1
|
Zhang C, Gerzanich V, Cruz-Cosme R, Zhang J, Tsymbalyuk O, Tosun C, Sallapalli BT, Liu D, Keledjian K, Papadimitriou JC, Drachenberg CB, Nasr M, Zhang Y, Tang Q, Simard JM, Zhao RY. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production. mBio 2024:e0230824. [PMID: 39345136 DOI: 10.1128/mbio.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Nasr
- Division of AIDS, NIAID, NIH, Drug Development and Clinical Sciences Branch, Bethesda, Maryland, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Cheng L, Rui Y, Wang Y, Chen S, Su J, Yu XF. A glimpse into viral warfare: decoding the intriguing role of highly pathogenic coronavirus proteins in apoptosis regulation. J Biomed Sci 2024; 31:70. [PMID: 39003473 PMCID: PMC11245872 DOI: 10.1186/s12929-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.
Collapse
Affiliation(s)
- Leyi Cheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shiqi Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
3
|
Zhang J, Kennedy A, de Melo Jorge DM, Xing L, Reid W, Bui S, Joppich J, Rose M, Ercan S, Tang Q, Tai AW, Wang Y. SARS-CoV-2 remodels the Golgi apparatus to facilitate viral assembly and secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.03.04.483074. [PMID: 35291301 PMCID: PMC8923104 DOI: 10.1101/2022.03.04.483074] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2, an enveloped RNA virus. Despite extensive investigation, the molecular mechanisms for its assembly and secretion remain largely elusive. Here, we show that SARS-CoV-2 infection induces global alterations of the host endomembrane system, including dramatic Golgi fragmentation. SARS-CoV-2 virions are enriched in the fragmented Golgi. Disrupting Golgi function with small molecules strongly inhibits viral infection. Significantly, SARS-CoV-2 infection down-regulates GRASP55 but up-regulates TGN46 protein levels. Surprisingly, GRASP55 expression reduces both viral secretion and spike number on each virion, while GRASP55 depletion displays opposite effects. In contrast, TGN46 depletion only inhibits viral secretion without affecting spike incorporation into virions. TGN46 depletion and GRASP55 expression additively inhibit viral secretion, indicating that they act at different stages. Taken together, we show that SARS-CoV-2 alters Golgi structure and function to control viral assembly and secretion, highlighting the Golgi as a potential therapeutic target for blocking SARS-CoV-2 infection.
Collapse
|
4
|
Zhou Z, Ali A, Walelign E, Demissie GF, El Masry I, Abayneh T, Getachew B, Krishnan P, Ng DY, Gardner E, Makonnen Y, Miguel E, Chevalier V, Chu DK, So RTY, Von Dobschuetz S, Mamo G, Poon LLM, Peiris M. Genetic diversity and molecular epidemiology of Middle East Respiratory Syndrome Coronavirus in dromedaries in Ethiopia, 2017-2020. Emerg Microbes Infect 2023; 12:e2164218. [PMID: 36620913 PMCID: PMC9888459 DOI: 10.1080/22221751.2022.2164218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.
Collapse
Affiliation(s)
- Ziqi Zhou
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Abraham Ali
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia,Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Elias Walelign
- Food and Agriculture Organization, Emergency Centre for Transboundary Animal Diseases, Addis Ababa, Ethiopia
| | - Getnet F. Demissie
- College of Veterinary Medicine, Department of Veterinary Epidemiology, Microbiology and Public Health, Haramaya University, Haramaya, Ethiopia
| | - Ihab El Masry
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | | | - Pavithra Krishnan
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Daisy Y.M. Ng
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Emma Gardner
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Yilma Makonnen
- Food and Agriculture Organization, Subregional Office for Eastern Africa, Addis Ababa, Ethiopia
| | - Eve Miguel
- Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France,Maladies Infectieuses et Vecteurs: Ecologie Genetique, Evolution et Controle, L’Institut de Recherche pour le Developpment, CNRS, Montpellier, France
| | - Véronique Chevalier
- International Center of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France,CIRAD, UMR ASTRE, Antananarivo, Madagascar,Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Daniel K. Chu
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China,UK Health Security Agency, London, UK
| | - Ray T. Y. So
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | | | - Gezahegne Mamo
- Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Leo L. M. Poon
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China, Malik Peiris
| |
Collapse
|
5
|
Baral B, Saini V, Tandon A, Singh S, Rele S, Dixit AK, Parmar HS, Meena AK, Jha HC. SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1. Apoptosis 2023; 28:1596-1617. [PMID: 37658919 DOI: 10.1007/s10495-023-01883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells' conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells' secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Akrati Tandon
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Siddharth Singh
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, 4-CN Block, Sector-V, Bidhannagar, Kolkata, 700091, India
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Indore, Madhya Pradesh, 452001, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Amkhoh, Gwalior, Madhya Pradesh, 474001, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
6
|
Stewart H, Lu Y, O’Keefe S, Valpadashi A, Cruz-Zaragoza LD, Michel HA, Nguyen SK, Carnell GW, Lukhovitskaya N, Milligan R, Adewusi Y, Jungreis I, Lulla V, Matthews DA, High S, Rehling P, Emmott E, Heeney JL, Davidson AD, Edgar JR, Smith GL, Firth AE. The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity. iScience 2023; 26:108080. [PMID: 37860693 PMCID: PMC10583119 DOI: 10.1016/j.isci.2023.108080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-β production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.
Collapse
Affiliation(s)
- Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah O’Keefe
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Anusha Valpadashi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Yasmin Adewusi
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Valeria Lulla
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Stephen High
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Edward Emmott
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Busscher BM, Befekadu HB, Liu Z, Xiao TS. SARS-CoV-2 ORF3a-Mediated NF-κB Activation Is Not Dependent on TRAF-Binding Sequence. Viruses 2023; 15:2229. [PMID: 38005906 PMCID: PMC10675646 DOI: 10.3390/v15112229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus Disease 2019 (COVID-19). Excessive inflammation is a hallmark of severe COVID-19, and several proteins encoded in the SARS-CoV-2 genome are capable of stimulating inflammatory pathways. Among these, the accessory protein open reading frame 3a (ORF3a) has been implicated in COVID-19 pathology. Here we investigated the roles of ORF3a in binding to TNF receptor-associated factor (TRAF) proteins and inducing nuclear factor kappa B (NF-κB) activation. X-ray crystallography and a fluorescence polarization assay revealed low-affinity binding between an ORF3a N-terminal peptide and TRAFs, and a dual-luciferase assay demonstrated NF-κB activation by ORF3a. Nonetheless, mutation of the N-terminal TRAF-binding sequence PIQAS in ORF3a did not significantly diminish NF-κB activation in our assay. Our results thus suggest that the SARS-CoV-2 protein may activate NF-κB through alternative mechanisms.
Collapse
Affiliation(s)
- Brianna M. Busscher
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
| | - Henock B. Befekadu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Zhonghua Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tsan Sam Xiao
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
| |
Collapse
|
8
|
Treeza M M, Augustine S, Mathew AA, Kanthlal S, Panonummal R. Targeting Viral ORF3a Protein: A New Approach to Mitigate COVID-19 Induced Immune Cell Apoptosis and Associated Respiratory Complications. Adv Pharm Bull 2023; 13:678-687. [PMID: 38022818 PMCID: PMC10676557 DOI: 10.34172/apb.2023.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 12/01/2023] Open
Abstract
Infection with SARS-CoV-2 is a growing concern to the global well-being of the public at present. Different amino acid mutations alter the biological and epidemiological characteristics, as well as immune resistance of SARS-CoV-2. The virus-induced pulmonary impairment and inflammatory cytokine storm are directly related to its clinical manifestations. But, the fundamental mechanisms of inflammatory responses are found to be the reason for the death of immune cells which render the host immune system failure. Apoptosis of immune cells is one of the most common forms of programmed cell death induced by the virus for its survival and virulence property. ORF3a, a SARS-CoV-2 accessory viral protein, induces apoptosis in host cells and suppress the defense mechanism. This suggests, inhibiting SARS-CoV-2 ORF3a protein is a good therapeutic strategy for the treatment in COVID-19 infection by promoting the host immune defense mechanism.
Collapse
Affiliation(s)
- Minu Treeza M
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Sanu Augustine
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | | | - S.K. Kanthlal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| | - Rajitha Panonummal
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| |
Collapse
|
9
|
Pitsillou E, Yu Y, Beh RC, Liang JJ, Hung A, Karagiannis TC. Chronicling the 3-year evolution of the COVID-19 pandemic: analysis of disease management, characteristics of major variants, and impacts on pathogenicity. Clin Exp Med 2023; 23:3277-3298. [PMID: 37615803 DOI: 10.1007/s10238-023-01168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Announced on December 31, 2019, the novel coronavirus arising in Wuhan City, Hubei Province resulted in millions of cases and lives lost. Following intense tracking, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) in 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of COVID-19 and the continuous evolution of the virus has given rise to several variants. In this review, a comprehensive analysis of the response to the pandemic over the first three-year period is provided, focusing on disease management, development of vaccines and therapeutics, and identification of variants. The transmissibility and pathogenicity of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron are compared. The binding characteristics of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor and reproduction numbers are evaluated. The effects of major variants on disease severity, hospitalisation, and case-fatality rates are outlined. In addition to the spike protein, open reading frames mutations are investigated. We also compare the pathogenicity of SARS-CoV-2 with SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Overall, this study highlights the strengths and weaknesses of the global response to the pandemic, as well as the importance of prevention and preparedness. Monitoring the evolution of SARS-CoV-2 is critical in identifying and potentially predicting the health outcomes of concerning variants as they emerge. The ultimate goal would be a position in which existing vaccines and therapeutics could be adapted to suit new variants in as close to real-time as possible.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Yiping Yu
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
Yuan C, Ma Z, Xie J, Li W, Su L, Zhang G, Xu J, Wu Y, Zhang M, Liu W. The role of cell death in SARS-CoV-2 infection. Signal Transduct Target Ther 2023; 8:357. [PMID: 37726282 PMCID: PMC10509267 DOI: 10.1038/s41392-023-01580-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), showing high infectiousness, resulted in an ongoing pandemic termed coronavirus disease 2019 (COVID-19). COVID-19 cases often experience acute respiratory distress syndrome, which has caused millions of deaths. Apart from triggering inflammatory and immune responses, many viral infections can cause programmed cell death in infected cells. Cell death mechanisms have a vital role in maintaining a suitable environment to achieve normal cell functionality. Nonetheless, these processes are dysregulated, potentially contributing to disease pathogenesis. Over the past decades, multiple cell death pathways are becoming better understood. Growing evidence suggests that the induction of cell death by the coronavirus may significantly contributes to viral infection and pathogenicity. However, the interaction of SARS-CoV-2 with cell death, together with its associated mechanisms, is yet to be elucidated. In this review, we summarize the existing evidence concerning the molecular modulation of cell death in SARS-CoV-2 infection as well as viral-host interactions, which may shed new light on antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jiufeng Xie
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wenqing Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lijuan Su
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhi Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
11
|
Lee YB, Jung M, Kim J, Charles A, Christ W, Kang J, Kang MG, Kwak C, Klingström J, Smed-Sörensen A, Kim JS, Mun JY, Rhee HW. Super-resolution proximity labeling reveals anti-viral protein network and its structural changes against SARS-CoV-2 viral proteins. Cell Rep 2023; 42:112835. [PMID: 37478010 DOI: 10.1016/j.celrep.2023.112835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates in human cells by interacting with host factors following infection. To understand the virus and host interactome proximity, we introduce a super-resolution proximity labeling (SR-PL) method with a "plug-and-playable" PL enzyme, TurboID-GBP (GFP-binding nanobody protein), and we apply it for interactome mapping of SARS-CoV-2 ORF3a and membrane protein (M), which generates highly perturbed endoplasmic reticulum (ER) structures. Through SR-PL analysis of the biotinylated interactome, 224 and 272 peptides are robustly identified as ORF3a and M interactomes, respectively. Within the ORF3a interactome, RNF5 co-localizes with ORF3a and generates ubiquitin modifications of ORF3a that can be involved in protein degradation. We also observe that the SARS-CoV-2 infection rate is efficiently reduced by the overexpression of RNF5 in host cells. The interactome data obtained using the SR-PL method are presented at https://sarscov2.spatiomics.org. We hope that our method will contribute to revealing virus-host interactions of other viruses in an efficient manner.
Collapse
Affiliation(s)
- Yun-Bin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeesoo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Jiwoong Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 14183 Stockholm, Sweden; Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Jong-Seo Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea.
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Huang H, Li X, Zha D, Lin H, Yang L, Wang Y, Xu L, Wang L, Lei T, Zhou Z, Xiao YF, Xin HB, Fu M, Qian Y. SARS-CoV-2 E protein-induced THP-1 pyroptosis is reversed by Ruscogenin. Biochem Cell Biol 2023; 101:303-312. [PMID: 36927169 DOI: 10.1139/bcb-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.
Collapse
Affiliation(s)
- Houda Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiuzhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Duoduo Zha
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hongru Lin
- Department of Scientific Research, Hainan General Hospital, Haikou, 570311, China
| | - Lingyi Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yihan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Luyan Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Linsiqi Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Tianhua Lei
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Zhou Zhou
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Yun-Fei Xiao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
13
|
Henke W, Kalamvoki M, Stephens EB. The Role of the Tyrosine-Based Sorting Signals of the ORF3a Protein of SARS-CoV-2 on Intracellular Trafficking, Autophagy, and Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550379. [PMID: 37547007 PMCID: PMC10402054 DOI: 10.1101/2023.07.24.550379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The open reading frame 3a (ORF3a) is an accessory transmembrane protein that is important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (YxxΦ; where x is any amino acid and Φ is a hydrophobic amino acid with a bulky -R group). They have been implicated in the trafficking of membrane proteins to the cell plasma membrane and to intracellular organelles. Previous studies have indicated that mutation of the 160YSNV163 motif abrogated plasma membrane expression and inhibited ORF3a-induced apoptosis. However, two additional canonical tyrosine-based sorting motifs (211YYQL213, 233YNKI236) exist in the cytoplasmic domain of ORF3a that have not been assessed. We removed all three potential tyrosine-based motifs and systematically restored them to assess the importance of each motif or combination of motifs that restored efficient trafficking to the cell surface and lysosomes. Our results indicate that the YxxΦ motif at position 160 was insufficient for the trafficking of ORF3a to the cell surface. Our studies also showed that ORF3a proteins with an intact YxxΦ at position 211 or at 160 and 211 were most important. We found that ORF3a cell surface expression correlated with the co-localization of ORF3a with LAMP-1 near the cell surface. These results suggest that YxxΦ motifs within the cytoplasmic domain may act cooperatively in ORF3a transport to the plasma membrane and endocytosis to lysosomes. Further, our results indicate that certain tyrosine mutants failed to activate caspase 3 and did not correlate with autophagy functions associated with this protein.
Collapse
Affiliation(s)
- Wyatt Henke
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| |
Collapse
|
14
|
Oh S, Lee S. Recent advances in ZBP1-derived PANoptosis against viral infections. Front Immunol 2023; 14:1148727. [PMID: 37261341 PMCID: PMC10228733 DOI: 10.3389/fimmu.2023.1148727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Innate immunity is an important first line of defense against pathogens, including viruses. These pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively), resulting in the induction of inflammatory cell death, are detected by specific innate immune sensors. Recently, Z-DNA binding protein 1 (ZBP1), also called the DNA-dependent activator of IFN regulatory factor (DAI) or DLM1, is reported to regulate inflammatory cell death as a central mediator during viral infection. ZBP1 is an interferon (IFN)-inducible gene that contains two Z-form nucleic acid-binding domains (Zα1 and Zα2) in the N-terminus and two receptor-interacting protein homotypic interaction motifs (RHIM1 and RHIM2) in the middle, which interact with other proteins with the RHIM domain. By sensing the entry of viral RNA, ZBP1 induces PANoptosis, which protects host cells against viral infections, such as influenza A virus (IAV) and herpes simplex virus (HSV1). However, some viruses, particularly coronaviruses (CoVs), induce PANoptosis to hyperactivate the immune system, leading to cytokine storm, organ failure, tissue damage, and even death. In this review, we discuss the molecular mechanism of ZBP1-derived PANoptosis and pro-inflammatory cytokines that influence the double-edged sword of results in the host cell. Understanding the ZBP1-derived PANoptosis mechanism may be critical for improving therapeutic strategies.
Collapse
|
15
|
Maymand VM, Bavi O, Karami A. Probing the mechanical properties of ORF3a protein, a transmembrane channel of SARS-CoV-2 virus: Molecular dynamics study. Chem Phys 2023; 569:111859. [PMID: 36852417 PMCID: PMC9946729 DOI: 10.1016/j.chemphys.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/04/2022] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
SARS-CoV-2-encoded accessory protein ORF3a was found to be a conserved coronavirus protein that shows crucial roles in apoptosis in cells as well as in virus release and replications. To complete the knowledge and identify the unknown of this protein, further comprehensive research is needed to clarify the leading role of ORF3a in the functioning of the coronavirus. One of the efficient approaches to determining the functionality of this protein is to investigate the mechanical properties and study its structural dynamics in the presence of physical stimuli. Herein, performing all-atom steered molecular dynamics (SMD) simulations, the mechanical properties of the force-bearing components of the ORF3a channel are calculated in different physiological conditions. As variations occurring in ORF3a may lead to alteration in protein structure and function, the G49V mutation was also simulated to clarify the relationship between the mechanical properties and chemical stability of the protein by comparing the behavior of the wild-type and mutant Orf3a. From a physiological conditions point of view, it was observed that in the solvated system, the presence of water molecules reduces Young's modulus of TM1 by ∼30 %. Our results also show that by substitution of Gly49 with valine, Young's modulus of the whole helix increases from 1.61 ± 0.20 to 2.08 ± 0.15 GPa, which is consistent with the calculated difference in free energy of wild-type and mutant helices. In addition to finding a way to fight against Covid-19 disease, understanding the mechanical behavior of these biological nanochannels can lead to the development of the potential applications of the ORF3a protein channel, such as tunable nanovalves in smart drug delivery systems, nanofilters in the new generation of desalination systems, and promising applications in DNA sequencing.
Collapse
Affiliation(s)
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Abbas Karami
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
16
|
Nie Y, Mou L, Long Q, Deng D, Hu R, Cheng J, Wu J. SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ-NEMO interaction. Virus Res 2023; 328:199086. [PMID: 36894068 PMCID: PMC10009424 DOI: 10.1016/j.virusres.2023.199086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic caused by SARS-CoV-2 infection. Patients with severe COVID-19 exhibit robust induction of proinflammatory cytokines, which are closely associated with the development of acute respiratory distress syndrome. However, the underlying mechanisms of the NF-κB activation mediated by SARS-CoV-2 infection remain poorly understood. Here, we screened SARS-CoV-2 genes and found that ORF3a induces proinflammatory cytokines by activating the NF-κB pathway. Moreover, we found that ORF3a interacts with IKKβ and NEMO and enhances the interaction of IKKβ-NEMO, thereby positively regulating NF-κB activity. Together, these results suggest ORF3a may play pivotal roles in the pathogenesis of SARS-CoV-2 and provide novel insights into the interaction between host immune responses and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ying Nie
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; These authors contributed equally: Ying Nie, Lumin Mou
| | - Lumin Mou
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; These authors contributed equally: Ying Nie, Lumin Mou
| | - Qizhou Long
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Dongqing Deng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Rongying Hu
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Jinzhi Cheng
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jiahong Wu
- Department of Parasitology, Provincial Key Laboratory of Modern Pathogen Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
17
|
Gruner HN, Zhang Y, Shariati K, Yiv N, Hu Z, Wang Y, Hejtmancik JF, McManus MT, Tharp K, Ku G. SARS-CoV-2 ORF3A interacts with the Clic-like chloride channel-1 ( CLCC1) and triggers an unfolded protein response. PeerJ 2023; 11:e15077. [PMID: 37033725 PMCID: PMC10078464 DOI: 10.7717/peerj.15077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
Understanding the interactions between SARS-CoV-2 and host cell machinery may reveal new targets to treat COVID-19. We focused on an interaction between the SARS-CoV-2 ORF3A accessory protein and the CLIC-like chloride channel-1 (CLCC1). We found that ORF3A partially co-localized with CLCC1 and that ORF3A and CLCC1 could be co-immunoprecipitated. Since CLCC1 plays a role in the unfolded protein response (UPR), we hypothesized that ORF3A may also play a role in the UPR. Indeed, ORF3A expression triggered a transcriptional UPR that was similar to knockdown of CLCC1. ORF3A expression in 293T cells induced cell death and this was rescued by the chemical chaperone taurodeoxycholic acid (TUDCA). Cells with CLCC1 knockdown were partially protected from ORF3A-mediated cell death. CLCC1 knockdown upregulated several of the homeostatic UPR targets induced by ORF3A expression, including HSPA6 and spliced XBP1, and these were not further upregulated by ORF3A. Our data suggest a model where CLCC1 silencing triggers a homeostatic UPR that prevents cell death due to ORF3A expression.
Collapse
Affiliation(s)
- Hannah N. Gruner
- Diabetes Center, University of California, San Francisco, CA, United States of America
| | - Yaohuan Zhang
- Diabetes Center, University of California, San Francisco, CA, United States of America
- Metabolic Biology Graduate Program, University of California, Berkeley, CA, United States of America
| | - Kaavian Shariati
- Diabetes Center, University of California, San Francisco, CA, United States of America
| | - Nicholas Yiv
- Diabetes Center, University of California, San Francisco, CA, United States of America
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, United States of America
| | - Yuhao Wang
- Diabetes Center, University of California, San Francisco, CA, United States of America
| | | | - Michael T. McManus
- Diabetes Center, University of California, San Francisco, CA, United States of America
| | - Kevin Tharp
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, CA, United States of America
| | - Gregory Ku
- Diabetes Center, University of California, San Francisco, CA, United States of America
- Division of Endocrinology and Metabolism, University of California, San Francisco, CA, United States of America
| |
Collapse
|
18
|
Fam MS, Sedky CA, Turky NO, Breitinger HG, Breitinger U. Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites. Sci Rep 2023; 13:5328. [PMID: 37005439 PMCID: PMC10067842 DOI: 10.1038/s41598-023-31764-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs.
Collapse
Affiliation(s)
- Marina Sherif Fam
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Christine Adel Sedky
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Nancy Osama Turky
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Hans-Georg Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt
| | - Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, Main Entrance of Al Tagamoa Al Khames, New Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
19
|
Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. eLife 2023; 12:e84477. [PMID: 36695574 PMCID: PMC9910834 DOI: 10.7554/elife.84477] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.
Collapse
Affiliation(s)
| | | | - Ella Matamala
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | - Deny Cabezas-Bratesco
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | - Gi Young Lee
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | | | | | | | | | - Rui Yan
- Janelia Research CampusAshburnUnited States
| | - Zhiheng Yu
- Janelia Research CampusAshburnUnited States
| | - Dejian Ren
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Sebastian E Brauchi
- Janelia Research CampusAshburnUnited States
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | | |
Collapse
|
20
|
Xia B, Pan X, Luo RH, Shen X, Li S, Wang Y, Zuo X, Wu Y, Guo Y, Xiao G, Li Q, Long XY, He XY, Zheng HY, Lu Y, Pang W, Zheng YT, Li J, Zhang LK, Gao Z. Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2. Cell Discov 2023; 9:2. [PMID: 36609376 PMCID: PMC9821354 DOI: 10.1038/s41421-022-00510-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Antibody resistance dampens neutralizing antibody therapy and threatens current global Coronavirus (COVID-19) vaccine campaigns. In addition to the emergence of resistant SARS-CoV-2 variants, little is known about how SARS-CoV-2 evades antibodies. Here, we report a novel mechanism of extracellular vesicle (EV)-mediated cell-to-cell transmission of SARS-CoV-2, which facilitates SARS-CoV-2 to escape from neutralizing antibodies. These EVs, initially observed in SARS-CoV-2 envelope protein-expressing cells, are secreted by various SARS-CoV-2-infected cells, including Vero E6, Calu-3, and HPAEpiC cells, undergoing infection-induced pyroptosis. Various SARS-CoV-2-infected cells produce similar EVs characterized by extra-large sizes (1.6-9.5 μm in diameter, average diameter > 4.2 μm) much larger than previously reported virus-generated vesicles. Transmission electron microscopy analysis and plaque assay reveal that these SARS-CoV-2-induced EVs contain large amounts of live virus particles. In particular, the vesicle-cloaked SARS-CoV-2 virus is resistant to neutralizing antibodies and able to reinfect naïve cells independent of the reported receptors and cofactors. Consistently, the constructed 3D images show that intact EVs could be taken up by recipient cells directly, supporting vesicle-mediated cell-to-cell transmission of SARS-CoV-2. Our findings reveal a novel mechanism of receptor-independent SARS-CoV-2 infection via cell-to-cell transmission, provide new insights into antibody resistance of SARS-CoV-2 and suggest potential targets for future antiviral therapeutics.
Collapse
Affiliation(s)
- Bingqing Xia
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Pan
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Rong-Hua Luo
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xurui Shen
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Shuangqu Li
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Zuo
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wu
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Yingqi Guo
- grid.9227.e0000000119573309Public Technology Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Gengfu Xiao
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Qiguang Li
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Yan Long
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xiao-Yan He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Hong-Yi Zheng
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Ying Lu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wei Pang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Yong-Tang Zheng
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Jia Li
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Zhongshan Institute for Drug Research, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, Guangdong China
| | - Lei-Ke Zhang
- grid.9227.e0000000119573309State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei China
| | - Zhaobing Gao
- grid.9227.e0000000119573309Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Zhongshan Institute for Drug Research, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, Guangdong China ,grid.8547.e0000 0001 0125 2443School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Hurtado-Tamayo J, Requena-Platek R, Enjuanes L, Bello-Perez M, Sola I. Contribution to pathogenesis of accessory proteins of deadly human coronaviruses. Front Cell Infect Microbiol 2023; 13:1166839. [PMID: 37197199 PMCID: PMC10183600 DOI: 10.3389/fcimb.2023.1166839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped and positive-stranded RNA viruses with a large genome (∼ 30kb). CoVs include essential genes, such as the replicase and four genes coding for structural proteins (S, M, N and E), and genes encoding accessory proteins, which are variable in number, sequence and function among different CoVs. Accessory proteins are non-essential for virus replication, but are frequently involved in virus-host interactions associated with virulence. The scientific literature on CoV accessory proteins includes information analyzing the effect of deleting or mutating accessory genes in the context of viral infection, which requires the engineering of CoV genomes using reverse genetics systems. However, a considerable number of publications analyze gene function by overexpressing the protein in the absence of other viral proteins. This ectopic expression provides relevant information, although does not acknowledge the complex interplay of proteins during virus infection. A critical review of the literature may be helpful to interpret apparent discrepancies in the conclusions obtained by different experimental approaches. This review summarizes the current knowledge on human CoV accessory proteins, with an emphasis on their contribution to virus-host interactions and pathogenesis. This knowledge may help the search for antiviral drugs and vaccine development, still needed for some highly pathogenic human CoVs.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Sola
- *Correspondence: Melissa Bello-Perez, ; Isabel Sola,
| |
Collapse
|
22
|
Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines 2022; 10:3113. [PMID: 36551869 PMCID: PMC9775339 DOI: 10.3390/biomedicines10123113] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Many people infected with the SARS-CoV-2 suffer long-term symptoms, such as "brain fog", fatigue and clotting problems. Explanations for "long COVID" include immune imbalance, incomplete viral clearance and potentially, mitochondrial dysfunction. As conditions with sub-optimal mitochondrial function are associated with initial severity of the disease, their prior health could be key in resistance to long COVID and recovery. The SARs virus redirects host metabolism towards replication; in response, the host can metabolically react to control the virus. Resolution is normally achieved after viral clearance as the initial stress activates a hormetic negative feedback mechanism. It is therefore possible that, in some individuals with prior sub-optimal mitochondrial function, the virus can "tip" the host into a chronic inflammatory cycle. This might explain the main symptoms, including platelet dysfunction. Long COVID could thus be described as a virally induced chronic and self-perpetuating metabolically imbalanced non-resolving state characterised by mitochondrial dysfunction, where reactive oxygen species continually drive inflammation and a shift towards glycolysis. This would suggest that a sufferer's metabolism needs to be "tipped" back using a stimulus, such as physical activity, calorie restriction, or chemical compounds that mimic these by enhancing mitochondrial function, perhaps in combination with inhibitors that quell the inflammatory response.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Geoffrey W. Guy
- The Guy Foundation, Chedington Court, Beaminster, Dorset DT8 3HY, UK
| | | | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
23
|
Yang S, Tian M, Dai Y, Feng S, Wang Y, Chhangani D, Ou T, Li W, Yang Z, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a brain-muscle signaling axis that regulates muscle performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2020.12.20.423533. [PMID: 33398283 PMCID: PMC7781322 DOI: 10.1101/2020.12.20.423533] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show a number of non-neural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood, so we developed three models to investigate the impact of neuroinflammation on muscle performance. We found that bacterial infection, COVID-like viral infection, and expression of a neurotoxic protein associated with Alzheimer' s disease promoted the accumulation of reactive oxygen species (ROS) in the brain. Excessive ROS induces the expression of the cytokine Unpaired 3 (Upd3) in insects, or its orthologue IL-6 in mammals, and CNS-derived Upd3/IL-6 activates the JAK/Stat pathway in skeletal muscle. In response to JAK/Stat signaling, mitochondrial function is impaired and muscle performance is reduced. Our work uncovers a brain-muscle signaling axis in which infections and chronic diseases induce cytokine-dependent changes in muscle performance, suggesting IL-6 could be a therapeutic target to treat muscle weakness caused by neuroinflammation.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Shengyong Feng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Tongji Medical College of Huazhong University of Science and Technology, Department of Forensic Medicine, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Ze Yang
- The Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E. Rincon-Limas
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R. China
| | - Wanbo Tai
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Lead corresponding author
| |
Collapse
|
24
|
Elmasri Z, Negi V, Kuhn RJ, Jose J. Requirement of a functional ion channel for Sindbis virus glycoprotein transport, CPV-II formation, and efficient virus budding. PLoS Pathog 2022; 18:e1010892. [PMID: 36191050 PMCID: PMC9560593 DOI: 10.1371/journal.ppat.1010892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/13/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Many viruses encode ion channel proteins that oligomerize to form hydrophilic pores in membranes of virus-infected cells and the viral membrane in some enveloped viruses. Alphavirus 6K, human immunodeficiency virus type 1 Vpu (HIV-Vpu), influenza A virus M2 (IAV-M2), and hepatitis C virus P7 (HCV-P7) are transmembrane ion channel proteins that play essential roles in virus assembly, budding, and entry. While the oligomeric structures and mechanisms of ion channel activity are well-established for M2 and P7, these remain unknown for 6K. Here we investigated the functional role of the ion channel activity of 6K in alphavirus assembly by utilizing a series of Sindbis virus (SINV) ion channel chimeras expressing the ion channel helix from Vpu or M2 or substituting the entire 6K protein with full-length P7, in cis. We demonstrate that the Vpu helix efficiently complements 6K, whereas M2 and P7 are less efficient. Our results indicate that while SINV is primarily insensitive to the M2 ion channel inhibitor amantadine, the Vpu inhibitor 5-N, N-Hexamethylene amiloride (HMA), significantly reduces SINV release, suggesting that the ion channel activity of 6K similar to Vpu, promotes virus budding. Using live-cell imaging of SINV with a miniSOG-tagged 6K and mCherry-tagged E2, we further demonstrate that 6K and E2 colocalize with the Golgi apparatus in the secretory pathway. To contextualize the localization of 6K in the Golgi, we analyzed cells infected with SINV and SINV-ion channel chimeras using transmission electron microscopy. Our results provide evidence for the first time for the functional role of 6K in type II cytopathic vacuoles (CPV-II) formation. We demonstrate that in the absence of 6K, CPV-II, which originates from the Golgi apparatus, is not detected in infected cells, with a concomitant reduction in the glycoprotein transport to the plasma membrane. Substituting a functional ion channel, M2 or Vpu localizing to Golgi, restores CPV-II production, whereas P7, retained in the ER, is inadequate to induce CPV-II formation. Altogether our results indicate that ion channel activity of 6K is required for the formation of CPV-II from the Golgi apparatus, promoting glycoprotein spike transport to the plasma membrane and efficient virus budding.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Vashi Negi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Markey Center for Structural Biology and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
25
|
Delshad M, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Host genetic diversity and genetic variations of SARS-CoV-2 in COVID-19 pathogenesis and the effectiveness of vaccination. Int Immunopharmacol 2022; 111:109128. [PMID: 35963158 PMCID: PMC9359488 DOI: 10.1016/j.intimp.2022.109128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the outbreak of coronavirus disease 2019 (COVID-19), has shown a vast range of clinical manifestations from asymptomatic to life-threatening symptoms. To figure out the cause of this heterogeneity, studies demonstrated the trace of genetic diversities whether in the hosts or the virus itself. With this regard, this review provides a comprehensive overview of how host genetic such as those related to the entry of the virus, the immune-related genes, gender-related genes, disease-related genes, and also host epigenetic could influence the severity of COVID-19. Besides, the mutations in the genome of SARS-CoV-2 __leading to emerging of new variants__ per se affect the affinity of the virus to the host cells and enhance the immune escape capacity. The current review discusses these variants and also the latest data about vaccination effectiveness facing the most important variants.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Lee SJ, Kim YJ, Ahn DG. Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. J Microbiol Biotechnol 2022; 32:1073-1085. [PMID: 36039385 PMCID: PMC9628960 DOI: 10.4014/jmb.2206.06064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARSCoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
27
|
Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.02.506428. [PMID: 36263072 PMCID: PMC9580380 DOI: 10.1101/2022.09.02.506428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as a viroporin. Here we show that neither SARS-CoV-2 nor SARS-CoV-1 form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a basic aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.
Collapse
|
28
|
Zhang J, Li P, Lu R, Ouyang S, Chang MX. Structural and functional analysis of the small GTPase ARF1 reveals a pivotal role of its GTP-binding domain in controlling of the generation of viral inclusion bodies and replication of grass carp reovirus. Front Immunol 2022; 13:956587. [PMID: 36091067 PMCID: PMC9459132 DOI: 10.3389/fimmu.2022.956587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Grass carp reovirus (GCRV) is the most pathogenic double-stranded (ds) RNA virus among the isolated aquareoviruses. The molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection are poorly understood. Here, we discovered that the grass carp ADP ribosylation factor 1 (gcARF1) was required for GCRV replication since the knockdown of gcARF1 by siRNA or inhibiting its GTPase activity by treatment with brefeldin A (BFA) significantly impaired the yield of infectious viral progeny. GCRV infection recruited gcARF1 into viral inclusion bodies (VIBs) by its nonstructural proteins NS80 and NS38. The small_GTP domain of gcARF1 was confirmed to be crucial for promoting GCRV replication and infection, and the number of VIBs reduced significantly by the inhibition of gcARF1 GTPase activity. The analysis of gcARF1-GDP complex crystal structure revealed that the 27AAGKTT32 motif and eight amino acid residues (A27, G29, K30, T31, T32, N126, D129 and A160), which were located mainly within the GTP-binding domain of gcARF1, were crucial for the binding of gcARF1 with GDP. Furthermore, the 27AAGKTT32 motif and the amino acid residue T31 of gcARF1 were indispensable for the function of gcARF1 in promoting GCRV replication and infection. Taken together, it is demonstrated that the GTPase activity of gcARF1 is required for efficient replication of GCRV and that host GTPase ARF1 is closely related with the generation of VIBs.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Riye Lu
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Songying Ouyang
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Ming Xian Chang, ; Songying Ouyang,
| |
Collapse
|
29
|
Rashid F, Xie Z, Suleman M, Shah A, Khan S, Luo S. Roles and functions of SARS-CoV-2 proteins in host immune evasion. Front Immunol 2022; 13:940756. [PMID: 36003396 PMCID: PMC9394213 DOI: 10.3389/fimmu.2022.940756] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host immune system through a variety of regulatory mechanisms. The genome of SARS-CoV-2 encodes 16 non-structural proteins (NSPs), four structural proteins, and nine accessory proteins that play indispensable roles to suppress the production and signaling of type I and III interferons (IFNs). In this review, we discussed the functions and the underlying mechanisms of different proteins of SARS-CoV-2 that evade the host immune system by suppressing the IFN-β production and TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of transcription (STAT)1 and STAT2 phosphorylation. We also described different viral proteins inhibiting the nuclear translocation of IRF3, nuclear factor-κB (NF-κB), and STATs. To date, the following proteins of SARS-CoV-2 including NSP1, NSP6, NSP8, NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b, ORF10, and Membrane (M) protein have been well studied. However, the detailed mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N) proteins are not well elucidated. Additionally, we also elaborated the perspectives of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- *Correspondence: Zhixun Xie,
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
| |
Collapse
|
30
|
Kakkanas A, Karamichali E, Koufogeorgou EI, Kotsakis SD, Georgopoulou U, Foka P. Targeting the YXXΦ Motifs of the SARS Coronaviruses 1 and 2 ORF3a Peptides by In Silico Analysis to Predict Novel Virus-Host Interactions. Biomolecules 2022; 12:1052. [PMID: 36008946 PMCID: PMC9405953 DOI: 10.3390/biom12081052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/08/2023] Open
Abstract
The emerging SARS-CoV and SARS-CoV-2 belong to the family of "common cold" RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for the accessory protein ORF3a, with unclear functions, possibly related to viral virulence and pathogenesis. The tyrosine-based YXXΦ motif (Φ: bulky hydrophobic residue-L/I/M/V/F) was originally discovered to mediate clathrin-dependent endocytosis of membrane-spanning proteins. Many viruses employ the YXXΦ motif to achieve efficient receptor-guided internalisation in host cells, maintain the structural integrity of their capsids and enhance viral replication. Importantly, this motif has been recently identified on the ORF3a proteins of SARS-CoV and SARS-CoV-2. Given that the ORF3a aa sequence is not fully conserved between the two SARS viruses, we aimed to map in silico structural differences and putative sequence-driven alterations of regulatory elements within and adjacently to the YXXΦ motifs that could predict variations in ORF3a functions. Using robust bioinformatics tools, we investigated the presence of relevant post-translational modifications and the YXXΦ motif involvement in protein-protein interactions. Our study suggests that the predicted YXXΦ-related features may confer specific-yet to be discovered-functions to ORF3a proteins, significant to the new virus and related to enhanced propagation, host immune regulation and virulence.
Collapse
Affiliation(s)
- Athanassios Kakkanas
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Eirini Karamichali
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Efthymia Ioanna Koufogeorgou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Stathis D. Kotsakis
- Laboratory of Bacteriology, Hellenic Pasteur Institute, 115-21 Athens, Greece;
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| | - Pelagia Foka
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115-21 Athens, Greece; (A.K.); (E.K.); (E.I.K.); (U.G.)
| |
Collapse
|
31
|
Liu Y, Zhang X, Liu J, Xia H, Zou J, Muruato AE, Periasamy S, Kurhade C, Plante JA, Bopp NE, Kalveram B, Bukreyev A, Ren P, Wang T, Menachery VD, Plante KS, Xie X, Weaver SC, Shi PY. A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions. Nat Commun 2022; 13:4337. [PMID: 35896528 PMCID: PMC9326133 DOI: 10.1038/s41467-022-31930-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcription regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 (∆3678). The ∆3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The ∆3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the ∆3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the ∆3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter ∆3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that ∆3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianying Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jessica A Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Nathen E Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Birte Kalveram
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander Bukreyev
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Ping Ren
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Zhu Z, Shi J, Li L, Wang J, Zhao Y, Ma H. Therapy Targets SARS-CoV-2 Infection-Induced Cell Death. Front Immunol 2022; 13:870216. [PMID: 35655782 PMCID: PMC9152132 DOI: 10.3389/fimmu.2022.870216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 has become a global health issue. The clinical presentation of COVID-19 is highly variable, ranging from asymptomatic and mild disease to severe. However, the mechanisms for the high mortality induced by SARS-CoV-2 infection are still not well understood. Recent studies have indicated that the cytokine storm might play an essential role in the disease progression in patients with COVID-19, which is characterized by the uncontrolled release of cytokines and chemokines leading to acute respiratory distress syndrome (ARDS), multi-organ failure, and even death. Cell death, especially, inflammatory cell death, might be the initiation of a cytokine storm caused by SARS-CoV-2 infection. This review summarizes the forms of cell death caused by SARS-CoV-2 in vivo or in vitro and elaborates on the dedication of apoptosis, necroptosis, NETosis, pyroptosis of syncytia, and even SARS-CoV-2 E proteins forming channel induced cell death, providing insights into targets on the cell death pathway for the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhoujie Zhu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Jinling Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Huabin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
33
|
Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol 2022; 145:106185. [PMID: 35219876 PMCID: PMC8868010 DOI: 10.1016/j.biocel.2022.106185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Viroporins are indispensable for viral replication. As intracellular ion channels they disturb pH gradients of organelles and allow Ca2+ flux across ER membranes. Viroporins interact with numerous intracellular proteins and pathways and can trigger inflammatory responses. Thus, they are relevant targets in the search for antiviral drugs. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underlies the world-wide pandemic of COVID-19, where an effective therapy is still lacking despite impressive progress in the development of vaccines and vaccination campaigns. Among the 29 proteins of SARS-CoV-2, the E- and ORF3a proteins have been identified as viroporins that contribute to the massive release of inflammatory cytokines observed in COVID-19. Here, we describe structure and function of viroporins and their role in inflammasome activation and cellular processes during the virus replication cycle. Techniques to study viroporin function are presented, with a focus on cellular and electrophysiological assays. Contributions of SARS-CoV-2 viroporins to the viral life cycle are discussed with respect to their structure, channel function, binding partners, and their role in viral infection and virus replication. Viroporin sequences of new variants of concern (α–ο) of SARS-CoV-2 are briefly reviewed as they harbour changes in E and 3a proteins that may affect their function.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute for Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
34
|
Zhang J, Ejikemeuwa A, Gerzanich V, Nasr M, Tang Q, Simard JM, Zhao RY. Understanding the Role of SARS-CoV-2 ORF3a in Viral Pathogenesis and COVID-19. Front Microbiol 2022; 13:854567. [PMID: 35356515 PMCID: PMC8959714 DOI: 10.3389/fmicb.2022.854567] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has shocked the world due to its persistence, COVID-19-related morbidity and mortality, and the high mutability of the virus. One of the major concerns is the emergence of new viral variants that may increase viral transmission and disease severity. In addition to mutations of spike protein, mutations of viral proteins that affect virulence, such as ORF3a, also must be considered. The purpose of this article is to review the current literature on ORF3a, to summarize the molecular actions of SARS-CoV-2 ORF3a, and its role in viral pathogenesis and COVID-19. ORF3a is a polymorphic, multifunctional viral protein that is specific to SARS-CoV/SARS-CoV-2. It was acquired from β-CoV lineage and likely originated from bats through viral evolution. SARS-CoV-2 ORF3a is a viroporin that interferes with ion channel activities in host plasma and endomembranes. It is likely a virion-associated protein that exerts its effect on the viral life cycle during viral entry through endocytosis, endomembrane-associated viral transcription and replication, and viral release through exocytosis. ORF3a induces cellular innate and pro-inflammatory immune responses that can trigger a cytokine storm, especially under hypoxic conditions, by activating NLRP3 inflammasomes, HMGB1, and HIF-1α to promote the production of pro-inflammatory cytokines and chemokines. ORF3a induces cell death through apoptosis, necrosis, and pyroptosis, which leads to tissue damage that affects the severity of COVID-19. ORF3a continues to evolve along with spike and other viral proteins to adapt in the human cellular environment. How the emerging ORF3a mutations alter the function of SARS-CoV-2 ORF3a and its role in viral pathogenesis and COVID-19 is largely unknown. This review provides an in-depth analysis of ORF3a protein's structure, origin, evolution, and mutant variants, and how these characteristics affect its functional role in viral pathogenesis and COVID-19.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, United States
| | - Amara Ejikemeuwa
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Volodymyr Gerzanich
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, NIH, Bethesda, MD, United States
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, United States
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
35
|
Liu Y, Zhang X, Liu J, Xia H, Zou J, Muruato AE, Periasamy S, Plante JA, Bopp NE, Kurhade C, Bukreyev A, Ren P, Wang T, Menachery VD, Plante KS, Xie X, Weaver SC, Shi PY. A live-attenuated SARS-CoV-2 vaccine candidate with accessory protein deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.14.480460. [PMID: 35194609 PMCID: PMC8863145 DOI: 10.1101/2022.02.14.480460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcriptional regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 (Δ3678). The Δ3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The Δ3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the Δ3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the Δ3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter Δ3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that Δ3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
| | - Jianying Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
| | - Antonio E. Muruato
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Nathen E. Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chaitanya Kurhade
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
| | - Alexander Bukreyev
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Ping Ren
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology,University of Texas Medical Branch, Galveston TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
36
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
37
|
Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, Marconi R, Paladino D, Raoss A, Riedmiller I, Ur Rehman H, Santini A, Succetti V, Volpini L. SARS-CoV-2 and the Host Cell: A Tale of Interactions. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.815388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of a virus to spread between individuals, its replication capacity and the clinical course of the infection are macroscopic consequences of a multifaceted molecular interaction of viral components with the host cell. The heavy impact of COVID-19 on the world population, economics and sanitary systems calls for therapeutic and prophylactic solutions that require a deep characterization of the interactions occurring between virus and host cells. Unveiling how SARS-CoV-2 engages with host factors throughout its life cycle is therefore fundamental to understand the pathogenic mechanisms underlying the viral infection and to design antiviral therapies and prophylactic strategies. Two years into the SARS-CoV-2 pandemic, this review provides an overview of the interplay between SARS-CoV-2 and the host cell, with focus on the machinery and compartments pivotal for virus replication and the antiviral cellular response. Starting with the interaction with the cell surface, following the virus replicative cycle through the characterization of the entry pathways, the survival and replication in the cytoplasm, to the mechanisms of egress from the infected cell, this review unravels the complex network of interactions between SARS-CoV-2 and the host cell, highlighting the knowledge that has the potential to set the basis for the development of innovative antiviral strategies.
Collapse
|
38
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
39
|
Farahani M, Niknam Z, Mohammadi Amirabad L, Amiri-Dashatan N, Koushki M, Nemati M, Danesh Pouya F, Rezaei-Tavirani M, Rasmi Y, Tayebi L. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother 2022; 145:112420. [PMID: 34801852 PMCID: PMC8585639 DOI: 10.1016/j.biopha.2021.112420] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/08/2023] Open
Abstract
Deciphering the molecular downstream consequences of severe acute respiratory syndrome coronavirus (SARS-CoV)- 2 infection is important for a greater understanding of the disease and treatment planning. Furthermore, greater understanding of the underlying mechanisms of diagnostic and therapeutic strategies can help in the development of vaccines and drugs against COVID-19. At present, the molecular mechanisms of SARS-CoV-2 in the host cells are not sufficiently comprehended. Some of the mechanisms are proposed considering the existing similarities between SARS-CoV-2 and the other members of the β-CoVs, and others are explained based on studies advanced in the structure and function of SARS-CoV-2. In this review, we endeavored to map the possible mechanisms of the host response following SARS-CoV-2 infection and surveyed current research conducted by in vitro, in vivo and human observations, as well as existing suggestions. We addressed the specific signaling events that can cause cytokine storm and demonstrated three forms of cell death signaling following virus infection, including apoptosis, pyroptosis, and necroptosis. Given the elicited signaling pathways, we introduced possible pathway-based therapeutic targets; ADAM17 was especially highlighted as one of the most important elements of several signaling pathways involved in the immunopathogenesis of COVID-19. We also provided the possible drug candidates against these targets. Moreover, the cytokine-cytokine receptor interaction pathway was found as one of the important cross-talk pathways through a pathway-pathway interaction analysis for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Amiri-Dashatan
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
40
|
Hirschenberger M, Hayn M, Laliberté A, Koepke L, Kirchhoff F, Sparrer KMJ. Luciferase reporter assays to monitor interferon signaling modulation by SARS-CoV-2 proteins. STAR Protoc 2021; 2:100781. [PMID: 34405154 PMCID: PMC8361205 DOI: 10.1016/j.xpro.2021.100781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present a protocol for analyzing the impact of SARS-CoV-2 proteins in interferon signaling using luciferase reporter assays. Here, the induction of defined promoters can be quantitatively assessed with high sensitivity and broad linear range. The results are similar to those obtained using qPCR to measure endogenous mRNA induction. The assay requires stringent normalization and confirmation of the results in more physiological settings. The protocol is adaptable for other viruses and other innate immune stimuli. For complete details on the use and execution of this protocol, please refer to Hayn et al. (2021).
Collapse
Affiliation(s)
- Maximilian Hirschenberger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Manuel Hayn
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Alexandre Laliberté
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Baden-Württemberg, Germany
| | | |
Collapse
|
41
|
Chen D, Zheng Q, Sun L, Ji M, Li Y, Deng H, Zhang H. ORF3a of SARS-CoV-2 promotes lysosomal exocytosis-mediated viral egress. Dev Cell 2021; 56:3250-3263.e5. [PMID: 34706264 PMCID: PMC8502680 DOI: 10.1016/j.devcel.2021.10.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Viral entry and egress are important determinants of virus infectivity and pathogenicity. β-coronaviruses, including the COVID-19 virus SARS-CoV-2 and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. Here, we show that SARS-CoV-2 ORF3a, but not SARS-CoV ORF3a, promotes lysosomal exocytosis. SARS-CoV-2 ORF3a facilitates lysosomal targeting of the BORC-ARL8b complex, which mediates trafficking of lysosomes to the vicinity of the plasma membrane, and exocytosis-related SNARE proteins. The Ca2+ channel TRPML3 is required for SARS-CoV-2 ORF3a-mediated lysosomal exocytosis. Expression of SARS-CoV-2 ORF3a greatly elevates extracellular viral release in cells infected with the coronavirus MHV-A59, which itself lacks ORF3a. In SARS-CoV-2 ORF3a, Ser171 and Trp193 are critical for promoting lysosomal exocytosis and blocking autophagy. When these residues are introduced into SARS-CoV ORF3a, it acquires the ability to promote lysosomal exocytosis and inhibit autophagy. Our results reveal a mechanism by which SARS-CoV-2 interacts with host factors to promote its extracellular egress.
Collapse
Affiliation(s)
- Di Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Qiaoxia Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Long Sun
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingming Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
42
|
Klemm C, Wood H, Thomas GH, Ólafsson G, Torres MT, Thorpe PH. Forced association of SARS-CoV-2 proteins with the yeast proteome perturb vesicle trafficking. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:280-296. [PMID: 34909432 PMCID: PMC8642885 DOI: 10.15698/mic2021.12.766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly infectious coronavirus disease COVID-19. Extensive research has been performed in recent months to better understand how SARS-CoV-2 infects and manipulates its host to identify potential drug targets and support patient recovery from COVID-19. However, the function of many SARS-CoV-2 proteins remains uncharacterised. Here we used the Synthetic Physical Interactions (SPI) method to recruit SARS-CoV-2 proteins to most of the budding yeast proteome to identify conserved pathways which are affected by SARS-CoV-2 proteins. The set of yeast proteins that result in growth defects when associated with the viral proteins have homologous functions that overlap those identified in studies performed in mammalian cells. Specifically, we were able to show that recruiting the SARS-CoV-2 NSP1 protein to HOPS, a vesicle-docking complex, is sufficient to perturb membrane trafficking in yeast consistent with the hijacking of the endoplasmic-reticulum-Golgi intermediate compartment trafficking pathway during viral infection of mammalian cells. These data demonstrate that the yeast SPI method is a rapid way to identify potential functions of ectopic viral proteins.
Collapse
Affiliation(s)
- Cinzia Klemm
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS, UK
| | - Henry Wood
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS, UK
| | - Grace Heredge Thomas
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS, UK
| | - Guðjón Ólafsson
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS, UK
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Mara Teixeira Torres
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS, UK
| | - Peter H. Thorpe
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS, UK
| |
Collapse
|
43
|
Xu D, Biswal M, Neal A, Hai R. Review Devil's tools: SARS-CoV-2 antagonists against innate immunity. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100013. [PMID: 34812428 PMCID: PMC8598260 DOI: 10.1016/j.crviro.2021.100013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 04/22/2023]
Abstract
The unprecedented Coronavirus pandemic of 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Like other coronaviruses, to establish its infection, SARS-CoV-2 is required to overcome the innate interferon (IFN) response, which is the first line of host defense. SARS-CoV-2 has also developed complex antagonism approaches involving almost all its encoding viral proteins. Here, we summarize our current understanding of these different viral factors and their roles in suppressing IFN responses. Some of them are conserved IFN evasion strategies used by SARS-CoV; others are novel countermeasures only employed by SARS-CoV-2. The filling of gaps in understanding these underlying mechanisms will provide rationale guidance for applying IFN treatment against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Duo Xu
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Arrmund Neal
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
44
|
Gargan S, Stevenson NJ. Unravelling the Immunomodulatory Effects of Viral Ion Channels, towards the Treatment of Disease. Viruses 2021; 13:2165. [PMID: 34834972 PMCID: PMC8618147 DOI: 10.3390/v13112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has highlighted the need for the research community to develop a better understanding of viruses, in particular their modes of infection and replicative lifecycles, to aid in the development of novel vaccines and much needed anti-viral therapeutics. Several viruses express proteins capable of forming pores in host cellular membranes, termed "Viroporins". They are a family of small hydrophobic proteins, with at least one amphipathic domain, which characteristically form oligomeric structures with central hydrophilic domains. Consequently, they can facilitate the transport of ions through the hydrophilic core. Viroporins localise to host membranes such as the endoplasmic reticulum and regulate ion homeostasis creating a favourable environment for viral infection. Viroporins also contribute to viral immune evasion via several mechanisms. Given that viroporins are often essential for virion assembly and egress, and as their structural features tend to be evolutionarily conserved, they are attractive targets for anti-viral therapeutics. This review discusses the current knowledge of several viroporins, namely Influenza A virus (IAV) M2, Human Immunodeficiency Virus (HIV)-1 Viral protein U (Vpu), Hepatitis C Virus (HCV) p7, Human Papillomavirus (HPV)-16 E5, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Open Reading Frame (ORF)3a and Polyomavirus agnoprotein. We highlight the intricate but broad immunomodulatory effects of these viroporins and discuss the current antiviral therapies that target them; continually highlighting the need for future investigations to focus on novel therapeutics in the treatment of existing and future emergent viruses.
Collapse
Affiliation(s)
- Siobhan Gargan
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Nigel J. Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
- Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Manama 15503, Bahrain
| |
Collapse
|
45
|
Morais da Silva M, Lira de Lucena AS, Paiva Júnior SDSL, Florêncio De Carvalho VM, Santana de Oliveira PS, da Rosa MM, Barreto de Melo Rego MJ, Pitta MGDR, Pereira MC. Cell death mechanisms involved in cell injury caused by SARS-CoV-2. Rev Med Virol 2021; 32:e2292. [PMID: 34590761 PMCID: PMC8646768 DOI: 10.1002/rmv.2292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (Covid‐19) is an emerging novel respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) that rapidly spread worldwide. In addition to lung injury, Covid‐19 patients may develop extrapulmonary symptoms, including cardiac, liver, kidney, digestive tract, and neurological injuries. Angiotensin converting enzyme 2 is the major receptor for the entry of SARS‐CoV‐2 into host cells. The specific mechanisms that lead to cell death in different tissues during infection by SARS‐CoV‐2 remains unknown. Based on data of the previous human coronavirus SARS‐CoV together with information about SARS‐CoV‐2, this review provides a summary of the mechanisms involved in cell death, including apoptosis, autophagy, and necrosis, provoked by severe acute respiratory syndrome coronavirus.
Collapse
Affiliation(s)
- Maríllya Morais da Silva
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| | - André Silva Lira de Lucena
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Michelle Melgarejo da Rosa
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| | | | | | - Michelly Cristiny Pereira
- Research Center for Therapeutic Innovation Suely Galdino, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
46
|
Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. J Virol 2021; 95:e0040221. [PMID: 34133899 PMCID: PMC8354228 DOI: 10.1128/jvi.00402-21] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University’s COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, −6, −7a, −7b, and −8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.
Collapse
|
47
|
Abstract
CoVID-19 is a multi-symptomatic disease which has made a global impact due to its ability to spread rapidly, and its relatively high mortality rate. Beyond the heroic efforts to develop vaccines, which we do not discuss herein, the response of scientists and clinicians to this complex problem has reflected the need to detect CoVID-19 rapidly, to diagnose patients likely to show adverse symptoms, and to treat severe and critical CoVID-19. Here we aim to encapsulate these varied and sometimes conflicting approaches and the resulting data in terms of chemistry and biology. In the process we highlight emerging concepts, and potential future applications that may arise out of this immense effort.
Collapse
Affiliation(s)
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
48
|
Elmasri Z, Nasal BL, Jose J. Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding. Pathogens 2021; 10:984. [PMID: 34451448 PMCID: PMC8399458 DOI: 10.3390/pathogens10080984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-borne viruses mainly transmitted by hematophagous insects that cause moderate to fatal disease in humans and other animals. Currently, there are no approved vaccines or antivirals to mitigate alphavirus infections. In this review, we summarize the current knowledge of alphavirus-induced structures and their functions in infected cells. Throughout their lifecycle, alphaviruses induce several structural modifications, including replication spherules, type I and type II cytopathic vacuoles, and filopodial extensions. Type I cytopathic vacuoles are replication-induced structures containing replication spherules that are sites of RNA replication on the endosomal and lysosomal limiting membrane. Type II cytopathic vacuoles are assembly induced structures that originate from the Golgi apparatus. Filopodial extensions are induced at the plasma membrane and are involved in budding and cell-to-cell transport of virions. This review provides an overview of the viral and host factors involved in the biogenesis and function of these virus-induced structures. Understanding virus-host interactions in infected cells will lead to the identification of new targets for antiviral discovery.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Benjamin L. Nasal
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
49
|
Chazal N. Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes? Front Microbiol 2021; 12:682603. [PMID: 34335504 PMCID: PMC8317507 DOI: 10.3389/fmicb.2021.682603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that emerged in late 2019, is the etiologic agent of the current "coronavirus disease 2019" (COVID-19) pandemic, which has serious health implications and a significant global economic impact. Of the seven human coronaviruses, all of which have a zoonotic origin, the pandemic SARS-CoV-2, is the third emerging coronavirus, in the 21st century, highly pathogenic to the human population. Previous human coronavirus outbreaks (SARS-CoV-1 and MERS-CoV) have already provided several valuable information on some of the common molecular and cellular mechanisms of coronavirus infections as well as their origin. However, to meet the new challenge caused by the SARS-CoV-2, a detailed understanding of the biological specificities, as well as knowledge of the origin are crucial to provide information on viral pathogenicity, transmission and epidemiology, and to enable strategies for therapeutic interventions and drug discovery. Therefore, in this review, we summarize the current advances in SARS-CoV-2 knowledges, in light of pre-existing information of other recently emerging coronaviruses. We depict the specificity of the immune response of wild bats and discuss current knowledge of the genetic diversity of bat-hosted coronaviruses that promotes viral genome expansion (accessory gene acquisition). In addition, we describe the basic virology of coronaviruses with a special focus SARS-CoV-2. Finally, we highlight, in detail, the current knowledge of genes and accessory proteins which we postulate to be the major keys to promote virus adaptation to specific hosts (bat and human), to contribute to the suppression of immune responses, as well as to pathogenicity.
Collapse
Affiliation(s)
- Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
50
|
Redondo N, Zaldívar-López S, Garrido JJ, Montoya M. SARS-CoV-2 Accessory Proteins in Viral Pathogenesis: Knowns and Unknowns. Front Immunol 2021; 12:708264. [PMID: 34305949 PMCID: PMC8293742 DOI: 10.3389/fimmu.2021.708264] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
There are still many unanswered questions concerning viral SARS-CoV-2 pathogenesis in COVID-19. Accessory proteins in SARS-CoV-2 consist of eleven viral proteins whose roles during infection are still not completely understood. Here, a review on the current knowledge of SARS-CoV-2 accessory proteins is summarized updating new research that could be critical in understanding SARS-CoV-2 interaction with the host. Some accessory proteins such as ORF3b, ORF6, ORF7a and ORF8 have been shown to be important IFN-I antagonists inducing an impairment in the host immune response. In addition, ORF3a is involved in apoptosis whereas others like ORF9b and ORF9c interact with cellular organelles leading to suppression of the antiviral response in infected cells. However, possible roles of ORF7b and ORF10 are still awaiting to be described. Also, ORF3d has been reassigned. Relevant information on the knowns and the unknowns in these proteins is analyzed, which could be crucial for further understanding of SARS-CoV-2 pathogenesis and to design strategies counteracting their actions evading immune responses in COVID-19.
Collapse
Affiliation(s)
- Natalia Redondo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Sara Zaldívar-López
- Animal Breeding and Genomics Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
- Immunogenomics and Molecular Pathogenesis GA14 Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Juan J. Garrido
- Animal Breeding and Genomics Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
- Immunogenomics and Molecular Pathogenesis GA14 Group, Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Maria Montoya
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|