1
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
2
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
3
|
Padron A, Dwivedi R, Chakraborty R, Prakash P, Kim K, Shi J, Ahn J, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Cyclophilin A Facilitates HIV-1 DNA Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599180. [PMID: 38948800 PMCID: PMC11212919 DOI: 10.1101/2024.06.15.599180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cyclophilin A (CypA) promotes HIV-1 infection by facilitating reverse transcription, nuclear entry and by countering the antiviral activity of TRIM5α. These multifunctional roles of CypA are driven by its binding to the viral capsid. Interestingly, recent studies suggest that the HIV-1 capsid lattice enters the nucleus of an infected cell and uncoats just before integration. Therefore, we tested whether CypA-capsid interaction regulates post-nuclear entry steps of infection, particularly integration. First, we challenged CypA-expressing (CypA +/+ ) and CypA-depleted (CypA -/- ) cells with HIV-1 particles and quantified the resulting levels of provirus. Surprisingly, CypA-depletion significantly reduced integration, an effect that was independent of CypA's effect on reverse transcription, nuclear entry, and the presence or absence of TRIM5α. Additionally, cyclosporin A, an inhibitor that disrupts CypA-capsid binding, inhibited HIV-1 integration in CypA +/+ cells but not in CypA -/- cells. Accordingly, HIV-1 capsid mutants (G89V and P90A) deficient in CypA binding were also blocked at integration in CypA +/+ cells but not in CypA -/- cells. Then, to understand the mechanism, we assessed the integration activity of HIV-1 preintegration complexes (PICs) extracted from infected cells. The PICs from CypA -/- cells had lower activity in vitro compared to those from CypA +/+ cells. PICs from cells depleted for CypA and TRIM5α also had lower activity, suggesting that CypA's effect on PIC activity is independent of TRIM5α. Finally, addition of CypA protein significantly stimulated the integration activity of PICs extracted from both CypA +/+ and CypA -/- cells. Collectively, these results suggest that CypA promotes HIV-1 integration, a previously unknown role of this host factor. Importance HIV-1 capsid interaction with host cellular factors is essential for establishing a productive infection. However, the molecular details of such virus-host interactions are not fully understood. Cyclophilin A (CypA) is the first host protein identified to specifically bind to the HIV-1 capsid. Now it is established that CypA promotes reverse transcription and nuclear entry steps of HIV-1 infection. In this report, we show that CypA promotes HIV-1 integration by binding to the viral capsid. Specifically, our results demonstrate that CypA promotes HIV-1 integration by stimulating the activity of the viral preintegration complex and identifies a novel role of CypA during HIV-1 infection. This new knowledge is important because recent reports suggest that an operationally intact HIV-1 capsid enters the nucleus of an infected cell.
Collapse
|
4
|
Burdick RC, Morse M, Rouzina I, Williams MC, Hu WS, Pathak VK. HIV-1 uncoating requires long double-stranded reverse transcription products. SCIENCE ADVANCES 2024; 10:eadn7033. [PMID: 38657061 PMCID: PMC11042746 DOI: 10.1126/sciadv.adn7033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
HIV-1 cores, which contain the viral genome and replication machinery, must disassemble (uncoat) during viral replication. However, the viral and host factors that trigger uncoating remain unidentified. Recent studies show that infectious cores enter the nucleus and uncoat near the site of integration. Here, we show that efficient uncoating of nuclear cores requires synthesis of a double-stranded DNA (dsDNA) genome >3.5 kb and that the efficiency of uncoating correlates with genome size. Core disruption by capsid inhibitors releases viral DNA, some of which integrates. However, most of the viral DNA is degraded, indicating that the intact core safeguards viral DNA. Atomic force microscopy and core content estimation reveal that synthesis of full-length genomic dsDNA induces substantial internal strain on the core to promote uncoating. We conclude that HIV-1 cores protect viral DNA from degradation by host factors and that synthesis of long double-stranded reverse transcription products is required to trigger efficient HIV-1 uncoating.
Collapse
Affiliation(s)
- Ryan C. Burdick
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Michael Morse
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retroviral Research and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
5
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Gres AT, Kirby KA, McFadden WM, Du H, Liu D, Xu C, Bryer AJ, Perilla JR, Shi J, Aiken C, Fu X, Zhang P, Francis AC, Melikyan GB, Sarafianos SG. Multidisciplinary studies with mutated HIV-1 capsid proteins reveal structural mechanisms of lattice stabilization. Nat Commun 2023; 14:5614. [PMID: 37699872 PMCID: PMC10497533 DOI: 10.1038/s41467-023-41197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
HIV-1 capsid (CA) stability is important for viral replication. E45A and P38A mutations enhance and reduce core stability, thus impairing infectivity. Second-site mutations R132T and T216I rescue infectivity. Capsid lattice stability was studied by solving seven crystal structures (in native background), including P38A, P38A/T216I, E45A, E45A/R132T CA, using molecular dynamics simulations of lattices, cryo-electron microscopy of assemblies, time-resolved imaging of uncoating, biophysical and biochemical characterization of assembly and stability. We report pronounced and subtle, short- and long-range rearrangements: (1) A38 destabilized hexamers by loosening interactions between flanking CA protomers in P38A but not P38A/T216I structures. (2) Two E45A structures showed unexpected stabilizing CANTD-CANTD inter-hexamer interactions, variable R18-ring pore sizes, and flipped N-terminal β-hairpin. (3) Altered conformations of E45Aa α9-helices compared to WT, E45A/R132T, WTPF74, WTNup153, and WTCPSF6 decreased PF74, CPSF6, and Nup153 binding, and was reversed in E45A/R132T. (4) An environmentally sensitive electrostatic repulsion between E45 and D51 affected lattice stability, flexibility, ion and water permeabilities, electrostatics, and recognition of host factors.
Collapse
Affiliation(s)
- Anna T Gres
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Haijuan Du
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dandan Liu
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Alexander J Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
- Department of Physics & Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiong Shi
- Department of Pathology, Immunology & Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Immunology & Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, UK
- Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus, Didcot, UK
| | - Ashwanth C Francis
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory B Melikyan
- Children's Healthcare of Atlanta, Atlanta, GA, USA
- Division of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
7
|
Sowd GA, Shi J, Fulmer A, Aiken C. HIV-1 capsid stability enables inositol phosphate-independent infection of target cells and promotes integration into genes. PLoS Pathog 2023; 19:e1011423. [PMID: 37267431 PMCID: PMC10266667 DOI: 10.1371/journal.ppat.1011423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/14/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023] Open
Abstract
The mature HIV-1 capsid is stabilized by host and viral determinants. The capsid protein CA binds to the cellular metabolites inositol hexakisphosphate (IP6) and its precursor inositol (1, 3, 4, 5, 6) pentakisphosphate (IP5) to stabilize the mature capsid. In target cells, capsid destabilization by the antiviral compounds lenacapavir and PF74 reveals a HIV-1 infectivity defect due to IP5/IP6 (IP5/6) depletion. To test whether intrinsic HIV-1 capsid stability and/or host factor binding determines HIV-1 insensitivity to IP5/6 depletion, a panel of CA mutants was assayed for infection of IP5/6-depleted T cells and wildtype cells. Four CA mutants with unstable capsids exhibited dependence on host IP5/6 for infection and reverse transcription (RTN). Adaptation of one such mutant, Q219A, by spread in culture resulted in Vpu truncation and a capsid three-fold interface mutation, T200I. T200I increased intrinsic capsid stability as determined by in vitro uncoating of purified cores and partially reversed the IP5/6-dependence in target cells for each of the four CA mutants. T200I further rescued the changes to lenacapavir sensitivity associated with the parental mutation. The premature dissolution of the capsid caused by the IP5/6-dependent mutations imparted a unique defect in integration targeting that was rescued by T200I. Collectively, these results demonstrate that T200I restored other capsid functions after RTN for the panel of mutants. Thus, the hyperstable T200I mutation stabilized the instability defects imparted by the parental IP5/6-dependent CA mutation. The contribution of Vpu truncation to mutant adaptation was linked to BST-2 antagonization, suggesting that cell-to-cell transfer promoted replication of the mutants. We conclude that interactions at the three-fold interface are adaptable, key mediators of capsid stability in target cells and are able to antagonize even severe capsid instability to promote infection.
Collapse
Affiliation(s)
- Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ashley Fulmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434 10.1126/sciadv.add7434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 11/04/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434+10.1126/sciadv.add7434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2024]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 05/29/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
|
11
|
Tough Way In, Tough Way Out: The Complex Interplay of Host and Viral Factors in Nucleocytoplasmic Trafficking during HIV-1 Infection. Viruses 2022; 14:v14112503. [PMID: 36423112 PMCID: PMC9696704 DOI: 10.3390/v14112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a retrovirus that integrates its reverse-transcribed genome as proviral DNA into the host genome to establish a successful infection. The viral genome integration requires safeguarding the subviral complexes, reverse transcription complex (RTC) and preintegration complex (PIC), in the cytosol from degradation, presumably effectively secured by the capsid surrounding these complexes. An intact capsid, however, is a large structure, which raises concerns about its translocation from cytoplasm to nucleus crossing the nuclear membrane, guarded by complex nuclear pore structures, which do not allow non-specific transport of large molecules. In addition, the generation of new virions requires the export of incompletely processed viral RNA from the nucleus to the cytoplasm, an event conventionally not permitted through mammalian nuclear membranes. HIV-1 has evolved multiple mechanisms involving redundant host pathways by liaison with the cell's nucleocytoplasmic trafficking system, failure of which would lead to the collapse of the infection cycle. This review aims to assemble the current developments in temporal and spatial events governing nucleocytoplasmic transport of HIV-1 factors. Discoveries are anticipated to serve as the foundation for devising host-directed therapies involving selective abolishment of the critical interactomes between viral proteins and their host equivalents.
Collapse
|
12
|
Balasubramaniam M, Davids BO, Bryer A, Xu C, Thapa S, Shi J, Aiken C, Pandhare J, Perilla JR, Dash C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS NEXUS 2022; 1:pgac064. [PMID: 35719891 PMCID: PMC9198661 DOI: 10.1093/pnasnexus/pgac064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.
Collapse
Affiliation(s)
| | - Benem-Orom Davids
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Alex Bryer
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chaoyi Xu
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Santosh Thapa
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Juan R Perilla
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| |
Collapse
|
13
|
Rousso I, Deshpande A. Applications of Atomic Force Microscopy in HIV-1 Research. Viruses 2022; 14:v14030648. [PMID: 35337055 PMCID: PMC8955997 DOI: 10.3390/v14030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Obtaining an understanding of the mechanism underlying the interrelations between the structure and function of HIV-1 is of pivotal importance. In previous decades, this mechanism was addressed extensively in a variety of studies using conventional approaches. More recently, atomic force microscopy, which is a relatively new technique with unique capabilities, has been utilized to study HIV-1 biology. Atomic force microscopy can generate high-resolution images at the nanometer-scale and analyze the mechanical properties of individual HIV-1 virions, virus components (e.g., capsids), and infected live cells under near-physiological environments. This review describes the working principles and various imaging and analysis modes of atomic force microscopy, and elaborates on its distinctive contributions to HIV-1 research in areas such as mechanobiology and the physics of infection.
Collapse
|
14
|
Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Nuclear Import of HIV-1. Viruses 2021; 13:2242. [PMID: 34835048 PMCID: PMC8619967 DOI: 10.3390/v13112242] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial-temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.
Collapse
Affiliation(s)
| | | | | | | | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; (Q.S.); (C.W.); (C.F.); (T.N.T.)
| |
Collapse
|
15
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
16
|
Hadpech S, Moonmuang S, Chupradit K, Yasamut U, Tayapiwatana C. Updating on Roles of HIV Intrinsic Factors: A Review of Their Antiviral Mechanisms and Emerging Functions. Intervirology 2021; 65:67-79. [PMID: 34464956 DOI: 10.1159/000519241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Host restriction factors are cellular proteins that inhibit specific steps of the viral life cycle. Since the 1970s, several new factors have been identified, including human immunodeficiency virus-1 (HIV-1) replication restriction. Evidence accumulated in the last decade has substantially broadened our understanding of the molecular mechanisms utilized to abrogate the HIV-1 life cycle. SUMMARY In this review, we focus on the interaction between host restriction factors participating in the early phase of HIV-1 infection, particularly CA-targeting proteins. Host factors involved in the late phase of the replication cycle, such as viral assembly and egress factors, are also described. Additionally, current reports on well-known antiviral intrinsic factors, as well as other viral restriction factors with their emerging roles, are included. CONCLUSION A comprehensive understanding of the interactions between viruses and hosts is expected to provide insight into the design of novel HIV-1 therapeutic interventions.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Pharmacology and Biopharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, Thailand
| | - Sutpirat Moonmuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
17
|
Guedán A, Caroe ER, Barr GCR, Bishop KN. The Role of Capsid in HIV-1 Nuclear Entry. Viruses 2021; 13:1425. [PMID: 34452291 PMCID: PMC8402913 DOI: 10.3390/v13081425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.
Collapse
Affiliation(s)
| | | | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK; (A.G.); (E.R.C.); (G.C.R.B.)
| |
Collapse
|
18
|
Tavares LA, Januário YC, daSilva LLP. HIV-1 Hijacking of Host ATPases and GTPases That Control Protein Trafficking. Front Cell Dev Biol 2021; 9:622610. [PMID: 34307340 PMCID: PMC8295591 DOI: 10.3389/fcell.2021.622610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) modifies the host cell environment to ensure efficient and sustained viral replication. Key to these processes is the capacity of the virus to hijack ATPases, GTPases and the associated proteins that control intracellular protein trafficking. The functions of these energy-harnessing enzymes can be seized by HIV-1 to allow the intracellular transport of viral components within the host cell or to change the subcellular distribution of antiviral factors, leading to immune evasion. Here, we summarize how energy-related proteins deviate from their normal functions in host protein trafficking to aid the virus in different phases of its replicative cycle. Recent discoveries regarding the interplay among HIV-1 and host ATPases and GTPases may shed light on potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Lucas A Tavares
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yunan C Januário
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Tabasi M, Nombela I, Janssens J, Lahousse AP, Christ F, Debyser Z. Role of Transportin-SR2 in HIV-1 Nuclear Import. Viruses 2021; 13:829. [PMID: 34064404 PMCID: PMC8147801 DOI: 10.3390/v13050829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The HIV replication cycle depends on the interaction of viral proteins with proteins of the host. Unraveling host-pathogen interactions during the infection is of great importance for understanding the pathogenesis and the development of antiviral therapies. To date HIV uncoating and nuclear import are the most debated steps of the HIV-1 replication cycle. Despite numerous studies during past decades, there is still much controversy with respect to the identity and the role of viral and host factors involved in these processes. In this review, we provide a comprehensive overview on the role of transportin-SR2 as a host cell factor during active nuclear transport.
Collapse
Affiliation(s)
| | | | | | | | | | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium; (M.T.); (I.N.); (J.J.); (A.P.L.); (F.C.)
| |
Collapse
|
20
|
Toccafondi E, Lener D, Negroni M. HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Front Microbiol 2021; 12:652486. [PMID: 33868211 PMCID: PMC8046902 DOI: 10.3389/fmicb.2021.652486] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The first step of the intracellular phase of retroviral infection is the release of the viral capsid core in the cytoplasm. This structure contains the viral genetic material that will be reverse transcribed and integrated into the genome of infected cells. Up to recent times, the role of the capsid core was considered essentially to protect this genetic material during the earlier phases of this process. However, increasing evidence demonstrates that the permanence inside the cell of the capsid as an intact, or almost intact, structure is longer than thought. This suggests its involvement in more aspects of the infectious cycle than previously foreseen, particularly in the steps of viral genomic material translocation into the nucleus and in the phases preceding integration. During the trip across the infected cell, many host factors are brought to interact with the capsid, some possessing antiviral properties, others, serving as viral cofactors. All these interactions rely on the properties of the unique component of the capsid core, the capsid protein CA. Likely, the drawback of ensuring these multiple functions is the extreme genetic fragility that has been shown to characterize this protein. Here, we recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular in the light of the most recent findings.
Collapse
Affiliation(s)
| | - Daniela Lener
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Matteo Negroni
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Zhuang S, Torbett BE. Interactions of HIV-1 Capsid with Host Factors and Their Implications for Developing Novel Therapeutics. Viruses 2021; 13:417. [PMID: 33807824 PMCID: PMC8001122 DOI: 10.3390/v13030417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.
Collapse
Affiliation(s)
- Shentian Zhuang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
22
|
Lau D, Walsh JC, Dickson CF, Tuckwell A, Stear JH, Hunter DJB, Bhumkar A, Shah V, Turville SG, Sierecki E, Gambin Y, Böcking T, Jacques DA. Rapid HIV-1 Capsid Interaction Screening Using Fluorescence Fluctuation Spectroscopy. Anal Chem 2021; 93:3786-3793. [PMID: 33593049 DOI: 10.1021/acs.analchem.0c04250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew Tuckwell
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Jeffrey H Stear
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Dominic J B Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Vaibhav Shah
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Stuart G Turville
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
23
|
Dicker K, Järvelin AI, Garcia-Moreno M, Castello A. The importance of virion-incorporated cellular RNA-Binding Proteins in viral particle assembly and infectivity. Semin Cell Dev Biol 2021; 111:108-118. [PMID: 32921578 PMCID: PMC7482619 DOI: 10.1016/j.semcdb.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.
Collapse
Affiliation(s)
- Kate Dicker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
24
|
Structure, Function, and Interactions of the HIV-1 Capsid Protein. Life (Basel) 2021; 11:life11020100. [PMID: 33572761 PMCID: PMC7910843 DOI: 10.3390/life11020100] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.
Collapse
|
25
|
Cell Type-Dependent Escape of Capsid Inhibitors by Simian Immunodeficiency Virus SIVcpz. J Virol 2020; 94:JVI.01338-20. [PMID: 32907979 DOI: 10.1128/jvi.01338-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytes troglodytes (SIVcpzPtt). The related subspecies Pan troglodytes schweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.
Collapse
|
26
|
Abstract
The COVID-19 pandemic suggests that bat innate immune systems are insufficiently characterized relative to the medical importance of these animals. Retroviruses, e.g., HIV-1, can be severe pathogens when they cross species barriers, and bat restrictions corresponding to retroviruses are comparatively unstudied. Here, we compared the abilities of retroviruses from three genera (Lentivirus, Gammaretrovirus, and Spumavirus) to infect cells of the large fruit-eating bat P. alecto and other mammals. We identified a major, specific postentry restriction to primate lentiviruses. HIV-1 and SIVmac are potently blocked at early life cycle steps, but nonprimate lentiviruses and foamy retroviruses are entirely unrestricted. Despite acting postentry and in a CypA-dependent manner with features reminiscent of antiretroviral factors from other mammals, this restriction was not saturable with virus-like particles and was independent of P. alecto TRIM5, TRIM21, TRIM22, TRIM34, and MX2. These results identify a novel restriction and highlight cyclophilin-capsid interactions as ancient species-specific determinants of retroviral infection. Bats are primary reservoirs for multiple lethal human viruses, such as Ebola, Nipah, Hendra, rabies, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and, most recently, SARS-CoV-2. The innate immune systems of these immensely abundant, anciently diverged mammals remain insufficiently characterized. While bat genomes contain many endogenous retroviral elements indicative of past exogenous infections, little is known about restrictions to extant retroviruses. Here, we describe a major postentry restriction in cells of the yinpterochiropteran bat Pteropus alecto. Primate lentiviruses (HIV-1, SIVmac) were potently blocked at early life cycle steps, with up to 1,000-fold decreases in infectivity. The block was specific, because nonprimate lentiviruses such as equine infectious anemia virus and feline immunodeficiency virus were unimpaired, as were foamy retroviruses. Interspecies heterokaryons demonstrated a dominant block consistent with restriction of incoming viruses. Several features suggested potential TRIM5 (tripartite motif 5) or myxovirus resistance protein 2 (MX2) protein restriction, including postentry action, cyclosporine sensitivity, and reversal by capsid cyclophilin A (CypA) binding loop mutations. Viral nuclear import was significantly reduced, and this deficit was substantially rescued by cyclosporine treatment. However, saturation with HIV-1 virus-like particles did not relieve the restriction at all. P. alecto TRIM5 was inactive against HIV-1 although it blocked the gammaretrovirus N-tropic murine leukemia virus. Despite major divergence in a critical N-terminal motif required for human MX2 activity, P. alecto MX2 had anti-HIV activity. However, this did not quantitatively account for the restriction and was independent of and synergistic with an additional CypA-dependent restriction. These results reveal a novel, specific restriction to primate lentiviruses in the Pteropodidae and advance understanding of bat innate immunity.
Collapse
|
27
|
TNPO3-Mediated Nuclear Entry of the Rous Sarcoma Virus Gag Protein Is Independent of the Cargo-Binding Domain. J Virol 2020; 94:JVI.00640-20. [PMID: 32581109 DOI: 10.1128/jvi.00640-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Retroviral Gag polyproteins orchestrate the assembly and release of nascent virus particles from the plasma membranes of infected cells. Although it was traditionally thought that Gag proteins trafficked directly from the cytosol to the plasma membrane, we discovered that the oncogenic avian alpharetrovirus Rous sarcoma virus (RSV) Gag protein undergoes transient nucleocytoplasmic transport as an intrinsic step in virus assembly. Using a genetic approach in yeast, we identified three karyopherins that engage the two independent nuclear localization signals (NLSs) in Gag. The primary NLS is in the nucleocapsid (NC) domain of Gag and binds directly to importin-α, which recruits importin-β to mediate nuclear entry. The second NLS (TNPO3), which resides in the matrix (MA) domain, is dependent on importin-11 and transportin-3 (TNPO3), which are known as MTR10p and Kap120p in yeast, although it is not clear whether these import factors are independent or additive. The functions of importin-α/importin-β and importin-11 have been verified in avian cells, whereas the role of TNPO3 has not been studied. In this report, we demonstrate that TNPO3 directly binds to Gag and mediates its nuclear entry. To our surprise, this interaction did not require the cargo-binding domain (CBD) of TNPO3, which typically mediates nuclear entry for other binding partners of TNPO3, including SR domain-containing splicing factors and tRNAs that reenter the nucleus. These results suggest that RSV hijacks this host nuclear import pathway using a unique mechanism, potentially allowing other cargo to simultaneously bind TNPO3.IMPORTANCE RSV Gag nuclear entry is facilitated using three distinct host import factors that interact with nuclear localization signals in the Gag MA and NC domains. Here, we show that the MA region is required for nuclear import of Gag through the TNPO3 pathway. Gag nuclear entry does not require the CBD of TNPO3. Understanding the molecular basis for TNPO3-mediated nuclear trafficking of the RSV Gag protein may lead to a deeper appreciation for whether different import factors play distinct roles in retrovirus replication.
Collapse
|
28
|
Ni T, Gerard S, Zhao G, Dent K, Ning J, Zhou J, Shi J, Anderson-Daniels J, Li W, Jang S, Engelman AN, Aiken C, Zhang P. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Nat Struct Mol Biol 2020; 27:855-862. [PMID: 32747784 DOI: 10.1038/s41594-020-0467-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Samuel Gerard
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle Dent
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Zhou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wen Li
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sooin Jang
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan N Engelman
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK. .,Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
29
|
Maillet S, Fernandez J, Decourcelle M, El Koulali K, Blanchet FP, Arhel NJ, Maarifi G, Nisole S. Daxx Inhibits HIV-1 Reverse Transcription and Uncoating in a SUMO-Dependent Manner. Viruses 2020; 12:v12060636. [PMID: 32545337 PMCID: PMC7354551 DOI: 10.3390/v12060636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Death domain-associated protein 6 (Daxx) is a multifunctional, ubiquitously expressed and highly conserved chaperone protein involved in numerous cellular processes, including apoptosis, transcriptional repression, and carcinogenesis. In 2015, we identified Daxx as an antiretroviral factor that interfered with HIV-1 replication by inhibiting the reverse transcription step. In the present study, we sought to unravel the molecular mechanism of Daxx-mediated restriction and, in particular, to identify the protein(s) that Daxx targets in order to achieve its antiviral activity. First, we show that the SUMO-interacting motif (SIM) located at the C-terminus of the protein is strictly required for Daxx to inhibit HIV-1 reverse transcription. By performing a quantitative proteomic screen combined with classical biochemical analyses, we found that Daxx associated with incoming HIV-1 cores through a SIM-dependent interaction with cyclophilin A (CypA) and capsid (CA). Daxx was found to reside within a multiprotein complex associated with viral capsids, also containing TNPO3, TRIM5α, and TRIM34. Given the well-known influence of these cellular factors on the stability of HIV-1 cores, we investigated the effect of Daxx on the cytoplasmic fate of incoming cores and found that Daxx prevented HIV-1 uncoating in a SIM-dependent manner. Altogether, our findings suggest that, by recruiting TNPO3, TRIM5α, and TRIM34 and possibly other proteins onto incoming HIV-1 cores through a SIM-dependent interaction with CA-bound CypA, Daxx increases their stability, thus preventing uncoating and reverse transcription. Our study uncovers a previously unknown function of Daxx in the early steps of HIV-1 infection and further illustrates how reverse transcription and uncoating are two tightly interdependent processes.
Collapse
Affiliation(s)
- Sarah Maillet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Juliette Fernandez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Mathilde Decourcelle
- BCM, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (M.D.); (K.E.K.)
| | - Khadija El Koulali
- BCM, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (M.D.); (K.E.K.)
| | - Fabien P. Blanchet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Nathalie J. Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
- Correspondence:
| |
Collapse
|
30
|
Ohainle M, Kim K, Komurlu Keceli S, Felton A, Campbell E, Luban J, Emerman M. TRIM34 restricts HIV-1 and SIV capsids in a TRIM5α-dependent manner. PLoS Pathog 2020; 16:e1008507. [PMID: 32282853 PMCID: PMC7179944 DOI: 10.1371/journal.ppat.1008507] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/23/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV-1 capsid protein makes up the core of the virion and plays a critical role in early steps of HIV replication. Due to its exposure in the cytoplasm after entry, HIV capsid is a target for host cell factors that act directly to block infection such as TRIM5α and MxB. Several host proteins also play a role in facilitating infection, including in the protection of HIV-1 capsid from recognition by host cell restriction factors. Through an unbiased screening approach, called HIV-CRISPR, we show that the CPSF6-binding deficient, N74D HIV-1 capsid mutant is sensitive to restriction mediated by human TRIM34, a close paralog of the well-characterized HIV restriction factor TRIM5α. This restriction occurs at the step of reverse transcription, is independent of interferon stimulation, and limits HIV-1 infection in key target cells of HIV infection including CD4+ T cells and monocyte-derived dendritic cells. TRIM34 can also restrict some SIV capsids. TRIM34 restriction requires TRIM5α as knockout or knockdown of TRIM5α results in a loss of antiviral activity. Through immunofluorescence studies, we show that TRIM34 and TRIM5α colocalize to cytoplasmic bodies and are more frequently observed to be associated with infecting N74D capsids than with WT HIV-1 capsids. Our results identify TRIM34 as an HIV-1 CA-targeting restriction factor and highlight the potential role for heteromultimeric TRIM interactions in contributing to restriction of HIV-1 infection in human cells.
Collapse
Affiliation(s)
- Molly Ohainle
- Divisions of Human Biology and Basic Sciences, Fred Hutch, Seattle, Washington, United States of America
| | - Kyusik Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sevnur Komurlu Keceli
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Maywood, Illinois, United States of America
| | - Abby Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutch, Seattle, Washington, United States of America
| | - Ed Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Maywood, Illinois, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutch, Seattle, Washington, United States of America
| |
Collapse
|
31
|
Ingram Z, Taylor M, Okland G, Martin R, Hulme AE. Characterization of HIV-1 uncoating in human microglial cell lines. Virol J 2020; 17:31. [PMID: 32143686 PMCID: PMC7060623 DOI: 10.1186/s12985-020-01301-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background After viral fusion with the cell membrane, the conical capsid of HIV-1 disassembles by a process called uncoating. Previously we have utilized the CsA washout assay, in which TRIM-CypA mediated restriction of viral replication is used to detect the state of the viral capsid, to study the kinetics of HIV-1 uncoating in owl monkey kidney (OMK) and HeLa cells. Here we have extended this analysis to the human microglial cell lines CHME3 and C20 to characterize uncoating in a cell type that is a natural target of HIV infection. Methods The CsA washout was used to characterize uncoating of wildtype and capsid mutant viruses in CHME3 and C20 cells. Viral fusion assays and nevirapine addition assays were performed to relate the kinetics of viral fusion and reverse transcription to uncoating. Results We found that uncoating initiated within the first hour after viral fusion and was facilitated by reverse transcription in CHME3 and C20 cells. The capsid mutation A92E did not significantly alter uncoating kinetics. Viruses with capsid mutations N74D and E45A decreased the rate of uncoating in CHME3 cells, but did not alter reverse transcription. Interestingly, the second site suppressor capsid mutation R132T was able to rescue the uncoating kinetics of the E45A mutation, despite having a hyperstable capsid. Conclusions These results are most similar to previously observed characteristics of uncoating in HeLa cells and support the model in which uncoating is initiated by early steps of reverse transcription in the cytoplasm. A comparison of the uncoating kinetics of CA mutant viruses in OMK and CHME3 cells reveals the importance of cellular factors in the process of uncoating. The E45A/R132T mutant virus specifically suggests that disrupted interactions with cellular factors, rather than capsid stability, is responsible for the delayed uncoating kinetics seen in E45A mutant virus. Future studies aimed at identifying these factors will be important for understanding the process of uncoating and the development of interventions to disrupt this process.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Melanie Taylor
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Glister Okland
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Richard Martin
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA
| | - Amy E Hulme
- Department of Biomedical Sciences, Missouri State University, Springfield, MO, USA.
| |
Collapse
|
32
|
Lau D, Walsh JC, Peng W, Shah VB, Turville S, Jacques DA, Böcking T. Fluorescence Biosensor for Real-Time Interaction Dynamics of Host Proteins with HIV-1 Capsid Tubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34586-34594. [PMID: 31483592 DOI: 10.1021/acsami.9b08521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) capsid serves as a binding platform for proteins and small molecules from the host cell that regulate various steps in the virus life cycle. However, there are currently no quantitative methods that use assembled capsid lattices to measure host-pathogen interaction dynamics. Here we developed a single-molecule fluorescence biosensor using self-assembled capsid tubes as biorecognition elements and imaged capsid binders using total internal reflection fluorescence microscopy in a microfluidic setup. The method is highly sensitive in its ability to observe and quantify binding, to obtain dissociation constants, and to extract kinetics with an extended application of using more complex analytes that can accelerate characterization of novel capsid binders.
Collapse
|
33
|
The HIV-1 Capsid: More than Just a Delivery Package. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:69-83. [PMID: 31317496 DOI: 10.1007/978-3-030-14741-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Productive HIV infection requires integration of viral genes into the host genome. But how viral DNA gets to the nucleus in the first place remains one of the most controversial yet deceptively simple questions in HIV post-entry biology. This is illustrated in cartoons of viral entry, which often depict the entry process as an 'explosion' of the HIV capsid in the cytosol and independent movement of viral DNA through nuclear pores and into the nucleus. HIV enters the cell cytosol with two encapsidated RNA strands and must undergo reverse transcription (RT) to synthesise DNA. Even here there is no consensus for where, when or how RT happens. HIV must get into the nucleus, which in a non-dividing cell requires transport through the nuclear pore. Finally, the virus must 'uncoat': shed its protein capsid to allow its DNA to be spliced with that of the host. Where the virus uncoats and whether this is a single or multi-step process are similarly hotly debated. Understanding these processes is further complicated by three broad factors. First, that there are inter-relationships between these processes that may ensure HIV undergoes the right step at the right place at the right time. Second, the host has cofactors which the virus is dependent upon and must recruit but also immune factors that can sense and inhibit virus and so must be avoided. Third, HIV post-entry biology is cell-type dependent-meaning that factors which are essential in one cell type can be redundant in another.
Collapse
|
34
|
Asim M, Sarath Babu V, Qin Z, Zhao L, Su J, Li J, Tu J, Kou H, Lin L. Inhibition of Cyclophilin A on the replication of red spotted grouper nervous necrosis virus associates with multiple pro-inflammatory factors. FISH & SHELLFISH IMMUNOLOGY 2019; 92:172-180. [PMID: 31176008 PMCID: PMC7111709 DOI: 10.1016/j.fsi.2019.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Cyclophilin A (CypA) is a ubiquitously expressed cellular protein and involves in diverse pathological conditions, including infection and inflammation. CypA acts as a key factor in the replication of several viruses. However, little is known about the role of CypA in the replication of the red-spotted grouper nervous necrosis virus (RGNNV). In the present report, grouper CypA (GF-CypA) was cloned from the grouper fin cell line (GF-1) derived from orange-spotted grouper (Epinephelus coioides). Sequence analysis found that GF-CypA open reading frame (ORF) of 495 bp encodes a polypeptide of 164 amino acids residues with a molecular weight of 17.4 kDa. The deduced amino acid sequence shared highly conserved regions with CypA of other animal species, showing that GF-CypA is a new member of Cyclophilin A family. We observed that GF-CypA was up-regulated in the GF-1 cells infected with RGNNV. Additionally, overexpression of CypA could significantly inhibit the replication of RGNNV in GF-1 cells. By contrast, when the GF-CypA was knock-downed by siRNA in GF-1 cells, the replication of RGNNV was enhanced. Furthermore, the expressions of pro-inflammatory factors, such as TNF-2, TNF-α, IL-1b, and ISG-15, were increased in GF-CypA transfected GF-1 cells challenged with RGNNV, indicating that GF-CypA might be involved in the regulation of the host pro-inflammatory factors. Altogether, we conclude that GF-CypA plays a vital role in the inhibitory effect of RGNNV replication that might be modulating the cytokines secretion in GF-1 cells during RGNNV infection. These results will shed new light on the function of CypA in the replication of RGNNV and will pave a new way for the prevention of the infection of RGNNV in fish.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - V Sarath Babu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
35
|
A Novel Phenotype Links HIV-1 Capsid Stability to cGAS-Mediated DNA Sensing. J Virol 2019; 93:JVI.00706-19. [PMID: 31167922 DOI: 10.1128/jvi.00706-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 capsid executes essential functions that are regulated by capsid stability and host factors. In contrast to increasing knowledge on functional roles of capsid-interacting host proteins during postentry steps, less is known about capsid stability and its impact on intracellular events. Here, using the antiviral compound PF-3450074 (PF74) as a probe for capsid function, we uncovered a novel phenotype of capsid stability that has a profound effect on innate sensing of viral DNA by the DNA sensor cGAS. A single mutation, R143A, in the capsid protein conferred resistance to high concentrations of PF74, without affecting capsid binding to PF74. A cell-free assay showed that the R143A mutant partially counteracted the capsid-destabilizing activity of PF74, pointing to capsid stabilization as a resistance mechanism for the R143A mutant. In monocytic THP-1 cells, the R143A virus, but not the wild-type virus, suppressed cGAS-dependent innate immune activation. These results suggest that capsid stabilization improves the shielding of viral DNA from innate sensing. We found that a naturally occurring transmitted founder (T/F) variant shares the same properties as the R143A mutant with respect to PF74 resistance and DNA sensing. Imaging assays revealed delayed uncoating kinetics of this T/F variant and the R143A mutant. All these phenotypes of this T/F variant were controlled by a genetic polymorphism located at the trimeric interface between capsid hexamers, thus linking these capsid-dependent properties. Overall, this work functionally connects capsid stability to innate sensing of viral DNA and reveals naturally occurring phenotypic variation in HIV-1 capsid stability.IMPORTANCE The HIV-1 capsid, which is made from individual viral capsid proteins (CA), is a target for a number of antiviral compounds, including the small-molecule inhibitor PF74. In the present study, we utilized PF74 to identify a transmitted/founder (T/F) strain that shows increased capsid stability. Interestingly, PF74-resistant variants prevented cGAS-dependent innate immune activation under a condition where the other T/F strains induced type I interferon. These observations thus reveal a new CA-specific phenotype that couples capsid stability to viral DNA recognition by cytosolic DNA sensors.
Collapse
|
36
|
Pak AJ, Grime JMA, Yu A, Voth GA. Off-Pathway Assembly: A Broad-Spectrum Mechanism of Action for Drugs That Undermine Controlled HIV-1 Viral Capsid Formation. J Am Chem Soc 2019; 141:10214-10224. [PMID: 31244184 PMCID: PMC6739737 DOI: 10.1021/jacs.9b01413] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 12/21/2022]
Abstract
The early and late stages of human immunodeficiency virus (HIV) replication are orchestrated by the capsid (CA) protein, which self-assembles into a conical protein shell during viral maturation. Small molecule drugs known as capsid inhibitors (CIs) impede the highly regulated activity of CA. Intriguingly, a few CIs, such as PF-3450074 (PF74) and GS-CA1, exhibit effects at multiple stages of the viral lifecycle at effective concentrations in the pM to nM regimes, while the majority of CIs target a single stage of the viral lifecycle and are effective at nM to μM concentrations. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanisms that enable CIs to have such curious broad-spectrum activity. Our quantitatively analyzed findings show that CIs can have a profound impact on the hierarchical self-assembly of CA by perturbing populations of small CA oligomers. The self-assembly process is accelerated by the emergence of alternative assembly pathways that favor the rapid incorporation of CA pentamers, and leads to increased structural pleomorphism in mature capsids. Two relevant phenotypes are observed: (1) eccentric capsid formation that may fail to encase the viral genome and (2) rapid disassembly of the capsid, which express at late and early stages of infection, respectively. Finally, our study emphasizes the importance of adopting a dynamical perspective on inhibitory mechanisms and provides a basis for the design of future therapeutics that are effective at low stoichiometric ratios of drug to protein.
Collapse
Affiliation(s)
- Alexander J. Pak
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - John M. A. Grime
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, Institute for Biophysical Dynamics,
and James Franck Institute, The University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
Schmidt F, Keele BF, Del Prete GQ, Voronin D, Fennessey CM, Soll S, Kane M, Raymond A, Gifford RJ, KewalRamani V, Lifson JD, Bieniasz PD, Hatziioannou T. Derivation of simian tropic HIV-1 infectious clone reveals virus adaptation to a new host. Proc Natl Acad Sci U S A 2019; 116:10504-10509. [PMID: 31048506 PMCID: PMC6535013 DOI: 10.1073/pnas.1818059116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To replicate in a new host, lentiviruses must adapt to exploit required host factors and evade species-specific antiviral proteins. Understanding how host protein variation drives lentivirus adaptation allowed us to expand the host range of HIV-1 to pigtail macaques. We have previously derived a viral swarm (in the blood of infected animals) that can cause AIDS in this new host. To further exploit this reagent, we generated infectious molecular clones (IMCs) from the viral swarm. We identified clones with high replicative capacity in pigtail peripheral blood mononuclear cells (PBMC) in vitro and used in vivo replication to select an individual IMC, named stHIV-A19 (for simian tropic HIV-1 clone A19), which recapitulated the phenotype obtained with the viral swarm. Adaptation of HIV-1 in macaques led to the acquisition of amino acid changes in viral proteins, such as capsid (CA), that are rarely seen in HIV-1-infected humans. Using stHIV-A19, we show that these CA changes confer a partial resistance to the host cell inhibitor Mx2 from pigtail macaques, but that complete resistance is associated with a fitness defect. Adaptation of HIV-1 to a new host will lead to a more accurate animal model and a better understanding of virus-host interactions.
Collapse
Affiliation(s)
- Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Dennis Voronin
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Steven Soll
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Melissa Kane
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Alice Raymond
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065
| | - Robert J Gifford
- Medical Research Council-University of Glasgow Centre for Virus Research, G12 8QQ Glasgow, United Kingdom
| | - Vineet KewalRamani
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065;
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | | |
Collapse
|
38
|
Peng W, Shi J, Márquez CL, Lau D, Walsh J, Faysal KMR, Byeon CH, Byeon IJL, Aiken C, Böcking T. Functional analysis of the secondary HIV-1 capsid binding site in the host protein cyclophilin A. Retrovirology 2019; 16:10. [PMID: 30947724 PMCID: PMC6449974 DOI: 10.1186/s12977-019-0471-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient HIV-1 replication depends on interaction of the viral capsid with the host protein cyclophilin A (CypA). CypA, a peptidylprolyl isomerase, binds to an exposed loop in the viral CA protein via the enzyme's active site. Recent structural analysis of CypA in complex with CA tubes in conjunction with molecular dynamics simulations identified a secondary CA binding site on CypA that allows a bridging interaction with two hexameric subunits of the assembled CA lattice, leading to capsid stabilization (Liu et al. in Nat Commun 7:10714, 2016). RESULTS We performed mutational analysis of residues that have been proposed to mediate CA binding at the secondary binding site on CypA (A25, K27, P29 and K30) and tested the effects of the amino acid substitutions using interaction assays and HIV-1 infection assays in cells. The binding of recombinant CypA to self-assembled CA tubes or native HIV-1 capsids was measured in vitro using a quantitative fluorescence microscopy binding assay revealing that affinity and stoichiometry of CypA to the CA lattice was not affected by the substitutions. To test for functionality of the CypA secondary CA-binding site in HIV-1 infection, mutant CypA proteins were expressed in cells in which endogenous CypA was deleted, and the effects on HIV-1 infection were assayed. In normal HeLa-P4 cells, infection with HIV-1 bearing the A92E substitution in CA is inhibited by endogenous CypA and was inhibited to the same extent by expression of CypA mutants in CypA-null HeLa-P4 cells. Expression of the mutant CypA proteins in CypA-null Jurkat cells restored their permissiveness to infection by wild type HIV-1. CONCLUSIONS The amino acid changes at A25, K27, P29 and K30 did not affect the affinity of CypA for the CA lattice and did not impair CypA function in infection assays suggesting that these residues are not part of a secondary CA binding site on CypA.
Collapse
Affiliation(s)
- Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
| | - Chantal L. Márquez
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - James Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - K. M. Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| | - Chang H. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - In-Ja L. Byeon
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW, Sydney, NSW 2052 Australia
| |
Collapse
|
39
|
Balasubramaniam M, Zhou J, Addai A, Martinez P, Pandhare J, Aiken C, Dash C. PF74 Inhibits HIV-1 Integration by Altering the Composition of the Preintegration Complex. J Virol 2019; 93:e01741-18. [PMID: 30567984 PMCID: PMC6401427 DOI: 10.1128/jvi.01741-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 capsid protein (CA) facilitates reverse transcription and nuclear entry of the virus. However, CA's role in post-nuclear entry steps remains speculative. We describe a direct link between CA and integration by employing the capsid inhibitor PF74 as a probe coupled with the biochemical analysis of HIV-1 preintegration complexes (PICs) isolated from acutely infected cells. At a low micromolar concentration, PF74 potently inhibited HIV-1 infection without affecting reverse transcription. Surprisingly, PF74 markedly reduced proviral integration owing to inhibition of nuclear entry and/or integration. However, a 2-fold reduction in nuclear entry by PF74 did not quantitatively correlate with the level of antiviral activity. Titration of PF74 against the integrase inhibitor raltegravir showed an additive antiviral effect that is dependent on a block at the post-nuclear entry step. PF74's inhibitory effect was not due to the formation of defective viral DNA ends or a delay in integration, suggesting that the compound inhibits PIC-associated integration activity. Unexpectedly, PICs recovered from cells infected in the presence of PF74 exhibited elevated integration activity. PF74's effect on PIC activity is CA specific since the compound did not increase the integration activity of PICs of a PF74-resistant HIV-1 CA mutant. Sucrose gradient-based fractionation studies revealed that PICs assembled in the presence of PF74 contained lower levels of CA, suggesting a negative association between CA and PIC-associated integration activity. Finally, the addition of a CA-specific antibody or PF74 inhibited PIC-associated integration activity. Collectively, our results demonstrate that PF74's targeting of PIC-associated CA results in impaired HIV-1 integration.IMPORTANCE Antiretroviral therapy (ART) that uses various combinations of small molecule inhibitors has been highly effective in controlling HIV. However, the drugs used in the ART regimen are expensive, cause side effects, and face viral resistance. The HIV-1 CA plays critical roles in the virus life cycle and is an attractive therapeutic target. While currently there is no CA-based therapy, highly potent CA-specific inhibitors are being developed as a new class of antivirals. Efforts to develop a CA-targeted therapy can be aided through a clear understanding of the role of CA in HIV-1 infection. CA is well established to coordinate reverse transcription and nuclear entry of the virus. However, the role of CA in post-nuclear entry steps of HIV-1 infection is poorly understood. We show that a CA-specific drug PF74 inhibits HIV-1 integration revealing a novel role of this multifunctional viral protein in a post-nuclear entry step of HIV-1 infection.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jing Zhou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amma Addai
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Phillip Martinez
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
40
|
Ramishetti S, Peer D. Engineering lymphocytes with RNAi. Adv Drug Deliv Rev 2019; 141:55-66. [PMID: 30529305 DOI: 10.1016/j.addr.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Lymphocytes are the gatekeepers of the body's immune system and are involved in pathogenesis if their surveillance is stalled by inhibitory molecules or when they act as mediators for viral entry. Engineering lymphocytes in order to restore their functions is an unmet need in immunological disorders, cancer and in lymphotropic viral infections. Recently, the FDA approved several therapeutic antibodies for blocking inhibitory signals on T cells. This has revolutionized the field of solid tumor care, together with chimeric antigen receptor T cell (CAR-T) therapy that did the same for hematological malignancies. RNA interference (RNAi) is a promising approach where gene function can be inhibited in almost all types of cells. However, manipulation of genes in lymphocyte subsets are difficult due to their hard-to-transfect nature and in vivo targeting remains challenging as they are dispersed throughout the body. The ability of RNAi molecules to gain entry into cells is almost impossible without delivery strategy. Nanotechnology approaches are rapidly growing and their impact in the field of drug and gene delivery applications to transport payloads inside cells have been extensively studied. Here we discuss various technologies available for RNAi delivery to lymphocytes. We shed light on the importance of targeting molecules in order to target lymphocytes in vivo. In addition, we discuss recent developments of RNAi delivery to lymphocyte subsets, and detail the potential implication for the future of molecular medicine in leukocytes implicated diseases.
Collapse
|
41
|
Human MxB Inhibits the Replication of Hepatitis C Virus. J Virol 2018; 93:JVI.01285-18. [PMID: 30333168 DOI: 10.1128/jvi.01285-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Type I interferon (IFN) inhibits viruses by inducing the expression of antiviral proteins. The IFN-induced myxovirus resistance B (MxB) protein has been reported to inhibit a limited number of viruses, including HIV-1 and herpesviruses, but its antiviral coverage remains to be explored further. Here we show that MxB interferes with RNA replication of hepatitis C virus (HCV) and significantly inhibits viral replication in a cyclophilin A (CypA)-dependent manner. Our data further show that MxB interacts with the HCV protein NS5A, thereby impairing NS5A interaction with CypA and NS5A localization to the endoplasmic reticulum, two events essential for HCV RNA replication. Interestingly, we found that MxB significantly inhibits two additional CypA-dependent viruses of the Flaviviridae family, namely, Japanese encephalitis virus and dengue virus, suggesting a potential link between virus dependence on CypA and virus susceptibility to MxB inhibition. Collectively, these data have identified MxB as a key factor behind IFN-mediated suppression of HCV infection, and they suggest that other CypA-dependent viruses may also be subjected to MxB restriction.IMPORTANCE Viruses of the Flaviviridae family cause major illness and death around the world and thus pose a great threat to human health. Here we show that IFN-inducible MxB restricts several members of the Flaviviridae, including HCV, Japanese encephalitis virus, and dengue virus. This finding not only suggests an active role of MxB in combating these major pathogenic human viruses but also significantly expands the antiviral spectrum of MxB. Our study further strengthens the link between virus dependence on CypA and susceptibility to MxB restriction and also suggests that MxB may employ a common mechanism to inhibit different viruses. Elucidating the antiviral functions of MxB advances our understanding of IFN-mediated host antiviral defense and may open new avenues to the development of novel antiviral therapeutics.
Collapse
|
42
|
Rawle DJ, Harrich D. Toward the "unravelling" of HIV: Host cell factors involved in HIV-1 core uncoating. PLoS Pathog 2018; 14:e1007270. [PMID: 30286189 PMCID: PMC6171947 DOI: 10.1371/journal.ppat.1007270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Daniel J. Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Australia
- * E-mail:
| |
Collapse
|
43
|
PF74 Reinforces the HIV-1 Capsid To Impair Reverse Transcription-Induced Uncoating. J Virol 2018; 92:JVI.00845-18. [PMID: 30089694 DOI: 10.1128/jvi.00845-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 11/20/2022] Open
Abstract
The RNA genome of human immunodeficiency virus type 1 (HIV-1) is enclosed in a cone-shaped capsid shell that disassembles following cell entry via a process known as uncoating. During HIV-1 infection, the capsid is important for reverse transcription and entry of the virus into the target cell nucleus. The small molecule PF74 inhibits HIV-1 infection at early stages by binding to the capsid and perturbing uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. Here, we show, using atomic force microscopy (AFM), that binding of PF74 to recombinant capsid-like assemblies and to HIV-1 isolated cores stabilizes the capsid in a concentration-dependent manner. At a PF74 concentration of 10 μM, the mechanical stability of the core is increased to a level similar to that of the intrinsically hyperstable capsid mutant E45A. PF74 also prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores treated with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, and a cap-like structure dissociated from the narrow end of the core. Moreover, the internal coiled structure that was observed to form during reverse transcription in vitro persisted throughout the duration of the measurement (∼24 h). Our results provide direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice, thereby permitting reverse transcription while interfering with a late step in uncoating.IMPORTANCE The capsid-binding small molecule PF74 inhibits HIV-1 infection at early stages and perturbs uncoating. However, the mechanism by which PF74 alters capsid stability and reduces viral infection is presently unknown. We recently introduced time-lapse atomic force microscopy to study the morphology and physical properties of HIV-1 cores during the course of reverse transcription. Here, we apply this AFM methodology to show that PF74 prevented the complete disassembly of HIV-1 cores normally observed during 24 h of reverse transcription. Specifically, cores with PF74 only partially disassembled: the main body of the capsid remained intact and stiff, but a cap-like structure dissociated from the narrow end of the core HIV-1. Our result provides direct evidence that PF74 directly stabilizes the HIV-1 capsid lattice.
Collapse
|
44
|
Francis AC, Melikyan GB. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport. Cell Host Microbe 2018; 23:536-548.e6. [PMID: 29649444 DOI: 10.1016/j.chom.2018.03.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/03/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022]
Abstract
The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration.
Collapse
Affiliation(s)
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
de Wilde AH, Pham U, Posthuma CC, Snijder EJ. Cyclophilins and cyclophilin inhibitors in nidovirus replication. Virology 2018; 522:46-55. [PMID: 30014857 PMCID: PMC7112023 DOI: 10.1016/j.virol.2018.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/12/2022]
Abstract
Cyclophilins (Cyps) belong to the family of peptidyl-prolyl isomerases (PPIases). The PPIase activity of most Cyps is inhibited by the immunosuppressive drug cyclosporin A and several of its non-immunosuppressive analogs, which can also block the replication of nidoviruses (arteriviruses and coronaviruses). Cyclophilins have been reported to play an essential role in the replication of several other RNA viruses, including human immunodeficiency virus-1, hepatitis C virus, and influenza A virus. Likewise, the replication of various nidoviruses was reported to depend on Cyps or other PPIases. This review summarizes our current understanding of this class of nidovirus-host interactions, including the potential function of in particular CypA and the inhibitory effect of Cyp inhibitors. Also the involvement of the FK-506-binding proteins and parvulins is discussed. The nidovirus data are placed in a broader perspective by summarizing the most relevant data on Cyp interactions and Cyp inhibitors for other RNA viruses. Nidovirus replication is inhibited by cyclophilin inhibitors. Arterivirus replication depends on cyclophilin A. Cyclosporin A blocks arterivirus RNA synthesis. Using cyclophilin inhibitors against nidoviruses in vivo needs more investigation.
Collapse
Affiliation(s)
- Adriaan H de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Uyen Pham
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
46
|
Márquez CL, Lau D, Walsh J, Shah V, McGuinness C, Wong A, Aggarwal A, Parker MW, Jacques DA, Turville S, Böcking T. Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis. eLife 2018; 7:34772. [PMID: 29877795 PMCID: PMC6039174 DOI: 10.7554/elife.34772] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/05/2018] [Indexed: 02/01/2023] Open
Abstract
Uncoating of the metastable HIV-1 capsid is a tightly regulated disassembly process required for release of the viral cDNA prior to nuclear import. To understand the intrinsic capsid disassembly pathway and how it can be modulated, we have developed a single-particle fluorescence microscopy method to follow the real-time uncoating kinetics of authentic HIV capsids in vitro immediately after permeabilizing the viral membrane. Opening of the first defect in the lattice is the rate-limiting step of uncoating, which is followed by rapid, catastrophic collapse. The capsid-binding inhibitor PF74 accelerates capsid opening but stabilizes the remaining lattice. In contrast, binding of a polyanion to a conserved arginine cluster in the lattice strongly delays initiation of uncoating but does not prevent subsequent lattice disassembly. Our observations suggest that different stages of uncoating can be controlled independently with the interplay between different capsid-binding regulators likely to determine the overall uncoating kinetics. Viruses need to enter their host’s cells in order to replicate their genetic material and produce more copies of the virus. A protein shell called a capsid protects the virus during this journey. But the structure of the capsid presents a mystery. How can this protein shell be strong enough to remain intact as it enters a host cell, and yet quickly open up to release the viral genome after replication? Unlike the capsids of many other viruses, those of HIV have irregular structures that rapidly fall apart once removed from the virus. This has thwarted attempts to study intact HIV capsids in order to understand how they work. However, we do know that HIV hijacks a range of molecules produced by the invaded host cell. Dissecting their effects on the capsid is key to understanding how the capsid disassembles. Márquez et al. have now developed a method that can visualize individual HIV capsids – and how they disassemble – in real time using single-molecule microscopy. This revealed that capsids differ widely in their stability. The shell remains closed for a variable period of time and then collapses catastrophically as soon as it loses its first subunit. Using the new technique, Márquez et al. also found that a small molecule drug called PF74 causes the capsid to crack open rapidly, but the remaining shell is then stabilized against further disassembly. These observations reconcile seemingly contradictory observations made by different research groups about how this drug affects the stability of the capsid. The method developed by Márquez et al. enables researchers to measure how molecules produced by host cells interact with the viral capsid, a structure that is fundamental for the virus to establish an infection. It could also be used to test the effects of antiviral drugs that have been designed to target the capsid. The new technique has already been instrumental in related research by Mallery et al., which identifies a molecule found in host cells that stabilizes the capsid of HIV.
Collapse
Affiliation(s)
- Chantal L Márquez
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - James Walsh
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Vaibhav Shah
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | - Conall McGuinness
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| | | | | | - Michael W Parker
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia
| | | | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, UNSW, Sydney, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, UNSW, Sydney, Australia
| |
Collapse
|
47
|
A Abdullah A, Abdullah R, A Nazariah Z, N Balakrishnan K, Firdaus J Abdullah F, A Bala J, Mohd-Lila MA. Cyclophilin A as a target in the treatment of cytomegalovirus infections. Antivir Chem Chemother 2018; 26:2040206618811413. [PMID: 30449131 PMCID: PMC6243413 DOI: 10.1177/2040206618811413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be effective for most viruses while minimizing drug resistance and toxicity. METHODS Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2, the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins. RESULTS Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a mediator of viral replication or anti-cytomegalovirus drug. CONCLUSION Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
Collapse
Affiliation(s)
- Ashwaq A Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 2 Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Rasedee Abdullah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 3 Department of Veterinary Laboratory Diagnosis, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Zeenathul A Nazariah
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Krishnan N Balakrishnan
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Faez Firdaus J Abdullah
- 5 Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| | - Jamilu A Bala
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 6 Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Mohd-Azmi Mohd-Lila
- 1 Institute of Bioscience, University Putra Malaysia, Serdang, Selangor D.E, Malaysia
- 4 Department of Pathology and Microbiology, Universiti Putra Malaysia, Serdang, Selangor D.E, Malaysia
| |
Collapse
|
48
|
The poly-proline tail of SIVmac Vpx provides gain of function for resistance to a cryptic proteasome-dependent degradation pathway. Virology 2017; 511:23-29. [PMID: 28803141 DOI: 10.1016/j.virol.2017.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/29/2022]
Abstract
The lentiviral accessory protein Vpx is critical for viral infection of myeloid cells and acts by hijacking CRL4(DCAF1) E3 ubiquitin ligase to induce the degradation of the host restriction factor SAMHD1. It has been observed that the sequences from HIV-2 and SIVsmm/SIVmac Vpx contain a poly-proline tail which is distinct from other SIV Vpx proteins. However, the role of this region in Vpx function is controversial. Herein, we found proteasome-dependent degradation of a Vpx mutant lacking the poly-proline tail in the nucleus in a CRL4(DCAF1) E3 ligase-independent fashion. Unlike wild-type Vpx, the poly-proline tail mutant Vpx is partly defective in enhancing viral infection in macrophages. Our findings suggest that during Vpx evolution, Vpx of the HIV-2/SIVsm/SIVmac lineage is targeted by a CRL4(DCAF1) E3 ligase-independent ubiquitination pathway, and have gained this interesting region, allowing them to maintain nuclear accumulation as part of their adaptation to host cell regulation.
Collapse
|
49
|
Burse M, Shi J, Aiken C. Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid. PLoS One 2017; 12:e0182298. [PMID: 28767697 PMCID: PMC5540582 DOI: 10.1371/journal.pone.0182298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
The host immunophilin cyclophilin A (CypA) binds to the capsid protein (CA) of HIV-1 and regulates its infectivity. Depending on the target cell type, CypA can either promote or inhibit HIV-1 infection. The ability of CypA to promote HIV-1 infection has been extensively studied and linked to several steps in early replication including uncoating, reverse transcription and nuclear import. By contrast, the mechanism by which CypA inhibits infection is less well understood. We investigated the mechanism by which CypA potentiates restriction of HIV-1 by the tripartite motif-containing protein 5 (TRIM5α). Depletion of TRIM5α in the African green monkey cell line Vero, resulted in a loss of inhibition of infection by CypA, demonstrating that inhibition by CypA is mediated by TRIM5α. Complementary genetic and biochemical assays failed to demonstrate an ability of CypA to promote binding of TRIM5α to the viral capsid. TRIM5α inhibits HIV-1 reverse transcription in a proteasome-dependent manner; however, we observed that inhibition of proteasome activity did not reduce the ability of CypA to inhibit infection, suggesting that CypA acts at a step after reverse transcription. Accordingly, we observed a CypA-dependent reduction in the accumulation of nuclear HIV-1 DNA, indicating that CypA specifically promotes TRIM5α inhibition of HIV-1 nuclear import. We also observed that the ability of CypA to inhibit HIV-1 infection is abolished by amino acid substitutions within the conserved CPSF6-binding surface in CA. Our results indicate that CypA inhibits HIV-1 infection in Vero cells not by promoting TRIM5α binding to the capsid but by blocking nuclear import of the HIV-1 preintegration complex.
Collapse
Affiliation(s)
- Mallori Burse
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jiong Shi
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
50
|
Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 2017; 8:15959. [PMID: 28722007 PMCID: PMC5524983 DOI: 10.1038/ncomms15959] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of ∼1,300 proteins with altogether 4 million atoms. Although the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical–physical properties of an empty HIV-1 capsid, including its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. The simulations reveal critical details about the capsid with implications to biological function. The large and complex HIV-1 capsid modulates several molecular events during HIV-1’s infective cycle. Here the authors use all-atom molecular dynamic simulations to probe the biophysical properties of the genome-free HIV-1 capsid.
Collapse
|