1
|
Ali H, Chatburn A, Immink MA. Post-error slowing during motor sequence learning under extrinsic and intrinsic error feedback conditions. PSYCHOLOGICAL RESEARCH 2024; 89:1. [PMID: 39520578 DOI: 10.1007/s00426-024-02037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Post-error slowing, described as an error-corrective index of response binding during motor sequence learning, has only been demonstrated in the serial reaction time task under conditions where extrinsic error feedback is presented. The present experiment investigated whether post-error slowing is dependent on, or is influenced by, extrinsic error feedback. Thirty participants (14 females, Mage = 21.9 ± 1.8 years) completed the serial reaction time task with or without presentation of extrinsic error feedback. Post-error slowing was observed following response error whether feedback was presented or not. However, presentation of extrinsic error feedback increased post-error slowing across practice and extended the number of responses that were slowed following an error. There was no evidence of feedback effects on motor sequence learning or explicit awareness. Instead, feedback appeared to function as a performance factor that reduced response error rates relative to no feedback conditions. These findings illustrate that post-error slowing in motor sequence learning is not reliant on or a result of presentation of extrinsic error information. More specific to the serial reaction time task paradigm, the present findings demonstrate that the common practice of presenting error feedback is not necessary for investigating motor sequence learning unless the aim is to maintain low error rate. However, doing so might inflate reaction time in latter training blocks.
Collapse
Affiliation(s)
- Hassan Ali
- Flinders University, Adelaide, Australia
- University of South Australia, Adelaide, Australia
| | | | - Maarten A Immink
- Flinders University, Adelaide, Australia.
- University of South Australia, Adelaide, Australia.
| |
Collapse
|
2
|
Willbrand EH, Maboudian SA, Elliott MV, Kellerman GM, Johnson SL, Weiner KS. Variable Presence of an Evolutionarily New Brain Structure is Related to Trait Impulsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619912. [PMID: 39484399 PMCID: PMC11527008 DOI: 10.1101/2024.10.23.619912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research identifies separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. Yet, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research identifies variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest developing and most evolutionarily expanded hominoid-specific association cortices. Methods We tethered these two fields to test whether variability in one such structure in anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index). Results Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS co-localized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Both quantitative folding metrics did not relate to any impulsivity dimension. Conclusions This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlie separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Samira A. Maboudian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| | - Matthew V. Elliott
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Gabby M. Kellerman
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Sheri L. Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Peng L, Xu L, Zhang Z, Wang Z, Chen J, Zhong X, Wang L, Xu R, Shao Y. Effects of total sleep deprivation on functional connectivity of the anterior cingulate cortex: Insights from resting-state fMRI in healthy adult males. Int J Psychophysiol 2024; 206:112460. [PMID: 39447841 DOI: 10.1016/j.ijpsycho.2024.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Inadequate sleep significantly impacts an individual's health by compromising inhibitory control and self-regulation abilities. This study employed resting-state functional magnetic resonance imaging (fMRI) to assess the functional connectivity between the anterior cingulate cortex (ACC) and the whole brain in 16 healthy adult males after 36 h of total sleep deprivation. Additionally, this study investigated alterations in individuals' inhibitory control functions and physiological mechanisms following sleep deprivation. The results showed a significant increase in functional connectivity between the ACC, the left angular gyrus, and the right hippocampus following 36 h of continuous sleep deprivation. Conversely, functional connectivity was notably decreased between the ACC and the right insular cortex, right paracingulate gyrus, and bilateral putamen. Furthermore, changes in ACC functional connectivity were significantly correlated with alterations in behavioral performance in the go/no-go task after sleep deprivation. This study contributes to understanding brain network mechanisms in the anterior cingulate gyrus after sleep deprivation. It clarifies the relationship between functional connectivity changes in the anterior cingulate gyrus and inhibitory control post-sleep deprivation.
Collapse
Affiliation(s)
- Lei Peng
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Lin Xu
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Zheyuan Zhang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Zexuan Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Jie Chen
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Letong Wang
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Ruiping Xu
- Guangzhou Institute of Sports Science. No 299, Tianhe Road, Tianhe District, Guangzhou 510620, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
4
|
Su YA, Ye C, Xin Q, Si T. Neuroimaging studies in major depressive disorder with suicidal ideation or behaviour among Chinese patients: implications for neural mechanisms and imaging signatures. Gen Psychiatr 2024; 37:e101649. [PMID: 39411385 PMCID: PMC11474731 DOI: 10.1136/gpsych-2024-101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/09/2024] [Indexed: 10/19/2024] Open
Abstract
Major depressive disorder (MDD) with suicidal ideation or behaviour (MDSI) is associated with an increased risk of future suicide. The timely identification of suicide risk in patients with MDD and the subsequent implementation of interventions are crucially important to reduce their suffering and save lives. However, the early diagnosis of MDSI remains challenging across the world, as no objective diagnostic method is currently available. In China, the challenge is greater due to the social stigma associated with mental health problems, leading many patients to avoid reporting their suicidal ideation. Additionally, the neural mechanisms underlying MDSI are still unclear, which may hamper the development of effective interventions. We thus conducted this narrative review to summarise the existing neuroimaging studies of MDSI in Chinese patients, including those involving structural magnetic resonance imaging (MRI), functional MRI, neuronal electrophysiological source imaging of the brain dynamics with electroencephalography and magnetoencephalography. By synthesising the current research efforts in neuroimaging studies of Chinese patients with MDSI, we identified potential objective neuroimaging biomarkers, which may aid in the early identification of patients with MDSI who are at high suicide-related risk. Our findings also offer insights into the complex neural mechanisms underlying MDSI and suggest promising therapeutic targets. Furthermore, we propose future directions to discover novel imaging signatures, improve patient care, as well as help psychiatrists and clinical investigators plan their future research.
Collapse
Affiliation(s)
- Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chong Ye
- Xi'an Janssen Pharmaceutical Ltd, Beijing, China
| | - Qin Xin
- Xi'an Janssen Pharmaceutical Ltd, Beijing, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
5
|
Grabowska A, Sondej F, Senderecka M. A network analysis of affective and motivational individual differences and error monitoring in a non-clinical sample. Cereb Cortex 2024; 34:bhae397. [PMID: 39462813 PMCID: PMC11513196 DOI: 10.1093/cercor/bhae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/01/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024] Open
Abstract
Error monitoring, which plays a crucial role in shaping adaptive behavior, is influenced by a complex interplay of affective and motivational factors. Understanding these associations often proves challenging due to the intricate nature of these variables. With the aim of addressing previous inconsistencies and methodological gaps, in this study, we utilized network analysis to investigate the relationship between affective and motivational individual differences and error monitoring. We employed six Gaussian Graphical Models on a non-clinical population ($N$ = 236) to examine the conditional dependence between the amplitude of response-related potentials (error-related negativity; correct-related negativity) and 29 self-report measures related to anxiety, depression, obsessive thoughts, compulsive behavior, and motivation while adjusting for covariates: age, handedness, and latency of error-related negativity and correct-related negativity. We then validated our results on an independent sample of 107 participants. Our findings revealed unique associations between error-related negativity amplitudes and specific traits. Notably, more pronounced error-related negativity amplitudes were associated with increased rumination and obsessing, and decreased reward sensitivity. Importantly, in our non-clinical sample, error-related negativity was not directly associated with trait anxiety. These results underscore the nuanced effects of affective and motivational traits on error processing in healthy population.
Collapse
Affiliation(s)
- Anna Grabowska
- Doctoral School in the Social Sciences, Jagiellonian University, Main Square 34, 31-110 Krakow, Poland
- Centre for Cognitive Science, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Filip Sondej
- Centre for Cognitive Science, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Magdalena Senderecka
- Centre for Cognitive Science, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
6
|
Soriano-Segura P, Ortiz M, Iáñez E, Azorín JM. Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108332. [PMID: 39053352 DOI: 10.1016/j.cmpb.2024.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND OBJECTIVE Brain-Machine Interfaces (BMIs) based on a motor imagination paradigm provide an intuitive approach for the exoskeleton control during gait. However, their clinical applicability remains difficulted by accuracy limitations and sensitivity to false activations. A proposed improvement involves integrating the BMI with methods based on detecting Error Related Potentials (ErrP) to self-tune erroneous commands and enhance not only the system accuracy, but also its usability. The aim of the current research is to characterize the ErrP at the beginning of the gait with a lower limb exoskeleton to reduce the false starts in the BMI system. Furthermore, this study is valuable for determining which type of feedback, Tactile, Visual, or Visuo-Tactile, achieves the best performance in evoking and detecting the ErrP. METHODS The initial phase of the research concentrates on detecting ErrP at the beginning of gait to improve the efficiency of an asynchronous BMI based on motor imagery (BMI-MI) to control a lower limb exoskeleton. Initially, an experimental protocol is designed to evoke ErrP at the start of gait, employing three different stimuli: Tactile, Visual, and Visuo-Tactile. An iterative selection process is then utilized to characterize ErrP in both time and frequency domains and fine-tune various parameters, including electrode distribution, feature combinations, and classifiers. A generic classifier with 6 subjects is employed to configure an ensemble classification system for detecting ErrP and reducing the false starts. RESULTS The ensembled system configured with the selected parameters yields an average correction of false starts of 72.60 % ± 10.23, highlighting its corrective efficacy. Tactile feedback emerges as the most effective stimulus, outperforming Visual and Visuo-Tactile feedback in both training types. CONCLUSIONS The results suggest promising prospects for reducing the false starts when integrating ErrP with BMI-MI, employing Tactile feedback. Consequently, the security of the system is enhanced. Subsequent, further research efforts will focus on detecting error potential during movement for gait stop, in order to limit undesired stops.
Collapse
Affiliation(s)
- P Soriano-Segura
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain
| | - M Ortiz
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain.
| | - E Iáñez
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain
| | - J M Azorín
- Brain-Machine Interface Systems Lab, Miguel Hernández University of Elche, Spain; Engineering Research Institute of Elche - I3E, Miguel Hernández University of Elche, Spain; Valencian Graduate School and Research Network of Artificial Intelligence-ValgrAI, Valencia, Spain
| |
Collapse
|
7
|
Cerna J, Gupta P, He M, Ziegelman L, Hu Y, Hernandez ME. Tai Chi Practice Buffers Aging Effects in Functional Brain Connectivity. Brain Sci 2024; 14:901. [PMID: 39335397 PMCID: PMC11430092 DOI: 10.3390/brainsci14090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Tai Chi (TC) practice has been shown to improve both cognitive and physical function in older adults. However, the neural mechanisms underlying the benefits of TC remain unclear. Our primary aims are to explore whether distinct age-related and TC-practice-related relationships can be identified with respect to either temporal or spatial (within/between-network connectivity) differences. This cross-sectional study examined recurrent neural network dynamics, employing an adaptive, data-driven thresholding approach to source-localized resting-state EEG data in order to identify meaningful connections across time-varying graphs, using both temporal and spatial features derived from a hidden Markov model (HMM). Mann-Whitney U tests assessed between-group differences in temporal and spatial features by age and TC practice using either healthy younger adult controls (YACs, n = 15), healthy older adult controls (OACs, n = 15), or Tai Chi older adult practitioners (TCOAs, n = 15). Our results showed that aging is associated with decreased within-network and between-network functional connectivity (FC) across most brain networks. Conversely, TC practice appears to mitigate these age-related declines, showing increased FC within and between networks in older adults who practice TC compared to non-practicing older adults. These findings suggest that TC practice may abate age-related declines in neural network efficiency and stability, highlighting its potential as a non-pharmacological intervention for promoting healthy brain aging. This study furthers the triple-network model, showing that a balancing and reorientation of attention might be engaged not only through higher-order and top-down mechanisms (i.e., FPN/DAN) but also via the coupling of bottom-up, sensory-motor (i.e., SMN/VIN) networks.
Collapse
Affiliation(s)
- Jonathan Cerna
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Prakhar Gupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Maxine He
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Liran Ziegelman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Yang Hu
- Department of Kinesiology, San Jose State University, San Jose, CA 95192, USA;
| | - Manuel E. Hernandez
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Petersen SE, Seitzman BA, Nelson SM, Wig GS, Gordon EM. Principles of cortical areas and their implications for neuroimaging. Neuron 2024; 112:2837-2853. [PMID: 38834069 DOI: 10.1016/j.neuron.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
Collapse
Affiliation(s)
- Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin A Seitzman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Harper L, Strandberg O, Spotorno N, Nilsson M, Lindberg O, Hansson O, Santillo AF. Structural and functional connectivity associations with anterior cingulate sulcal variability. Brain Struct Funct 2024; 229:1561-1576. [PMID: 38900167 PMCID: PMC11374863 DOI: 10.1007/s00429-024-02812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Sulcation of the anterior cingulate may be defined by presence of a paracingulate sulcus, a tertiary sulcus developing during the third gestational trimester with implications on cognitive function and disease. In this cross-sectional study we examine task-free resting state functional connectivity and diffusion-weighted tract segmentation data from a cohort of healthy adults (< 60-year-old, n = 129), exploring the impact of ipsilateral paracingulate sulcal presence on structural and functional connectivity. Presence of a left paracingulate sulcus was associated with reduced fractional anisotropy in the left cingulum bundle and the left peri-genual and dorsal bundle segments, suggesting reduced structural organisational coherence in these tracts. This association was not observed in the offsite temporal cingulum bundle segment. Left paracingulate sulcal presence was associated with increased left peri-genual radial diffusivity and tract volume possibly suggesting increased U-fibre density in this region. Greater network dispersity was identified in individuals with an absent left paracingulate sulcus by presence of a significant, predominantly intraregional, frontal component of resting state functional connectivity which was not present in individuals with a present left paracingulate sulcus. Seed-based functional connectivity in pre-defined networks was not associated with paracingulate sulcal presence. These results identify a novel association between sulcation and structural connectivity in a healthy adult population with implications for conditions where this variation is of interest. Presence of a left paracingulate sulcus appears to alter local structural and functional connectivity, possibly as a result of the presence of a local network reliant on short association fibres.
Collapse
Affiliation(s)
- Luke Harper
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden.
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| | - Markus Nilsson
- Diagnostic Radiology, Faculty of Medicine, Department of Clinical Sciences, Lund, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund, Sweden
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Medical Sciences, Neuroscience, Lund University, Sölvegatan 19, 22100, Lund, Sweden
| |
Collapse
|
10
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
11
|
Lindner E, Desantis A, Cheng FPH, Gail A. Violation of identity-specific action-effect prediction increases pupil size and attenuates auditory event-related potentials at P2 latencies when action-effects are behaviorally relevant. Neuroimage 2024; 297:120717. [PMID: 38971482 DOI: 10.1016/j.neuroimage.2024.120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Self-initiated sensory action effects are widely assumed to lead to less intense perception and reduced neural responses compared to externally triggered stimuli (sensory attenuation). However, it is unclear if sensory attenuation occurs in all cases of action-effect prediction. Specifically, when predicted action-effects are relevant to determine follow-up actions attenuation could be detrimental. We quantified auditory event-related potentials (ERP) in electroencephalography (EEG) when human participants created two-sound sequences by pressing two keys on a keyboard associated with different pitch, giving rise to identity-specific action-effect prediction after the first keypress. The first sound corresponded to (congruent) or violated (incongruent) the predicted pitch and was either relevant for the selection of the second keypress to correctly complete the sequence (Relevance) or irrelevant (Control Movement), or there was only one keypress and sound (Baseline). We found a diminished P2-timed ERP component in incongruent compared to congruent trials when the sound was relevant for the subsequent action. This effect of action-effect prediction was due to an ERP reduction for incongruent relevant sounds compared to incongruent irrelevant sounds at P2 latencies and correlated negatively with modulations of pupil dilation. Contrary to our expectation, we did not observe an N1 modulation by congruency in any condition. Attenuation of the N1 component seems absent for predicted identity-specific auditory action effects, while P2-timed ERPs as well as pupil size are sensitive to predictability, at least when action effects are relevant for the selection of the next action. Incongruent relevant stimuli thereby take a special place and seem to be subject to attentional modulations and error processing.
Collapse
Affiliation(s)
- Elisabeth Lindner
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Germany; Faculty of Biology and Psychology, Georg-August University, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany.
| | - Andrea Desantis
- The French Aerospace Lab ONERA, Département Traitement de l'Information et Systèmes, BA 701 13661 Salon Cedex AIR, 13661 Salon-de-Provence, France; Institut de Neurosciences de la Timone (UMR 7289), CNRS, Aix-Marseille Université, Faculté de Médecine, 27, boulevard Jean Moulin, F-13005 Marseille, France; INCC - Integrative Neuroscience & Cognition Center UMR 8002, CNRS, Université de Paris, 45 Rue des Saint-Pères, F-75006 Paris, France
| | - Felicia Pei-Hsin Cheng
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Germany
| | - Alexander Gail
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Germany; Faculty of Biology and Psychology, Georg-August University, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| |
Collapse
|
12
|
Sookprao P, Benjasupawan K, Phangwiwat T, Chatnuntawech I, Lertladaluck K, Gutchess A, Chunharas C, Itthipuripat S. Conflicting Sensory Information Sharpens the Neural Representations of Early Selective Visuospatial Attention. J Neurosci 2024; 44:e2012232024. [PMID: 38955488 PMCID: PMC11326869 DOI: 10.1523/jneurosci.2012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Adaptive behaviors require the ability to resolve conflicting information caused by the processing of incompatible sensory inputs. Prominent theories of attention have posited that early selective attention helps mitigate cognitive interference caused by conflicting sensory information by facilitating the processing of task-relevant sensory inputs and filtering out behaviorally irrelevant information. Surprisingly, many recent studies that investigated the role of early selective attention on conflict mitigation have failed to provide positive evidence. Here, we examined changes in the selectivity of early visuospatial attention in male and female human subjects performing an attention-cueing Eriksen flanker task, where they discriminated the shape of a visual target surrounded by congruent or incongruent distractors. We used the inverted encoding model to reconstruct spatial representations of visual selective attention from the topographical patterns of amplitude modulations in alpha band oscillations in scalp EEG (∼8-12 Hz). We found that the fidelity of the alpha-based spatial reconstruction was significantly higher in the incongruent compared with the congruent condition. Importantly, these conflict-related modulations in the reconstruction fidelity occurred at a much earlier time window than those of the lateralized posterior event-related potentials associated with target selection and distractor suppression processes, as well as conflict-related modulations in the frontocentral negative-going wave and midline-frontal theta oscillations (∼3-7 Hz), thought to track executive control functions. Taken together, our data suggest that conflict resolution is supported by the cascade of neural processes underlying early selective visuospatial attention and frontal executive functions that unfold over time.
Collapse
Affiliation(s)
- Panchalee Sookprao
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- SCG Digital Office, Bangkok 10800, Thailand
| | - Kanyarat Benjasupawan
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center (BX), Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10600, Thailand
- Computer Engineering Department, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Kanda Lertladaluck
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Angela Gutchess
- Department of Psychology, Neuroscience Program, Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453
| | - Chaipat Chunharas
- Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Cognitive Clinical and Computational Neuroscience Center of Excellence, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation (NX), Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center (BX), Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10600, Thailand
| |
Collapse
|
13
|
Ramos L, Harr AE, Zakas FL, Essig SR, Kempskie GJ, Fadil NA, Schmid MG, Pompy MD, Curley MC, Gabel LA, Hallock HL. Overexpression of the Apoe gene in the frontal cortex of mice causes sex-dependent changes in learning, attention, and anxiety-like behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607225. [PMID: 39149404 PMCID: PMC11326296 DOI: 10.1101/2024.08.08.607225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Apolipoprotein E (ApoE) is a protein that is important for lipid storage, transport, and metabolism. APOE gene variants are associated with Alzheimer's disease (AD), as well as attentional function in healthy humans. Previous research has shown that Apoe transcription is increased following stimulation of the pathway between the locus coeruleus (LC) and frontal cortex (FC) in mice. This result suggests that Apoe may affect attentional function by virtue of its expression in circuits that control attention. Does Apoe causally regulate attention, or is its expression simply a byproduct of neuronal activity in the LC and FC? To answer this question, we synthetically induced Apoe transcription in the FC of male and female mice, and subsequently tested their ability to learn a touchscreen-based rodent version of the continuous performance test of sustained attention (the rCPT). We found that increased Apoe transcription impaired performance when attentional demand was increased in male mice, while in female mice, increased Apoe transcription significantly accelerated rCPT learning. We further found that this increase in Apoe transcription affected subsequent anxiety-like behavior and cellular activity in the FC in a sex-dependent manner. The results of this study provide insight into how Apoe causally regulates translationally relevant behaviors in rodent models.
Collapse
Affiliation(s)
- Lizbeth Ramos
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Abigail E. Harr
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Finian L. Zakas
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Samuel R. Essig
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | | - Nelly A. Fadil
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | | | | | | - Lisa A. Gabel
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | |
Collapse
|
14
|
Grinberg A, Strong A, Strandberg J, Selling J, Liebermann DG, Björklund M, Häger CK. Electrocortical activity associated with movement-related fear: a methodological exploration of a threat-conditioning paradigm involving destabilising perturbations during quiet standing. Exp Brain Res 2024; 242:1903-1915. [PMID: 38896295 PMCID: PMC11252179 DOI: 10.1007/s00221-024-06873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Musculoskeletal trauma often leads to lasting psychological impacts stemming from concerns of future injuries. Often referred to as kinesiophobia or re-injury anxiety, such concerns have been shown to hinder return to physical activity and are believed to increase the risk for secondary injuries. Screening for re-injury anxiety is currently restricted to subjective questionnaires, which are prone to self-report bias. We introduce a novel approach to objectively identify electrocortical activity associated with the threat of destabilising perturbations. We aimed to explore its feasibility among non-injured persons, with potential future implementation for screening of re-injury anxiety. Twenty-three participants stood blindfolded on a translational balance perturbation platform. Consecutive auditory stimuli were provided as low (neutral stimulus [CS-]) or high (conditioned stimulus [CS+]) tones. For the main experimental protocol (Protocol I), half of the high tones were followed by a perturbation in one of eight unpredictable directions. A separate validation protocol (Protocol II) requiring voluntary squatting without perturbations was performed with 12 participants. Event-related potentials (ERP) were computed from electroencephalography recordings and significant time-domain components were detected using an interval-wise testing procedure. High-amplitude early contingent negative variation (CNV) waves were significantly greater for CS+ compared with CS- trials in all channels for Protocol I (> 521-800ms), most prominently over frontal and central midline locations (P ≤ 0.001). For Protocol II, shorter frontal ERP components were observed (541-609ms). Our test paradigm revealed electrocortical activation possibly associated with movement-related fear. Exploring the discriminative validity of the paradigm among individuals with and without self-reported re-injury anxiety is warranted.
Collapse
Affiliation(s)
- Adam Grinberg
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden.
| | - Andrew Strong
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | | | - Jonas Selling
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| | - Dario G Liebermann
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Martin Björklund
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- Centre for Musculoskeletal Research, Department of Occupational Health Sciences and Psychology, University of Gävle, Gävle, Sweden
| | - Charlotte K Häger
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Vázquez D, Peña-Flores N, Maulhardt SR, Solway A, Charpentier CJ, Roesch MR. Anterior cingulate cortex lesions impair multiple facets of task engagement not mediated by dorsomedial striatum neuron firing. Cereb Cortex 2024; 34:bhae332. [PMID: 39128939 DOI: 10.1093/cercor/bhae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Norma Peña-Flores
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Sean R Maulhardt
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
| | - Alec Solway
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Caroline J Charpentier
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Miranda-Barrientos J, Adiraju S, Rehg JJ, Hallock HL, Li Y, Carr GV, Martinowich K. Patterns of neural activity in prelimbic cortex neurons correlate with attentional behavior in the rodent continuous performance test. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605300. [PMID: 39091763 PMCID: PMC11291163 DOI: 10.1101/2024.07.26.605300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sustained attention, the ability to focus on a stimulus or task over extended periods, is crucial for higher level cognition, and is impaired in individuals diagnosed with neuropsychiatric and neurodevelopmental disorders, including attention-deficit/hyperactivity disorder, schizophrenia, and depression. Translational tasks like the rodent continuous performance test (rCPT) can be used to study the cellular mechanisms underlying sustained attention. Accumulating evidence points to a role for the prelimbic cortex (PrL) in sustained attention, as electrophysiological single unit and local field (LFPs) recordings reflect changes in neural activity in the PrL in mice performing sustained attention tasks. While the evidence correlating PrL electrical activity with sustained attention is compelling, limitations inherent to electrophysiological recording techniques, including low sampling in single unit recordings and source ambivalence for LFPs, impede the ability to fully resolve the cellular mechanisms in the PrL that contribute to sustained attention. In vivo endoscopic calcium imaging using genetically encoded calcium sensors in behaving animals can address these questions by simultaneously recording up to hundreds of neurons at single cell resolution. Here, we used in vivo endoscopic calcium imaging to record patterns of neuronal activity in PrL neurons using the genetically encoded calcium sensor GCaMP6f in mice performing the rCPT at three timepoints requiring differing levels of cognitive demand and task proficiency. A higher proportion of PrL neurons were recruited during correct responses in sessions requiring high cognitive demand and task proficiency, and mice intercalated non-responsive-disengaged periods with responsive-engaged periods that resemble attention lapses. During disengaged periods, the correlation of calcium activity between PrL neurons was higher compared to engaged periods, suggesting a neuronal network state change during attention lapses in the PrL. Overall, these findings illustrate that cognitive demand, task proficiency, and task engagement differentially recruit activity in a subset of PrL neurons during sustained attention.
Collapse
Affiliation(s)
| | - Suhaas Adiraju
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jason J. Rehg
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | | | - Ye Li
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Gregory V. Carr
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
17
|
Craig GE, Ramos L, Essig SR, Eagles NJ, Jaffe AE, Martinowich K, Hallock HL. Stimulation of locus coeruleus inputs to the frontal cortex in mice induces cell type-specific expression of the Apoe gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604695. [PMID: 39091890 PMCID: PMC11291023 DOI: 10.1101/2024.07.22.604695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Deficits in attention are common across a range of neuropsychiatric disorders. A multitude of brain regions, including the frontal cortex (FC) and locus coeruleus (LC), have been implicated in attention. Regulators of these brain regions at the molecular level are not well understood, but might elucidate underlying mechanisms of disorders with attentional deficits. To probe this, we used chemogenetic stimulation of neurons in the LC with axonal projections to the FC, and subsequent bulk RNA-sequencing from the mouse FC. We found that stimulation of this circuit caused an increase in transcription of the Apoe gene. To investigate cell type-specific expression of Apoe in the FC, we used a dual-virus approach to express either the excitatory DREADD receptor hM3Dq in LC neurons with projections to the FC, or a control virus, and found that increases in Apoe expression in the FC following depolarization of LC inputs is enriched in GABAergic neurons in a sex-dependent manner. The results of these experiments yield insights into how Apoe expression affects function in cortical microcircuits that are important for attention-guided behavior, and point to interneuron-specific expression of Apoe as a potential target for the amelioration of attention symptoms in disorders such as attention-deficit hyperactivity disorder (ADHD), schizophrenia, and Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | - Lizbeth Ramos
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Samuel R. Essig
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Nicholas J. Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | |
Collapse
|
18
|
Howlett JR, Park H, Paulus MP. Sensorimotor Feedback Control Dysfunction as a Marker of Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00198-8. [PMID: 39053579 DOI: 10.1016/j.bpsc.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is characterized not only by its direct association with traumatic events but also by a potential deficit in inhibitory control across emotional, cognitive, and sensorimotor domains. Recent research has shown that a continuous sensorimotor feedback control task, the rapid assessment of motor processing paradigm, can yield reliable measures of individual sensorimotor control performance. This study used this paradigm to investigate control deficits in PTSD compared with both a healthy volunteer group and a non-PTSD psychiatric comparison group. METHODS We examined control processing using the rapid assessment of motor processing paradigm in a sample of 40 individuals with PTSD, matched groups of 40 individuals with mood and anxiety complaints, and 40 healthy control participants. We estimated Kp (drive) and Kd (damping) parameters using a proportional-derivative control modeling approach. RESULTS The Kp parameter was lower in the PTSD group than in the healthy control (Cohen's d = 0.86) and mood and anxiety (Cohen's d = 0.63) groups. After controlling for color-word inhibition, Kp remained lower in the PTSD group than in the healthy control (Cohen's d = 0.79) and mood and anxiety (Cohen's d = 0.62) groups. Mediation analysis showed that Kd significantly mediated the relationship between PTSD and control deficits in the Kp parameter, with 96% of the effect being mediated by Kd. CONCLUSIONS These findings underscore the potential of using dynamic control paradigms to elucidate the control dysfunctions in PTSD and suggest that different psychiatric conditions may distinctly influence subcomponents of sensorimotor control.
Collapse
Affiliation(s)
- Jonathon R Howlett
- VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California.
| | - Heekyeong Park
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, University of North Texas at Dallas, Dallas, Texas
| | | |
Collapse
|
19
|
Pipoly M, Lee HK, Hazeltine E, Voss MW. Educational Attainment Moderates Task-State Control Network Connectivity Relations to Response Conflict Among Healthy Older Adults. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae077. [PMID: 38721999 PMCID: PMC11176974 DOI: 10.1093/geronb/gbae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES Older adult executive function varies widely due to brain and cognitive aging. Variance in older adult executive function is linked to increased response conflict from cognitive and brain aging. Cognitive reserve (CR) is a theoretical protective mechanism that lessens brain aging's impact on cognition and is associated with greater educational attainment. Recent work in rest-state functional magnetic resonance imaging (fMRI) suggests CR proxies moderate the relationship between functional connectivity (FC) and cognitive performance. Brain network FC in "control networks," including the salience (SN), dorsal attention and frontoparietal networks, are associated with cognitive processes in older adults. CR is hypothesized to maintain cognitive processing in part through changes in how brain networks respond to cognitive demands. However, it is unclear how CR proxies like educational attainment are related to control network FC during performance when cognitive demands are increased relative to rest. Because CR is expressed more in those with higher education, we hypothesized stronger control network FC would relate to better performance, where this relationship would be strongest among the most educated. METHODS We collected flanker task data during fMRI to assess the impact of a CR proxy (i.e., educational attainment) on response conflict among older adult subjects (n = 42, age = 65-80). RESULTS Linear mixed-effects models showed more educated older adults with greater SN-FC had a smaller flanker effect (i.e., less influence of distractors; p < .001) during task performance. DISCUSSION For the first time, we show that educational attainment moderates the relationship between task-state SN-FC and executive function among older adults.
Collapse
Affiliation(s)
- Marco Pipoly
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Hyun Kyu Lee
- Department of Research and Development, Posit Science Inc., San Francisco, California, USA
| | - Eliot Hazeltine
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
20
|
Yang XF, Hilliard K, Gotlieb R, Immordino-Yang MH. Transcendent thinking counteracts longitudinal effects of mid-adolescent exposure to community violence in the anterior cingulate cortex. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2024. [PMID: 38923619 DOI: 10.1111/jora.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Adolescence involves extensive brain maturation, characterized by social sensitivity and emotional lability, that co-occurs with increased independence. Mid-adolescence is also a hallmark developmental stage when youths become motivated to reflect on the broader personal, ethical, and systems-level implications of happenings, a process we term transcendent thinking. Here, we examine the confluence of these developmental processes to ask, from a transdisciplinary perspective, how might community violence exposure (CVE) impact brain development during mid-adolescence, and how might youths' dispositions for transcendent thinking be protective? Fifty-five low-SES urban youth with no history of delinquency (32 female; 27 Latinx, 28 East Asian) reported their CVE and underwent structural MRI first at age 14-18, and again 2 years later. At the study's start, participants also discussed their feelings about 40 minidocumentaries featuring other teens' compelling situations in a 2-h private interview that was transcribed and coded for transcendent thinking. Controlling for CVE and brain structure at the start: (1) New CVE during the 2-year inter-scan interval was associated with greater gray matter volume (GMV) reduction over that interval in the anterior cingulate cortex (ACC), a central network hub whose reduced volume has been associated with posttraumatic stress disorder, and across multiple additional cortical and subcortical regions; (2) participants' transcendent thinking in the interview independently predicted greater GMV increase during the 2-year inter-scan interval in the ACC. Findings highlight the continued vulnerability of mid-adolescents to community violence and the importance of supporting teens' dispositions to reflect on the complex personal and systems-level implications and affordances of their civic landscape.
Collapse
Affiliation(s)
- Xiao-Fei Yang
- Center for Affective Neuroscience, Development, Learning and Education, Brain and Creativity Institute, Rossier School of Education, University of Southern California, Los Angeles, California, USA
| | - Katrina Hilliard
- Center for Affective Neuroscience, Development, Learning and Education, Brain and Creativity Institute, Rossier School of Education, University of Southern California, Los Angeles, California, USA
| | - Rebecca Gotlieb
- Center for Dyslexia, Diverse Learners, and Social Justice, School of Education and Information Studies, University of California Los Angeles, Los Angeles, California, USA
| | - Mary Helen Immordino-Yang
- Center for Affective Neuroscience, Development, Learning and Education, Brain and Creativity Institute, Rossier School of Education, University of Southern California, Los Angeles, California, USA
- Psychology Department, Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
21
|
Long Y, Pan N, Yu Y, Zhang S, Qin K, Chen Y, Sweeney JA, DelBello MP, Gong Q. Shared and Distinct Neurobiological Bases of Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: A Comparative Meta-Analysis of Structural Abnormalities. J Am Acad Child Adolesc Psychiatry 2024; 63:586-604. [PMID: 38072245 DOI: 10.1016/j.jaac.2023.09.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
OBJECTIVE Pediatric bipolar disorder (PBD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur and share dysfunctions in affective and cognitive domains. As the neural substrates underlying their overlapping and dissociable symptomatology have not been well delineated, a meta-analysis of whole-brain voxel-based morphometry studies in PBD and ADHD was conducted. METHOD A systematic literature search was performed in PubMed, Web of Science, and Embase. The seed-based d mapping toolbox was used to identify altered clusters of PBD or ADHD and obtain their conjunctive and comparative abnormalities. Suprathreshold patterns were subjected to large-scale network analysis to identify affected brain networks. RESULTS The search revealed 10 PBD studies (268 patients) and 32 ADHD studies (1,333 patients). Decreased gray matter volumes in the right insula and anterior cingulate cortex relative to typically developing individuals were conjunctive in PBD and ADHD. Reduced volumes in the right inferior frontal gyrus, left orbitofrontal cortex, and hippocampus were more substantial in PBD, while decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus were more pronounced in ADHD. Neurodevelopmental effects modulated patterns of the left hippocampus in PBD and those of the left inferior frontal gyrus in ADHD. CONCLUSION These findings suggest that PBD and ADHD are characterized by both common and distinct patterns of gray matter volume alterations. Their overlapping abnormalities may represent a transdiagnostic problem of attention and emotion regulation shared by PBD and ADHD, whereas the disorder-differentiating substrates may contribute to the relative differences in cognitive and affective features that define the 2 disorders. PLAIN LANGUAGE SUMMARY Pediatric bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) frequently co-occur, with overlapping changes in emotional and cognitive functioning. This meta-analysis summarizes findings from 10 articles on BD and 32 articles on ADHD to identify similarities and differences in brain structure between youth with BD and youth with ADHD. The authors found that both disorders share decreased gray matter volumes in the right insula and anterior cingulate cortex, which play important roles in emotion processing and attention, respectively. Youth with BD had decreased gray matter volume in the right inferior frontal gyrus, left orbitofrontal gyrus, and left hippocampus, while youth with ADHD had decreased volumes in the left precentral gyrus, left inferior frontal gyrus, and right superior frontal gyrus. STUDY PREREGISTRATION INFORMATION Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder in Children/Adolescents: An Overlapping Meta-analysis; https://osf.io; trg4m.
Collapse
Affiliation(s)
- Yajing Long
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | - Yifan Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shufang Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Qin
- University of Cincinnati, Cincinnati, Ohio; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; University of Cincinnati, Cincinnati, Ohio
| | | | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; West China Xiamen Hospital of Sichuan University, Xiamen, China.
| |
Collapse
|
22
|
Vázquez D, Maulhardt SR, Stalnaker TA, Solway A, Charpentier CJ, Roesch MR. Optogenetic Inhibition of Rat Anterior Cingulate Cortex Impairs the Ability to Initiate and Stay on Task. J Neurosci 2024; 44:e1850232024. [PMID: 38569923 PMCID: PMC11097287 DOI: 10.1523/jneurosci.1850-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 04/05/2024] Open
Abstract
Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.
Collapse
Affiliation(s)
- Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Sean R Maulhardt
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Thomas A Stalnaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Alec Solway
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Caroline J Charpentier
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
23
|
Noel JP, Balzani E, Acerbi L, Benson J, Savin C, Angelaki DE. A common computational and neural anomaly across mouse models of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593232. [PMID: 38766250 PMCID: PMC11100696 DOI: 10.1101/2024.05.08.593232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Computational psychiatry has suggested that humans within the autism spectrum disorder (ASD) inflexibly update their expectations (i.e., Bayesian priors). Here, we leveraged high-yield rodent psychophysics (n = 75 mice), extensive behavioral modeling (including principled and heuristics), and (near) brain-wide single cell extracellular recordings (over 53k units in 150 brain areas) to ask (1) whether mice with different genetic perturbations associated with ASD show this same computational anomaly, and if so, (2) what neurophysiological features are shared across genotypes in subserving this deficit. We demonstrate that mice harboring mutations in Fmr1 , Cntnap2 , and Shank3B show a blunted update of priors during decision-making. Neurally, the differentiating factor between animals flexibly and inflexibly updating their priors was a shift in the weighting of prior encoding from sensory to frontal cortices. Further, in mouse models of ASD frontal areas showed a preponderance of units coding for deviations from the animals' long-run prior, and sensory responses did not differentiate between expected and unexpected observations. These findings demonstrate that distinct genetic instantiations of ASD may yield common neurophysiological and behavioral phenotypes.
Collapse
|
24
|
DeYoe EA, Huddleston W, Greenberg AS. Are neuronal mechanisms of attention universal across human sensory and motor brain maps? Psychon Bull Rev 2024:10.3758/s13423-024-02495-3. [PMID: 38587756 DOI: 10.3758/s13423-024-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
One's experience of shifting attention from the color to the smell to the act of picking a flower seems like a unitary process applied, at will, to one modality after another. Yet, the unique and separable experiences of sight versus smell versus movement might suggest that the neural mechanisms of attention have been separately optimized to employ each modality to its greatest advantage. Moreover, addressing the issue of universality can be particularly difficult due to a paucity of existing cross-modal comparisons and a dearth of neurophysiological methods that can be applied equally well across disparate modalities. Here we outline some of the conceptual and methodological issues related to this problem and present an instructive example of an experimental approach that can be applied widely throughout the human brain to permit detailed, quantitative comparison of attentional mechanisms across modalities. The ultimate goal is to spur efforts across disciplines to provide a large and varied database of empirical observations that will either support the notion of a universal neural substrate for attention or more clearly identify the degree to which attentional mechanisms are specialized for each modality.
Collapse
Affiliation(s)
- Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
- , Signal Mountain, USA.
| | - Wendy Huddleston
- School of Rehabilitation Sciences and Technology, College of Health Professions and Sciences, University of Wisconsin - Milwaukee, 3409 N. Downer Ave, Milwaukee, WI, 53211, USA
| | - Adam S Greenberg
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, 53226, USA
| |
Collapse
|
25
|
Kolev V, Falkenstein M, Yordanova J. A distributed theta network of error generation and processing in aging. Cogn Neurodyn 2024; 18:447-459. [PMID: 38699606 PMCID: PMC11061062 DOI: 10.1007/s11571-023-10018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 05/05/2024] Open
Abstract
Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task. RRPs were decomposed in the time-frequency domain to extract oscillatory theta activity. Motor theta oscillations at extended motor regions were analyzed with respect to power, temporal synchronization, and functional connectivity. Major results demonstrated that errors had pronounced effects on motor theta oscillations at cortical regions beyond the medial frontal cortex by being associated with (1) theta power increase in the hemisphere contra-lateral to the movement, (2) suppressed spatial and temporal synchronization at pre-motor areas contra-lateral to the responding hand, (2) inhibited connections between the medial frontal cortex and sensorimotor areas, and (3) suppressed connectivity and temporal phase-synchronization of motor theta networks in the posterior left hemisphere, irrespective of the hand, left, or right, with which the error was made. The distributed effects of errors on motor theta oscillations demonstrate that theta networks support performance monitoring. The reorganization of these networks with aging implies that in older individuals, performance monitoring is associated with a disengagement of the medial frontal region and difficulties in controlling the focus of motor attention and response selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10018-4.
Collapse
Affiliation(s)
- Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| | | | - Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| |
Collapse
|
26
|
Aly M, Ishihara T, Torii S, Kamijo K. Being underweight, academic performance and cognitive control in undergraduate women. Arch Womens Ment Health 2024; 27:249-258. [PMID: 38082003 DOI: 10.1007/s00737-023-01410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 03/13/2024]
Abstract
The prevalence of underweight among young women is a serious international health issue. However, the evidence on how being underweight negatively affects brain health and cognition is still unclear. This study investigated the association between underweight status, academic performance, and neurocognitive control in young Japanese women using a cross-sectional design. We analyzed the academic performance of female undergraduates, comparing underweight and healthy-weight groups (n = 43; age 18-23 years, M = 21.1, SD = 1.3) based on their grade point average (GPA). We also analyzed their error-related negativity (ERN), an electrophysiological measure that potentially reflects academic performance, during an arrowhead version of the flanker task to assess cognitive control of action monitoring. Participants with a low body mass index were found to have lower GPAs. Furthermore, the underweight students exhibited smaller ERN amplitudes, which indicates decreased cognitive control in action monitoring. These findings suggest that a healthy weight status is essential for effective cognitive functioning and academic success in young adult women, among whom being underweight is a serious health problem.
Collapse
Affiliation(s)
- Mohamed Aly
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, Japan
- Department of Educational Sciences and Sports Psychology, Faculty of Physical Education, Assiut University, Assiut, Egypt
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Suguru Torii
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, Japan.
| |
Collapse
|
27
|
Yordanova J, Falkenstein M, Kolev V. Motor oscillations reveal new correlates of error processing in the human brain. Sci Rep 2024; 14:5624. [PMID: 38454108 PMCID: PMC10920772 DOI: 10.1038/s41598-024-56223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
It has been demonstrated that during motor responses, the activation of the motor cortical regions emerges in close association with the activation of the medial frontal cortex implicated with performance monitoring and cognitive control. The present study explored the oscillatory neurodynamics of response-related potentials during correct and error responses to test the hypothesis that such continuous communication would modify the characteristics of motor potentials during performance errors. Electroencephalogram (EEG) was recorded at 64 electrodes in a four-choice reaction task and response-related potentials (RRPs) of correct and error responses were analysed. Oscillatory RRP components at extended motor areas were analysed in the theta (3.5-7 Hz) and delta (1-3 Hz) frequency bands with respect to power, temporal synchronization (phase-locking factor, PLF), and spatial synchronization (phase-locking value, PLV). Major results demonstrated that motor oscillations differed between correct and error responses. Error-related changes (1) were frequency-specific, engaging delta and theta frequency bands, (2) emerged already before response production, and (3) had specific regional topographies at posterior sensorimotor and anterior (premotor and medial frontal) areas. Specifically, the connectedness of motor and sensorimotor areas contra-lateral to the response supported by delta networks was substantially reduced during errors. Also, there was an error-related suppression of the phase stability of delta and theta oscillations at these areas. This synchronization reduction was accompanied by increased temporal synchronization of motor theta oscillations at bi-lateral premotor regions and by two distinctive error-related effects at medial frontal regions: (1) a focused fronto-central enhancement of theta power and (2) a separable enhancement of the temporal synchronization of delta oscillations with a localized medial frontal focus. Together, these observations indicate that the electrophysiological signatures of performance errors are not limited to the medial frontal signals, but they also involve the dynamics of oscillatory motor networks at extended cortical regions generating the movement. Also, they provide a more detailed picture of the medial frontal processes activated in relation to error processing.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria.
| | | | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
28
|
Andre P, Cantore N, Lucibello L, Migliaccio P, Rossi B, Carboncini MC, Aloisi AM, Manzoni D, Arrighi P. The cerebellum monitors errors and entrains executive networks. Brain Res 2024; 1826:148730. [PMID: 38128813 DOI: 10.1016/j.brainres.2023.148730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/24/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Frontal midline θ (Fmθ) activity occurs in medial prefrontal cortices (mPFC), when expected and actual outcomes conflict. Cerebellar forward models could inform the mPFC about this mismatch. To verify this hypothesis we correlated the mPFC activation during a visuomotor tracking task (VM) with performance accuracy, in control and cerebellum-lesioned participants. Additionally, purely visual (V), motor (M) and a motor plus visual tasks (V + M) were performed. An Independent Component, with a mid-frontal topography scalp map and equivalent dipole location in the dorsal anterior cingulate cortex accounted for Fmθ. In control participants Fmθ power increased during VM, when the error level crossed a threshold, but not during V + M, M and V. This increase scaled with tracking error. Fmθ power failed to increase during VM in cerebellar participants, even at highest tracking errors. Thus, in control participants, activation of mPFC is induced when a continuous monitoring effort for online error detection is required. The presence of a threshold error for enhancing Fmθ, suggests the switch from an automatic to an executive tracking control, which recruits the mPFC. Given that the cerebellum stores forward models, the absence of Fmθ increases during tracking errors in cerebellar participants indicates that cerebellum is necessary for supplying the mPFC with prediction error-related information. This occurs when automatic control falters, and a deliberate correction mechanism needs to be triggered. Further studies are needed to verify if this alerting function also occurs in the context of the other cognitive and non-cognitive functions in which the cerebellum is involved.
Collapse
Affiliation(s)
- P Andre
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - N Cantore
- Neurorehabilitation Unit, Pisa University Hospital, Pisa, Italy
| | - L Lucibello
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - P Migliaccio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - B Rossi
- Neurorehabilitation Unit, Pisa University Hospital, Pisa, Italy; Department of Translational Research and New Medical and Surgical Technologies, University of Pisa, Pisa, Italy
| | - M C Carboncini
- Neurorehabilitation Unit, Pisa University Hospital, Pisa, Italy; Department of Translational Research and New Medical and Surgical Technologies, University of Pisa, Pisa, Italy
| | - A M Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - D Manzoni
- Department of Translational Research and New Medical and Surgical Technologies, University of Pisa, Pisa, Italy
| | - P Arrighi
- Neurorehabilitation Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
29
|
Morningstar MD, Timme NM, Ma B, Cornwell E, Galbari T, Lapish CC. Proactive Versus Reactive Control Strategies Differentially Mediate Alcohol Drinking in Male Wistars and P Rats. eNeuro 2024; 11:ENEURO.0385-23.2024. [PMID: 38423790 PMCID: PMC10972740 DOI: 10.1523/eneuro.0385-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Problematic alcohol consumption is associated with deficits in decision-making and alterations in prefrontal cortex neural activity likely contribute. We hypothesized that the differences in cognitive control would be evident between male Wistars and a model of genetic risk: alcohol-preferring P rats. Cognitive control is split into proactive and reactive components. Proactive control maintains goal-directed behavior independent of a stimulus, whereas reactive control elicits goal-directed behavior at the time of a stimulus. We hypothesized that Wistars would show proactive control over alcohol seeking whereas P rats would show reactive control over alcohol seeking. Neural activity was recorded from the prefrontal cortex during an alcohol seeking task with two session types. On congruent sessions, the conditioned stimulus (CS+) was on the same side as alcohol access. Incongruent sessions presented alcohol opposite the CS+. Wistars, but not P rats, made more incorrect approaches during incongruent sessions, suggesting that Wistars utilized the previously learned rule. This motivated the hypothesis that neural activity reflecting proactive control would be observable in Wistars but not P rats. While P rats showed differences in neural activity at times of alcohol access, Wistars showed differences prior to approaching the sipper. These results support our hypothesis that Wistars are more likely to engage in proactive cognitive control strategies whereas P rats are more likely to engage in reactive cognitive control strategies. Although P rats were bred to prefer alcohol, the differences in cognitive control may reflect a sequela of behaviors that mirror those in humans at risk for an AUD.
Collapse
Affiliation(s)
- M D Morningstar
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - N M Timme
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - B Ma
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - E Cornwell
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - T Galbari
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
| | - C C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202
- Department of Anatomy, Cell Biology, and Physiology, Stark Neurosciences, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
30
|
Mondini V, Sburlea AI, Müller-Putz GR. Towards unlocking motor control in spinal cord injured by applying an online EEG-based framework to decode motor intention, trajectory and error processing. Sci Rep 2024; 14:4714. [PMID: 38413782 PMCID: PMC10899181 DOI: 10.1038/s41598-024-55413-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
Brain-computer interfaces (BCIs) can translate brain signals directly into commands for external devices. Electroencephalography (EEG)-based BCIs mostly rely on the classification of discrete mental states, leading to unintuitive control. The ERC-funded project "Feel Your Reach" aimed to establish a novel framework based on continuous decoding of hand/arm movement intention, for a more natural and intuitive control. Over the years, we investigated various aspects of natural control, however, the individual components had not yet been integrated. Here, we present a first implementation of the framework in a comprehensive online study, combining (i) goal-directed movement intention, (ii) trajectory decoding, and (iii) error processing in a unique closed-loop control paradigm. Testing involved twelve able-bodied volunteers, performing attempted movements, and one spinal cord injured (SCI) participant. Similar movement-related cortical potentials and error potentials to previous studies were revealed, and the attempted movement trajectories were overall reconstructed. Source analysis confirmed the involvement of sensorimotor and posterior parietal areas for goal-directed movement intention and trajectory decoding. The increased experiment complexity and duration led to a decreased performance than each single BCI. Nevertheless, the study contributes to understanding natural motor control, providing insights for more intuitive strategies for individuals with motor impairments.
Collapse
Affiliation(s)
- Valeria Mondini
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Andreea-Ioana Sburlea
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
31
|
Cruz AS, Cruz S, Remondes M. Effects of optogenetic silencing the anterior cingulate cortex in a delayed non-match to trajectory task. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae002. [PMID: 38595941 PMCID: PMC10939314 DOI: 10.1093/oons/kvae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Working memory is a fundamental cognitive ability, allowing us to keep information in memory for the time needed to perform a given task. A complex neural circuit fulfills these functions, among which is the anterior cingulate cortex (CG). Functionally and anatomically connected to the medial prefrontal, retrosplenial, midcingulate and hippocampus, as well as motor cortices, CG has been implicated in retrieving appropriate information when needed to select and control appropriate behavior. The role of cingulate cortex in working memory-guided behaviors remains unclear due to the lack of studies reversibly interfering with its activity during specific epochs of working memory. We used eNpHR3.0 to silence cingulate neurons while animals perform a standard delayed non-match to trajectory task, and found that, while not causing an absolute impairment in working memory, silencing cingulate neurons during retrieval decreases the mean performance if compared to silencing during encoding. Such retrieval-associated changes are accompanied by longer delays observed when light is delivered to control animals, when compared to eNpHR3.0+ ones, consistent with an adaptive recruitment of additional cognitive resources.
Collapse
Affiliation(s)
- Ana S Cruz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Sara Cruz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel Remondes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon 1649-028, Portugal
- Faculdade de Medicina Veterinária Universidade Lusófona, Lisbon 1749-024, Portugal
| |
Collapse
|
32
|
Núñez-Peña MI, Campos-Rodríguez C. Response monitoring in math-anxious individuals in an arithmetic task. Biol Psychol 2024; 186:108759. [PMID: 38360488 DOI: 10.1016/j.biopsycho.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
We examine whether math anxiety is related to altered response monitoring in an arithmetic task. Response-locked event-related brain potentials (ERPs) were evaluated in 23 highly (HMA) and 23 low math-anxious (LMA) individuals while they performed an arithmetic verification task. We focused on two widely studied ERPs elicited during error processing: error-related negativity (ERN) and error positivity (Pe). Correct-related negativity (CRN), an ERP elicited after a correct response, was also studied. The expected ERN following errors was found, but groups did not differ in its amplitude. Importantly, LMA individuals showed less negative CRN and more positive Pe amplitudes than their more anxious peers, suggesting more certainty regarding response accuracy and better adaptive behavioral adjustment after committing errors in an arithmetic task in the LMA group. The worse control over response performance and less awareness of correct responses in the HMA group might reduce their ability to 'learn from errors'.
Collapse
Affiliation(s)
- María Isabel Núñez-Peña
- Department of Social Psychology and Quantitative Psychology (Quantitative Psychology Section), Faculty of Psychology, University of Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| | - Carlos Campos-Rodríguez
- Department of Social Psychology and Quantitative Psychology (Quantitative Psychology Section), Faculty of Psychology, University of Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Spain
| |
Collapse
|
33
|
Hallock HL, Adiraju SS, Miranda-Barrientos J, McInerney JM, Oh S, DeBrosse AC, Li Y, Carr GV, Martinowich K. Electrophysiological correlates of attention in the locus coeruleus-prelimbic cortex circuit during the rodent continuous performance test. Neuropsychopharmacology 2024; 49:521-531. [PMID: 37563281 PMCID: PMC10789747 DOI: 10.1038/s41386-023-01692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Sustained attention, the ability to focus on an activity or stimulus over time, is significantly impaired in many psychiatric disorders, and there remains a major unmet need in treating impaired attention. Continuous performance tests (CPTs) were developed to measure sustained attention in humans, non-human primates, rats, and mice, and similar neural circuits are engaged across species during CPT performance, supporting their use in translational studies to identify novel therapeutics. Here, we identified electrophysiological correlates of attentional performance in a touchscreen-based rodent CPT (rCPT) in the locus coeruleus (LC) and prelimbic cortex (PrL), two inter-connected regions that are implicated in attentional processes. We used viral labeling and molecular techniques to demonstrate that neural activity is recruited in LC-PrL projections during the rCPT, and that this recruitment increases with cognitive demand. We implanted male mice with depth electrodes within the LC and PrL for local field potential (LFP) recordings during rCPT training, and identified an increase in PrL delta and theta power, and an increase in LC delta power during correct responses in the rCPT. We also found that the LC leads the PrL in theta frequencies during correct responses while the PrL leads the LC in gamma frequencies during incorrect responses. These findings may represent translational biomarkers that can be used to screen novel therapeutics for drug discovery in attention.
Collapse
Affiliation(s)
- Henry L Hallock
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Suhaas S Adiraju
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | | | - Jessica M McInerney
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Seyun Oh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Adrienne C DeBrosse
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Ye Li
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Gregory V Carr
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
34
|
Fusco G, Scandola M, Lin H, Inzlicht M, Aglioti SM. Modulating preferences during intertemporal choices through exogenous midfrontal transcranial alternating current stimulation: A registered report. Cortex 2024; 171:435-464. [PMID: 38113613 DOI: 10.1016/j.cortex.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 12/21/2023]
Abstract
Decision conflicts may arise when the costs and benefits of choices are evaluated as a function of outcomes predicted along a temporal dimension. Electrophysiology studies suggest that during performance monitoring a typical oscillatory activity in the theta rhythm, named midfrontal theta, may index conflict processing and resolution. In the present within-subject, sham controlled, cross-over preregistered study, we delivered online midfrontal transcranial Alternating Current Stimulation (tACS) to modulate electrocortical activity during intertemporal decisions. Participants were invited to select choice preference between economic offers at three different intermixed levels of conflict (i.e., low, medium, high) while receiving either theta -, gamma-, or sham tACS in separate blocks and sessions. At the end of each stimulation block, a Letter-Flanker task was also administered to measure behavioural aftereffects. We hypothesized that theta-tACS would have acted on the performance monitoring system inducing behavioural changes (i.e., faster decisions and more impulsive choices) in high conflicting trials, rather than gamma- and sham-tACS. Results very partially confirmed our predictions. Unexpectedly, both theta- and gamma-driven neuromodulation speeded-up decisions compared to sham. However, exploratory analyses revealed that such an effect was stronger in the high-conflict decisions during theta-tACS. These findings were independent from the influence of the sensations induced by the electrical stimulation. Moreover, further analyses highlighted a significant association during theta-tACS between the selection of immediate offers in high-conflict trials and attentional impulsiveness, suggesting that individual factors may account for the tACS effects during intertemporal decisions. Finally, we did not capture long-lasting behavioural changes following tACS in the Flanker task. Our findings may inform scholars to improve experimental designs and boost the knowledge toward a more effective application of tACS.
Collapse
Affiliation(s)
- Gabriele Fusco
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Michele Scandola
- NPSY Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Hause Lin
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Inzlicht
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Salvatore Maria Aglioti
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
35
|
Drew A, Soto-Faraco S. Perceptual oddities: assessing the relationship between film editing and prediction processes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220426. [PMID: 38104604 PMCID: PMC10725757 DOI: 10.1098/rstb.2022.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/16/2023] [Indexed: 12/19/2023] Open
Abstract
During film viewing, humans parse sequences of individual shots into larger narrative structures, often weaving transitions at edit points into an apparently seamless and continuous flow. Editing helps filmmakers manipulate visual transitions to induce feelings of fluency/disfluency, tension/relief, curiosity, expectation and several emotional responses. We propose that the perceptual dynamics induced by film editing can be captured by a predictive processing (PP) framework. We hypothesise that visual discontinuities at edit points produce discrepancies between anticipated and actual sensory input, leading to prediction error. Further, we propose that the magnitude of prediction error depends on the predictability of each shot within the narrative flow, and lay out an account based on conflict monitoring. We test this hypothesis in two empirical studies measuring electroencephalography (EEG) during passive viewing of film excerpts, as well as behavioural responses during an active edit detection task. We report the neural and behavioural modulations at editing boundaries across three levels of narrative depth, showing greater modulations for edits spanning less predictable, deeper narrative transitions. Overall, our contribution lays the groundwork for understanding film editing from a PP perspective. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectivess'.
Collapse
Affiliation(s)
- Alice Drew
- Multisensory Research Group, Centre for Brain and Cognition, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain
| | - Salvador Soto-Faraco
- Multisensory Research Group, Centre for Brain and Cognition, Universitat Pompeu Fabra, Carrer de Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
36
|
Clayson PE, Shuford JL, Rast P, Baldwin SA, Weissman DH, Larson MJ. Normal congruency sequence effects in psychopathology: A behavioral and electrophysiological examination using a confound-minimized design. Psychophysiology 2024; 61:e14426. [PMID: 37668221 DOI: 10.1111/psyp.14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Clinical studies of adaptive control emphasize the role disruptions in control play in psychopathology. However, many studies used confound-laden designs and examined only one type of psychopathology. Recent studies of event-related potentials (ERPs) suggest that robust congruency sequence effects (CSEs)-a popular index of adaptive control-appear in confound-minimized designs. Thus, the present study sought to determine whether a confound-minimized CSE paradigm could identify adaptive control dysfunction in people with major depressive disorder (MDD), generalized anxiety disorder (GAD), and obsessive-compulsive disorder (OCD). We predicted that participants with MDD and GAD would show smaller ERP CSEs and that participants with OCD would show larger ERP CSEs than healthy controls. Data from 44 people with GAD, 51 people with MDD, 31 people with OCD, and 56 healthy comparison participants revealed normal CSEs as indexed by response times (RTs) and ERPs in the psychopathology groups. Moreover, psychiatric symptoms did not moderate these CSEs. Finally, we observed a strong mean-variance relationship in RT CSEs, such that participants with stronger post-recruitment of control in mean RT scores showed the most consistent post-conflict responses (i.e., the least intraindividual variability). These findings suggest that prior findings from confound-laden tasks indicating altered CSEs in psychopathology stem from processes that are unrelated to adaptive control. Future research should employ experimental designs that isolate these processes to advance our understanding of abnormal CSEs in psychopathology.
Collapse
Affiliation(s)
- Peter E Clayson
- Department of Psychology, University of South Florida, Tampa, Florida, USA
| | - John L Shuford
- Department of Psychology, University of South Florida, Tampa, Florida, USA
| | - Philippe Rast
- Department of Psychology, University of California - Davis, Davis, California, USA
| | - Scott A Baldwin
- Department of Psychology, Brigham Young University, Provo, Utah, USA
| | - Daniel H Weissman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Larson
- Department of Psychology, Brigham Young University, Provo, Utah, USA
- Neuroscience Center, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
37
|
Cieslik EC, Ullsperger M, Gell M, Eickhoff SB, Langner R. Success versus failure in cognitive control: Meta-analytic evidence from neuroimaging studies on error processing. Neurosci Biobehav Rev 2024; 156:105468. [PMID: 37979735 DOI: 10.1016/j.neubiorev.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
38
|
Brown LS, Cho JR, Bolkan SS, Nieh EH, Schottdorf M, Tank DW, Brody CD, Witten IB, Goldman MS. Neural circuit models for evidence accumulation through choice-selective sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555612. [PMID: 38234715 PMCID: PMC10793437 DOI: 10.1101/2023.09.01.555612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Decision making is traditionally thought to be mediated by populations of neurons whose firing rates persistently accumulate evidence across time. However, recent decision-making experiments in rodents have observed neurons across the brain that fire sequentially as a function of spatial position or time, rather than persistently, with the subset of neurons in the sequence depending on the animal's choice. We develop two new candidate circuit models, in which evidence is encoded either in the relative firing rates of two competing chains of neurons or in the network location of a stereotyped pattern ("bump") of neural activity. Encoded evidence is then faithfully transferred between neuronal populations representing different positions or times. Neural recordings from four different brain regions during a decision-making task showed that, during the evidence accumulation period, different brain regions displayed tuning curves consistent with different candidate models for evidence accumulation. This work provides mechanistic models and potential neural substrates for how graded-value information may be precisely accumulated within and transferred between neural populations, a set of computations fundamental to many cognitive operations.
Collapse
|
39
|
Carvalheiro J, Philiastides MG. Distinct spatiotemporal brainstem pathways of outcome valence during reward- and punishment-based learning. Cell Rep 2023; 42:113589. [PMID: 38100353 DOI: 10.1016/j.celrep.2023.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem and the extent to which they differ in reward and punishment learning contexts remain largely elusive. Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhibiting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance response and a later value-updating process, respectively. During punishment learning, we show that distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-outcome activity across time, supporting the involvement of these brainstem subregions in avoidance behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical and cortical areas helps to shape participants' serial choice behavior in each context.
Collapse
Affiliation(s)
- Joana Carvalheiro
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
40
|
Rawls E, Marquardt CA, Fix ST, Bernat E, Sponheim SR. Posttraumatic reexperiencing and alcohol use: mediofrontal theta as a neural mechanism for negative reinforcement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.547253. [PMID: 37502872 PMCID: PMC10370024 DOI: 10.1101/2023.07.12.547253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Objective Over half of US military veterans with posttraumatic stress disorder (PTSD) use alcohol heavily, potentially to cope with their symptoms. This study investigated the neural underpinnings of PTSD symptoms and heavy drinking in veterans. We focused on brain responses to salient outcomes within predictive coding theory. This framework suggests the brain generates prediction errors (PEs) when outcomes deviate from expectations. Alcohol use might provide negative reinforcement by reducing the salience of negatively-valenced PEs and dampening experiences like loss. Methods We analyzed electroencephalography (EEG) responses to unpredictable gain/loss feedback in veterans of Operations Enduring and Iraqi Freedom. We used time-frequency principal components analysis of event-related potentials to isolate neural responses indicative of PEs, identifying mediofrontal theta linked to losses (feedback-related negativity, FRN) and central delta associated with gains (reward positivity, RewP). Results Intrusive reexperiencing symptoms of PTSD were associated with intensified mediofrontal theta signaling during losses, suggesting heightened negative PE sensitivity. Conversely, increased hazardous alcohol use was associated with reduced theta responses, implying a dampening of these negative PEs. The separate delta-RewP component showed associations with alcohol use but not PTSD symptoms. Conclusions Findings suggest a common neural component of PTSD and hazardous alcohol use involving altered PE processing. We suggest that reexperiencing enhances the intensity of salient negative PEs, while chronic alcohol use may reduce their intensity, thereby providing negative reinforcement by muting emotional disruption from reexperienced trauma. Modifying the mediofrontal theta response could address the intertwined nature of PTSD symptoms and alcohol use, providing new avenues for treatment.
Collapse
Affiliation(s)
- Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota
| | - Craig A Marquardt
- Minneapolis Veterans Affairs Health Care System
- Department of Psychiatry and Behavioral Sciences, University of Minnesota
| | - Spencer T Fix
- Department of Psychology, University of Maryland College Park
| | - Edward Bernat
- Department of Psychology, University of Maryland College Park
| | - Scott R Sponheim
- Minneapolis Veterans Affairs Health Care System
- Department of Psychiatry and Behavioral Sciences, University of Minnesota
| |
Collapse
|
41
|
Rybina E, Colosio M, Shestakova A, Klucharev V. Neuromodulation of choice-induced preference changes: the tDCS study of cognitive dissonance. Front Psychol 2023; 14:1104410. [PMID: 38170108 PMCID: PMC10760977 DOI: 10.3389/fpsyg.2023.1104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Difficult choices between two equally attractive options result in a cognitive discrepancy between dissonant cognitions such as preferences and actions often followed by a sense of psychological discomfort known as cognitive dissonance. It can lead to changes in the desirability of options: the chosen option becomes more desirable, whereas the rejected option is devalued. Despite the ample experimental evidence to show this effect, the neural mechanisms and timing of such choice-induced preference changes are not fully understood. Methods In this study, we used transcranial direct current stimulation (tDCS) to modulate the activity of the posterior medial frontal cortex (pMFC), which has been associated with conflict monitoring and choice-induced preference changes in neuroimaging studies. Prior to a revised version of Brehm's free-choice paradigm, participants in two experiments underwent cathodal (inhibitory) or anodal (excitatory) tDCS of the pMFC compared to sham (placebo) stimulation prior to the choice phase. Results Our results showed that cathodal tDCS significantly decreased the choice-induced preference change relative to a sham, but only in direct comparisons of rejected options. No significant effect of anodal tDCS in comparison with sham was observed. Discussion This study replicates the general behavioral effect of cognitive dissonance and provide partial support for the theory of the pMFC contribution to choice-related cognitive dissonance and subsequent preference changes, with possible limitations of an under-sampling for the obtained effect size and an asymmetry in the inhibitory-excitatory effects of non-invasive tDCS.
Collapse
Affiliation(s)
- Elena Rybina
- Institute of Cognitive Neuroscience, HSE University, Moscow, Russia
| | | | | | | |
Collapse
|
42
|
Thibault N, Albouy P, Grondin S. Distinct brain dynamics and networks for processing short and long auditory time intervals. Sci Rep 2023; 13:22018. [PMID: 38086944 PMCID: PMC10716402 DOI: 10.1038/s41598-023-49562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023] Open
Abstract
Psychophysical studies suggest that time intervals above and below 1.2 s are processed differently in the human brain. However, the neural underpinnings of this dissociation remain unclear. Here, we investigate whether distinct or common brain networks and dynamics support the passive perception of short (below 1.2 s) and long (above 1.2 s) empty time intervals. Twenty participants underwent an EEG recording during an auditory oddball paradigm with .8- and 1.6-s standard time intervals and deviant intervals either shorter (early) or longer (delayed) than the standard interval. We computed the auditory ERPs for each condition at the sensor and source levels. We then performed whole brain cluster-based permutation statistics for the CNV, N1 and P2, components, testing deviants against standards. A CNV was found only for above 1.2 s intervals (delayed deviants), with generators in temporo-parietal, SMA, and motor regions. Deviance detection of above 1.2 s intervals occurred during the N1 period over fronto-central sensors for delayed deviants only, with generators in parietal and motor regions. Deviance detection of below 1.2 s intervals occurred during the P2 period over fronto-central sensors for delayed deviants only, with generators in primary auditory cortex, SMA, IFG, cingulate and parietal cortex. We then identified deviance related changes in directed connectivity using bivariate Granger causality to highlight the networks dynamics associated with interval processing above and below 1.2. These results suggest that distinct brain dynamics and networks support the perception of time intervals above and below 1.2 s.
Collapse
Affiliation(s)
- Nicola Thibault
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada.
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada.
| | - Philippe Albouy
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, QC, H2V 2J2, Canada
| | - Simon Grondin
- École de Psychologie, Université Laval, Québec, G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, G1J 2G3, Canada
| |
Collapse
|
43
|
Aitken CBA, Jentzsch I, O'Connor AR. Towards a conflict account of déjà vu: The role of memory errors and memory expectation conflict in the experience of déjà vu. Neurosci Biobehav Rev 2023; 155:105467. [PMID: 37979736 DOI: 10.1016/j.neubiorev.2023.105467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/22/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Déjà vu can be defined as conflict between a subjective evaluation of familiarity and a concurrent evaluation of novelty. Accounts of the déjà vu experience have not explicitly referred to a "conflict account of déjà vu" despite the acceptance of conflict-based definitions of déjà vu and relatively recent neuroimaging work that has implicated brain areas associated with conflict as underpinning the experience. Conflict monitoring functioning follows a similar age-related trajectory to déjà vu with a peak in young adulthood and a subsequent age-related decline. In this narrative review of the literature to date, we consider how déjà vu is defined and how this has influenced the understanding of déjà vu. We also review how déjà vu can be understood within theories of recognition memory and cognitive control. Finally, we summarise the conflict account of déjà vu and propose that this account of the experience may provide a coherent explanation as to why déjà vu experiences tend to decrease with age in the non-clinical population.
Collapse
Affiliation(s)
- Courtney B A Aitken
- School of Psychology & Neuroscience, University of St Andrews, United Kingdom.
| | - Ines Jentzsch
- School of Psychology & Neuroscience, University of St Andrews, United Kingdom
| | - Akira R O'Connor
- School of Psychology & Neuroscience, University of St Andrews, United Kingdom
| |
Collapse
|
44
|
Clairis N, Lopez-Persem A. Debates on the dorsomedial prefrontal/dorsal anterior cingulate cortex: insights for future research. Brain 2023; 146:4826-4844. [PMID: 37530487 PMCID: PMC10690029 DOI: 10.1093/brain/awad263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
The dorsomedial prefrontal cortex/dorsal anterior cingulate cortex (dmPFC/dACC) is a brain area subject to many theories and debates over its function(s). Even its precise anatomical borders are subject to much controversy. In the past decades, the dmPFC/dACC has been associated with more than 15 different cognitive processes, which sometimes appear quite unrelated (e.g. body perception, cognitive conflict). As a result, understanding what the dmPFC/dACC does has become a real challenge for many neuroscientists. Several theories of this brain area's function(s) have been developed, leading to successive and competitive publications bearing different models, which sometimes contradict each other. During the last two decades, the lively scientific exchanges around the dmPFC/dACC have promoted fruitful research in cognitive neuroscience. In this review, we provide an overview of the anatomy of the dmPFC/dACC, summarize the state of the art of functions that have been associated with this brain area and present the main theories aiming at explaining the dmPFC/dACC function(s). We explore the commonalities and the arguments between the different theories. Finally, we explain what can be learned from these debates for future investigations of the dmPFC/dACC and other brain regions' functions.
Collapse
Affiliation(s)
- Nicolas Clairis
- Laboratory of Behavioral Genetics (LGC)- Brain Mind Institute (BMI)- Sciences de la Vie (SV), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alizée Lopez-Persem
- FrontLab, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Sorbonne University, AP HP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| |
Collapse
|
45
|
Pinner JFL, Collishaw W, Schendel ME, Flynn L, Candelaria‐Cook FT, Cerros CM, Williams M, Hill DE, Stephen JM. Examining the effects of prenatal alcohol exposure on performance of the sustained attention to response task in children with an FASD. Hum Brain Mapp 2023; 44:6120-6138. [PMID: 37792293 PMCID: PMC10619405 DOI: 10.1002/hbm.26501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 06/07/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023] Open
Abstract
Prenatal alcohol exposure (PAE), the leading known cause of childhood developmental disability, has long-lasting effects extending throughout the lifespan. It is well documented that children prenatally exposed to alcohol have difficulties inhibiting behavior and sustaining attention. Thus, the Sustained Attention to Response Task (SART), a Go/No-go paradigm, is especially well suited to assess the behavioral and neural functioning characteristics of children with PAE. In this study, we utilized neuropsychological assessment, parent/guardian questionnaires, and magnetoencephalography during SART random and fixed orders to assess characteristics of children 8-12 years old prenatally exposed to alcohol compared to typically developing children. Compared to neurotypical control children, children with a Fetal Alcohol Spectrum Disorder (FASD) diagnosis had significantly decreased performance on neuropsychological measures, had deficiencies in task-based performance, were rated as having increased Attention-Deficit/Hyperactivity Disorder (ADHD) behaviors and as having lower cognitive functioning by their caretakers, and had decreased peak amplitudes in Broadmann's Area 44 (BA44) during SART. Further, MEG peak amplitude in BA44 was found to be significantly associated with neuropsychological test results, parent/guardian questionnaires, and task-based performance such that decreased amplitude was associated with poorer performance. In exploratory analyses, we also found significant correlations between total cortical volume and MEG peak amplitude indicating that the reduced amplitude is likely related in part to reduced overall brain volume often reported in children with PAE. These findings show that children 8-12 years old with an FASD diagnosis have decreased amplitudes in BA44 during SART random order, and that these deficits are associated with multiple behavioral measures.
Collapse
Affiliation(s)
- J. F. L. Pinner
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - W. Collishaw
- The Mind Research NetworkAlbuquerqueNew MexicoUSA
| | | | - L. Flynn
- The Mind Research NetworkAlbuquerqueNew MexicoUSA
| | | | - C. M. Cerros
- Department of PediatricsUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - M. Williams
- Department of PediatricsUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - D. E. Hill
- Department of PsychiatryUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | | |
Collapse
|
46
|
Hooks K, El-Said R, Fu Q. Decoding reach-to-grasp from EEG using classifiers trained with data from the contralateral limb. Front Hum Neurosci 2023; 17:1302647. [PMID: 38021246 PMCID: PMC10663285 DOI: 10.3389/fnhum.2023.1302647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Fundamental to human movement is the ability to interact with objects in our environment. How one reaches an object depends on the object's shape and intended interaction afforded by the object, e.g., grasp and transport. Extensive research has revealed that the motor intention of reach-to-grasp can be decoded from cortical activities using EEG signals. The goal of the present study is to determine the extent to which information encoded in the EEG signals is shared between two limbs to enable cross-hand decoding. We performed an experiment in which human subjects (n = 10) were tasked to interact with a novel object with multiple affordances using either right or left hands. The object had two vertical handles attached to a horizontal base. A visual cue instructs what action (lift or touch) and whether the left or right handle should be used for each trial. EEG was recorded and processed from bilateral frontal-central-parietal regions (30 channels). We trained LDA classifiers using data from trials performed by one limb and tested the classification accuracy using data from trials performed by the contralateral limb. We found that the type of hand-object interaction can be decoded with approximately 59 and 69% peak accuracy in the planning and execution stages, respectively. Interestingly, the decoding accuracy of the reaching directions was dependent on how EEG channels in the testing dataset were spatially mirrored, and whether directions were labeled in the extrinsic (object-centered) or intrinsic (body-centered) coordinates.
Collapse
Affiliation(s)
- Kevin Hooks
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - Refaat El-Said
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Qiushi Fu
- Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
- Biionix Cluster, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
47
|
Perera MPN, Mallawaarachchi S, Bailey NW, Murphy OW, Fitzgerald PB. Obsessive-compulsive disorder (OCD) is associated with increased engagement of frontal brain regions across multiple event-related potentials. Psychol Med 2023; 53:7287-7299. [PMID: 37092862 PMCID: PMC10719690 DOI: 10.1017/s0033291723000843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a psychiatric condition leading to significant distress and poor quality of life. Successful treatment of OCD is restricted by the limited knowledge about its pathophysiology. This study aimed to investigate the pathophysiology of OCD using electroencephalographic (EEG) event-related potentials (ERPs), elicited from multiple tasks to characterise disorder-related differences in underlying brain activity across multiple neural processes. METHODS ERP data were obtained from 25 OCD patients and 27 age- and sex-matched healthy controls (HCs) by recording EEG during flanker and go/nogo tasks. Error-related negativity (ERN) was elicited by the flanker task, while N200 and P300 were generated using the go/nogo task. Primary comparisons of the neural response amplitudes and the topographical distribution of neural activity were conducted using scalp field differences across all time points and electrodes. RESULTS Compared to HCs, the OCD group showed altered ERP distributions. Contrasting with the previous literature on ERN and N200 topographies in OCD where fronto-central negative voltages were reported, we detected positive voltages. Additionally, the P300 was found to be less negative in the frontal regions. None of these ERP findings were associated with OCD symptom severity. CONCLUSIONS These results indicate that individuals with OCD show altered frontal neural activity across multiple executive function-related processes, supporting the frontal dysfunction theory of OCD. Furthermore, due to the lack of association between altered ERPs and OCD symptom severity, they may be considered potential candidate endophenotypes for OCD.
Collapse
Affiliation(s)
- M. Prabhavi N. Perera
- Central Clinical School, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | | | - Neil W. Bailey
- Central Clinical School, Monash University, Wellington Road, Clayton, VIC 3800, Australia
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2600, Australia
| | - Oscar W. Murphy
- Central Clinical School, Monash University, Wellington Road, Clayton, VIC 3800, Australia
- Bionics Institute, East Melbourne, VIC 3002, Australia
| | - Paul B. Fitzgerald
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
48
|
Ryskin R, Nieuwland MS. Prediction during language comprehension: what is next? Trends Cogn Sci 2023; 27:1032-1052. [PMID: 37704456 DOI: 10.1016/j.tics.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023]
Abstract
Prediction is often regarded as an integral aspect of incremental language comprehension, but little is known about the cognitive architectures and mechanisms that support it. We review studies showing that listeners and readers use all manner of contextual information to generate multifaceted predictions about upcoming input. The nature of these predictions may vary between individuals owing to differences in language experience, among other factors. We then turn to unresolved questions which may guide the search for the underlying mechanisms. (i) Is prediction essential to language processing or an optional strategy? (ii) Are predictions generated from within the language system or by domain-general processes? (iii) What is the relationship between prediction and memory? (iv) Does prediction in comprehension require simulation via the production system? We discuss promising directions for making progress in answering these questions and for developing a mechanistic understanding of prediction in language.
Collapse
Affiliation(s)
- Rachel Ryskin
- Department of Cognitive and Information Sciences, University of California Merced, 5200 Lake Road, Merced, CA 95343, USA.
| | - Mante S Nieuwland
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Shao T, Huang J, Zhao Y, Wang W, Tian X, Hei G, Kang D, Gao Y, Liu F, Zhao J, Liu B, Yuan TF, Wu R. Metformin improves cognitive impairment in patients with schizophrenia: associated with enhanced functional connectivity of dorsolateral prefrontal cortex. Transl Psychiatry 2023; 13:315. [PMID: 37821461 PMCID: PMC10567690 DOI: 10.1038/s41398-023-02616-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, which is aggravated by antipsychotics-induced metabolic disturbance and lacks effective pharmacologic treatments in clinical practice. Our previous study demonstrated the efficiency of metformin in alleviating metabolic disturbance following antipsychotic administration. Here we report that metformin could ameliorate cognitive impairment and improve functional connectivity (FC) in prefrontal regions. This is an open-labeled, evaluator-blinded study. Clinically stable patients with schizophrenia were randomly assigned to receive antipsychotics plus metformin (N = 48) or antipsychotics alone (N = 24) for 24 weeks. The improvement in cognition was assessed by the MATRICS Consensus Cognitive Battery (MCCB). Its association with metabolic measurements, and voxel-wise whole-brain FC with dorsolateral prefrontal cortex (DLPFC) subregions as seeds were evaluated. When compared to the antipsychotics alone group, the addition of metformin resulted in significantly greater improvements in the MCCB composite score, speed of processing, working memory, verbal learning, and visual learning. A significant time × group interaction effect of increased FC between DLPFC and the anterior cingulate cortex (ACC)/middle cingulate cortex (MCC), and between DLPFC subregions were observed after metformin treatment, which was positively correlated with MCCB cognitive performance. Furthermore, the FC between left DLPFC A9/46d to right ACC/MCC significantly mediated metformin-induced speed of processing improvement; the FC between left A46 to right ACC significantly mediated metformin-induced verbal learning improvement. Collectively, these findings demonstrate that metformin can improve cognitive impairments in schizophrenia patients and is partly related to the FC changes in the DLPFC. Trial Registration: The trial was registered with ClinicalTrials.gov (NCT03271866). The full trial protocol is provided in Supplementary Material.
Collapse
Affiliation(s)
- Tiannan Shao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Yuxin Zhao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weiyan Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Xiaohan Tian
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, PR China
| | - Gangrui Hei
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Dongyu Kang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Yong Gao
- Department of Orthopedics, The First People's Hospital of Changde, Changde Hospital Affiliated to Xiangya Medical College of Central South University, Changde, 415900, PR China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, PR China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.
| |
Collapse
|
50
|
Perica MI, Luna B. Impact of stress on excitatory and inhibitory markers of adolescent cognitive critical period plasticity. Neurosci Biobehav Rev 2023; 153:105378. [PMID: 37643681 PMCID: PMC10591935 DOI: 10.1016/j.neubiorev.2023.105378] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Adolescence is a time of significant neurocognitive development. Prolonged maturation of prefrontal cortex (PFC) through adolescence has been found to support improvements in executive function. Changes in excitatory and inhibitory mechanisms of critical period plasticity have been found to be present in the PFC through adolescence, suggesting that environment may have a greater effect on development during this time. Stress is one factor known to affect neurodevelopment increasing risk for psychopathology. However, less is known about how stress experienced during adolescence could affect adolescent-specific critical period plasticity mechanisms and cognitive outcomes. In this review, we synthesize findings from human and animal literatures looking at the experience of stress during adolescence on cognition and frontal excitatory and inhibitory neural activity. Studies indicate enhancing effects of acute stress on cognition and excitation within specific contexts, while chronic stress generally dampens excitatory and inhibitory processes and impairs cognition. We propose a model of how stress could affect frontal critical period plasticity, thus potentially altering neurodevelopmental trajectories that could lead to risk for psychopathology.
Collapse
Affiliation(s)
- Maria I Perica
- Department of Psychology, University of Pittsburgh, PA, USA.
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, PA, USA
| |
Collapse
|