0) and Sierra (56.5 ± 5.8) compared to the Cascades (67.8 ± 6.1). Additionally, fish THg concentrations increased with increasing conifer forest cover (Intensive parks: P < 0.0001, R2 = 0.43; All parks: P = 0.0001, R2 = 0.23) but were not correlated with wet Hg deposition across the catchment. These findings suggest that forest composition is likely an important aspect of Hg delivery to lake food webs, and although the mechanisms are unclear, could be tied to some combination of forest influences on catchment organic carbon and increased surface area for dry Hg deposition.
Collapse
Affiliation(s)
- Colleen M Flanagan Pritz
- National Park Service, National Resource Stewardship and Science Directorate, Air Resources Division, PO Box 25287, Lakewood, CO 80225, USA.
| | - Branden L Johnson
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Christopher M Kennedy
- U.S. Fish & Wildlife Service, Fish and Aquatic Conservation, Colorado Fish and Wildlife Conservation Office, 1131 Fairway Club Circle, B2, Estes Park, CO 80517, USA
| | - Ninette R Daniele
- National Park Service, Yosemite National Park, Resources Management and Science Division, PO Box 700, El Portal, CA 95318, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| |
Collapse
|
2
|
Liang X, Hu ZC, Liu YR, Gao C, Zhang Y, Hao YY, Zhang L, Zhao J, Zhu L. Precipitation patterns strongly affect vertical migration and methylation of mercury in legacy contaminated sites. WATER RESEARCH 2024; 267:122511. [PMID: 39340865 DOI: 10.1016/j.watres.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Legacy-contaminated sites act as significant sources of mercury (Hg) to their surrounding surface and underground environments. Intensified extreme precipitation is posing great threats to the environment and human health by changing the fate of pollutants, yet little is known about its effect on the vertical migration and methylation of Hg in contaminated sites. Here, we applied a range of simulated extreme precipitation patterns (frequency and intensity) to column leaching assays with soils collected near a contaminated site. We observed that precipitation with high frequency but low intensity resulted in more vertical migration of Hg through the soil profile than that with low frequency but high intensity. The majority (> 90%) of leached Hg was prone to migrate vertically within the top 10 cm of the soil profile. Furthermore, rainfall stimulated microbial Hg methylation, as demonstrated by enhanced production of methylmercury (MeHg) in both simulated and field-contaminated soils. We identified specific microbial taxa including Geobacteraceae, Desulfuromonadaceae, Syntrophaceae, Oscillospiraceae, and Methanomicrobiaceae as key predictors of MeHg production, which differed from those typically observed in overlying water of croplands. Particularly, the relative abundance of these dominant Hg methylators significantly increased during rainfall-induced leaching compared to that of the control, suggesting the crucial yet previously overlooked impacts of increased precipitation events on the process of microbial Hg methylation in industry-contaminated sites. Given the rising incidences of extreme precipitation events worldwide due to climate change, this study highlights the significance of assessing Hg mobility and microbial transformation in legacy contaminated sites.
Collapse
Affiliation(s)
- Xujun Liang
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; School of Resources and Environment Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Zhi-Cheng Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cunbin Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun-Yun Hao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijie Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jiating Zhao
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China; School of Resources and Environment Science, Quanzhou Normal University, Quanzhou, 362000, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Lizhong Zhu
- College of Environmental & Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Gillies EJ, Li ML, Christensen V, Hoover C, Sora KJ, Loseto LL, Cheung WWL, Angot H, Giang A. Exploring Drivers of Historic Mercury Trends in Beluga Whales Using an Ecosystem Modeling Approach. ACS ENVIRONMENTAL AU 2024; 4:219-235. [PMID: 39309976 PMCID: PMC11413906 DOI: 10.1021/acsenvironau.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 09/25/2024]
Abstract
While mercury occurs naturally in the environment, human activity has significantly disturbed its biogeochemical cycle. Inorganic mercury entering aquatic systems can be transformed into methylmercury, a strong neurotoxicant that builds up in organisms and affects ecosystem and public health. In the Arctic, top predators such as beluga whales, an ecologically and culturally significant species for many Inuit communities, can contain high concentrations of methylmercury. Historical mercury concentrations in beluga in the western Canadian Arctic's Beaufort Sea cannot be explained by mercury emission trends alone; in addition, they could potentially be driven by climate change impacts, such as rising temperatures and sea ice melt. These changes can affect mercury bioaccumulation through different pathways, including ecological and mercury transport processes. In this study, we explore key drivers of mercury bioaccumulation in the Beaufort Sea beluga population using Ecopath with Ecosim, an ecosystem modeling approach, and scenarios of environmental change informed by Western Science and Inuvialuit Knowledge. Comparing the effect of historical sea ice cover, sea surface temperature, and freshwater discharge time series, modeling suggests that the timing of historical increases and decreases in beluga methylmercury concentrations can be better explained by the resulting changes to ecosystem productivity rather than by those to mercury inputs and that all three environmental drivers could partially explain the decrease in mercury concentrations in beluga after the mid-1990s. This work highlights the value of multiple knowledge systems and exploratory modeling methods in understanding environmental change and contaminant cycling. Future work building on this research could inform climate change adaptation efforts and inform management decisions in the region.
Collapse
Affiliation(s)
- Emma J. Gillies
- Institute
for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mi-Ling Li
- School
of Marine Science and Policy, University
of Delaware, Newark, Delaware 19716, United States
| | - Villy Christensen
- Institute
for the Oceans and Fisheries, University
of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carie Hoover
- Marine
Affairs Program, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Freshwater
Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T
2N6, Canada
| | - Kristen J. Sora
- Institute
for the Oceans and Fisheries, University
of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lisa L. Loseto
- Freshwater
Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T
2N6, Canada
- Centre
for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T
2N2, Canada
| | - William W. L. Cheung
- Institute
for the Oceans and Fisheries, University
of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hélène Angot
- Univ. Grenoble
Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble 38400, France
| | - Amanda Giang
- Institute
for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Lim SH, Kim Y, Motta LC, Yang EJ, Rhee TS, Hong JK, Han S, Kwon SY. Near surface oxidation of elemental mercury leads to mercury exposure in the Arctic Ocean biota. Nat Commun 2024; 15:7598. [PMID: 39217169 PMCID: PMC11365953 DOI: 10.1038/s41467-024-51852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Atmospheric mercury (Hg(0), Hg(II)) and riverine exported Hg (Hg(II)) are proposed as important Hg sources to the Arctic Ocean. As plankton cannot passively uptake Hg(0), gaseous Hg(0) has to be oxidized to be bioavailable. Here, we measured Hg isotope ratios in zooplankton, Arctic cod, total gaseous Hg, sediment, seawater, and snowpack from the Bering Strait, the Chukchi Sea, and the Beaufort Sea. The Δ200Hg, used to differentiate between Hg(0) and Hg(II), shows, on average, 70% of Hg(0) in all biota and differs with seawater Δ200Hg (Hg(II)). Since Δ200Hg anomalies occur via tropospheric Hg(0) oxidation, we propose that near-surface Hg(0) oxidation via terrestrial vegetation, coastally evaded halogens, and sea salt aerosols, which preserve Δ200Hg of Hg(0) upon oxidation, supply bioavailable Hg(II) pools in seawater. Our study highlights sources and pathways in which Hg(0) poses potential ecological risks to the Arctic Ocean biota.
Collapse
Affiliation(s)
- Seung Hyeon Lim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Younggwang Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Laura C Motta
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Eun Jin Yang
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
| |
Collapse
|
5
|
Hartman CA, Ackerman JT, Cooney B, Herzog MP. Egg Mercury Concentration and Egg Size Varies with Position in the Laying Sequence in two Songbird Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1844-1854. [PMID: 38856099 DOI: 10.1002/etc.5900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
In birds, mercury embryotoxicity can occur through the transfer of mercury from the female to her eggs. Maternal transfer of mercury can vary by egg position in the laying sequence, with first-laid eggs often exhibiting greater mercury concentrations than subsequently laid eggs. We studied egg mercury concentration, mercury burden (total amount of mercury in the egg), and egg morphometrics by egg position in the laying sequence for two songbirds: tree swallows (Tachycineta bicolor) and house wrens (Troglodytes aedon). Egg mercury concentration in the second egg laid was 14% lower for tree swallows and 6% lower for house wrens in comparison with the first egg laid. These results indicate that in both species, after an initial relatively high transfer of mercury into the first egg laid, a smaller amount of mercury was transferred to the second egg laid. This lower mercury concentration persisted among all subsequently laid eggs (eggs three to eight) in tree swallows (all were 14%-16% lower than egg 1), but mercury concentrations in subsequently laid house wren eggs (eggs three to seven) returned to levels observed in the first egg laid (all were 1% lower to 3% greater than egg 1). Egg size increased with position in the laying sequence in both species; the predicted volume of egg 7 was 5% and 6% greater than that of egg 1 in tree swallows and house wrens, respectively. This change was caused by a significant increase in egg width, but not egg length, with position in the laying sequence. The percentage of decline in mercury concentration with position in the laying sequence was considerably lower in tree swallows and house wrens compared with other bird taxonomic groups, suggesting that there are key differences in the maternal transfer of mercury into songbird eggs compared with other birds. Finally, we performed simulations to evaluate how within-clutch variation in egg mercury concentrations affected estimates of mean mercury concentrations in each clutch and the overall sampled population, which has direct implications for sampling designs. Environ Toxicol Chem 2024;43:1844-1854. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- C Alex Hartman
- Dixon Field Station, Western Ecological Research Center, US Geological Survey, Dixon, California
| | - Joshua T Ackerman
- Dixon Field Station, Western Ecological Research Center, US Geological Survey, Dixon, California
| | - Breanne Cooney
- Dixon Field Station, Western Ecological Research Center, US Geological Survey, Dixon, California
| | - Mark P Herzog
- Dixon Field Station, Western Ecological Research Center, US Geological Survey, Dixon, California
| |
Collapse
|
6
|
Grace J, Duran E, Ann Ottinger M, Maness T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr Res Toxicol 2024; 7:100190. [PMID: 39220619 PMCID: PMC11365322 DOI: 10.1016/j.crtox.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although laboratory studies have provided insights into the developmental effects of chemical exposures, less is known about the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus, contaminant exposure at early life stages can directly influence survival and reproductive success, with consequences for population stability and resilience in wild species. This review synthesizes existing knowledge regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers) database and on additional review of the literature regarding avian contaminants of concern for the northern Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like compounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of exposure, life stage, and life history, and provide recommendations for future research. We find that additional research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of contaminants on the health of individuals and populations will be critical to inform restoration, management, and mitigation efforts.
Collapse
Affiliation(s)
- Jacquelyn Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77840-2258, USA
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Elena Duran
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Terri Maness
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
7
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of sublethal methylmercury and food stress on songbird energetic performance: metabolic rates, molt and feather quality. J Exp Biol 2024; 227:jeb246239. [PMID: 38856174 PMCID: PMC11418191 DOI: 10.1242/jeb.246239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.
Collapse
Affiliation(s)
- Claire L. J. Bottini
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Rebecca E. Whiley
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Brian A. Branfireun
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Scott A. MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
- The University of Western Ontario, Department of Psychology, 1151 Richmond St., London, ON, N6A 5C2, Canada
| |
Collapse
|
8
|
Feng G, Gong S. Functional Genes and Transcripts Indicate the Existent and Active Microbial Mercury-Methylating Community in Mangrove Intertidal Sediments of an Urbanized Bay. Microorganisms 2024; 12:1245. [PMID: 38930626 PMCID: PMC11205478 DOI: 10.3390/microorganisms12061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Mercury (Hg) methylation in mangrove sediments can result in the accumulation of neurotoxic methylmercury (MeHg). Identification of Hg methyltransferase gene hgcA provides the means to directly characterize the microbial Hg-methylating consortia in environments. Hitherto, the microbial Hg-methylating community in mangrove sediments was scarcely investigated. An effort to assess the diversity and abundance of hgcA genes and transcripts and link them to Hg and MeHg contents was made in the mangrove intertidal sediments along the urbanized Shenzhen Bay, China. The hgcA genes and transcripts associated with Thermodesulfobacteria [mainly Geobacteraceae, Syntrophorhabdaceae, Desulfobacterales, and Desulfarculales (these four lineages were previously classified into the Deltaproteobacteria taxon)], as well as Euryarchaeota (mainly Methanomicrobia and Theionarchaea) dominated the hgcA-harboring communities, while Chloroflexota, Nitrospirota, Planctomycetota, and Lentisphaerota-like hgcA sequences accounted for a small proportion. The hgcA genes appeared in greater abundance and diversity than their transcript counterparts in each sampling site. Correlation analysis demonstrated that the MeHg content rather than Hg content significantly correlated with the structure of the existent/active hgcA-harboring community and the abundance of hgcA genes/transcripts. These findings provide better insights into the microbial Hg methylation drivers in mangrove sediments, which could be helpful for understanding the MeHg biotransformation therein.
Collapse
Affiliation(s)
- Guofang Feng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Shenzhen Key Lab of Industrial Water Saving & Municipal Sewage Reclamation Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
9
|
Guari EB, Vannuci-Silva M, Manhães BMR, Secchi ER, Botta S, Bertozzi CP, Santos-Neto EB, Dias CP, de Freitas Azevedo A, Bisi TL, Cunha HA, Lailson-Brito J. Mercury Concentrations in Two Populations of the most Endangered Dolphin (Pontoporia blainvillei) from the Southwestern Atlantic Ocean. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:82. [PMID: 38822880 DOI: 10.1007/s00128-024-03904-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Mercury contamination has been aggravated by emerging environmental issues, such as climate change. Top predators present concerning Hg concentrations once this metal bioaccumulates and biomagnifies. This study evaluated total mercury (THg) concentrations in tissues of 43 franciscanas (Pontoporia blainvillei) from two populations: the Franciscana Management Area (FMA) IIb and FMA IIIa. Animals from FMA IIIa showed mean concentration 5-times and 2.5-times higher in the liver and kidney (4.73 ± 6.84 and 0.52 ± 0.51 µg.g-1, w.w., respectively) than individuals from FMA IIb (0.89 ± 1.04 and 0.22 ± 0.15 µg.g-1, w.w., respectively). This might be due to: (I) individuals sampled from FMA IIIa being larger and older, and/or (II) the area near FMA IIIa presents environmental features leading to higher THg availability. Coastal contamination can affect franciscanas' health and population maintenance at different levels depending on their life history and, therefore, it should be considered to guide specific conservation actions.
Collapse
Affiliation(s)
- Emi Brinatti Guari
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil
| | - Monizze Vannuci-Silva
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Professora Izabel M. Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro-UERJ, Rua São Francisco Xavier, 524, sala 4002, Maracanã, Rio de Janeiro, 20550-013, RJ, Brasil
| | - Bárbara M R Manhães
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Professora Izabel M. Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro-UERJ, Rua São Francisco Xavier, 524, sala 4002, Maracanã, Rio de Janeiro, 20550-013, RJ, Brasil
| | - Eduardo Resende Secchi
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, 96203-900, Brasil
| | - Silvina Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, 96203-900, Brasil
| | - Carolina Pacheco Bertozzi
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus do Litoral Paulista - Unidade São Vicente-UNESP, Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, 11330-900, Brasil
| | - Elitieri Batista Santos-Neto
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Professora Izabel M. Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro-UERJ, Rua São Francisco Xavier, 524, sala 4002, Maracanã, Rio de Janeiro, 20550-013, RJ, Brasil
| | - Carolina Pereira Dias
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil
| | - Alexandre de Freitas Azevedo
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Professora Izabel M. Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro-UERJ, Rua São Francisco Xavier, 524, sala 4002, Maracanã, Rio de Janeiro, 20550-013, RJ, Brasil
| | - Tatiana Lemos Bisi
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Professora Izabel M. Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro-UERJ, Rua São Francisco Xavier, 524, sala 4002, Maracanã, Rio de Janeiro, 20550-013, RJ, Brasil
| | - Haydée Andrade Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Professora Izabel M. Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro-UERJ, Rua São Francisco Xavier, 524, sala 4002, Maracanã, Rio de Janeiro, 20550-013, RJ, Brasil
| | - José Lailson-Brito
- Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brasil.
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Professora Izabel M. Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro-UERJ, Rua São Francisco Xavier, 524, sala 4002, Maracanã, Rio de Janeiro, 20550-013, RJ, Brasil.
| |
Collapse
|
10
|
Haque SKN, Bhuyan MM, Jeong JH. Radiation-Induced Hydrogel for Water Treatment. Gels 2024; 10:375. [PMID: 38920922 PMCID: PMC11203253 DOI: 10.3390/gels10060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Along with serving as drug delivery sensors and flexible devices, hydrogels are playing pioneering roles in water purification. Both chemical and radiation methods can produce hydrogels, with the latter method gaining preference for its pure adducts. The water treatment process entails the removal of heavy and toxic metals (above the threshold amount), dyes, and solid wastes from industrial effluents, seawater, and groundwater, as well as sterilization for microorganism destruction. This review analyzed the different types of hydrogels produced by applying various radiations for water treatment. Particularly, we examined the hydrogels created through the application of varying levels of gamma and electron beam radiation from the electron gun and Co-60 sources. Moreover, we discuss the optimized radiation doses, the compositions (monomers and polymers) of raw materials required for hydrogel preparation, and their performance in water purification. We present and predict the current state and future possibilities of radiation-induced hydrogels. We explain and compare the superiority of one radiation method over other radiation methods (UV-visible, X-ray, microwave, etc.) based on water treatment.
Collapse
Affiliation(s)
| | - Md Murshed Bhuyan
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Jae-Ho Jeong
- Research Center for Green Energy Systems, Department of Mechanical, Smart, and Industrial Engineering (Mechanical Engineering Major), Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
11
|
Hong Q, Xu H, Sun X, Li J, Huang W, Qu Z, Zhang L, Yan N. In-situ low-temperature sulfur CVD on metal sulfides with SO 2 to realize self-sustained adsorption of mercury. Nat Commun 2024; 15:3362. [PMID: 38637534 PMCID: PMC11026451 DOI: 10.1038/s41467-024-47725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
Capturing gaseous mercury (Hg0) from sulfur dioxide (SO2)-containing flue gases remains a common yet persistently challenge. Here we introduce a low-temperature sulfur chemical vapor deposition (S-CVD) technique that effectively converts SO2, with intermittently introduced H2S, into deposited sulfur (Sd0) on metal sulfides (MS), facilitating self-sustained adsorption of Hg0. ZnS, as a representative MS model, undergoes a decrease in the coordination number of Zn-S from 3.9 to 3.5 after Sd0 deposition, accompanied by the generation of unsaturated-coordinated polysulfide species (Sn2-, named Sd*) with significantly enhanced Hg0 adsorption performance. Surprisingly, the adsorption product, HgS (ZnS@HgS), can serve as a fresh interface for the activation of Sd0 to Sd* through the S-CVD method, thereby achieving a self-sustained Hg0 adsorption capacity exceeding 300 mg g-1 without saturation limitations. Theoretical calculations substantiate the self-sustained adsorption mechanism that S8 ring on both ZnS and ZnS@HgS can be activated to chemical bond S4 chain, exhibiting a stronger Hg0 adsorption energy than pristine ones. Importantly, this S-CVD strategy is applicable to the in-situ activation of synthetic or natural MS containing chalcophile metal elements for Hg0 removal and also holds potential applications for various purposes requiring MS adsorbents.
Collapse
Affiliation(s)
- Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiaoming Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education Institute of Applied & Environmental Chemistry College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
12
|
Hao X, Zhao Q, Zhou X, Huang Q, Liu YR. Labile carbon inputs boost microbial contribution to legacy mercury reduction and emissions from industry-polluted soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133122. [PMID: 38056276 DOI: 10.1016/j.jhazmat.2023.133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Soils is a crucial reservoir influencing mercury (Hg) emissions and soil-air exchange dynamics, partially modulated by microbial reducers aiding Hg reduction. Yet, the extent to which microbial engagements contribute to soil Hg volatilization remains largely unknown. Here, we characterized Hg-reducing bacterial communities in natural and anthropogenically perturbed soil environments and quantified their contribution to soil Hg(0) volatilization. Our results revealed distinct Hg-reducing bacterial compositions alongside elevated mercuric reductase (merA) gene abundance and diversity in soils adjacent to chemical factories compared to less-impacted ecosystems. Notably, solely industry-impacted soils exhibited increased merA gene abundance along Hg gradients, indicating microbial adaption to Hg selective pressure through quantitative changes in Hg reductase and genetic diversity. Microcosm studies demonstrated that glucose inputs boosted microbial involvement and induced 2-8 fold increments in cumulative Hg(0) volatilization in industry-impacted soils. Microbially-mediated Hg reduction contributed to 41.6% of soil Hg(0) volatilization in industry-impacted soils under 25% water-holding capacity and glucose input conditions over a 21-day incubation period. Alcaligenaceae, Moraxellaceae, Nitrosomonadaceae and Shewanellaceae were identified as potential contributors to Hg(0) volatilization in the soil. Collectively, our study provides novel insights into microbially-mediated Hg reduction and soil-air exchange processes, with important implications for risk assessment and management of industrial Hg-contaminated soils.
Collapse
Affiliation(s)
- Xiuli Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinquan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Chiou YR, Pang HM, Huang YF, Chen CF. A Semi-Automatic Environmental Monitoring Device for Mercury and Cobalt Ion Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303871. [PMID: 37817349 DOI: 10.1002/smll.202303871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Indexed: 10/12/2023]
Abstract
A syringe-based, semi-automatic environmental monitoring device is developed for on-site detection of harmful heavy metal ions in water. This portable device consists of a spring-embedded syringe and a polydimethylsiloxane (PDMS) membrane-based flow regulator for semi-automatic fix-and-release fluidic valve actuation, and a paper-based analytical device (PAD) with two kinds of gold nanoclusters (AuNCs) for sensitive Hg2+ and Co2+ ion detection, respectively. The thickness of the elastic PDMS membrane can be adjusted to stabilize and modulate the flow rates generated by the pushing force provided by the spring attached to the plunger. Also, different spring constants can drastically alter the response time. People of all ages can extract the fix-volume sample solutions and then release them to automatically complete the detection process, ensuring high reliability and repeatability. The PAD comprises two layers of modified paper, and each layer is immobilized with bovine serum albumin-capped gold nanoclusters (R-AuNCs) and glutathione-capped gold clusters (G-AuNCs), respectively. The ligands functionalized on the surface of the AuNCs not only can fine-tune the optical properties of the nanoclusters but also enable specific and simultaneous detection of Hg2+ and Co2+ ions via metallophilic Au+ -Hg2+ interaction and the Co2+ -thiol complexation effect, respectively. The feasibility of the device for detecting heavy metal ions at low concentrations in various environmental water samples is demonstrated. The Hg2+ and Co2+ ions can be seen simultaneously within 20 min with detection limits as low as 1.76 nm and 0.27 µm, respectively, lower than those of the regulatory restrictions on water by the US Environmental Protection Agency and the European Union. we expect this sensitive, selective, portable, and easy-to-use device to be valid for on-site multiple heavy metal ion pollution screenings in resource-constrained settings.
Collapse
Affiliation(s)
- Yi-Ru Chiou
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, 106, Taipei, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hao-Ming Pang
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
- Graduate School of Advanced Technology, National Taiwan University, 106, Taipei, Taiwan
| |
Collapse
|
14
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
15
|
Wei H, Xie D, Wang DZ, Wang M. A Meta-analysis Reveals Global Change Stressors Potentially Aggravate Mercury Toxicity in Marine Biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:219-230. [PMID: 38152998 DOI: 10.1021/acs.est.3c07294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Growing evidence demonstrates that global change can modulate mercury (Hg) toxicity in marine organisms; however, the consensus on such effect is lacking. Here, we conducted a meta-analysis to evaluate the effects of global change stressors on Hg biotoxicity according to the IPCC projections (RCP 8.5) for 2100, including ocean acidification (-0.4 units), warming (+4 °C), and their combination (acidification-warming). The results indicated an overall aggravating effect (ln RRΔ = -0.219) of global change on Hg toxicity in marine organisms, while the effect varied with different stressors; namely, acidification potentially alleviates Hg biotoxicity (ln RRΔ = 0.117) while warming and acidification-warming have an aggravating effect (ln RRΔ = -0.328 and -0.097, respectively). Moreover, warming increases Hg toxicity in different trophic levels, i.e., primary producers (ln RRΔ = -0.198) < herbivores (ln RRΔ = -0.320) < carnivores (ln RRΔ = -0.379), implying increasing trends of Hg biomagnification through the food web. Notably, ocean hypoxia appears to boost Hg biotoxicity, although it was not considered in our meta-analysis because of the small sample size. Given the persistent global change and combined effects of these stressors in marine environments, multigeneration and multistressor research is urgently needed to fully disclose the impacts of global change on Hg pollution and its risk.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dongmei Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
16
|
You XY, Yin WM, Wang Y, Wang C, Zheng WX, Guo YR, Li S, Pan QJ. Enrichment and immobilization of heavy metal ions from wastewater by nanocellulose/carbon dots-derived composite. Int J Biol Macromol 2024; 255:128274. [PMID: 37989432 DOI: 10.1016/j.ijbiomac.2023.128274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Heavy metal ions (HMIs) have been widely applied in various industries because of their excellent physicochemical properties. However, their discharging without appropriate treatment brought about serious pollution problems. So it is desirable but challenging to rapidly and completely clean up these toxic pollutants from water, especially utilizing environmentally friendly and naturally rich biomass materials. In this work, we prepared nanocellulose/carbon dots/magnesium hydroxide (CCMg) ternary composite using cotton via a simple hydrothermal method. The removal mechanism towards Cd2+ and Cu2+ was investigated using a combination of experimental techniques and density functional theory calculations. CCMg shows a good ability to remove HMIs. It is realized that the interaction between each component of CCMg and cadmium nitrate is mainly of hydrogen/dative bonds. Cadmium nitrate is preferentially enriched by the Mg(OH)2 moiety, proved by calculated thermodynamics, interfacial interactions and charges. After transformation, the cadmium carbonate precipitate is fixed on the surface by nanocellulose (NC) via chemical coupling; and of interest is that copper ion precipitates in the form of basic sulfate. Due to its high adsorption effect and simple recovery operation, CCMg is having a wide range of application prospects as a water treatment agent.
Collapse
Affiliation(s)
- Xin-Yu You
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Wei-Ming Yin
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yan Wang
- Harbin Center for Disease Control and Prevention (Harbin Center for Health Examination), Harbin 150030, China
| | - Chen Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Wen-Xiu Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China.
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
17
|
Cai X, Fan Y, Hong Q, Liu Z, Qu Z, Yan N, Xu H. Unveiling the Halogenation-Induced Formation of Hg 3Se 2X 2 (X = Cl, Br, and I) Compounds for Multiphase Mercury Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20431-20439. [PMID: 37992298 DOI: 10.1021/acs.est.3c08021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The interaction between mercury (Hg) and inorganic compounds, including selenium (Se), sulfur (S), and halogens (X = Cl, Br, or I), plays a critical role in the global mercury cycle. However, most previously reported mercury compounds are susceptible to reduction, leading to the release of elemental mercury (Hg0) and causing secondary pollution. In this study, we unveil a groundbreaking discovery that underscores the vital role of halogenation in creating exceptionally stable Hg3Se2X2 compounds. Through the dynamic interplay of Hg, Se, and halogens, an intermediary stage denoted [HgSe]m[HgX2]n emerges, and this transformative process significantly elevates the stabilization of mercury. Remarkably, halogen ions strategically occupy pores at the periphery of HgSe clusters, engendering a more densely packed atomic arrangement of Hg, Se, and halogen components. A marked enhancement in both thermal and acid stability is observed, wherein temperatures ascend from 130 to 300 °C (transitioning from HgSe to Hg3Se2Cl2). This sequence of escalating stability follows the order HgSe < Hg3Se2I2 < Hg3Se2Br2 < Hg3Se2Cl2 for thermal resilience, complemented by virtually absent acid leaching. This innovative compound formation fundamentally alters the transformation pathways of gaseous Hg0 and ionic mercury (Hg2+), resulting in highly efficient in situ removal of both Hg0 and Hg2+ ions. These findings pave the way for groundbreaking advancements in mercury stabilization and environmental remediation strategies, offering a comprehensive solution through the creation of chemically stable precipitates.
Collapse
Affiliation(s)
- Xiangling Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Sun Y, Yang J, Li K, Gong J, Gao J, Wang Z, Cai Y, Zhao K, Hu S, Fu Y, Duan Z, Lin L. Differentiating environmental scenarios to establish geochemical baseline values for heavy metals in soil: A case study of Hainan Island, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165634. [PMID: 37474065 DOI: 10.1016/j.scitotenv.2023.165634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Soil heavy metal distributions exhibit regional heterogeneity due to the complex characteristics of parent materials and soil formation processes, emphasizing the need for appropriate regional standards prior to assessing soil risks. This study focuses on Hainan Island and employs the Multi-purpose Regional Geochemical Survey dataset to establish heavy metal geochemical baseline and background values for soil using an iterative method. Geographical detector analysis reveals that parent materials are the primary factor influencing heavy metal distribution, followed by soil types and land use. Heavy metal geochemical baseline values are established for the island's three environments and administrative regions. Notably, a universal geochemical baseline value cannot adequately represent regional variations in heavy metal distribution, with parent materials playing a crucial role in various scenarios. Locally applicable values based on parent material are the most representative for Hainan Island. This study provides a reference framework for developing region-specific environmental baseline values for soil heavy metal assessments.
Collapse
Affiliation(s)
- Yanling Sun
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China; UNESCO International Centre on Global-scale Geochemistry, Langfang 065000, PR China; Faculty of Earth Sciences, China University of Geoscience, Wuhan 430074, PR China
| | - Jianzhou Yang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Kai Li
- Radiation Environmental Monitoring Center of GDNGB, Guangzhou 510800, PR China
| | - Jingjing Gong
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Jianweng Gao
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Zhenliang Wang
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Yongwen Cai
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Keqiang Zhao
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China.
| | - Shuqi Hu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Yangang Fu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Zhuang Duan
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| | - Lujun Lin
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, PR China
| |
Collapse
|
19
|
Zhen J, Li T, Xu X, Du P, Song Y, Nie X, Liu X, Liu H, Bi Y, Wang X, Xue L, Wang Y. Changed mercury speciation in clouds driven by changing cloud water chemistry and impacts on photoreduction: Field evidence at Mt. Tai in eastern China. WATER RESEARCH 2023; 244:120402. [PMID: 37572460 DOI: 10.1016/j.watres.2023.120402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/14/2023]
Abstract
Chemical speciation of mercury (Hg) in clouds largely determines the photochemistry of Hg in the atmosphere and consequently influences Hg deposition on the surface through precipitation. Cloud water chemistry has notably changed over the last decade in response to global changes, however, the effects on Hg speciation remain poorly understood. During summer 2021, we collected sixty cloud water samples at Mt. Tai in eastern China and compared the cloud chemistry and Hg speciation with our previous findings during summer 2015. The results showed that although there were no statistically significant differences in the concentrations of total Hg (THg), dissolved Hg (DHg), and particulate Hg (PHg), there was a distinct shift in DHg species from the predominated Hg-DOM (78.6% in 2015 campaign) to the more homogeneously distributed Hg(OH)2 (28.4% in 2021 campaign), HgBr2 (26.5%), Hg-DOM (17.3%) and HgBrOH (17.0%). Changes in cloud water chemistry, particularly the significant increase in pH values to 6.49 ± 0.27 and unexpectedly high levels of bromide ions (Br-, 0.19 ± 0.22 mg L-1), were found to drive the changing of Hg speciation by enhancing Hg(II) hydrolysis and binding by Br-. Elevated Br- originating primarily from the continent likely caused noticeable differences in the dominating DHg species between cloud water sourced from marine and continental regions. The changes in chemical speciation of DHg were estimated to result in a 2.6-fold decrease in Hg(II) photoreduction rate between 2015 and 2021 campaigns (0.178 ± 0.054 h-1 vs. 0.067 ± 0.027 h-1), implying a shortened lifetime of atmospheric Hg and increased ecological risks associated with Hg wet deposition.
Collapse
Affiliation(s)
- Jiebo Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Tao Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Xinmiao Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ping Du
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Song
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoling Nie
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xinghui Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Hengde Liu
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Yujian Bi
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
20
|
Liu M, Mason RP, Vlahos P, Whitney MM, Zhang Q, Warren JK, Wang X, Baumann Z. Riverine Discharge Fuels the Production of Methylmercury in a Large Temperate Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13056-13066. [PMID: 37603456 DOI: 10.1021/acs.est.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Estuaries are an important food source for the world's growing population, yet human health is at risk from elevated exposure to methylmercury (MeHg) via the consumption of estuarine fish. Moreover, the sources and cycling of MeHg in temperate estuarine ecosystems are poorly understood. Here, we investigated the seasonal and tidal patterns of mercury (Hg) forms in Long Island Sound (LIS), in a location where North Atlantic Ocean waters mix with the Connecticut River. We found that seasonal variations in Hg and MeHg in LIS followed the extent of riverine Hg delivery, while tides further exacerbated the remobilization of earlier deposited riverine Hg. The net production of MeHg near the river plume was significant compared to that in other locations and enhanced during high tide, possibly resulting from the enhanced microbial activity and organic carbon remineralization in the river plume. Statistical models, driven by our novel data, further support the hypothesis that the river-delivered organic matter and inorganic Hg drive net MeHg production in the estuarine water column. Our study sheds light on the significance of water column biogeochemical processes in temperate tidal estuaries in regulating MeHg levels and inspires new questions in our quest to understand MeHg sources and dynamics in coastal oceans.
Collapse
Affiliation(s)
- Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Michael M Whitney
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joseph K Warren
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Zofia Baumann
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| |
Collapse
|
21
|
Asiedu DA, Søndergaard J, Jónasdóttir S, Juul-Pedersen T, Koski M. Concentration of mercury and other metals in an Arctic planktonic food web under a climate warming scenario. MARINE POLLUTION BULLETIN 2023; 194:115436. [PMID: 37660452 DOI: 10.1016/j.marpolbul.2023.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Arctic marine ecosystems act as a global sink of mercury (Hg) and other metals, and high concentrations of these have been measured in higher trophic-level organisms. Nevertheless, the concentrations of metals at the basis of the marine food web in the Arctic is less known despite the likelihood of biomagnification from dietary sources. We investigated the concentrations of mercury (Hg) and other metals in different size fractions of plankton in West Greenland. All size fractions contained detectable levels of Hg (ranging from 4.8 to 241.3 ng g dw-1) at all stations, although with high geographic variability, likely reflecting the sources of mercury (e.g., meltwater). In many cases, the concentrations in the larger-size fractions were lower than in the smaller-size fractions, suggesting depuration through the metabolic activity of mesozooplankton. Concentrations of Cd, Pb, V, Ni, and Cr were higher than previously reported elsewhere in the Arctic.
Collapse
Affiliation(s)
- Delove Abraham Asiedu
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Jens Søndergaard
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Sigrun Jónasdóttir
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas Juul-Pedersen
- Greenland Climate Research Center, Greenland Institute of Natural Resources, Nuuk 3900, Greenland
| | - Marja Koski
- National Institute of Aquatic Resources, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Liu YR, Guo L, Yang Z, Xu Z, Zhao J, Wen SH, Delgado-Baquerizo M, Chen L. Multidimensional Drivers of Mercury Distribution in Global Surface Soils: Insights from a Global Standardized Field Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12442-12452. [PMID: 37506289 DOI: 10.1021/acs.est.3c04313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Soil stores a large amount of mercury (Hg) that has adverse effects on human health and ecosystem safety. Significant uncertainties still exist in revealing environmental drivers of soil Hg accumulation and predicting global Hg distribution owing to the lack of field data from global standardized analyses. Here, we conducted a global standardized field survey and explored a holistic understanding of the multidimensional environmental drivers of Hg accumulation in global surface soils. Hg content in surface soils from our survey ranges from 3.8 to 618.2 μg kg-1 with an average of 74.0 μg kg-1 across the globe. Atmospheric Hg deposition, particularly vegetation-induced elemental Hg0 deposition, is the major source of surface soil Hg. Soil organic carbon serves as the major substrate for sequestering Hg in surface soils and is significantly influenced by agricultural management, litterfall, and elevation. For human activities, changing land-use could be a more important contributor than direct anthropogenic emissions. Our prediction of a new global Hg distribution highlights the hot spots (high Hg content) in East Asia, the Northern Hemispheric temperate/boreal regions, and tropical areas, while the cold spots (low Hg content) are in arid regions. The holistic understanding of multidimensional environmental drivers helps to predict the Hg distribution in global surface soils under a changing global environment.
Collapse
Affiliation(s)
- Yu-Rong Liu
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Guo
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Zeng Xu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Jiating Zhao
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Hai Wen
- College of Resources and Environment and State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla 41012, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
23
|
Yang S, Li P, Sun K, Wei N, Liu J, Feng X. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments. WATER RESEARCH 2023; 241:120150. [PMID: 37269625 DOI: 10.1016/j.watres.2023.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Anthropogenic activities and climate change have significantly increased mercury (Hg) levels in seawater. However, the processes and sources of Hg in differing marine compartments (e.g. estuary, marine continental shelf (MCS) or pelagic area) have not been well studied, which makes it difficult to understand Hg cycling in marine ecosystems. To address this issue, the total Hg (THg) concentration, methylmercury (MeHg) concentration and stable Hg isotopes were determined in seawater and fish samples collected from differing marine compartments of the South China Sea (SCS). The results showed that the estuarine seawater exhibited substantially higher THg and MeHg concentrations than those in the MCS and pelagic seawater. Significantly negative δ202Hg (-1.63‰ ± 0.42‰) in estuarine seawater compared with that in pelagic seawater (-0.58‰ ± 0.08‰) may suggest watershed input and domestic sewage discharge of Hg in the estuarine compartment. The Δ199Hg value in estuarine fish (0.39‰ ± 0.35‰) was obviously lower than that in MCS (1.10‰ ± 0.54‰) and pelagic fish (1.15‰ ± 0.46‰), which showed that relatively little MeHg photodegradation occurred in the estuarine compartment. The Hg isotope binary mixing model based on Δ200Hg revealed that approximately 74% MeHg in pelagic fish is derived from atmospheric Hg(II) deposition, and over 60% MeHg in MCS fish is derived from sediments. MeHg sources for estuarine fish may be highly complex (e.g. sediment or riverine/atmospheric input) and further investigations are warranted to clarify the contribution of each source. Our study showed that Hg stable isotopes in seawater and marine fish can be used to identify the processes and sources of Hg in different marine compartments. This finding is of great relevance to the development of marine Hg food web models and the management of Hg in fish.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaifeng Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Nan Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
24
|
Sonke JE, Angot H, Zhang Y, Poulain A, Björn E, Schartup A. Global change effects on biogeochemical mercury cycling. AMBIO 2023; 52:853-876. [PMID: 36988895 PMCID: PMC10073400 DOI: 10.1007/s13280-023-01855-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.
Collapse
Affiliation(s)
- Jeroen E. Sonke
- Géosciences Environnement Toulouse, CNRS/IRD, Université Paul Sabatier Toulouse 3, 14 ave Edouard Belin, 31400 Toulouse, France
| | - Hélène Angot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 1025 rue de la piscine, 38000 Grenoble, France
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023 Jiangsu China
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Erik Björn
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Amina Schartup
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
25
|
Cusset F, Reynolds SJ, Carravieri A, Amouroux D, Asensio O, Dickey RC, Fort J, Hughes BJ, Paiva VH, Ramos JA, Shearer L, Tessier E, Wearn CP, Cherel Y, Bustamante P. A century of mercury: Ecosystem-wide changes drive increasing contamination of a tropical seabird species in the South Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121187. [PMID: 36736563 DOI: 10.1016/j.envpol.2023.121187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is a highly toxic metal that adversely impacts human and wildlife health. The amount of Hg released globally in the environment has increased steadily since the Industrial Revolution, resulting in growing contamination in biota. Seabirds have been extensively studied to monitor Hg contamination in the world's oceans. Multidecadal increases in seabird Hg contamination have been documented in polar, temperate and subtropical regions, whereas in tropical regions they are largely unknown. Since seabirds accumulate Hg mainly from their diet, their trophic ecology is fundamental in understanding their Hg exposure over time. Here, we used the sooty tern (Onychoprion fuscatus), the most abundant tropical seabird, as bioindicator of temporal variations in Hg transfer to marine predators in tropical ecosystems, in response to trophic changes and other potential drivers. Body feathers were sampled from 220 sooty terns, from museum specimens (n = 134) and free-living birds (n = 86) from Ascension Island, in the South Atlantic Ocean, over 145 years (1876-2021). Chemical analyses included (i) total- and methyl-Hg, and (ii) carbon (δ1³C) and nitrogen (δ15N) stable isotopes, as proxies of foraging habitat and trophic position, respectively, to investigate the relationship between trophic ecology and Hg contamination over time. Despite current regulations on its global emissions, mean Hg concentrations were 58.9% higher in the 2020s (2.0 μg g-1, n = 34) than in the 1920s (1.2 μg g-1, n = 107). Feather Hg concentrations were negatively and positively associated with δ1³C and δ15N values, respectively. The sharp decline of 2.9 ‰ in δ1³C values over time indicates ecosystem-wide changes (shifting primary productivity) in the tropical South Atlantic Ocean and can help explain the observed increase in terns' feather Hg concentrations. Overall, this study provides invaluable information on how ecosystem-wide changes can increase Hg contamination of tropical marine predators and reinforces the need for long-term regulations of harmful contaminants at the global scale.
Collapse
Affiliation(s)
- Fanny Cusset
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360, Villiers-en Bois, France.
| | - S James Reynolds
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360, Villiers-en Bois, France
| | - David Amouroux
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux (IPREM), UMR, 5254, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Océane Asensio
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux (IPREM), UMR, 5254, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Roger C Dickey
- Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - B John Hughes
- Centre for Ornithology, School of Biosciences, College of Life & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Army Ornithological Society (AOS), c/o Prince Consort Library, Knollys Road, Aldershot, Hampshire, UK
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Laura Shearer
- Ascension Island Government Conservation and Fisheries Directorate (AIGCFD), Georgetown, Ascension Island, South Atlantic Ocean, UK
| | - Emmanuel Tessier
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et Les Matériaux (IPREM), UMR, 5254, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Colin P Wearn
- The Royal Air Force Ornithological Society (RAFOS), High Wycombe, Buckinghamshire, UK
| | - Yves Cherel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 79360, Villiers-en Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
26
|
Peterson SH, Ackerman JT, Holser RR, McDonald BI, Costa DP, Crocker DE. Mercury Bioaccumulation and Cortisol Interact to Influence Endocrine and Immune Biomarkers in a Free-Ranging Marine Mammal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5678-5692. [PMID: 36996077 DOI: 10.1021/acs.est.2c08974] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mercury bioaccumulation from deep-ocean prey and the extreme life history strategies of adult female northern elephant seals (Mirounga angustirostris) provide a unique system to assess the interactive effects of mercury and stress on animal health by quantifying blood biomarkers in relation to mercury (skeletal muscle and blood mercury) and cortisol concentrations. The thyroid hormone thyroxine (tT4) and the antibody immunoglobulin E (IgE) were associated with mercury and cortisol concentrations interactively, where the magnitude and direction of the association of each biomarker with mercury or cortisol changed depending on the concentration of the other factor. For example, when cortisol concentrations were lowest, tT4 was positively related to muscle mercury, whereas tT4 had a negative relationship with muscle mercury in seals that had the highest cortisol concentrations. Additionally, we observed that two thyroid hormones, triiodothyronine (tT3) and reverse triiodothyronine (rT3), were negatively (tT3) and positively (rT3) associated with mercury concentrations and cortisol in an additive manner. As an example, tT3 concentrations in late breeding seals at the median cortisol concentration decreased by 14% across the range of observed muscle mercury concentrations. We also observed that immunoglobulin M (IgM), the pro-inflammatory cytokine IL-6 (IL-6), and a reproductive hormone, estradiol, were negatively related to muscle mercury concentrations but were not related to cortisol. Specifically, estradiol concentrations in late molting seals decreased by 50% across the range of muscle mercury concentrations. These results indicate important physiological effects of mercury on free-ranging apex marine predators and interactions between mercury bioaccumulation and extrinsic stressors. Deleterious effects on animals' abilities to maintain homeostasis (thyroid hormones), fight off pathogens and disease (innate and adaptive immune system), and successfully reproduce (endocrine system) can have significant individual- and population-level consequences.
Collapse
Affiliation(s)
- Sarah H Peterson
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California 95620, United States of America
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064, United States of America
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, United States of America
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California 95620, United States of America
| | - Rachel R Holser
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064, United States of America
| | - Birgitte I McDonald
- Moss Landing Marine Labs, San Jose State University, Moss Landing, California 95039, United States of America
| | - Daniel P Costa
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California 95064, United States of America
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, United States of America
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, California 94928, United States of America
| |
Collapse
|
27
|
Xu H, Hong Q, Zhang ZY, Cai X, Fan Y, Liu Z, Huang W, Yan N, Qu Z, Zhang L. SO 2-Driven In Situ Formation of Superstable Hg 3Se 2Cl 2 for Effective Flue Gas Mercury Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5424-5432. [PMID: 36939455 DOI: 10.1021/acs.est.2c09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.
Collapse
Affiliation(s)
- Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyuan Hong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xiangling Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Kim D, Aksentov K, Astakhov A, Sattarova V, Ivanov M, Alatorsev A, Obrezkova M, Selutin S. Geochemistry aspects of modern mercury accumulation in bottom sediments from the south-western Chukchi Sea. MARINE POLLUTION BULLETIN 2023; 189:114768. [PMID: 36863272 DOI: 10.1016/j.marpolbul.2023.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) having a high migration capacity reach the Arctic region via the atmosphere. The absorbers for Hg are sea bottom sediments. Sedimentation in the Chukchi Sea occurs under the influence of highly productive Pacific waters entering through the Bering Strait and the inflow of a terrigenous component from the western direction with the Siberian Coastal Current. The Hg concentrations ranged from 12 μg kg-1 to 39 μg kg-1 in bottom sediments of study polygon. Based on dating sediment core the background concentration was 29 μg kg-1. Concentration of Hg in fine sediment fractions was 82 μg kg-1, in sandy fractions (>63 μm) varied from 8 to12 μg kg-1. In recent decades the Hg accumulation in bottom sediments has been controlled by the biogenic component. The Hg in the studied sediments presents as sulfide form.
Collapse
Affiliation(s)
- David Kim
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | - Kirill Aksentov
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia.
| | - Anatolii Astakhov
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | | | - Maksim Ivanov
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | | | - Mariia Obrezkova
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | - Semen Selutin
- V.I. Il'ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| |
Collapse
|
29
|
Monserrate-Maggi L, Serrano-Mena L, Delahaye L, Calle P, Alvarado-Cadena O, Ruiz-Barzola O, Cevallos-Cevallos JM. Microorganisms isolated from seabirds feathers for mercury bioremediation. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Environmental pollution caused by mercury has received increasing attention in recent years. Several studies have warned of the high rates of biomagnification in superior levels of marine food networks affecting seabirds. Although seabird feathers are reported as bioindicators of mercury, the possibility of using the microbiota associated with them for the bioremediation of this metal has not been considered. Despite the potential of the seabird feather microbiota, the cultivable microorganisms from this sample matrix have not been identified. In this study, we isolated and identified the organisms in the feathers from three types of seabirds, two species of penguins (Pygoscelis antartica and Pygoscelis papua) and the brown skua bird (Catharacta lonnbergi) through poisoned media a final concentration of 10 mg / L Hg2+ in the culture medium for the microbial consortia. Yeast isolates belonged to the genus Debaryomyces, Meyerozyma, Papiliotrema, and Rhodotorula, and fungi genera Leiotrametes, Penicillium, Pseudogymnoascus, and Cladosporium were identified. Adult bird feathers with high mercury concentrations can serve as a matrix to isolate microorganisms capable of removing mercury.
Keywords: Antarctica, bioremediation, feathers, mercury, microorganisms
Collapse
Affiliation(s)
- Lorena Monserrate-Maggi
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O Box 09-01-5863, Guayaquil, Ecuador
| | - Lizette Serrano-Mena
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O Box 09-01-5863, Guayaquil, Ecuador
| | - Louise Delahaye
- VIVES University CollegePost-graduate International Cooperation North-South, Kortrijk, Belgium
| | - Paola Calle
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O Box 09-01-5863, Guayaquil, Ecuador
| | - Omar Alvarado-Cadena
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O Box 09-01-5863, Guayaquil, Ecuador
| | - Omar Ruiz-Barzola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O Box 09-01-5863, Guayaquil, Ecuador; ; . 4 Universidad de Salamanca, Departamento de Estadística; Campus Miguel de Unamuno. 37007, Salamanca -España;
| | - Juan Manuel Cevallos-Cevallos
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O Box 09-01-5863, Guayaquil ; Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
30
|
Li T, Mao H, Wang Z, Yu JZ, Li S, Nie X, Herrmann H, Wang Y. Field Evidence for Asian Outflow and Fast Depletion of Total Gaseous Mercury in the Polluted Coastal Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4101-4112. [PMID: 36847858 DOI: 10.1021/acs.est.2c07551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Atmospheric mercury (Hg) cycling in polluted coastal atmosphere is complicated and not fully understood. Here, we present measurements of total gaseous mercury (TGM) monitored at a coastal mountaintop in Hong Kong downwind of mainland China. Sharp TGM peaks during cold front passages were frequently observed due to Asian pollution outflow with typical TGM/CO slopes of 6.8 ± 2.2 pg m-3 ppbv-1. Contrary to the daytime maximums of other air pollutants, TGM exhibited a distinct diurnal variation with a midday minimum. Moreover, we observed four cases of extremely fast TGM depletion after sunrise, during which TGM concentrations rapidly dipped to 0.3-0.6 ng m-3 accompanied by other pollutants on the rise. Simulated meteorological fields revealed that morning upslope flow transporting anthropogenically polluted but TGM-depleted air masses from the mixed layer caused morning TGM depletion at the mountaintop location. The TGM-depleted air masses were hypothesized to result mainly from fast photooxidation of Hg after sunrise with minor contributions from dry deposition (5.0%) and nocturnal oxidation (0.6%). A bromine-induced two-step oxidation mechanism involving abundant pollutants (NO2, O3, etc.) was estimated to play a dominant role, contributing 55%-60% of depleted TGM and requiring 0.20-0.26 pptv Br, an amount potentially available through sea salt aerosol debromination. Our findings suggest significant effects of the interaction between anthropogenic pollution and marine halogen chemistry on atmospheric Hg cycling in the coastal areas.
Collapse
Affiliation(s)
- Tao Li
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Huiting Mao
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States
| | - Zhe Wang
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jian Zhen Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Shuwen Li
- Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaoling Nie
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Hartmut Herrmann
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), D-04318 Leipzig, Germany
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| |
Collapse
|
31
|
El-Reash YGA, Ghaith EA, El-Awady O, Algethami FK, Lin H, Abdelrahman EA, Awad FS. Highly fluorescent hydroxyl groups functionalized graphitic carbon nitride for ultrasensitive and selective determination of mercury ions in water and fish samples. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
AbstractHeavy metal ion pollution is always a serious problem worldwide. Therefore, monitoring heavy metal ions in environmental water is a crucial and difficult step to ensure the safety of people and the environment. A mercury ion (Hg2+) fluorescence probe with excellent sensitivity and selectivity is described here. The functionalized graphitic carbon nitride nanosheets (T/G-C3N4) fluorescence probe was fabricated using melamine as a precursor by the pyrolysis technique, followed by a rapid KOH heat treatment method for 2 min. The chemical structure and morphology of the T/G-C3N4 probe were characterized using multiple analytical techniques including UV–Vis, SEM, XPS, XRD, and fluorometer spectroscopy. Geometry optimization of T/G-C3N4 as a modified probe was performed to assess its stability and interaction ability with Hg(II) via using the density function approach. The T/G-C3N4 probe showed a linear response based on quenching over the range 0–1.25 × 103 nM Hg(II); the detection limit was 27 nM. The remarkable sensitivity of T/G-C3N4 towards the Hg2+ ions was explained by the intense coordination and fast chelation kinetics of Hg2+ with the NH2, CN, C=N, and OH groups of T/G-C3N4 nanoprobe. The T/G-C3N4 probe demonstrates exceptional selectivity for Hg2+ ions among other metal ions including (Na+, Ag+, Mg2+, Fe2+, Fe3+, Co2+, Ni2+, Cd2+, K+, Ca2+, Cu2+, Pb2+, Mn2+ and Hg2+) and over a broad pH range (6–10), together with remarkable long-term fluorescence stability in water (> 30 days) and minimal toxicity. T/G-C3N4 was used to detect and quantify Hg2+ ions in tuna and mackerel fish and the results compared to ICP-AES. The results obtained offer a new simple and green technique for the design of multifunctional fluorescent probe appropriate for environmental applications.
Graphical Abstract
Collapse
|
32
|
Grunst AS, Grunst ML, Grémillet D, Kato A, Bustamante P, Albert C, Brisson-Curadeau É, Clairbaux M, Cruz-Flores M, Gentès S, Perret S, Ste-Marie E, Wojczulanis-Jakubas K, Fort J. Mercury Contamination Challenges the Behavioral Response of a Keystone Species to Arctic Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2054-2063. [PMID: 36652233 DOI: 10.1021/acs.est.2c08893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.
Collapse
Affiliation(s)
- Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - David Grémillet
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, Villiers-en-Bois 79360, France
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
- Institut Universitaire de France (IUF), 1 rue Descartes, Paris 75005, France
| | - Céline Albert
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Émile Brisson-Curadeau
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Manon Clairbaux
- School of Biological, Environmental and Earth Sciences, University College Cork, Cork T23 N73K, Ireland
- MaREI Centre for Energy, Climate and Marine, Environmental Research Institute, University College Cork, Cork P43 C573, Ireland
| | - Marta Cruz-Flores
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Sophie Gentès
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| | - Samuel Perret
- CEFE, UMR 5175, CNRS─Université de Montpellier─Université Paul-Valéry Montpellier─EPHE, Montpellier 34090, France
| | - Eric Ste-Marie
- McGill University─Macdonald Campus, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, La Rochelle FR-17000, France
| |
Collapse
|
33
|
Pitoňáková T. Mercury concentration in the tissues of the Eurasian otter: a seasonal dependance in Slovakia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3795-3803. [PMID: 35962166 DOI: 10.1007/s11356-022-22459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The river otter is considered to be an important bioindicator of water clarity. This study focuses on mercury contamination within this species. Throughout the study, individuals from habitats in the foothills and surroundings of the Liptovská Mara reservoir were analyzed. Twenty-three samples of liver tissue, and twenty-two samples of hair and kidney tissue were collected. Of these samples, the average mercury concentration detected in tissues was 10.6 mg/kg in guard hairs; 12.9 mg/kg in under hairs; 3.3 mg/kg in kidney tissue; and 4.3 mg/kg in liver tissue. Analysis of certified reference material (ERM-BB186-Pig Kidney) was used to assist in the development of an accurate method for total mercury determination in animal tissues, to check the quality of measurements, and to validate the measurement method. Our method represented a high average percentage of recovery (> 95%) in the standard reference material matrix and a relative standard deviation (RSD) of 5% or less. Seasonality was determined to be a significant factor influencing the level of contamination of a given individual, both through mercury methylation within the aquatic environment and through fish ingestion by this apex semi-aquatic predator (guard hairs (p = 0.01); underfur (p = 0.04); kidney (p = 0.03); liver (p = 0.03)). Sex, location, and body size were not found to have a significant influence on heavy metal concentrations in river otters sampled in terms of season.
Collapse
Affiliation(s)
- Tatiana Pitoňáková
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 059 56, Tatranská Javorina, Slovakia.
| |
Collapse
|
34
|
Chang W, Zhong Q, Liang S, Qi J, Jetashree. A high spatial resolution dataset for anthropogenic atmospheric mercury emissions in China during 1998-2014. Sci Data 2022; 9:604. [PMID: 36202879 PMCID: PMC9537151 DOI: 10.1038/s41597-022-01725-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
China is the largest atmospheric mercury (Hg) emitter globally, which has been substantially investigated. However, the estimation of national or regional Hg emissions in China is insufficient in supporting emission control, as the location of the sources may have significant impacts on the effects of Hg emissions. In this concern, high-spatial-resolution datasets of China's Hg emissions are necessary for in-depth and accurate Hg-related studies and policymaking. Existing gridded datasets are constructed using population distribution as the proxy, which is limited as Hg emissions are closely related to energy consumption and economic processes. This study constructs a dataset of anthropogenic atmospheric Hg emissions in China gridded to a 1 km resolution during 1998-2014. This dataset is produced based on data of land uses, individual enterprises, roadmaps, and population, uncovering Hg emissions in agriculture, industries, services, and residents. This dataset can promote the reliability of Hg-related studies at a high spatial resolution. Moreover, this dataset can support spatially explicit Hg reduction of economic sectors.
Collapse
Affiliation(s)
- Weicen Chang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Qiumeng Zhong
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Jianchuan Qi
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
- School of Environment, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jetashree
- School of Environment, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
35
|
Liu C, Xiang K, Li J, Liu H, Shen F. Controllable Disordered Copper Sulfide with a Sulfur-Rich Interface for High-Performance Gaseous Elemental Mercury Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13664-13674. [PMID: 36154115 DOI: 10.1021/acs.est.2c04859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Copper sulfide (CuS) has received increasing attention as a promising material in gaseous elemental mercury (Hg0) capture, yet how to enhance its activity at elevated temperature remains a great challenge for practical application. Herein, simultaneous improvement in the activity and thermal stability of CuS toward Hg0 capture was successfully achieved for the first time by controlling the crystal growth. CuS with a moderate crystallinity degree of 68.8% showed a disordered structure yet high thermal stability up to 180 °C. Such disordered CuS can maintain its Hg0 capture activity stable during longtime test at a wide temperature range from 60 to 180 °C and displayed strong resistance to SO2 (6%) and H2O (8%). The significant improvement can be attributed to the synergistic effect of a moderately crystalline nature and a unique sulfur-rich interface. Moderate crystallinity guarantees the thermal stability of CuS and the presence of abundant defects, in which copper vacancy enhances significantly the Hg0 capture activity. The sulfur-rich interface enables CuS to provide plentiful highly active Sx2- sites for Hg0 adsorption. The interrelation between structure, reactivity, and thermal stability clarified in this work broadens the understanding toward Hg0 oxidation and adsorption over CuS and provides new insights into the rational design and engineering of advanced environmental materials.
Collapse
Affiliation(s)
- Cao Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Kaisong Xiang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Junyuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Fenghua Shen
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| |
Collapse
|
36
|
Capo E, Feng C, Bravo AG, Bertilsson S, Soerensen AL, Pinhassi J, Buck M, Karlsson C, Hawkes J, Björn E. Expression Levels of hgcAB Genes and Mercury Availability Jointly Explain Methylmercury Formation in Stratified Brackish Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13119-13130. [PMID: 36069707 PMCID: PMC9494745 DOI: 10.1021/acs.est.2c03784] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Neurotoxic methylmercury (MeHg) is formed by microbial methylation of inorganic divalent Hg (HgII) and constitutes severe environmental and human health risks. The methylation is enabled by hgcA and hgcB genes, but it is not known if the associated molecular-level processes are rate-limiting or enable accurate prediction of MeHg formation in nature. In this study, we investigated the relationships between hgc genes and MeHg across redox-stratified water columns in the brackish Baltic Sea. We showed, for the first time, that hgc transcript abundance and the concentration of dissolved HgII-sulfide species were strong predictors of both the HgII methylation rate and MeHg concentration, implying their roles as principal joint drivers of MeHg formation in these systems. Additionally, we characterized the metabolic capacities of hgc+ microorganisms by reconstructing their genomes from metagenomes (i.e., hgc+ MAGs), which highlighted the versatility of putative HgII methylators in the water column of the Baltic Sea. In establishing relationships between hgc transcripts and the HgII methylation rate, we advance the fundamental understanding of mechanistic principles governing MeHg formation in nature and enable refined predictions of MeHg levels in coastal seas in response to the accelerating spread of oxygen-deficient zones.
Collapse
Affiliation(s)
- Eric Capo
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Caiyan Feng
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| | - Andrea G. Bravo
- Department
of Marine Biology and Oceanography, Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona 08003, Spain
| | - Stefan Bertilsson
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Anne L. Soerensen
- Department
of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm 104 05, Sweden
| | - Jarone Pinhassi
- Centre
for Ecology and Evolution in Microbial Model Systems—EEMiS, Linnaeus University, Kalmar 391 82, Sweden
| | - Moritz Buck
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Camilla Karlsson
- Centre
for Ecology and Evolution in Microbial Model Systems—EEMiS, Linnaeus University, Kalmar 391 82, Sweden
| | - Jeffrey Hawkes
- Department
of Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Erik Björn
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
37
|
Du S, Li XQ, Hao X, Hu HW, Feng J, Huang Q, Liu YR. Stronger responses of soil protistan communities to legacy mercury pollution than bacterial and fungal communities in agricultural systems. ISME COMMUNICATIONS 2022; 2:69. [PMID: 37938257 PMCID: PMC9723755 DOI: 10.1038/s43705-022-00156-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 08/22/2023]
Abstract
Soil pollution is an important stressor affecting biodiversity and ecosystem functioning. However, we lack a holistic understanding of how soil microbial communities respond to heavy metal pollution in agricultural ecosystems. Here, we explored the distribution patterns and inter-kingdom interactions of entire soil microbiome (including bacteria, fungi, and protists) in 47 paired paddy and upland fields along a gradient of legacy mercury (Hg) pollution. We found that the richness and composition of protistan community had stronger responses to Hg pollution than those of bacterial and fungal communities in both paddy and upland soils. Mercury polluted soils harbored less protistan phototrophs but more protistan consumers. We further revealed that long-term Hg pollution greatly increased network complexity of protistan community than that of bacterial and fungal communities, as well as intensified the interactions between protists and the other microorganisms. Moreover, our results consistently indicated that protistan communities had stronger responses to long-term Hg pollution than bacterial and fungal communities in agricultural soils based on structural equation models and random forest analyses. Our study highlights that soil protists can be used as bioindicators of Hg pollution, with important implications for the assessment of contaminated farmlands and the sustainable management of agricultural ecosystems.
Collapse
Affiliation(s)
- Shuai Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin-Qi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Rodríguez J, Andersson A, Björn E, Timonen S, Brugel S, Skrobonja A, Rowe O. Inputs of Terrestrial Dissolved Organic Matter Enhance Bacterial Production and Methylmercury Formation in Oxic Coastal Water. Front Microbiol 2022; 13:809166. [PMID: 35966696 PMCID: PMC9363918 DOI: 10.3389/fmicb.2022.809166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin commonly found in aquatic environments and primarily formed by microbial methylation of inorganic divalent mercury (Hg(II)) under anoxic conditions. Recent evidence, however, points to the production of MeHg also in oxic pelagic waters, but the magnitude and the drivers for this process remain unclear. Here, we performed a controlled experiment testing the hypothesis that inputs of terrestrial dissolved organic matter (tDOM) to coastal waters enhance MeHg formation via increased bacterial activity. Natural brackish seawater from a coastal area of the Baltic Sea was exposed to environmentally relevant levels of Hg(II) and additions of tDOM according to climate change scenarios. MeHg formation was observed to be coupled to elevated bacterial production rates, which, in turn, was linked to input levels of tDOM. The increased MeHg formation was, however, not coupled to any specific change in bacterial taxonomic composition nor to an increased abundance of known Hg(II) methylation genes. Instead, we found that the abundance of genes for the overall bacterial carbon metabolism was higher under increased tDOM additions. The findings of this study may have important ecological implications in a changing global climate by pointing to the risk of increased exposure of MeHg to pelagic biota.
Collapse
Affiliation(s)
- Juanjo Rodríguez
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- *Correspondence: Juanjo Rodríguez,
| | - Agneta Andersson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
- Umeå Marine Research Centre (UMF), Umeå University, Hörnefors, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Sari Timonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Sonia Brugel
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
- Umeå Marine Research Centre (UMF), Umeå University, Hörnefors, Sweden
| | | | - Owen Rowe
- Helsinki Commission (HELCOM), Baltic Marine Environment Protection Commission, Helsinki, Finland
| |
Collapse
|
39
|
Basu N, Abass K, Dietz R, Krümmel E, Rautio A, Weihe P. The impact of mercury contamination on human health in the Arctic: A state of the science review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154793. [PMID: 35341859 DOI: 10.1016/j.scitotenv.2022.154793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
The 2021 Arctic Monitoring and Assessment Programme (AMAP) Mercury (Hg) Assessment is motivated by Arctic populations, and most notably Indigenous Peoples in the region, who are particularly vulnerable to Hg pollution. The objective of this review paper is to answer the following AMAP policy-relevant question: what is the human health impact of Hg pollution in the Arctic? In doing so, this state of the science review paper builds on information published 10 years ago in the last AMAP Hg assessment. The synthesized results demonstrate that: a) global influences (e.g., sources and transport pathways, biogeochemical processes, climate change, globalization) drive Hg exposures into human communities; b) Hg exposures are realized through dietary intake of certain country food items, and that new exposure science approaches are helping to deepen understandings; c) the nutritional and cultural benefits of country foods are immense, though a dietary transition is underway raising concerns over metabolic syndrome and broader issues of food security as well as cultural and social well-being; d) blood Hg measures are among the highest worldwide based on the results of human biomonitoring studies; e) Hg exposures are associated with adverse health outcomes across life stages (e.g., neurodevelopmental outcomes in young children to cardiovascular disease in adults); and f) risk communication needs to be balanced, targeted and clear, culturally appropriate, and be done collaboratively. These synthesized findings are particularly timely and policy-relevant given that the Minamata Convention entered into legal force worldwide in 2017 as a regulatory scheme to reduce the use and environmental release of Hg in order to protect human health and the environment. The Convention was influenced by health concerns raised by northern populations as indicated in the preamble text which makes reference to "the particular vulnerabilities of Arctic ecosystems and Indigenous communities".
Collapse
Affiliation(s)
- Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Rune Dietz
- Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, Frederiksbirgvej 399, DK-4000 Roskilde, Denmark
| | - Eva Krümmel
- Inuit Circumpolar Council - Canada, Ottawa, Canada
| | - Arja Rautio
- Thule Institute and Faculty of Medicine, University of Oulu and University of the Arctic, Oulu, Finland
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, Sigmundargøta 5, 100 Tórshavn, Faroe Islands; Center of Health Science, University of The Faroe Islands, J.C. Svabosgøta 14, 100 Tórshavn, Faroe Islands
| |
Collapse
|
40
|
Persistent organic pollutants and mercury in a colony of Antarctic seabirds: higher concentrations in 1998, 2001, and 2003 compared to 2014 to 2016. Polar Biol 2022. [DOI: 10.1007/s00300-022-03065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractOver decades, persistent organic pollutants (POPs) and trace metals like mercury (Hg) have reached the remotest areas of the world such as Antarctica by atmospheric transport. Once deposited in polar areas, low temperatures, and limited solar radiation lead to long environmental residence times, allowing the toxic substances to accumulate in biota. We investigated the load of polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDTs) and metabolites (DDEs, DDDs) in embryos from failed eggs of the smallest seabird breeding in Antarctica, the Wilson's storm-petrel (Oceanites oceanicus) at King George Island (Isla 25 de Mayo). We compared samples of different developmental stages collected in 2001, 2003, and 2014 to 2016 to investigate changes in pollutant concentrations over time. We detected eight PCBs including the dioxin-like (dl) congeners PCB 105 and 118 (ΣPCBs: 59-3403 ng g−1 ww) as well as 4,4’-DDE, and 4,4’-DDD (ΣDDX: 19-1035 ng g−1 ww) in the embryos. Samples from the years 2001 and 2003 showed higher concentrations of PCBs than those from 2014 to 2016. Concentrations of DDX was similar in both time intervals. Furthermore, we determined Hg concentrations in egg membranes from 1998 to 2003, and 2014 to 2016. Similar to PCBs, Hg in egg membranes were higher in 1998 than in 2003, and higher in 2003 than in the years 2014 to 2016, suggesting a slow recovery of the pelagic Antarctic environment from the detected legacy pollutants. Embryos showed an increase in pollutant concentrations within the last third of their development. This finding indicates that contaminant concentrations may differ among developmental stages, and it should be taken into account in analyses on toxic impact during embryogenesis.
Collapse
|
41
|
Krull M, Newman MC. Joint Effects of Fragmentation and Mercury Contamination on Marsh Periwinkle (Littoraria irrorata) Movement. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1742-1753. [PMID: 35474589 DOI: 10.1002/etc.5351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
There are different ways contaminants can interact and enhance the effects of habitat fragmentation, such as modifying the movement of organisms. The present study tested the hypothesis that mercury exacerbates the effects of fragmentation by affecting the movement of the marsh periwinkle Littoraria irrorata and reducing the probability of snails crossing fragmented microlandscape experimental systems. How these changes could affect the search efficiency of organisms in the long term was assessed using hidden Markov models and random walks simulations. Bayesian nonlinear models were used to analyze the effects of fragmentation and contamination on the mean speed and mean directional change of organisms. Snail movement for control and two mercury-exposure treatments were recorded in microlandscapes with six different levels of habitat cover and three landscape replicates. The results indicated that exposed organisms had lower probabilities of crossing the landscape, reduced speed, and shifts in step length distributions. Both mercury exposure and habitat fragmentation affected the movement of the marsh periwinkle. Mercury exacerbated the effects of habitat fragmentation by affecting the cognition (e.g., route planning, orientation, and spatial learning) and movement of L. irrorata. Hence, the interaction of these stressors could further reduce the functional connectivity of landscapes and reduce the search efficiency of organisms. Environ Toxicol Chem 2022;41:1742-1753. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Marcos Krull
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
- Data Analysis & Simulation, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Michael C Newman
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| |
Collapse
|
42
|
Sun X, Zhang Q, Zhang G, Li M, Li S, Guo J, Dong H, Zhou Y, Kang S, Wang X, Shi J. Melting Himalayas and mercury export: Results of continuous observations from the Rongbuk Glacier on Mt. Everest and future insights. WATER RESEARCH 2022; 218:118474. [PMID: 35461101 DOI: 10.1016/j.watres.2022.118474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Glaciers in the Himalayan region have been receding rapidly in recent decades, drawing increasing concerns about the release of legacy pollutants (e.g., mercury (Hg)). To investigate the distribution, transport and controlling factors of Hg in glacier-fed runoff, from June 2019 to July 2020, a continuous monitoring and an intensive sampling campaign were conducted in the Rongbuk Glacier-fed basin (RGB) on the north slope of Mt. Everest in the middle Himalayas. The total Hg (THg) and methyl Hg (MeHg) concentrations were 1.56 ± 0.85 and 0.057 ± 0.025 ng/L, respectively, which were comparable to the global background levels and were mainly affected by the total suspended particulate matter (TSP). In addition, THg and MeHg showed significant diurnal variations, with peak values appearing at approximately 17:00 (upstream) and 19:00 (downstream). Based on the annual runoff and average Hg concentration, the annual export fluxes of THg and MeHg were estimated to be 441 g and 16 g, respectively. The yields of THg and MeHg in the RGB were 1.6 and 0.06 μg/m2/year, respectively. Currently, the annual Hg export of meltwater runoff in the Himalayan region is approximately 337 kg/year. When flowing through the proglacial lake, the THg concentrations decreased by 32% and 15% in the proglacial lake water and in the outlet, respectively, indicating that proglacial lakes had a sedimentation effect on the Hg transport. The Hg export from meltwater runoff in the Himalayas will likely increase considering the meltwater runoff has been projected to increase in the future. Nonetheless, emerging proglacial lakes may exert ambiguous effects on the glacier exported Hg under changing climate. Proglacial lakes could lower the levels and amounts of Hg in the glacier runoff, whereas the outburst of proglacial lakes could lead to an instantaneous release of Hg stored in lake waters and sediments. Our analysis shed light on the environmental impact of glacier retreat in the Himalayas and highlighted the need for integrated monitoring and study of Hg in glacier runoff and glacial lakes.
Collapse
Affiliation(s)
- Xuejun Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoshuai Zhang
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Mingyue Li
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Li
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huike Dong
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
43
|
Chen Y, Dong W. Predicted Near-Future Oceanic Warming Enhances Mercury Toxicity in Marine Copepods. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:824-829. [PMID: 34596732 DOI: 10.1007/s00128-021-03385-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The effects of acute mercury exposure (118 µg/L) on the marine copepod Tigriopus japonicus were examined at 22 and 25 °C for 24 h and compared with controls. Mercury accumulation and seven genes related to antioxidant/stress responses were analyzed after exposure. The 24-h LC50 value decreased in the warmer environment and mercury accumulation was elevated. Under both temperatures, mercury significantly affected the expression of all analyzed genes and probably caused oxidative stress. Intriguingly, at the same mercury concentration, most genes were upregulated at the higher relative to the lower temperature, and the copepods likely initiated more compensatory reactions to counteract increased mercury toxicity associated with the warmer temperature. Overall, this study suggests a molecular mechanism by which marine copepods could respond to future oceanic warming and mercury pollution.
Collapse
Affiliation(s)
- Yao Chen
- Xiamen Marine Environmental Monitoring Central Station (SOA), 361008, Xiamen, China.
| | - Weifeng Dong
- Xiamen Marine Environmental Monitoring Central Station (SOA), 361008, Xiamen, China
| |
Collapse
|
44
|
Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM, Bravo AG, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida LE. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3840-3862. [PMID: 35244390 DOI: 10.1021/acs.est.1c03044] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and especially its methylated species (MeHg) are toxic chemicals that contaminate humans via the consumption of seafood. The most recent UNEP Global Mercury Assessment stressed that Mediterranean populations have higher Hg levels than people elsewhere in Europe. The present Critical Review updates current knowledge on the sources, biogeochemical cycling, and mass balance of Hg in the Mediterranean and identifies perspectives for future research especially in the context of global change. Concentrations of Hg in the Western Mediterranean average 0.86 ± 0.27 pmol L-1 in the upper water layer and 1.02 ± 0.12 pmol L-1 in intermediate and deep waters. In the Eastern Mediterranean, Hg measurements are in the same range but are too few to determine any consistent oceanographical pattern. The Mediterranean waters have a high methylation capacity, with MeHg representing up to 86% of the total Hg, and constitute a source of MeHg for the adjacent North Atlantic Ocean. The highest MeHg concentrations are associated with low oxygen water masses, suggesting a microbiological control on Hg methylation, consistent with the identification of hgcA-like genes in Mediterranean waters. MeHg concentrations are twice as high in the waters of the Western Basin compared to the ultra-oligotrophic Eastern Basin waters. This difference appears to be transferred through the food webs and the Hg content in predators to be ultimately controlled by MeHg concentrations of the waters of their foraging zones. Many Mediterranean top-predatory fish still exceed European Union regulatory Hg thresholds. This emphasizes the necessity of monitoring the exposure of Mediterranean populations, to formulate adequate mitigation strategies and recommendations, without advising against seafood consumption. This review also points out other insufficiencies of knowledge of Hg cycling in the Mediterranean Sea, including temporal variations in air-sea exchange, hydrothermal and cold seep inputs, point sources, submarine groundwater discharge, and exchanges between margins and the open sea. Future assessment of global change impacts under the Minamata Convention Hg policy requires long-term observations and dedicated high-resolution Earth System Models for the Mediterranean region.
Collapse
Affiliation(s)
- Daniel Cossa
- Université Grenoble Alpes, ISTerre, CS 40700, 38058 Grenoble Cedex 9, France
| | - Joël Knoery
- Ifremer, Centre Atlantique de Nantes, BP 44311, 44980 Nantes, France
| | - Daniela Bănaru
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Mireille Harmelin-Vivien
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France
| | - Ian M Hedgecock
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | | | - Ginevra Rosati
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | - Donata Canu
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | | | | | - Nicola Pirrone
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
45
|
Shalders TC, Champion C, Coleman MA, Benkendorff K. The nutritional and sensory quality of seafood in a changing climate. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105590. [PMID: 35255319 DOI: 10.1016/j.marenvres.2022.105590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Climate change is impacting living marine resources, whilst concomitantly, global reliance on seafood as a source of nutrition is increasing. Here we review an emerging research frontier, identifying significant impacts of climate-driven environmental change on the nutritional and sensory quality of seafood, and implications for human health. We highlight that changing ocean temperature, pH and salinity can lead to reductions in seafood macro and micronutrients, including essential nutrients such as protein and lipids. However, the nutritional quality of seafood appears to be more resilient in taxa that inhabit naturally variable environments such as estuaries and shallow near-coastal habitats. We develop criteria for assessing confidence in categorising the nutritional quality of seafood as vulnerable or resilient to climate change. The application of this criteria to a subset of seafood nutritional studies demonstrates confidence levels are generally low and could be improved by more realistic experimental designs and research collaboration. We highlight knowledge gaps to guide future research in this emerging field.
Collapse
Affiliation(s)
- Tanika C Shalders
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia.
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
46
|
Li Z, Huang Y, Liu J, Sun G, Wang Q, Xiao H, Huang M. Mass flow, enrichment and potential environmental impacts of mercury in a preheater-precalciner cement plant using multiple mining and industrial wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114819. [PMID: 35247759 DOI: 10.1016/j.jenvman.2022.114819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Cement plants (CPs) are one of the most important anthropogenic sources of mercury (Hg) emissions in China. Over 1000 cement production lines operate in China and use various raw materials; however, little data on Hg emissions is recorded on site. This study investigated a CP in Guizhou Province that uses multiple mining and industrial wastes as part of the circular economy policy. Among the various raw materials, carbide slag had the highest Hg content (2.6 mg/kg) and contributed half of the Hg input. High Hg concentration (27 mg/kg) in the kiln tail dust and a strong Hg enrichment factor (39) was found, which was determined as the ratio of total Hg accumulated within the clinker production process to the daily Hg input from raw materials and fuel. The clinker had negligible Hg (0.001 mg/kg), while the Hg in cement products (0.04 mg/kg) mostly came from additives and retarders. The estimated atmospheric emission factor of Hg from this CP was 161.5 mg Hg/t clinker, which was much higher than those of other CPs in Guizhou that employ low-Hg raw materials. A five-step sequential extraction experiment with kiln tail dust indicates that Hg mainly existed in fraction of F4 (73-96% of the total Hg, possibly as Hg2Cl2) and that some samples had high proportions of water-soluble Hg (up to 21% of the total), which may be easily released into surrounding water bodies and pose high environmental risks. Using low-Hg raw (or alternative raw) materials and conducting proper disposal of kiln tail dust will reduce the environmental risk of Hg from CPs.
Collapse
Affiliation(s)
- Zhonggen Li
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China.
| | - Yiming Huang
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China; School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Qingfeng Wang
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China
| | - Hanxi Xiao
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China
| | - Mingqin Huang
- School of Resources and Environment, Zunyi Normal College, Zunyi, 563006, China
| |
Collapse
|
47
|
Yang Y, Liu J, Ding J, Yu Y, Zhang J. Mercury/oxygen reaction mechanism over CuFe 2O 4 catalyst. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127556. [PMID: 34879535 DOI: 10.1016/j.jhazmat.2021.127556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
CuFe2O4 is regarded as a promising candidate of catalyst for Hg0 oxidation in industrial flue gas. However, the microcosmic reaction mechanism governing mercury oxidation on CuFe2O4 remains elusive. Herein, experiments and quantum chemistry calculations were conducted for understanding the chemical reaction mechanism of oxygen-assisted mercury oxidation on CuFe2O4. CuFe2O4 shows the optimal catalytic activity towards mercury oxidation at 150 ºC. The reactivity difference of different lattice oxygen species is associated with its atomic coordination environment. The lattice oxygen coordinating with two octahedral Cu atoms and a tetrahedral Fe atom shows higher catalytic activity towards mercury oxidation than other lattice oxygen atoms. The inverse spinel structure of CuFe2O4 is favorable for O2 activation due to the Jahn-Teller effect, thereby promoting mercury oxidation. O2 molecule preferably adsorbs on iron active site and dissociates into active oxygen species. Hg0 oxidation is a three-step reaction process: Hg0 adsorption, Hg(ads) → HgO(ads), and HgO desorption. The energy barrier of mercury oxidation by chemisorbed oxygen is lower than that of mercury oxidation by lattice oxygen. The chemisorbed oxygen preserves higher reactivity towards mercury oxidation than lattice oxygen. Hg(ads) → HgO(ads) is the rate-determining step of mercury oxidation by chemisorbed oxygen because of the higher energy barrier of 116.94 kJ/mol. This work could provide the theoretical guidance for the diversified structure design of highly-efficient catalysts used for elemental mercury oxidation.
Collapse
Affiliation(s)
- Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junyan Ding
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingni Yu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junying Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
48
|
Deshmukh PP, Malankar GS, Sakunthala A, Navalkar A, Maji SK, Murale DP, Saravanan R, Manjare ST. An efficient chemodosimeter for the detection of Hg(II) via diselenide oxidation. Dalton Trans 2022; 51:2269-2277. [PMID: 35073568 DOI: 10.1039/d1dt04038c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mercury ions are toxic and exhibit hazardous effects on the environment and biological systems, and thus demand for the selective and sensitive detection of mercury has become considerably an important issue. Here, we have developed a diselenide containing coumarin-based probe 3 for the selective detection of Hg(II) with a "turn-on" response (a 48 fold increase in fluorescence intensity) at 438 nm. The probe could quantitatively detect Hg(II) with a detection limit of 1.32 μM in PBS solution. Moreover, the probe has operable efficiency over the physiological range with an increase in the quantum yield from 1.2% to 57.3%. The reaction of the probe with Hg(II) yielded a novel monoselenide based coumarin 4via diselenide oxidation, which was confirmed by single crystal XRD. Furthermore, the biological use of the probe for the detection of Hg(II) was confirmed in the MCF-7 cell line. To the best of our knowledge, this is the first reaction-based probe for Hg(II) via diselenide oxidation.
Collapse
Affiliation(s)
| | - Gauri S Malankar
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Dhiraj P Murale
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Raju Saravanan
- Department of Chemistry, IIT Bombay, Mumbai, 400076, India
| | - Sudesh T Manjare
- Department of Chemistry, University of Mumbai, Mumbai, 400098, India.
| |
Collapse
|
49
|
Nguyen LSP, Nguyen KT, Griffith SM, Sheu GR, Yen MC, Chang SC, Lin NH. Multiscale Temporal Variations of Atmospheric Mercury Distinguished by the Hilbert-Huang Transform Analysis Reveals Multiple El Niño-Southern Oscillation Links. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1423-1432. [PMID: 34961321 DOI: 10.1021/acs.est.1c03819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atmospheric mercury (Hg) cycling is sensitive to climate-driven changes, but links with various teleconnections remain unestablished. Here, we revealed the El Niño-Southern Oscillation (ENSO) influence on gaseous elemental mercury (GEM) concentrations recorded at a background station in East Asia using the Hilbert-Huang transform (HHT). The timing and magnitude of GEM intrinsic variations were clearly distinguished by ensemble empirical mode decomposition (EEMD), revealing the amplitude of the GEM concentration interannual variability (IAV) is greater than that for diurnal and seasonal variability. We show that changes in the annual cycle of GEM were modulated by significant IAVs at time scales of 2-7 years, highlighted by a robust GEM IAV-ENSO relationship of the associated intrinsic mode functions. With confirmation that ENSO modulates the GEM annual cycle, we then found that weaker GEM annual cycles may have resulted from El Niño-accelerated Hg evasion from the ocean. Furthermore, the relationship between ENSO and GEM is sensitive to extreme events (i.e., 2015-2016 El Niño), resulting in perturbation of the long-term trend and atmospheric Hg cycling. Future climate change will likely increase the number of extreme El Niño events and, hence, could alter atmospheric Hg cycling and influence the effectiveness evaluation of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Ly Sy Phu Nguyen
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
- Faculty of Environment, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Kien Trong Nguyen
- Faculty of Electronics Engineering, Posts and Telecommunications Institute of Technology, Ho Chi Minh City 700000, Vietnam
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
- Center for Environmental Monitoring and Technology, National Central University, Jhongli 320, Taiwan
| | - Ming-Cheng Yen
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
| | | | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
- Center for Environmental Monitoring and Technology, National Central University, Jhongli 320, Taiwan
| |
Collapse
|
50
|
Blanchfield PJ, Rudd JWM, Hrenchuk LE, Amyot M, Babiarz CL, Beaty KG, Bodaly RAD, Branfireun BA, Gilmour CC, Graydon JA, Hall BD, Harris RC, Heyes A, Hintelmann H, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg SE, Mason RP, Paterson MJ, Podemski CL, Sandilands KA, Southworth GR, St Louis VL, Tate LS, Tate MT. Experimental evidence for recovery of mercury-contaminated fish populations. Nature 2021; 601:74-78. [PMID: 34912113 PMCID: PMC8732272 DOI: 10.1038/s41586-021-04222-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.
Collapse
Affiliation(s)
- Paul J Blanchfield
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada. .,Department of Biology, Queen's University, Kingston, Ontario, Canada. .,IISD Experimental Lakes Area, Winnipeg, Manitoba, Canada.
| | - John W M Rudd
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada.,R&K Research, Salt Spring Island, British Columbia, Canada
| | - Lee E Hrenchuk
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada.,IISD Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Marc Amyot
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Christopher L Babiarz
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ken G Beaty
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - R A Drew Bodaly
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Brian A Branfireun
- Department of Biology, Biological and Geological Sciences Building, University of Western Ontario, London, Ontario, Canada
| | | | - Jennifer A Graydon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Britt D Hall
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Reed C Harris
- Reed Harris Environmental, Oakville, Ontario, Canada
| | - Andrew Heyes
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, MD, USA
| | - Holger Hintelmann
- Water Quality Center, Trent University, Peterborough, Ontario, Canada
| | - James P Hurley
- University of Wisconsin-Madison, Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, Madison, WI, USA
| | - Carol A Kelly
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada.,R&K Research, Salt Spring Island, British Columbia, Canada
| | | | | | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Michael J Paterson
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada.,IISD Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Cheryl L Podemski
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Ken A Sandilands
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada.,IISD Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | | | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lori S Tate
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada.,Wisconsin Department of Natural Resources, Madison, WI, USA
| | | |
Collapse
|