1
|
Xie YX, Yao H, Peng JF, Ni D, Liu WT, Li CQ, Yi GH. Insight into modulators of sphingosine-1-phosphate receptor and implications for cardiovascular therapeutics. J Drug Target 2024; 32:300-310. [PMID: 38269855 DOI: 10.1080/1061186x.2024.2309577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/21/2023] [Indexed: 01/26/2024]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Xin Xie
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Hui Yao
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Jin-Fu Peng
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Dan Ni
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Wan-Ting Liu
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Chao-Quan Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Guang-Hui Yi
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Liu R, Zou Z, Zhang Z, He H, Xi M, Liang Y, Ye J, Dai Q, Wu Y, Tan H, Zhong W, Wang Z, Liang Y. Evaluation of glucocorticoid-related genes reveals GPD1 as a therapeutic target and regulator of sphingosine 1-phosphate metabolism in CRPC. Cancer Lett 2024; 605:217286. [PMID: 39413958 DOI: 10.1016/j.canlet.2024.217286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Prostate cancer (PCa) is an androgen-dependent disease, with castration-resistant prostate cancer (CRPC) being an advanced stage that no longer responds to androgen deprivation therapy (ADT). Mounting evidence suggests that glucocorticoid receptors (GR) confer resistance to ADT in CRPC patients by bypassing androgen receptor (AR) blockade. GR, as a novel therapeutic target in CRPC, has attracted substantial attention worldwide. This study utilized bioinformatic analysis of publicly available CRPC single-cell data to develop a consensus glucocorticoid-related signature (Glu-sig) that can serve as an independent predictor for relapse-free survival. Our results revealed that the signature demonstrated consistent and robust performance across seven publicly accessible datasets and an internal cohort. Furthermore, our findings demonstrated that glycerol-3-phosphate dehydrogenase 1 (GPD1) in Glu-sig can significantly promote CRPC progression by mediating the cell cycle pathway. Additionally, GPD1 was shown to be regulated by GR, with the GR antagonist mifepristone enhancing the anti-tumorigenic effects of GPD1 in CRPC cells. Mechanistically, targeting GPD1 induced the production of sphingosine 1-phosphate (S1P) and enhanced histone acetylation, thereby inducing the transcription of p21 that involved in cell cycle regulation. In conclusion, Glu-sig could serve as a robust and promising tool to improve the clinical outcomes of PCa patients, and modulating the GR/GPD1 axis that promotes tumor growth may be a promising approach for delaying CRPC progression.
Collapse
Affiliation(s)
- Ren Liu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China
| | - Zhengrong Zhang
- Department of Urology, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Huichan He
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Yingke Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qishan Dai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huijing Tan
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China; Macau Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Zongren Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiang Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang D, Bi X, Zhao L, Xiang S, Xi W, Yang S, Wu W, Chen T, Zheng L, Chi X, Kang Y. Targeting SphK1/S1PR3 axis ameliorates sepsis-induced multiple organ injury via orchestration of macrophage polarization and glycolysis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024:119877. [PMID: 39549732 DOI: 10.1016/j.bbamcr.2024.119877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Sepsis is a heterogeneous and imprecise disorder characterized by aberrant response to infection which has been accredited for detrimental impact on immune homeostasis. Recently, macrophage metabolism has been recognized as attractive targets to develop novel immunomodulatory therapy for sepsis research. However, the fine-tuning regulators dictating macrophage functions and the specific mechanisms underlying macrophage metabolic reprogramming remain largely obscure. Sphingosine-1-phosphate (S1P), a metabolic mediator of sphingolipid catabolism, predominantly formed through sphingosine kinase 1 (SphK1) catalyzing, mediates inflammation in sepsis by binding to S1P receptor 3 (S1PR3) expressed in macrophages. Here we demonstrate that SphK1/S1PR3 axis was upregulated in lipopolysaccharide (LPS)-induced macrophages and septic mice lungs, cascading the activation of proglycolytic signaling such as HIF-1α, HK2 and PFKFB3. Targeted inhibition of Sphk1 by PF-543 effectively abrogated upregulated SphK1/S1PR3 axis in vitro and in vivo. In addition, PF-543 significantly suppressed sepsis-related inflammation and multi-organ injury in vivo. Furthermore, PF-543 not only blunted key glycolytic enzymes HIF-1α, HK2, and PFKFB3 in LPS-treated macrophages but also inhibited HK2 and PFKFB3 in septic mice. Silencing or inhibiting SphK1 tempered pro-inflammatory M1 macrophages while boosted anti-inflammatory M2 macrophages. Intriguingly, S1PR3 knockdown proficiently dampened glycolysis-associated markers, retrieved LPS-modulated M1/M2 polarization and attenuated NF-κB p65 activation. In conclusion, our study provides the first evidence that PF-543 orchestrates proportional imbalance of macrophage polarization and the Warburg effect in a SphK1/S1PR3 dependent manner during sepsis, mitigating both hyperinflammation and multi-organ failure, adding a novel puzzle piece to pharmacologically exploitable therapy for sepsis.
Collapse
Affiliation(s)
- Dan Wang
- Surgical Anesthesia Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Scientific Research Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xinwen Bi
- Surgical Anesthesia Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Scientific Research Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Le Zhao
- Surgical Anesthesia Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Scientific Research Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Wenjie Xi
- Surgical Anesthesia Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - ShuShu Yang
- Scientific Research Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Weijie Wu
- Surgical Anesthesia Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tufeng Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Zheng
- Surgical Anesthesia Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Xinjin Chi
- Surgical Anesthesia Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Yang Kang
- Scientific Research Center, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Fu F, Li W, Zheng X, Wu Y, Du D, Han C. Role of Sphingosine-1-Phosphate Signaling Pathway in Pancreatic Diseases. Int J Mol Sci 2024; 25:11474. [PMID: 39519028 PMCID: PMC11545938 DOI: 10.3390/ijms252111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolic product produced via the phosphorylation of sphingosine by sphingosine kinases (SPHKs), serving as a powerful modulator of various cellular processes through its interaction with S1P receptors (S1PRs). Currently, this incompletely understood mechanism in pancreatic diseases including pancreatitis and pancreatic cancer, largely limits therapeutic options for these disorders. Recent evidence indicates that S1P significantly contributes to pancreatic diseases by modulating inflammation, promoting pyroptosis in pancreatic acinar cells, regulating the activation of pancreatic stellate cells, and affecting organelle functions in pancreatic cancer cells. Nevertheless, no review has encapsulated these advancements. Thus, this review compiles information about the involvement of S1P signaling in exocrine pancreatic disorders, including acute pancreatitis, chronic pancreatitis, and pancreatic cancer, as well as prospective treatment strategies to target S1P signaling for these conditions. The insights presented here possess the potential to offer valuable guidance for the implementation of therapies targeting S1P signaling in various pancreatic diseases.
Collapse
Affiliation(s)
- Fei Fu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Wanmeng Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Xiaoyin Zheng
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
5
|
Huang K, Ding R, Lai C, Wang H, Fan X, Chu Y, Fang Y, Hua T, Yuan H. Vitexin attenuates neuropathic pain by regulating astrocyte autophagy flux and polarization via the S1P/ S1PR1-PI3K/ Akt axis. Eur J Pharmacol 2024; 981:176848. [PMID: 39094925 DOI: 10.1016/j.ejphar.2024.176848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Neuropathic pain (NP) is associated with astrocytes activation induced by nerve injury. Reactive astrocytes, strongly induced by central nervous system damage, can be classified into A1 and A2 types. Vitexin, a renowned flavonoid compound, is known for its anti-inflammatory and analgesic properties. However, its role in NP remains unexplored. This study aims to investigate the effects of vitexin on astrocyte polarization and its underlying mechanisms. A mouse model of NP was established, and primary astrocytes were stimulated with sphingosine-1-phosphate (S1P) to construct a cellular model. The results demonstrated significant activation of spinal astrocytes on days 14 and 21. Concurrently, reactive astrocytes predominantly differentiated into the A1 type. Western blot analysis revealed an increase in A1 astrocyte-associated protein (C3) and a decrease in A2 astrocyte-associated protein (S100A10). Serum S1P levels increased on days 14 and 21, alongside a significant upregulation of Sphingosine-1-phosphate receptor 1 (S1PR1) mRNA expression and elevated expression of chemokines. In vitro, stimulation with S1P inhibited the Phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt) signaling pathway and autophagy flux, promoting polarization of astrocytes towards the A1 phenotype while suppressing the polarization of A2 astrocytes. Our findings suggest that vitexin, acting on astrocytes but not microglia, attenuates S1P-induced downregulation of PI3K/Akt signaling, restores autophagy flux in astrocytes, regulates A1/A2 astrocyte ratio, and reduces chemokine and S1P secretion, thereby alleviating neuropathic pain caused by nerve injury.
Collapse
Affiliation(s)
- Kesheng Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Chengyuan Lai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaoyi Fan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yan Chu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| | - Hongbin Yuan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
6
|
Kalinoski H, Daoud A, Rusinkevich V, Jurčová I, Talor MV, Welsh RA, Hughes D, Zemanová K, Stříž I, Hooper JE, Kautzner J, Peichl P, Melenovský V, Won T, Čiháková D. Injury-induced myosin-specific tissue-resident memory T cells drive immune checkpoint inhibitor myocarditis. Proc Natl Acad Sci U S A 2024; 121:e2323052121. [PMID: 39378095 PMCID: PMC11494310 DOI: 10.1073/pnas.2323052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Collapse
Affiliation(s)
- Hannah Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Vitali Rusinkevich
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Ivana Jurčová
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Robin A. Welsh
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - David Hughes
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21205
| | - Kateřina Zemanová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Ilja Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Jody E. Hooper
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
7
|
Volk LM, Bruun JE, Trautmann S, Thomas D, Schwalm S, Pfeilschifter J, Zu Heringdorf DM. A role for plasma membrane Ca 2+ ATPases in regulation of cellular Ca 2+ homeostasis by sphingosine kinase-1. Pflugers Arch 2024:10.1007/s00424-024-03027-7. [PMID: 39392480 DOI: 10.1007/s00424-024-03027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a ubiquitous lipid mediator, acting via specific G-protein-coupled receptors (GPCR) and intracellularly. Previous work has shown that deletion of S1P lyase caused a chronic elevation of cytosolic [Ca2+]i and enhanced Ca2+ storage in mouse embryonic fibroblasts. Here, we studied the role of sphingosine kinase (SphK)-1 in Ca2+ signaling, using two independently generated EA.hy926 cell lines with stable knockdown of SphK1 (SphK1-KD1/2). Resting [Ca2+]i and thapsigargin-induced [Ca2+]i increases were reduced in both SphK1-KD1 and -KD2 cells. Agonist-induced [Ca2+]i increases, measured in SphK1-KD1, were blunted. In the absence of extracellular Ca2+, thapsigargin-induced [Ca2+]i increases declined rapidly, indicating enhanced removal of Ca2+ from the cytosol. In agreement, plasma membrane Ca2+ ATPase (PMCA)-1 and -4 and their auxiliary subunit, basigin, were strongly upregulated. Activation of S1P-GPCR by specific agonists or extracellular S1P did not rescue the effects of SphK1 knockdown, indicating that S1P-GPCR were not involved. Lipid measurements indicated that not only S1P but also dihydro-sphingosine, ceramides, and lactosylceramides were markedly depleted in SphK1-KD2 cells. SphK2 and S1P lyase were upregulated, suggesting enhanced flux via the sphingolipid degradation pathway. Finally, histone acetylation was enhanced in SphK1-KD2 cells, and the histone deacetylase inhibitor, vorinostat, induced upregulation of PMCA1 and basigin on mRNA and protein levels in EA.hy926 cells. These data show for the first time a transcriptional regulation of PMCA1 and basigin by S1P metabolism. It is concluded that SphK1 knockdown in EA.hy926 cells caused long-term alterations in cellular Ca2+ homeostasis by upregulating PMCA via increased histone acetylation.
Collapse
Affiliation(s)
- Luisa Michelle Volk
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Jan-Erik Bruun
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institut Für Klinische Pharmakologie, Goethe-Universität Frankfurt, Universitätsklinikum, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut Für Allgemeine Pharmakologie Und Toxikologie, Goethe-Universität Frankfurt, Universitätsklinikum, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Toma AI, Shah D, Roth D, Piña JO, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Accelerating Oral Wound Healing Using Bilayer Biomaterial Delivery of FTY720 Immunotherapy. Adv Healthc Mater 2024:e2401480. [PMID: 39388502 DOI: 10.1002/adhm.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Orofacial clefts are the most common congenital craniofacial anomaly. Adverse healing following cleft palate repair can lead to oronasal fistula (ONF), a persistent connection between the oral and nasal cavities. Although human allograft tissues are currently the gold standard for ONF repair, these methods carry risks of infection and rejection, often requiring surgical revision. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. An FDA-approved immunomodulatory drug, FTY720, is repurposed to reduce lymphocyte egress and induce immune cell fate switching toward pro-regenerative phenotypes. In this study, a bilayer biomaterial system is engineered using Tegaderm to secure and control the delivery of FTY720-nanofiber scaffolds (FTY720-NF). The release kinetics of the bilayer FTY720-NF is optimized to maintain drug release for up to 7 days, ensuring safe transdermal absorption and tissue biodistribution. The comprehensive immunophenotyping results demonstrate a regenerative state transition in hybrid immune cells recruited to the wound site. Further, histological evaluations reveal a significant ONF closure in mice by day 7 following bilayer FTY720-NF implantation. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options in pediatric patients.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| | - Daniel Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Daniela Roth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lauren Hymel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Thomas Turner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Archana Kamalakar
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| | - Ken Liu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Perry Bartsch
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Leon Jacobs
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Rena D'Souza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dennis Liotta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Edward Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| |
Collapse
|
9
|
Prell A, Wigger D, Huwiler A, Schumacher F, Kleuser B. The sphingosine kinase 2 inhibitors ABC294640 and K145 elevate (dihydro)sphingosine 1-phosphate levels in various cells. J Lipid Res 2024; 65:100631. [PMID: 39182604 PMCID: PMC11465068 DOI: 10.1016/j.jlr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sphingosine kinases (SphKs), enzymes that produce the bioactive lipids dihydrosphingosine 1-phosphate (dhS1P) and sphingosine 1-phosphate (S1P), are associated with various diseases, including cancer and infections. For this reason, a number of SphK inhibitors have been developed. Although off-target effects have been described for selected agents, SphK inhibitors are mostly used in research without monitoring the effects on the sphingolipidome. We have now investigated the effects of seven commonly used SphK inhibitors (5c, ABC294640 (opaganib), N,N-dimethylsphingosine, K145, PF-543, SLM6031434, and SKI-II) on profiles of selected sphingolipids in Chang, HepG2, and human umbilical vein endothelial cells. While we observed the expected (dh)S1P reduction for N,N-dimethylsphingosine, PF-543, SKI-II, and SLM6031434, 5c showed hardly any effect. Remarkably, for K145 and ABC294640, both reported to be specific for SphK2, we observed dose-dependent strong increases in dhS1P and S1P across cell lines. Compensatory effects of SphK1 could be excluded, as this observation was also made in SphK1-deficient HK-2 cells. Furthermore, we observed effects on dihydroceramide desaturase activity for all inhibitors tested, as has been previously noted for ABC294640 and SKI-II. In additional mechanistic studies, we investigated the massive increase of dhS1P and S1P after short-term cell treatment with ABC294640 and K145 in more detail. We found that both compounds affect sphingolipid de novo synthesis, with 3-ketodihydrosphingosine reductase and dihydroceramide desaturase as their targets. Our study indicates that none of the seven SphK inhibitors tested was free of unexpected on-target and/or off-target effects. Therefore, it is important to monitor cellular sphingolipid profiles when SphK inhibitors are used in mechanistic studies.
Collapse
Affiliation(s)
- Agata Prell
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dominik Wigger
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, Bern, Switzerland
| | - Fabian Schumacher
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Gogulska Z, Smolenska Z, Turyn J, Zdrojewski Z, Chmielewski M. Metabolomics in systemic sclerosis. Rheumatol Int 2024; 44:1813-1822. [PMID: 38981905 PMCID: PMC11393132 DOI: 10.1007/s00296-024-05628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024]
Abstract
Systemic sclerosis is a rare autoimmune condition leading to incurable complications. Therefore fast and precise diagnosis is crucial to prevent patient death and to maintain quality of life. Unfortunately, currently known biomarkers do not meet this need. To address this problem researchers use diverse approaches to elucidate the underlying aberrations. One of the methods applied is metabolomics. This modern technique enables a comprehensive assessment of multiple compound concentrations simultaneously. As it has been gaining popularity, we found it necessary to summarize metabolomic studies presented so far in a narrative review. We found 11 appropriate articles. All of the researchers found significant differences between patients and control groups, whereas the reported findings were highly inconsistent. Additionally, we have found the investigated groups in most studies were scarcely described, and the inclusion/exclusion approach was diverse. Therefore, further study with meticulous patient assessment is necessary.
Collapse
Affiliation(s)
- Zuzanna Gogulska
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland.
| | - Zaneta Smolenska
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Zdrojewski
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Michał Chmielewski
- Department of Rheumatology, Clinical Immunology, Geriatrics and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
11
|
Ahmed T, Suzuki T, Terao R, Yamagishi R, Fujino R, Azuma K, Soga H, Ueta T, Honjo M, Watanabe S, Yoshioka K, Takuwa Y, Aihara M. Roles of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor 2 in Endotoxin-Induced Acute Retinal Inflammation. Ocul Immunol Inflamm 2024; 32:1633-1647. [PMID: 38100527 DOI: 10.1080/09273948.2023.2273963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE To investigate the roles of sphingosine kinases (SphKs) and sphingosine-1-phosphate receptors (S1PRs) in endotoxin-induced uveitis (EIU) mice. METHODS EIU model was induced using an intraperitoneal injection of lipopolysaccharide (LPS). The expression of SphKs and S1PRs in the retina was assessed using quantitative polymerase chain reaction (qPCR) and immunofluorescence. The effects of S1PR antagonists on the expression of inflammatory cytokines in the retina were evaluated using qPCR and western blotting. Effects of leukocyte infiltration of the retinal vessels were evaluated to determine the effects of the S1PR2 antagonist and genetic deletion of S1PR2 on retinal inflammation. RESULTS Retinal SphK1 expression was significantly upregulated in EIU. SphK1 was expressed in the GCL, IPL, and OPL and S1PR2 was expressed in the GCL, INL, and OPL. Positive cells in IPL and OPL of EIU retina were identified as endothelial cells. S1PR2 antagonist and genetic deletion of S1PR2 significantly suppressed the expression of IL-1α, IL-6, TNF-α, and ICAM-1, whereas S1PR1/3 antagonist did not. Use of S1PR2 antagonist and S1PR2 knockout in mice significantly ameliorated leukocyte adhesion induced by LPS. CONCLUSION SphK1/S1P/S1PR2 signaling was upregulated in EIU and S1PR2 inhibition suppressed inflammatory response. Targeting this signaling pathway has potential for treating retinal inflammatory diseases.
Collapse
Affiliation(s)
- Tazbir Ahmed
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takafumi Suzuki
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Reiko Yamagishi
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Fujino
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kunihiro Azuma
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirotsugu Soga
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Ueta
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sumiko Watanabe
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Kuo A, Hla T. Regulation of cellular and systemic sphingolipid homeostasis. Nat Rev Mol Cell Biol 2024; 25:802-821. [PMID: 38890457 DOI: 10.1038/s41580-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
One hundred and fifty years ago, Johann Thudichum described sphingolipids as unusual "Sphinx-like" lipids from the brain. Today, we know that thousands of sphingolipid molecules mediate many essential functions in embryonic development and normal physiology. In addition, sphingolipid metabolism and signalling pathways are dysregulated in a wide range of pathologies, and therapeutic agents that target sphingolipids are now used to treat several human diseases. However, our understanding of sphingolipid regulation at cellular and organismal levels and their functions in developmental, physiological and pathological settings is rudimentary. In this Review, we discuss recent advances in sphingolipid pathways in different organelles, how secreted sphingolipid mediators modulate physiology and disease, progress in sphingolipid-targeted therapeutic and diagnostic research, and the trans-cellular sphingolipid metabolic networks between microbiota and mammals. Advances in sphingolipid biology have led to a deeper understanding of mammalian physiology and may lead to progress in the management of many diseases.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024:10.1007/s00424-024-03018-8. [PMID: 39297971 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
14
|
Binish F, Xiao J. Deciphering the role of sphingosine 1-phosphate in central nervous system myelination and repair. J Neurochem 2024. [PMID: 39290063 DOI: 10.1111/jnc.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid of the sphingolipid family and plays a pivotal role in the mammalian nervous system. Indeed, S1P is a therapeutic target for treating demyelinating diseases such as multiple sclerosis. Being part of an interconnected sphingolipid metabolic network, the amount of S1P available for signalling is equilibrated between its synthetic (sphingosine kinases 1 and 2) and degradative (sphingosine 1-phosphate lyase) enzymes. Once produced, S1P exerts its biological roles via signalling to a family of five G protein-coupled S1P receptors 1-5 (S1PR1-5). Despite significant progress, the precise roles that S1P metabolism and downstream signalling play in regulating myelin formation and repair remain largely opaque and somewhat controversial. Genetic or pharmacological studies adopting various model systems identify that stimulating S1P-S1PR signalling protects myelin-forming oligodendrocytes after central nervous system (CNS) injury and attenuates demyelination in vivo. However, evidence to support its role in remyelination of the mammalian CNS is limited, although blocking S1P synthesis sheds light on the role of endogenous S1P in promoting CNS remyelination. This review focuses on summarising the current understanding of S1P in CNS myelin formation and repair, discussing the complexity of S1P-S1PR interaction and the underlying mechanism by which S1P biosynthesis and signalling regulates oligodendrocyte myelination in the healthy and injured mammalian CNS, raising new questions for future investigation.
Collapse
Affiliation(s)
- Fatima Binish
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
15
|
Takahashi M, Kushida Y, Kuroda Y, Wakao S, Horibata Y, Sugimoto H, Dezawa M, Saiki Y. Structural reconstruction of mouse acute aortic dissection by intravenously administered human Muse cells without immunosuppression. COMMUNICATIONS MEDICINE 2024; 4:174. [PMID: 39251746 PMCID: PMC11384757 DOI: 10.1038/s43856-024-00597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Stanford type B-acute aortic dissection (type B-AAD) is often life-threatening without invasive surgery. Multilineage-differentiating stress enduring cell (Muse cells), which comprise several percent of mesenchymal stem cells (MSCs), are endogenous pluripotent-like stem cells that selectively home to damaged tissue and replace damaged/apoptotic cells by in-vivo differentiation. METHODS Mortality, aortic diameter expansion, cell localization, cell differentiation, and inflammation of the dissected aorta were evaluated in type B-AAD model mice intravenously injected with human-Muse cells, -elastin-knockdown (KD)-Muse cells, -human leukocyte antigen-G (HLA-G)-KD-Muse cells, or MSCs, all without immunosuppressant. RESULTS Here, we show the Muse (50,000 cells) group has a lower incidence of aortic rupture and mortality of AAD compared with the MSC-50K (50,000 human-MSCs) and vehicle groups. Spectrum computed tomography in-vivo dynamics and 3-dimensional histologic analyses demonstrate that Muse cells more effectively home to the AAD tissue and survive for 8 weeks in the Muse group than in the MSC-750K (750,000 human-MSCs containing 50,000 Muse cells) group. Homing of Muse cells is impeded in the HLA-G-KD-Muse (50,000 cells) group. Differentiation of homed Muse cells into CD31(+) and alpha-smooth muscle actin (+) cells, production and reorganization of elastic fibers in the AAD tissue, and suppression of diameter expansion are greater in the Muse group than in the MSC-750K and elastin-KD-Muse (50,000 cells) groups. CONCLUSIONS Intravenously administered Muse cells reconstruct the dissected aorta and improve mortality and diameter enlargement rates. Moreover, small doses of purified Muse cells are more effective than large doses of MSCs. HLA-G is suggested to contribute to the successful survival and homing of Muse cells.
Collapse
Affiliation(s)
- Makoto Takahashi
- Division of Cardiovascular Surgery and Tohoku University Graduate School of Medicine1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery and Tohoku University Graduate School of Medicine1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
16
|
Li Y, Li G, Wang Y, Li L, Song Y, Cao F, Yang K. Discovery and biological evaluation of biaryl acetamide derivatives as selective and in vivo active sphingosine kinase-2 inhibitors. Eur J Med Chem 2024; 275:116577. [PMID: 38875809 DOI: 10.1016/j.ejmech.2024.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Sphingosine kinase 2 (SphK2) has emerged as a promising target for cancer therapy due to its critical role in tumor growth. However, the lack of potent and selective inhibitors has hindered its clinical application. Herein, we report the design and synthesis of a series of novel SphK2 inhibitors, culminating in the identification of compound 12q as a highly selective and potent inhibitor of SphK2. Molecular dynamics simulations suggest that the incorporation of larger substitution groups facilitates a more effective occupation of the binding site, thereby stabilizing the complex. Compared to the widely used inhibitor ABC294640, compound 12q exhibits superior anti-proliferative activity against various cancer cells, inducing G2 phase arrest and apoptosis in liver cancer cells HepG2. Notably, 12q inhibited migration and colony formation in HepG2 and altered intracellular sphingolipid content. Moreover, intraperitoneal administration of 12q in mice resulted in decreased levels of S1P. 12q provides a valuable tool compound for exploring the therapeutic potential of targeting SphK2 in cancer.
Collapse
Affiliation(s)
- Yanan Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Gang Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yiming Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
17
|
George N, Xiao J. Inhibiting sphingosine 1-phosphate lyase: From efficacy to mechanism. Neurobiol Dis 2024; 199:106585. [PMID: 38955289 DOI: 10.1016/j.nbd.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
Sphingosine-1 phosphate (S1P) is a lipid metabolite regulating diverse biological processes, including proliferation, differentiation, migration, and apoptosis, highlighting its physiological and therapeutic significance. Current S1P-based therapeutic approaches primarily focus on modulating the downstream signalling via targeting S1P receptors, however, this is challenged by incomplete receptor internalisation. Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that "gatekeeps" the final step of S1P degradation. Cognisant of the complex ligand and receptor interaction and dynamic metabolic networks, the selective modulation of SPL activity presents a new opportunity to regulate S1P biosynthesis and reveal its role in various systems. Over the past decade, an evolving effort has been made to identify new molecules that could block SPL activity in vitro or in vivo. This review focuses on summarising the current understanding of the reported SPL inhibitors identified through various screening approaches, discussing their efficacy in diverse model systems and the possible mechanism of action. Whilst effective modulation of S1P levels via inhibiting SPL is feasible, the specificity of those inhibitors remains inconclusive, presenting a clear challenge for future implications. Yet, none of the currently available SPL inhibitors is proven effective in elevating S1P levels within the central nervous system. This review article embraces future research focusing on investigating selective SPL inhibitors with high potency and possibly blood-brain-barrier permeability, which would aid the development of new S1P-based therapeutics for neurological disorders.
Collapse
Affiliation(s)
- Nelson George
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
18
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
19
|
Zhang Y, Ni Y, An H, Li L, Ren Y. Multidimensional plasma lipid composition and its causal association with type 2 diabetes mellitus: A Mendelian randomization study. Nutr Metab Cardiovasc Dis 2024; 34:2075-2084. [PMID: 38866614 DOI: 10.1016/j.numecd.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND AIM Recent research extends our knowledge of plasma lipid species, building on established links between serum lipid levels and Type 2 Diabetes Mellitus (T2DM) risk. Identifying the causal roles of these lipid species is key to improving T2DM risk assessment. METHODS AND RESULTS This study employs Mendelian randomization (MR) to investigate the causal relationship between 179 lipid species across 13 lipid categories and T2DM. Summary-level data were sourced from genome-wide association studies. The primary analytical methods included the inverse variance weighted (IVW) approach and the Wald ratio, complemented by a series of sensitivity analyses to ensure the robustness of results. The IVW analysis reveals a significant causal association between elevated levels of ceramide (d40:2) (OR = 1.071, 95% CI 1.034-1.109, P = 1.36 × 10-4), sphingomyelin (d38:1) (OR = 1.052, 95% CI 1.028-1.077, P = 1.80 × 10-5), and triacylglycerol (56:8) (OR = 1.174, 95% CI 1.108-1.243, P = 4.65 × 10-8), and an increased risk of T2DM. Conversely, Wald ratio analysis indicates that higher levels of phosphatidylcholine (O-16:1_16:0) (OR = 0.928, 95% CI 0.892-0.966, P = 2.37 × 10-4), phosphatidylcholine (O-16:1_20:4) (OR = 0.932, 95% CI 0.897-0.967, P = 2.37 × 10-4), and phosphatidylcholine (O-18:2_20:4) (OR = 0.872, 95% CI 0.812-0.935, P = 1.24 × 10-4) are significantly associated with a reduced risk of T2DM. Furthermore, suggestive causal evidence for 22 additional lipid species was identified. CONCLUSIONS This MR study establishes a causal relationship between specific lipid classes in modulating the risk of T2DM. It offers new insights for risk assessment and potential therapeutic targets in T2DM.
Collapse
Affiliation(s)
- Youqian Zhang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China; Health Science Center, Yangtze University, Jingzhou, Hubei Province, China
| | - Yao Ni
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Hui An
- Health Science Center, Yangtze University, Jingzhou, Hubei Province, China
| | - Lin Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China.
| | - Yanrui Ren
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China.
| |
Collapse
|
20
|
Yu Z, Zhang H, Li L, Li Z, Chen D, Pang X, Ji Y, Wang Y. Microglia-mediated pericytes migration and fibroblast transition via S1P/S1P3/YAP signaling pathway after spinal cord injury. Exp Neurol 2024; 379:114864. [PMID: 38866101 DOI: 10.1016/j.expneurol.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Platelet-derived growth factor receptor β positive (PDGFRβ+) pericytes detach from the microvascular wall and migrate into the injury center following spinal cord injury (SCI), which has been widely regarded as the main source of fibrotic scar, but the mechanism of migration and fibroblast transition remains elusive. Here we show the associated spatiotemporal distribution between microglia and pericytes at three and seven days post-injury (dpi). The increased expression of Sphingosine kinase-1 (SPHK1) in microglia significantly raised the concentration of Sphingosine-1-phosphate (S1P) in the spinal cord, which promotes migration and fibroblast transition of pericyte. In vitro experiments, we found the elevated Sphingosine 1-phosphate receptor 3 (S1P3), the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted its nuclear translocation, which contributed to the formation of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1) protein, This process can be blocked by an S1P3 specific inhibitor TY52156 in vitro. The S1P/S1P3/YAP pathway might be a potential target for treatment in SCI.
Collapse
Affiliation(s)
- Ziyuan Yu
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Huabin Zhang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Linxi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Zhi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Danmin Chen
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Xiao Pang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yunxiang Ji
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yezhong Wang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China.
| |
Collapse
|
21
|
Li H, Han L, Zhou F, Wu Z, Zhang L, Xie R, Jiang F, Tian Q, Huang X. Ningxiang Pig-Derived Microbiota Affects the Growth Performance, Gut Microbiota, and Serum Metabolome of Nursery Pigs. Animals (Basel) 2024; 14:2450. [PMID: 39272235 PMCID: PMC11394380 DOI: 10.3390/ani14172450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota is crucial for maintaining the host's intestinal homeostasis and metabolism. This study investigated the effects of fecal microbiota transplantation (FMT) from Ningxiang pigs on the growth performance, fecal microbiota, and serum metabolites of the same-old DLY pigs. The results indicated that the average daily gain of FMT pigs was significantly greater than that of the control (CON) group. Compared to the CON group, the FMT group significantly improved the apparent digestibility of crude fiber, crude ash, gross energy, and calcium of the pigs. The analysis of serum antioxidant status revealed that the activities of total superoxide dismutase and catalase in the serum of pigs in the FMT group were significantly elevated, whereas the level of malondialdehyde was significantly reduced. Furthermore, 16S rRNA sequencing analysis revealed that the Ningxiang pig-derived microbiota altered the fecal microbiota structure and modulated the diversity of the gut microbiota in the DLY pigs. Untargeted LC-MS metabolomics demonstrated that pigs in the FMT group exhibited distinct metabolomic profiles compared to those in the CON group. Significant changes were observed in key metabolites involved in amino acid, lipid, and carbohydrate metabolism. Additionally, a correlation analysis between serum differential metabolites and the gut microbiota revealed that the relative abundance of Lachnospiraceae_NK4A136_group and Corynebacterium was highly correlated with lipid compounds. In conclusion, Ningxiang pig-derived microbiota can alleviate oxidative stress and enhance growth performance in DLY pigs by modulating their gut microbiota and metabolic features.
Collapse
Affiliation(s)
- Hongkun Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Li Han
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Zichen Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Longlin Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Renjie Xie
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Feng Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Qiyu Tian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Yuelushan Laboratory, Changsha 410128, China
- Hunan Agriculture Research System, Changsha 410128, China
| |
Collapse
|
22
|
Kolathur KK, Nag R, Shenoy PV, Malik Y, Varanasi SM, Angom RS, Mukhopadhyay D. Molecular Susceptibility and Treatment Challenges in Melanoma. Cells 2024; 13:1383. [PMID: 39195270 DOI: 10.3390/cells13161383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Melanoma is the most aggressive subtype of cancer, with a higher propensity to spread compared to most solid tumors. The application of OMICS approaches has revolutionized the field of melanoma research by providing comprehensive insights into the molecular alterations and biological processes underlying melanoma development and progression. This review aims to offer an overview of melanoma biology, covering its transition from primary to malignant melanoma, as well as the key genes and pathways involved in the initiation and progression of this disease. Utilizing online databases, we extensively explored the general expression profile of genes, identified the most frequently altered genes and gene mutations, and examined genetic alterations responsible for drug resistance. Additionally, we studied the mechanisms responsible for immune checkpoint inhibitor resistance in melanoma.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Radhakanta Nag
- Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture & Technology (OUAT), Bhubaneswar 751003, Odisha, India
| | - Prathvi V Shenoy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Yagya Malik
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sai Manasa Varanasi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
23
|
Tan C, Huang S, Xu L, Zhang T, Yuan X, Li Z, Chen M, Chen C, Yan Q. Cross-talk between oxidative stress and lipid metabolism regulators reveals molecular clusters and immunological characterization in polycystic ovarian syndrome. Lipids Health Dis 2024; 23:248. [PMID: 39143634 PMCID: PMC11325768 DOI: 10.1186/s12944-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRT‒PCR, western blot, and IHC assays in a PCOS mouse model. RESULTS 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.
Collapse
Affiliation(s)
- Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Liying Xu
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Tongtong Zhang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
24
|
Lin J, Liu X, Chen X, Yang M, Han L, Xu R, Zhang D. The antipyretic effect of the famous classical formula Qingwanzi Pills on a rabbit model and its serum metabolomic study. J Pharm Biomed Anal 2024; 246:116219. [PMID: 38759325 DOI: 10.1016/j.jpba.2024.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Qingwanzi Pills (QP) were first mentioned in the "Puji Fang" of the Ming Dynasty, with a history of approximately 600 years. The formula consisted of Gypsum Fibrosum and Indigo Naturalis. It is a famous classical formula with antipyretic effects frequently utilized in ancient China, although our knowledge about the overall antipyretic mechanism of QP remains limited. Therefore, we replicated the fever model in New Zealand rabbits induced by lipopolysaccharide, performed the pharmacodynamic evaluation of QP, identified the differential metabolites among QP groups, and performed pathway enrichment analysis to comparatively analyze the effects of QP on fever-related metabolic pathways by ultra-performance liquid chromatography-mass spectrometry. The results showed that the antipyretic effect of QP was superior to that of each disassembled prescription, with Gypsum Fibrosum primarily contributing to the efficacy, followed by Indigo Naturalis and Junci Medulla. QP had an effective antipyretic effect, which was related to lowering the levels of TNF-α, IL-6, IL-1β, and calcium in rabbit serum, lowering the levels of PGE2 and cAMP in rabbit cerebrospinal fluid, and increasing the level of calcium in rabbit cerebrospinal fluid. A total of 27 endogenous biomarkers were screened by serum metabolomics for the treatment of fever with QP. It is hypothesized that the antipyretic mechanism of QP may be related to regulating α-linolenic acid, sphingolipid, tryptophan, and bile acid metabolism. In summary, QP exhibited a significant antipyretic effect in rabbits with lipopolysaccharide-induced fever.
Collapse
Affiliation(s)
- Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xuemei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xinming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ming Yang
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
25
|
Yan Y, Yu F, Li Q, Feng X, Geng L, Sun L. Metabolic alterations in vitamin D deficient systemic lupus erythematosus patients. Sci Rep 2024; 14:18879. [PMID: 39143130 PMCID: PMC11325032 DOI: 10.1038/s41598-024-67588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Vitamin D deficiency is increasingly common in systemic lupus erythematosus (SLE) patients and is associated with the disease activity and proteinuria. Recently, alterations in metabolism have been recognized as key regulators of SLE pathogenesis. Our objective was to identify differential metabolites in the serum metabolome of SLE with vitamin D deficiency. In this study, serum samples from 31 SLE patients were collected. Levels of 25(OH)D3 were assayed by ELISA. Patients were divided into two groups according to their vitamin D level (20 ng/ml). Untargeted metabolomics were used to study the metabolite profiles in serum by high-performance liquid chromatography-tandem mass spectrometry. Subsequently, we performed metabolomics profiling analysis to identify 52 significantly altered metabolites in vitamin D deficient SLE patients. The area under the curve (AUC) from ROC analyses was calculated to assess the diagnostic potential of each candidate metabolite biomarker. Lipids accounted for 66.67% of the differential metabolites in the serum, highlighted the disruption of lipid metabolism. The 52 differential metabolites were mapped to 27 metabolic pathways, with fat digestion and absorption, as well as lipid metabolism, emerging as the most significant pathways. The AUC of (S)-Oleuropeic acid and 2-Hydroxylinolenic acid during ROC analysis were 0.867 and 0.833, respectively, indicating their promising diagnostic potential. In conclusion, our results revealed vitamin D deficiency alters SLE metabolome, impacting lipid metabolism, and thrown insights into the pathogenesis and diagnosis of SLE.
Collapse
Affiliation(s)
- Yunxia Yan
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Fangyuan Yu
- School of Medicine, Southeast University, Nanjing, China
| | - Qi Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
26
|
Jiang L, Zhao Y, Liu F, Huang Y, Zhang Y, Yuan B, Cheng J, Yan P, Ni J, Jiang Y, Wu Q, Jiang X. Concomitant targeting of FLT3 and SPHK1 exerts synergistic cytotoxicity in FLT3-ITD + acute myeloid leukemia by inhibiting β-catenin activity via the PP2A-GSK3β axis. Cell Commun Signal 2024; 22:391. [PMID: 39113090 PMCID: PMC11304842 DOI: 10.1186/s12964-024-01774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Approximately 25-30% of patients with acute myeloid leukemia (AML) have FMS-like receptor tyrosine kinase-3 (FLT3) mutations that contribute to disease progression and poor prognosis. Prolonged exposure to FLT3 tyrosine kinase inhibitors (TKIs) often results in limited clinical responses due to diverse compensatory survival signals. Therefore, there is an urgent need to elucidate the mechanisms underlying FLT3 TKI resistance. Dysregulated sphingolipid metabolism frequently contributes to cancer progression and a poor therapeutic response. However, its relationship with TKI sensitivity in FLT3-mutated AML remains unknown. Thus, we aimed to assess mechanisms of FLT3 TKI resistance in AML. METHODS We performed lipidomics profiling, RNA-seq, qRT-PCR, and enzyme-linked immunosorbent assays to determine potential drivers of sorafenib resistance. FLT3 signaling was inhibited by sorafenib or quizartinib, and SPHK1 was inhibited by using an antagonist or via knockdown. Cell growth and apoptosis were assessed in FLT3-mutated and wild-type AML cell lines via Cell counting kit-8, PI staining, and Annexin-V/7AAD assays. Western blotting and immunofluorescence assays were employed to explore the underlying molecular mechanisms through rescue experiments using SPHK1 overexpression and exogenous S1P, as well as inhibitors of S1P2, β-catenin, PP2A, and GSK3β. Xenograft murine model, patient samples, and publicly available data were analyzed to corroborate our in vitro results. RESULTS We demonstrate that long-term sorafenib treatment upregulates SPHK1/sphingosine-1-phosphate (S1P) signaling, which in turn positively modulates β-catenin signaling to counteract TKI-mediated suppression of FLT3-mutated AML cells via the S1P2 receptor. Genetic or pharmacological inhibition of SPHK1 potently enhanced the TKI-mediated inhibition of proliferation and apoptosis induction in FLT3-mutated AML cells in vitro. SPHK1 knockdown enhanced sorafenib efficacy and improved survival of AML-xenografted mice. Mechanistically, targeting the SPHK1/S1P/S1P2 signaling synergizes with FLT3 TKIs to inhibit β-catenin activity by activating the protein phosphatase 2 A (PP2A)-glycogen synthase kinase 3β (GSK3β) pathway. CONCLUSIONS These findings establish the sphingolipid metabolic enzyme SPHK1 as a regulator of TKI sensitivity and suggest that combining SPHK1 inhibition with TKIs could be an effective approach for treating FLT3-mutated AML.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Glycogen Synthase Kinase 3 beta/metabolism
- Glycogen Synthase Kinase 3 beta/genetics
- beta Catenin/metabolism
- beta Catenin/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Animals
- Mice
- Protein Phosphatase 2/metabolism
- Protein Phosphatase 2/genetics
- Protein Phosphatase 2/antagonists & inhibitors
- Cell Line, Tumor
- Sorafenib/pharmacology
- Apoptosis/drug effects
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Cell Proliferation/drug effects
- Drug Synergism
- Xenograft Model Antitumor Assays
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
Collapse
Affiliation(s)
- Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujiao Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyi Yuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Cheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Yan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinle Ni
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Quan Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
27
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation, ligand and dose dependence of S1PR1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024:cvae168. [PMID: 39086170 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC-autonomous S1P production, it is unclear if relative reductions in circulating S1P impact endothelial function. It is also unclear how EC S1PR1 insufficiency, whether induced by ligand deficiency or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine-map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell type-specific and relative deficiencies in S1P production to define ligand source- and dose-dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries and high-endothelial venules (HEV). Similar zonation was observed for albumin extravasation in EC S1PR1 deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic EC, S1PR1 engagement was high in collecting vessels and lymph nodes and low in terminal capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signaling in lymphatics and HEV, hematopoietic cells provided ∼90% of plasma S1P and sustained signaling in resistance arteries and lung capillaries. S1PR1 signaling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age, but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSIONS This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Anja Nitzsche
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Kevin Boyé
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Philippe Bonnin
- Assistance Publique-Hôpitaux de Paris (AP-HP), Physiologie Clinique, Hôpital Lariboisière, Paris France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Toan Quoc Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| | - Patrice Thérond
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Biochimie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- Angers University, MitoVasc Department, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
- Yale University School of Medicine, Department of Internal Medicine and Cellular and Molecular Physiology, New Haven, USA
| | - Eric Camerer
- Université de Paris, Paris Cardiovascular Research Centre, INSERM U970, Paris, France
| |
Collapse
|
28
|
Poteryaeva ON, Usynin IF. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function. BIOMEDITSINSKAIA KHIMIIA 2024; 70:206-217. [PMID: 39239895 DOI: 10.18097/pbmc20247004206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Endothelial dysfunction underlies the pathogenesis of many diseases, primarily cardiovascular diseases. Epidemiological studies have shown an inverse dependence between the plasma level of high-density lipoproteins (HDL) and cardiovascular diseases. The results of experimental studies indicate that the antiatherogenic effect of HDL is associated not only with their participation in the reverse transport of excess cholesterol, but also with their regulatory effect on the functions of cells of various organs and tissues, including endothelial cells. The purpose of this review is to consider recent data on the participation of plasma receptors and related intracellular signaling pathways in the mechanism of protective effect of HDL on endothelial cell functions. Understanding the mechanisms of cell function regulation under the influence of HDL is an important step for the development of new ways of pharmacological correction of impaired endothelial functions and creation of effective endothelial protection drugs.
Collapse
Affiliation(s)
- O N Poteryaeva
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| | - I F Usynin
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| |
Collapse
|
29
|
Liu H, Yin G, Kohlhepp MS, Schumacher F, Hundertmark J, Hassan MIA, Heymann F, Puengel T, Kleuser B, Mosig AS, Tacke F, Guillot A. Dissecting Acute Drug-Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver-On-A-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403516. [PMID: 38868948 PMCID: PMC11321671 DOI: 10.1002/advs.202403516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip-based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual-chamber biocompatible liver-on-a-chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug-induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP-injected and dietary MASLD-induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Guo Yin
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Fabian Schumacher
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Jana Hundertmark
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | | | - Felix Heymann
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Tobias Puengel
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Burkhard Kleuser
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Alexander Sandy Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Adrien Guillot
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
30
|
Jung JW, Hla T, Arany Z. The sphinx helps to answer the riddle of cardiac regeneration. Trends Endocrinol Metab 2024; 35:677-679. [PMID: 38760201 PMCID: PMC11321922 DOI: 10.1016/j.tem.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Cardiomyocyte (CM) death drives heart failure worldwide, and efficient CM regeneration remains a fervently pursued but unachieved goal. Ji and colleagues recently described a novel approach to regeneration by orchestrating divergent sphingolipid signaling pathways in CMs and cardiac fibroblasts (CFs). The findings uncover new biology and offer interesting translational opportunities.
Collapse
Affiliation(s)
- Jae Woo Jung
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Maruyama Y, Ohsawa Y, Suzuki T, Yamauchi Y, Ohno K, Inoue H, Yamamoto A, Hayashi M, Okuhara Y, Muramatsu W, Namiki K, Hagiwara N, Miyauchi M, Miyao T, Ishikawa T, Horie K, Hayama M, Akiyama N, Hirokawa T, Akiyama T. Pseudoirreversible inhibition elicits persistent efficacy of a sphingosine 1-phosphate receptor 1 antagonist. Nat Commun 2024; 15:5743. [PMID: 39030171 PMCID: PMC11271513 DOI: 10.1038/s41467-024-49893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1), a G protein-coupled receptor, is required for lymphocyte trafficking, and is a promising therapeutic target in inflammatory diseases. Here, we synthesize a competitive S1PR1 antagonist, KSI-6666, that effectively suppresses pathogenic inflammation. Metadynamics simulations suggest that the interaction of KSI-6666 with a methionine residue Met124 in the ligand-binding pocket of S1PR1 may inhibit the dissociation of KSI-6666 from S1PR1. Consistently, in vitro functional and mutational analyses reveal that KSI-6666 causes pseudoirreversible inhibition of S1PR1, dependent on the Met124 of the protein and substituents on the distal benzene ring of KSI-6666. Moreover, in vivo study suggests that this pseudoirreversible inhibition is responsible for the persistent activity of KSI-6666.
Collapse
Affiliation(s)
- Yuya Maruyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Yusuke Ohsawa
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Takayuki Suzuki
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Yuko Yamauchi
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Kohsuke Ohno
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Hitoshi Inoue
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Akitoshi Yamamoto
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Morimichi Hayashi
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Yuji Okuhara
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Wataru Muramatsu
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Kano Namiki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| |
Collapse
|
32
|
Srivastava N, Hu H, Peterson OJ, Vomund AN, Stremska M, Zaman M, Giri S, Li T, Lichti CF, Zakharov PN, Zhang B, Abumrad NA, Chen YG, Ravichandran KS, Unanue ER, Wan X. CXCL16-dependent scavenging of oxidized lipids by islet macrophages promotes differentiation of pathogenic CD8 + T cells in diabetic autoimmunity. Immunity 2024; 57:1629-1647.e8. [PMID: 38754432 PMCID: PMC11236520 DOI: 10.1016/j.immuni.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The pancreatic islet microenvironment is highly oxidative, rendering β cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Stremska
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Zaman
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Shilpi Giri
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kodi S Ravichandran
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; VIB/UGent Inflammation Research Centre and Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
33
|
Dong D, Yu X, Tao X, Wang Q, Zhao L. S1P/S1PR1 signaling is involved in the development of nociceptive pain. Front Pharmacol 2024; 15:1407347. [PMID: 39045057 PMCID: PMC11263082 DOI: 10.3389/fphar.2024.1407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Background Pain is a complex perception involving unpleasant somatosensory and emotional experiences. However, the underlying mechanisms that mediate its different components remain unclear. Sphingosine-1-phosphate (S1P), a metabolite of sphingomyelin and a potent lipid mediator, initiates signaling via G protein-coupled receptors (S1PRs) on cell surfaces. It serves as a second messenger in cellular processes such as proliferation and apoptosis. Nevertheless, the neuropharmacology of sphingolipid signaling in pain conditions within the central nervous system remains largely unexplored and controversial. Methods Chronic nociceptive pain models were induced in vivo by intraplantar injection of 20 μL complete Freund's adjuvant (CFA) into the left hind paws. We assessed S1P and S1PR1 expression in the spinal cords of CFA model mice. Functional antagonists of S1PR1 or S1PR1-specific siRNA were administered daily following CFA model establishment. Paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL) were measured to evaluate mechanical allodynia and thermal hyperalgesia, respectively. RT-PCR assessed interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels. Western blotting and immunofluorescence were used to analyze glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), STAT3, ERK, and p38 MAPK protein expression. Results In the chronic nociceptive pain model induced by CFA, S1P and S1PR1 expression levels were significantly elevated, leading to activation of spinal cord glial cells. S1PR1 activation also promoted MMP2-mediated cleavage of mature IL-1β. Additionally, S1PR1 activation upregulated phosphorylation of STAT3, ERK, and p38 MAPK in glial cells, profoundly impacting downstream signaling pathways and contributing to chronic nociceptive pain. Conclusion The S1P/S1PR1 axis plays a pivotal role in the cellular and molecular mechanisms underlying nociceptive pain. This signaling pathway modulates glial cell activation and the expression of pain-related genes (STAT3, ERK, p38 MAPK) and inflammatory factors in the spinal dorsal horn. These findings underscore the potential of targeting the S1P system for developing novel analgesic therapies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Xue Yu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Ministry of Education, Shenyang, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Xiao L, Zhang L, Guo C, Xin Q, Gu X, Jiang C, Wu J. "Find Me" and "Eat Me" signals: tools to drive phagocytic processes for modulating antitumor immunity. Cancer Commun (Lond) 2024; 44:791-832. [PMID: 38923737 PMCID: PMC11260773 DOI: 10.1002/cac2.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Phagocytosis, a vital defense mechanism, involves the recognition and elimination of foreign substances by cells. Phagocytes, such as neutrophils and macrophages, rapidly respond to invaders; macrophages are especially important in later stages of the immune response. They detect "find me" signals to locate apoptotic cells and migrate toward them. Apoptotic cells then send "eat me" signals that are recognized by phagocytes via specific receptors. "Find me" and "eat me" signals can be strategically harnessed to modulate antitumor immunity in support of cancer therapy. These signals, such as calreticulin and phosphatidylserine, mediate potent pro-phagocytic effects, thereby promoting the engulfment of dying cells or their remnants by macrophages, neutrophils, and dendritic cells and inducing tumor cell death. This review summarizes the phagocytic "find me" and "eat me" signals, including their concepts, signaling mechanisms, involved ligands, and functions. Furthermore, we delineate the relationships between "find me" and "eat me" signaling molecules and tumors, especially the roles of these molecules in tumor initiation, progression, diagnosis, and patient prognosis. The interplay of these signals with tumor biology is elucidated, and specific approaches to modulate "find me" and "eat me" signals and enhance antitumor immunity are explored. Additionally, novel therapeutic strategies that combine "find me" and "eat me" signals to better bridge innate and adaptive immunity in the treatment of cancer patients are discussed.
Collapse
Affiliation(s)
- Lingjun Xiao
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Louqian Zhang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Ciliang Guo
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing UniversityNanjingJiangsuP. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinanShandongP. R. China
| |
Collapse
|
35
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
36
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
37
|
Huang J, Wang G, Zhang J, Liu Y, Shen Y, Chen G, Ji W, Shao J. A novel ARHGAP family gene signature for survival prediction in glioma patients. J Cell Mol Med 2024; 28:e18555. [PMID: 39075640 PMCID: PMC11286547 DOI: 10.1111/jcmm.18555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
ARHGAP family genes are often used as glioma oncogenic factors, and their mechanism of action remains unexplained. Our research entailed a thorough examination of the immune microenvironment and enrichment pathways across various glioma subtypes. A distinctive 6-gene signature was developed employing the CGGA cohort, leading to insights into the disparities in clinical characteristics, mutation patterns, and immune cell infiltration among distinct risk categories. Additionally, a unique nomogram was established, grounded on ARHGAPs, with DCA curves illustrating the model's prospective clinical utility in guiding therapeutic strategies. Emphasizing the role of ARHGAP30, integral to our model, its impact on glioma severity and the credibility of our risk assessment model were substantiated through RT-qPCR, Western blot analysis, and cellular functional assays. We identified 6 ARHGAP family genes associated with glioma prognosis. Analysis using the Kaplan-Meier method indicated a correlation between elevated risk levels and adverse outcomes in glioma patients. The risk score, linked with tumour staging and IDH mutation status, emerged as an independent factor predicting prognosis. Patients in the high-risk category exhibited increased immune cell infiltration, enhanced tumour mutational burden, more pronounced expression of immune checkpoint genes, and a better response to ICB therapy. A nomogram, integrating the risk score with the pathological features of glioma patients, was developed. DCA analysis and cellular studies confirmed the model's potential to improve clinical treatment outcomes for patients. A novel ARHGAP family gene signature reveals the prognosis of glioma.
Collapse
Affiliation(s)
- Jin Huang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| | - Gaosong Wang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| | - Jiahao Zhang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| | - Yuankun Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| | - Yifan Shen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| | - Gengjing Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| | - Wei Ji
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| | - Junfei Shao
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuChina
| |
Collapse
|
38
|
Rubenzucker S, Manke MC, Lehmann R, Assinger A, Borst O, Ahrends R. A Targeted, Bioinert LC-MS/MS Method for Sensitive, Comprehensive Analysis of Signaling Lipids. Anal Chem 2024; 96:9643-9652. [PMID: 38795073 PMCID: PMC11170558 DOI: 10.1021/acs.analchem.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/27/2024]
Abstract
Signaling lipids are key players in cellular processes. Despite their importance, no method currently allows their comprehensive monitoring in one analytical run. Challenges include a wide dynamic range, isomeric and isobaric species, and unwanted interaction along the separation path. Herein, we present a sensitive and robust targeted liquid chromatography-mass spectrometry (LC-MS/MS) approach to overcome these challenges, covering a broad panel of 17 different signaling lipid classes. It involves a simple one-phase sample extraction and lipid analysis using bioinert reversed-phase liquid chromatography coupled to targeted mass spectrometry. The workflow shows excellent sensitivity and repeatability in different biological matrices, enabling the sensitive and robust monitoring of 388 lipids in a single run of only 20 min. To benchmark our workflow, we characterized the human plasma signaling lipidome, quantifying 307 endogenous molecular lipid species. Furthermore, we investigated the signaling lipidome during platelet activation, identifying numerous regulations along important lipid signaling pathways. This highlights the potential of the presented method to investigate signaling lipids in complex biological systems, enabling unprecedentedly comprehensive analysis and direct insight into signaling pathways.
Collapse
Affiliation(s)
- Stefanie Rubenzucker
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Mailin-Christin Manke
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Centre of Physiology
and Pharmacology, Medical University of
Vienna, 1090 Vienna, Austria
| | - Oliver Borst
- DFG
Heisenberg Group Cardiovascular Thromboinflammation and Translational
Thrombocardiology, University of Tübingen, 72076 Tübingen, Germany
- Department
of Cardiology and Angiology, University
of Tübingen, 72076 Tübingen, Germany
| | - Robert Ahrends
- Department
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
39
|
Ding F, Wang Z, Wang J, Ma Y, Jin J. Serum S1P level in interstitial lung disease (ILD) is a potential biomarker reflecting the severity of pulmonary function. BMC Pulm Med 2024; 24:266. [PMID: 38835000 DOI: 10.1186/s12890-024-03081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND sphingosine-1-phosphate (S1P), a naturally occurring sphingolipid, has been involved in pulmonary interstitial remodeling signaling. However, no study has examined its clinical merits for interstitial lung disease (ILD). This study aimed to investigate the serum level of S1P in ILD patients and its clinical correlation with the severity of disease in the two main types of ILDs: the IPF and the CTD-ILD patients. METHODS This retrospective observational pilot study included 67 ILD patients and 26 healthy controls. These patients were stratified into the IPF group (35) and the CTD-ILD group (32). The severity of ILD was evaluated through pulmonary function indicators and the length of hospital stay. RESULTS Serum S1P level was statistically higher in ILD patients than in health control (p = 0.002), while the Serum S1P levels in CTD-ILD and IPF patients were comparable. Serum S1P level further showed statistically negative correlation with pulmonary function indexes (TLC% pred, FVC% pred and FEV1% pred) and positive correlation with length of hospital stay (r = -0.38, p = 0.04; r = -0.41, p = 0.02, r = -0.37, p = 0.04; r = 0.42, p = 0.02, respectively) in CTD-ILD patients, although serum S1P level was not significantly correlated with inflammatory indexes. The IPF patients failed to exhibit a significant correlation of serum S1P level with pulmonary function and length of hospital stay. CONCLUSIONS Serum S1P level might be a clinically useful biomarker in evaluating the severity of CTD-ILD patients rather than IPF patients.
Collapse
Affiliation(s)
- Fangping Ding
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, N0. 5 Jingyuan road, Beijing, China
| | - Zhenyang Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, N0. 5 Jingyuan road, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China.
| |
Collapse
|
40
|
Tian Z, Gao H, Xia W, Lou Z. S1PR3 suppresses the inflammatory response and extracellular matrix degradation in human nucleus pulposus cells. Exp Ther Med 2024; 27:265. [PMID: 38756905 PMCID: PMC11097297 DOI: 10.3892/etm.2024.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 05/18/2024] Open
Abstract
Sphingosine 1-phosphate receptor 3 (S1PR3) participates in the inflammatory response in multiple types of diseases. However, the biological role of S1PR3 in intervertebral disc degeneration and the underlying mechanism are unclear. The aim of the present study was to investigate the functional role and the mechanism of S1PR3 in lipopolysaccharide (LPS)-induced human nucleus pulposus cells. The expression of S1PR3 and Toll-like receptor (TLR) 2 in LPS-induced nucleus pulposus (NP) cells was investigated using western blotting. The Cell Counting Kit-8 assay was used to detect cell proliferation, and the levels of inflammatory factors were detected using ELISA. Flow cytometry and western blotting were used for the assessment of apoptosis. The deposition of extracellular matrix (ECM) proteins was investigated using reverse transcription-quantitative PCR and western blotting. In addition, western blotting was used to investigate the protein expression levels of phosphorylated (p)-STAT3, STAT3, p-JNK, JNK, p-ERK, ERK, p-p38 and p38associated with STAT3 and MAPK signaling. S1PR3 expression was reduced, while TLR2 expression was elevated in LPS-induced human nucleus pulposus cells (HNPC). S1PR3 overexpression increased HNPC viability, inhibited the inflammatory response and suppressed apoptosis. Meanwhile, S1PR3 overexpression regulated the expression of ECM-related proteins. Additionally, overexpression of S1PR3 inhibited the expression of the TLR2-regulated STAT3 and MAPK pathways in LPS-induced HNPCs. Furthermore, TLR2 overexpression partially offset the impacts of S1PR3 overexpression on HNPC viability, apoptosis level, inflammation and as ECM degradation. In conclusion, STAT3 overexpression suppressed viability injury, the inflammatory response and the level of apoptosis and alleviated ECM protein deposition in HNPCs through the TLR2/STAT3 and TLR2/MAPK pathways, which may offer a promising candidate for the amelioration of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Haoran Gao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenjun Xia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaohui Lou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
41
|
Li Y, Sun T, Chen J, Liu X, Fu R, Xue F, Liu W, Ju M, Dai X, Li H, Wang W, Chi Y, Li T, Shao S, Yang R, Chen Y, Zhang L. Metabolomics profile and machine learning prediction of treatment responses in immune thrombocytopenia: A prospective cohort study. Br J Haematol 2024; 204:2405-2417. [PMID: 38438130 DOI: 10.1111/bjh.19391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by antibody-mediated platelet destruction and impaired platelet production. The mechanisms underlying ITP and biomarkers predicting the response of drug treatments are elusive. We performed a metabolomic profiling of bone marrow biopsy samples collected from ITP patients admission in a prospective study of the National Longitudinal Cohort of Hematological Diseases. Machine learning algorithms were conducted to discover novel biomarkers to predict ITP patient treatment responses. From the bone marrow biopsies of 91 ITP patients, we quantified a total of 4494 metabolites, including 1456 metabolites in the positive mode and 3038 metabolites in the negative mode. Metabolic patterns varied significantly between groups of newly diagnosed and chronic ITP, with a total of 876 differential metabolites involved in 181 unique metabolic pathways. Enrichment factors and p-values revealed the top metabolically enriched pathways to be sphingolipid metabolism, the sphingolipid signalling pathway, ubiquinone and other terpenoid-quinone biosynthesis, thiamine metabolism, tryptophan metabolism and cofactors biosynthesis, the phospholipase D signalling pathway and the phosphatidylinositol signalling system. Based on patient responses to five treatment options, we screened several metabolites using the Boruta algorithm and ranked their importance using the random forest algorithm. Lipids and their metabolism, including long-chain fatty acids, oxidized lipids, glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine biosynthesis, helped differentiate drug treatment responses. In conclusion, this study revealed metabolic alterations associated with ITP in bone marrow supernatants and a potential biomarker predicting the response to ITP.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuai Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Osawa Y, Kawai H, Nakashima K, Nakaseko Y, Suto D, Yanagida K, Hashidate-Yoshida T, Mori T, Yoshio S, Ohtake T, Shindou H, Kanto T. Sphingosine-1-phosphate promotes liver fibrosis in metabolic dysfunction-associated steatohepatitis. PLoS One 2024; 19:e0303296. [PMID: 38753743 PMCID: PMC11098361 DOI: 10.1371/journal.pone.0303296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
AIM Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most prevalent liver diseases and is characterized by steatosis and the accumulation of bioactive lipids. This study aims to understand the specific lipid species responsible for the progression of liver fibrosis in MASH. METHODS Changes in bioactive lipid levels were examined in the livers of MASH mice fed a choline-deficient diet (CDD). Additionally, sphingosine kinase (SphK)1 mRNA, which generates sphingosine 1 phosphate (S1P), was examined in the livers of patients with MASH. RESULTS CDD induced MASH and liver fibrosis were accompanied by elevated levels of S1P and increased expression of SphK1 in capillarized liver sinusoidal endothelial cells (LSECs) in mice. SphK1 mRNA also increased in the livers of patients with MASH. Treatment of primary cultured mouse hepatic stellate cells (HSCs) with S1P stimulated their activation, which was mitigated by the S1P receptor (S1PR)2 inhibitor, JTE013. The inhibition of S1PR2 or its knockout in mice suppressed liver fibrosis without reducing steatosis or hepatocellular damage. CONCLUSION S1P level is increased in MASH livers and contributes to liver fibrosis via S1PR2.
Collapse
Affiliation(s)
- Yosuke Osawa
- Departments of Gastroenterology, International University of Health and Welfare Hospital, Tochigi, Japan
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Hironari Kawai
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Keigo Nakashima
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Departments of Surgery, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Yuichi Nakaseko
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Departments of Surgery, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Daisuke Suto
- Departments of Gastroenterology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Keisuke Yanagida
- Departments of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Takaaki Ohtake
- Departments of Gastroenterology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Hideo Shindou
- Departments of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Departments of Medical Lipid Science, Graduated Scholl of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
43
|
Bao B, Wang Y, Boudreau P, Song X, Wu M, Chen X, Patik I, Tang Y, Ouahed J, Ringel A, Barends J, Wu C, Balskus E, Thiagarajah J, Liu J, Wessels MR, Lencer WI, Kasper DL, An D, Horwitz BH, Snapper SB. Bacterial Sphingolipids Exacerbate Colitis by Inhibiting ILC3-derived IL-22 Production. Cell Mol Gastroenterol Hepatol 2024; 18:101350. [PMID: 38704148 PMCID: PMC11222953 DOI: 10.1016/j.jcmgh.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND & AIMS Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.
Collapse
Affiliation(s)
- Bin Bao
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China.
| | - Youyuan Wang
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Pavl Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, Massachusetts; Shanghai Institute of Biochemistry and Cell Biology, CAS, Shanghai, China
| | - Meng Wu
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Xi Chen
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Izabel Patik
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Amit Ringel
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jared Barends
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Emily Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Jay Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jian Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Michael R Wessels
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Wayne Isaac Lencer
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Dingding An
- Division of Infectious Diseases, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Bruce Harold Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition; Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
44
|
Velagapudi S, Wang D, Poti F, Feuerborn R, Robert J, Schlumpf E, Yalcinkaya M, Panteloglou G, Potapenko A, Simoni M, Rohrer L, Nofer JR, von Eckardstein A. Sphingosine-1-phosphate receptor 3 regulates the transendothelial transport of high-density lipoproteins and low-density lipoproteins in opposite ways. Cardiovasc Res 2024; 120:476-489. [PMID: 38109696 PMCID: PMC11060483 DOI: 10.1093/cvr/cvad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 12/20/2023] Open
Abstract
AIMS The entry of lipoproteins from blood into the arterial wall is a rate-limiting step in atherosclerosis. It is controversial whether this happens by filtration or regulated transendothelial transport.Because sphingosine-1-phosphate (S1P) preserves the endothelial barrier, we investigated in vivo and in vitro, whether S1P and its cognate S1P-receptor 3 (S1P3) regulate the transendothelial transport of lipoproteins. METHODS AND RESULTS Compared to apoE-haploinsufficient mice (CTRL), apoE-haploinsufficient mice with additional endothelium-specific knock-in of S1P3 (S1P3-iECKI) showed decreased transport of LDL and Evan's Blue but increased transport of HDL from blood into the peritoneal cave. After 30 weeks of high-fat diet feeding, S1P3-iECKI mice had lower levels of non-HDL-cholesterol and less atherosclerosis than CTRL mice. In vitro stimulation with an S1P3 agonist increased the transport of 125I-HDL but decreased the transport of 125I-LDL through human aortic endothelial cells (HAECs). Conversely, inhibition or knock-down of S1P3 decreased the transport of 125I-HDL but increased the transport of 125I-LDL. Silencing of SCARB1 encoding scavenger receptor B1 (SR-BI) abrogated the stimulation of 125I-HDL transport by the S1P3 agonist. The transendothelial transport of 125I-LDL was decreased by silencing of SCARB1 or ACVLR1 encoding activin-like kinase 1 but not by interference with LDLR. None of the three knock-downs prevented the stimulatory effect of S1P3 inhibition on transendothelial 125I-LDL transport. CONCLUSION S1P3 regulates the transendothelial transport of HDL and LDL oppositely by SR-BI-dependent and SR-BI-independent mechanisms, respectively. This divergence supports a contention that lipoproteins pass the endothelial barrier by specifically regulated mechanisms rather than passive filtration.
Collapse
Affiliation(s)
- Srividya Velagapudi
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Dongdong Wang
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Francesco Poti
- Department of Medicine and Surgery—Unit of Neurosciences, University of Parma, Parma, Italy
- Department of Biomedical, Metabolic and Neural Sciences—Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Renata Feuerborn
- Central Laboratory Facility, University Hospital of Münster, Münster, Germany
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Eveline Schlumpf
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Mustafa Yalcinkaya
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Grigorios Panteloglou
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Anton Potapenko
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences—Unit of Endocrinology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - Jerzy-Roch Nofer
- Central Laboratory Facility, University Hospital of Münster, Münster, Germany
- Institute of Laboratory Medicine, Marien-Hospital Osnabrück, Niels-Stensen-Kliniken, Osnabrück, Germany
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
45
|
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance. Cancers (Basel) 2024; 16:1571. [PMID: 38672652 PMCID: PMC11049326 DOI: 10.3390/cancers16081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer due to its high propensity to metastasize to distant organs. Significant progress has been made in the last few decades in melanoma therapeutics, most notably in targeted therapy and immunotherapy. These approaches have greatly improved treatment response outcomes; however, they remain limited in their abilities to hinder disease progression due, in part, to the onset of acquired resistance. In parallel, intrinsic resistance to therapy remains an issue to be resolved. In this review, we summarize currently available therapeutic options for melanoma treatment and focus on possible mechanisms that drive therapeutic resistance. A better understanding of therapy resistance will provide improved rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Anna Fateeva
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kevinn Eddy
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA; (A.F.); (K.E.)
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- U.S. Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
| |
Collapse
|
46
|
Yang X, Wang K, Shen P, Zhou T, Xu Y, Chen Y, Li Y, Yao Y, Gong Z, Duan R, Jing L, Jia Y. Association of plasma sphingosine-1-phosphate levels with disease severity and prognosis after intracerebral hemorrhage. Front Neurol 2024; 15:1365902. [PMID: 38633536 PMCID: PMC11021779 DOI: 10.3389/fneur.2024.1365902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Sphingosine-1-phosphate (S1P) is a signaling lipid involved in many biological processes, including inflammatory and immune regulatory responses. The study aimed to determine whether admission S1P levels are associated with disease severity and prognosis after spontaneous intracerebral hemorrhage (ICH). Methods Data of 134 patients with spontaneous ICH and 120 healthy controls were obtained from Biological Resource Sample Database of Intracerebral Hemorrhage at the First Affiliated Hospital of Zhengzhou University. Plasma S1P levels were measured. Regression analyses were used to analyze the association between S1P levels and admission and 90-day modified Rankin scale (mRS) scores. Receiver operating characteristic (ROC) curves assessed the predictive value of S1P levels for ICH severity and prognosis. Results Patients with ICH exhibited elevated plasma S1P levels compared to the control group (median 286.95 vs. 239.80 ng/mL, p < 0.001). When divided patients into mild-to-moderate and severe groups according to their mRS scores both at admission and discharge, S1P levels were significantly elevated in the severe group compared to the mild-to-moderate group (admission 259.30 vs. 300.54, p < 0.001; 90-day 275.24 vs. 303.25, p < 0.001). The patients were divided into three groups with different concentration gradients, which showed significant statistical differences in admission mRS scores (3 vs. 4 vs. 5, p < 0.001), 90-day mRS scores (2.5 vs. 3 vs. 4, p < 0.001), consciousness disorders (45.5% vs. 68.2% vs. 69.6%, p = 0.033), ICU admission (29.5% vs. 59.1% vs. 89.1%, p < 0.001), surgery (15.9% vs. 47.7% vs. 82.6%, p < 0.001), intraventricular hemorrhages (27.3% vs. 61.4% vs. 65.2%, p < 0.001) and pulmonary infection (25% vs. 47.7% vs. 84.8%, p < 0.001). Multivariate analysis displayed that S1P level was an independent risk factor for disease severity (OR = 1.037, 95% CI = 1.020-1.054, p < 0.001) and prognosis (OR = 1.018, 95% CI = 1.006-1.030, p = 0.003). ROC curves revealed a predictive value of S1P levels with an area under the curve of 0.7952 (95% CI = 0.7144-0.8759, p < 0.001) for disease severity and 0.7105 (95% CI = 0.6227-0.7983, p < 0.001) for prognosis. Conclusion Higher admission S1P is associated with worse initial disease severity and 90-day functional outcomes in intracerebral hemorrhage.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaixin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ping Shen
- Department of Neurology, Xinzheng Huaxin Minsheng Hospital, Zhengzhou, Henan, China
| | - Tong Zhou
- Department of Neurology, Huaiyang County People’s Hospital, Zhoukou, Henan, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufei Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
48
|
Oliveira-Paula GH, Liu S, Maira A, Ressa G, Ferreira GC, Quintar A, Jayakumar S, Almonte V, Parikh D, Valenta T, Basler K, Hla T, Riascos-Bernal DF, Sibinga NES. The β-catenin C terminus links Wnt and sphingosine-1-phosphate signaling pathways to promote vascular remodeling and atherosclerosis. SCIENCE ADVANCES 2024; 10:eadg9278. [PMID: 38478616 PMCID: PMC10936954 DOI: 10.1126/sciadv.adg9278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/β-catenin-S1P cross-talk. In the vascular system, both Wnt/β-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of β-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the β-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the β-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/β-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.
Collapse
Affiliation(s)
- Gustavo H. Oliveira-Paula
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sophia Liu
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alishba Maira
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gaia Ressa
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Graziele C. Ferreira
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Amado Quintar
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Smitha Jayakumar
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vanessa Almonte
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dippal Parikh
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Dario F. Riascos-Bernal
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nicholas E. S. Sibinga
- Department of Medicine (Cardiology Division), Department of Developmental and Molecular Biology, and Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
49
|
Sun H, Hu B, Wu C, Jiang T. Targeting the SPHK1/S1P/S1PR2 axis ameliorates GH-secreted pituitary adenoma progression. Eur J Clin Invest 2024; 54:e14117. [PMID: 37888843 DOI: 10.1111/eci.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Growth hormone-secreted pituitary adenoma (GHPA) is a prominent subtype of pituitary adenoma (PA) associated with progressive somatic disfigurement, various complications, and elevated mortality rates. Existing treatment options have limited efficacy, highlighting the urgent need for novel pharmacological interventions. Previous studies have revealed that sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptors (S1PRs) signalling have critical roles in the tumour microenvironment, but their role in GHPA remains unclear. METHODS We performed integrative analyses including bioinformatics analyses, functional studies, and clinical validation to investigate the pathological roles of SPHK1/S1P and evaluated the effectiveness of the S1P receptor 2 (S1PR2) inhibitor JTE-013 in GHPA treatment. RESULTS SPHK1/S1P signalling is abnormally expressed in patients with GHPA. Knockdown of SPHK1 suppresses S1P-mediated cell proliferation in GH3 Cells. Mechanistically, S1P inhibits apoptosis and autophagy while promoting the secretion of Growth Hormone (GH) by binding to the S1P receptor subtype 2 (S1PR2) in GH3 cells. Moreover, the function of S1PR2 in GH3 cells is mediated by the downstream Akt-Creb pathway. We then identify the S1PR2 as a novel target for therapeutic intervention in GHPA. Systemic administration of the potent and selective S1PR2 antagonist, JTE-013, significantly reduces both tumour size and GH secretion. Importantly, we identify preoperative serum S1P levels as a biomarker predicting poor prognosis in GHPA patients at follow-up. CONCLUSION Our study shows that blocking SPHK1/S1P/S1PR2 axis can ameliorate the progression of GHPA, providing evidence of a promising therapeutic target for GHPA.
Collapse
Affiliation(s)
- Heng Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Hunan, Changsha, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Hunan, Changsha, China
| | - Chunli Wu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Hunan, Changsha, China
| | - Tiejian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Hunan, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Hunan, Changsha, China
| |
Collapse
|
50
|
Gan P, Wu H, Zhu Y, Shu Y, Wei Y. A new look at angiogenesis inhibition of geniposide in experimental arthritis by blocking angiopoietin-2 exocytosis. Phytother Res 2024; 38:1245-1261. [PMID: 38185885 DOI: 10.1002/ptr.8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Angiogenesis is a key player in the pathogenesis of rheumatoid arthritis. Exocytosis from Weibel-Palade bodies is a prerequisite for angiopoietin-2 (Ang-2) to activate endothelial cells and initiate angiogenesis. Geniposide (GE) was previously reported to exert anti-angiogenic effects. The aim of this study was to shed light on whether and how GE regulates Ang-2 exocytosis. A rat model of adjuvant arthritis (AA) was established to evaluate the therapeutic effect of GE (60 and 120 mg/kg) especially in synovial angiogenesis. In addition, the Matrigel plug assay was used to detect the effect of GE (120 and 240 mg/kg) on angiogenesis in AA mice. In vitro, sphingosine-1-phosphate (S1P)-stimulated human umbilical vein endothelial cells (HUVECs) were used to investigate the effect and mechanism of GE on Ang-2 exocytosis. It was found that GE improved the symptoms of AA rats and inhibited angiogenesis in AA, which may be related to the down-regulation of S1P receptors 1, 3 (S1PR1, S1PR3), phospholipase Cβ3 (PLCβ3), inositol 1,4,5-trisphosphate receptor (IP3 R) and Ang-2 expression. The results of in vitro experiments showed that S1P induced rapid release of Ang-2 from HUVECs with multigranular exocytosis. Suppression of the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis by the S1PR1/3 inhibitor VPC23019 and the IP3 R inhibitor 2-APB blocked Ang-2 exocytosis, accompanied by diminished angiogenesis in vitro. GE dose-dependently weakened S1P/S1PR1/3/PLCβ3/Ca2+ signal axis activation, Ang-2 exocytosis and angiogenesis in HUVECs (p < 0.05, p < 0.01). Overall, these findings revealed that angiogenesis inhibition of GE was partly attributed to the intervention of Ang-2 exocytosis through negatively modulating the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis, providing a novel strategy for rheumatoid arthritis anti-angiogenic therapy.
Collapse
Affiliation(s)
- Peirong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yulong Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| |
Collapse
|