1
|
Munger K, White EA. What are the essential determinants of human papillomavirus carcinogenesis? mBio 2024; 15:e0046224. [PMID: 39365046 PMCID: PMC11558995 DOI: 10.1128/mbio.00462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Human papillomavirus (HPV) infection is the leading viral cause of cancer. Over the past several decades, research on HPVs has provided remarkable insight into human cell biology and into the pathology of viral and non-viral cancers. The HPV E6 and E7 proteins engage host cellular proteins to establish an environment in infected cells that is conducive to virus replication. They rewire host cell signaling pathways to promote proliferation, inhibit differentiation, and limit cell death. The activity of the "high-risk" HPV E6 and E7 proteins is so potent that their dysregulated expression is sufficient to drive the initiation and maintenance of HPV-associated cancers. Consequently, intensive research efforts have aimed to identify the host cell targets of E6 and E7, in part with the idea that some or all of the virus-host interactions would be essential cancer drivers. These efforts have identified a large number of potential binding partners of each oncoprotein. However, over the same time period, parallel research has revealed that a relatively small number of genetic mutations drive carcinogenesis in most non-viral cancers. We therefore propose that a high-priority goal is to identify which of the many targets of E6 and E7 are critical drivers of HPV carcinogenesis. By identifying the cancer-driving targets of E6 and E7, it should be possible to better understand the distinct roles of other targets, perhaps in the viral life cycle, and to focus efforts to develop anti-cancer therapies on the subset of virus-host interactions for which therapeutic intervention would have the greatest impact.
Collapse
Affiliation(s)
- Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. mBio 2024; 15:e0181124. [PMID: 39248565 PMCID: PMC11481495 DOI: 10.1128/mbio.01811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Zhao X, Zhang Y, Trejo-Cerro O, Kaplan E, Li Z, Albertsboer F, El Hammiri N, Mariz FC, Banks L, Ottonello S, Müller M. A safe and potentiated multi-type HPV L2-E7 nanoparticle vaccine with combined prophylactic and therapeutic activity. NPJ Vaccines 2024; 9:119. [PMID: 38926425 PMCID: PMC11208501 DOI: 10.1038/s41541-024-00914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is widely recognized as the primary cause of cervical and other malignant cancers. There are six licensed prophylactic vaccines available against HPV, but none of them shows any significant therapeutic effect on pre-existing infections or lesions. Thus, a prophylactic vaccine also endowed with therapeutic activity would afford protection regardless of the vaccine recipients HPV-infection status. Here, we describe the refinement and further potentiation of a dual-purpose HPV nanoparticle vaccine (hereafter referred to as cPANHPVAX) relying on eight different HPV L2 peptide epitopes and on the E7 oncoantigens from HPV16 and 18. cPANHPVAX not only induces anti-HPV16 E7 cytotoxic T-cell responses in C57BL/6 mice, but also anti-HPV18 E7 T-cell responses in transgenic mice with the A2.DR1 haplotype. These cytotoxic responses add up to a potent, broad-coverage humoral (HPV-neutralizing) response. cPANHPVAX safety was further improved by deletion of the pRb-binding domains of E7. Our dual-purpose vaccine holds great potential for clinical translation as an immune-treatment capable of targeting active infections as well as established HPV-related malignancies, thus benefiting both uninfected and infected individuals.
Collapse
Affiliation(s)
- Xueer Zhao
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| | - Yueru Zhang
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ecem Kaplan
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Zhe Li
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Femke Albertsboer
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Neyla El Hammiri
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Filipe Colaço Mariz
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
4
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583953. [PMID: 38496413 PMCID: PMC10942435 DOI: 10.1101/2024.03.07.583953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active site were required for PTPN14 to promote differentiation. Taken together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Current address: Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
ZER1 Contributes to the Carcinogenic Activity of High-Risk HPV E7 Proteins. mBio 2022; 13:e0203322. [PMID: 36346242 PMCID: PMC9765665 DOI: 10.1128/mbio.02033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human papillomavirus (HPV) E7 proteins bind to host cell proteins to facilitate virus replication. Interactions between HPV E7 and host cell proteins can also drive cancer progression. We hypothesize that HPV E7-host protein interactions specific for high-risk E7 contribute to the carcinogenic activity of high-risk HPV. The cellular protein ZER1 interacts with the E7 protein from HPV16, the genotype most frequently associated with human cancers. The HPV16 E7-ZER1 interaction is unique among HPV E7 tested to date. Other E7 proteins, even from closely related HPV genotypes, do not bind ZER1, which is a substrate specificity factor for a CUL2-RING ubiquitin ligase. In the present study, we investigated the contribution of ZER1 to the carcinogenic activity of HPV16 E7. First, we mapped the ZER1 binding site to specific residues on the C terminus of HPV16 E7. We showed that the mutant HPV16 E7 that cannot bind ZER1 is impaired in the ability to promote the growth of primary keratinocytes. We found that ZER1 and CUL2 contribute to, but are not required for, HPV16 E7 to degrade RB1. Cancer dependency data show that ZER1 is an essential gene in most HPV-positive, but not HPV-negative, cancer cell lines. Depleting ZER1 impaired the growth of primary keratinocytes expressing HPV16 E7 or HPV18 E7 and of HPV16-and HPV18-positive cervical cancer cell lines. Taken together, our work demonstrates that ZER1 contributes to HPV-mediated carcinogenesis and is essential for the growth of HPV-positive cells. IMPORTANCE HPV16 is highly carcinogenic and is the most predominant HPV genotype associated with human cancers. The mechanisms that underlie differences between high-risk HPV genotypes are currently unknown, but many of these differences are likely attributable to the activities of the oncogenic HPV proteins, including E7. The HPV E7 oncoprotein is essential for HPV-mediated carcinogenesis. A large number of HPV E7 targets have been identified. However, it is unclear which of these many interactions contributes to the carcinogenic activity of HPV E7. Here, we characterized the interaction between HPV16 E7 and the host cell protein ZER1, testing whether this genotype-specific interaction could enable some of the carcinogenic activity of HPV16 E7. We found that ZER1 binding contributes to the growth-promoting activity of HPV16 E7 and to the growth of HPV-positive cervical cancer cells. We propose that ZER1 makes an important contribution to HPV-mediated carcinogenesis.
Collapse
|
6
|
Loke ASW, Lambert PF, Spurgeon ME. Current In Vitro and In Vivo Models to Study MCPyV-Associated MCC. Viruses 2022; 14:2204. [PMID: 36298759 PMCID: PMC9607385 DOI: 10.3390/v14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.
Collapse
Affiliation(s)
| | | | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
7
|
Spurgeon ME, Cheng J, Ward-Shaw E, Dick FA, DeCaprio JA, Lambert PF. Merkel cell polyomavirus large T antigen binding to pRb promotes skin hyperplasia and tumor development. PLoS Pathog 2022; 18:e1010551. [PMID: 35560034 PMCID: PMC9132321 DOI: 10.1371/journal.ppat.1010551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
Clear evidence supports a causal link between Merkel cell polyomavirus (MCPyV) and the highly aggressive human skin cancer called Merkel cell carcinoma (MCC). Integration of viral DNA into the human genome facilitates continued expression of the MCPyV small tumor (ST) and large tumor (LT) antigens in virus-positive MCCs. In MCC tumors, MCPyV LT is truncated in a manner that renders the virus unable to replicate yet preserves the LXCXE motif that facilitates its binding to and inactivation of the retinoblastoma tumor suppressor protein (pRb). We previously developed a MCPyV transgenic mouse model in which MCC tumor-derived ST and truncated LT expression were targeted to the stratified epithelium of the skin, causing epithelial hyperplasia, increased proliferation, and spontaneous tumorigenesis. We sought to determine if any of these phenotypes required the association between the truncated MCPyV LT and pRb. Mice were generated in which K14-driven MCPyV ST/LT were expressed in the context of a homozygous RbΔLXCXE knock-in allele that attenuates LT-pRb interactions through LT's LXCXE motif. We found that many of the phenotypes including tumorigenesis that develop in the K14-driven MCPyV transgenic mice were dependent upon LT's LXCXE-dependent interaction with pRb. These findings highlight the importance of the MCPyV LT-pRb interaction in an in vivo model for MCPyV-induced tumorigenesis.
Collapse
Affiliation(s)
- Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| | - Jingwei Cheng
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Frederick A. Dick
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children’s Health Research Institute, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Hatterschide J, Castagnino P, Kim HW, Sperry SM, Montone KT, Basu D, White EA. YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. eLife 2022; 11:75466. [PMID: 35170430 PMCID: PMC8959598 DOI: 10.7554/elife.75466] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes nearly 5% of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo pathway and activates the Hippo effector yes-associated protein (YAP1). The HPV E7 oncoprotein is required for HPV infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in basal epithelial cells. YAP1 activation by HPV E7 required that E7 binds and degrades the tumor suppressor protein tyrosine phosphatase non-receptor type 14 (PTPN14). E7 required YAP1 transcriptional activity to extend the lifespan of primary keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis. The ‘epithelial’ cells that cover our bodies are in a constant state of turnover. Every few weeks, the outermost layers die and are replaced by new cells from the layers below. For scientists, this raises a difficult question. Cells infected by human papillomaviruses, often known as HPV, can become cancerous over years or even decades. How do infected cells survive while the healthy cells around them mature and get replaced? One clue could lie in PTPN14, a human protein which many papillomaviruses eliminate using their viral E7 protein; this mechanism could be essential for the virus to replicate and cause cancer. To find out the impact of losing PTPN14, Hatterschide et al. used human epithelial cells to make three-dimensional models of infected tissues. These experiments showed that, when papillomaviruses destroy PTPN14, a human protein called YAP1 turns on in the lowest, most long-lived layer of the tissue. Cells in which YAP1 is activated survive while those that carry the inactive version mature and die. This suggests that papillomaviruses turn on YAP1 to remain in tissues for long periods. Papillomaviruses cause about five percent of all human cancers. Finding ways to stop them from activating YAP1 has the potential to prevent disease. Overall, the research by Hatterschide et al. also sheds light on other epithelial cancers which are not caused by viruses.
Collapse
Affiliation(s)
- Joshua Hatterschide
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Paola Castagnino
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Hee Won Kim
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Steven M Sperry
- Department of Otolaryngology-Head and Neck Surgery, Aurora St. Luke's Medical Center, Milwaukee, United States
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
9
|
Tuong ZK, Lukowski SW, Nguyen QH, Chandra J, Zhou C, Gillinder K, Bashaw AA, Ferdinand JR, Stewart BJ, Teoh SM, Hanson SJ, Devitt K, Clatworthy MR, Powell JE, Frazer IH. A model of impaired Langerhans cell maturation associated with HPV induced epithelial hyperplasia. iScience 2021; 24:103326. [PMID: 34805788 PMCID: PMC8586807 DOI: 10.1016/j.isci.2021.103326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers. Single cell atlas of Langerhans cells in cutaneous skin Stimulatory and inhibitory Langerhans cell states are in balance Inhibitory Langerhans cell states dominate HPV-transformed hyperplastic skin Langerhans cell imbalance is associated with disrupted IL-34 signaling
Collapse
Affiliation(s)
- Zewen K Tuong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.,Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Samuel W Lukowski
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Quan H Nguyen
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chenhao Zhou
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kevin Gillinder
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Abate A Bashaw
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sarah J Hanson
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Katharina Devitt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
10
|
Wei T, Grace M, Uberoi A, Romero-Masters JC, Lee D, Lambert PF, Munger K. The Mus musculus Papillomavirus Type 1 E7 Protein Binds to the Retinoblastoma Tumor Suppressor: Implications for Viral Pathogenesis. mBio 2021; 12:e0227721. [PMID: 34465025 PMCID: PMC8406179 DOI: 10.1128/mbio.02277-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022] Open
Abstract
The species specificity of papillomaviruses has been a significant roadblock for performing in vivo pathogenesis studies in common model organisms. The Mus musculus papillomavirus type 1 (MmuPV1) causes cutaneous papillomas that can progress to squamous cell carcinomas in laboratory mice. The papillomavirus E6 and E7 genes encode proteins that establish and maintain a cellular milieu that allows for viral genome synthesis and viral progeny synthesis in growth-arrested, terminally differentiated keratinocytes. The E6 and E7 proteins provide this activity by binding to and functionally reprogramming key cellular regulatory proteins. The MmuPV1 E7 protein lacks the canonical LXCXE motif that mediates the binding of multiple viral oncoproteins to the cellular retinoblastoma tumor suppressor protein, RB1. Our proteomic experiments, however, revealed that MmuPV1 E7 still interacts with RB1. We show that MmuPV1 E7 interacts through its C terminus with the C-terminal domain of RB1. Binding of MmuPV1 E7 to RB1 did not cause significant activation of E2F-regulated cellular genes. MmuPV1 E7 expression was shown to be essential for papilloma formation. Experimental infection of mice with MmuPV1 expressing an E7 mutant that is defective for binding to RB1 caused delayed onset, lower incidence, and smaller sizes of papillomas. Our results demonstrate that the MmuPV1 E7 gene is essential and that targeting noncanonical activities of RB1, which are independent of RB1's ability to modulate the expression of E2F-regulated genes, contribute to papillomavirus-mediated pathogenesis. IMPORTANCE Papillomavirus infections cause a variety of epithelial hyperplastic lesions, or warts. While most warts are benign, some papillomaviruses cause lesions that can progress to squamous cell carcinomas, and approximately 5% of all human cancers are caused by human papillomavirus (HPV) infections. The papillomavirus E6 and E7 proteins are thought to function to reprogram host epithelial cells to enable viral genome replication in terminally differentiated, normally growth-arrested cells. E6 and E7 lack enzymatic activities and function by interacting and functionally altering host cell regulatory proteins. Many cellular proteins that can interact with E6 and E7 have been identified, but the biological relevance of these interactions for viral pathogenesis has not been determined. This is because papillomaviruses are species specific and do not infect heterologous hosts. Here, we use a recently established mouse papillomavirus (MmuPV1) model to investigate the role of the E7 protein in viral pathogenesis. We show that MmuPV1 E7 is necessary for papilloma formation. The retinoblastoma tumor suppressor protein (RB1) is targeted by many papillomaviral E7 proteins, including cancer-associated HPVs. We show that MmuPV1 E7 can bind RB1 and that infection with a mutant MmuPV1 virus that expresses an RB1 binding-defective E7 mutant caused smaller and fewer papillomas that arise with delayed kinetics.
Collapse
Affiliation(s)
- Tao Wei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
12
|
Modeling and Molecular Dynamics of the 3D Structure of the HPV16 E7 Protein and Its Variants. Int J Mol Sci 2021; 22:ijms22031400. [PMID: 33573298 PMCID: PMC7866783 DOI: 10.3390/ijms22031400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023] Open
Abstract
The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.
Collapse
|
13
|
James CD, Saini S, Sesay F, Ko K, Felthousen-Rusbasan J, Iness AN, Nulton T, Windle B, Dozmorov MG, Morgan IM, Litovchick L. Restoring the DREAM Complex Inhibits the Proliferation of High-Risk HPV Positive Human Cells. Cancers (Basel) 2021; 13:489. [PMID: 33513914 PMCID: PMC7866234 DOI: 10.3390/cancers13030489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
High-risk (HR) human papillomaviruses are known causative agents in 5% of human cancers including cervical, ano-genital and head and neck carcinomas. In part, HR-HPV causes cancer by targeting host-cell tumor suppressors including retinoblastoma protein (pRb) and RB-like proteins p107 and p130. HR-HPV E7 uses a LxCxE motif to bind RB proteins, impairing their ability to control cell-cycle dependent transcription. E7 disrupts DREAM (Dimerization partner, RB-like, E2F and MuvB), a transcriptional repressor complex that can include p130 or p107, but not pRb, which regulates genes required for cell cycle progression. However, it is not known whether disruption of DREAM plays a significant role in HPV-driven tumorigenesis. In the DREAM complex, LIN52 is an adaptor that binds directly to p130 via an E7-like LxSxE motif. Replacement of the LxSxE sequence in LIN52 with LxCxE (LIN52-S20C) increases p130 binding and partially restores DREAM assembly in HPV-positive keratinocytes and human cervical cancer cells, inhibiting proliferation. Our findings demonstrate that disruption of the DREAM complex by E7 is an important process promoting cellular proliferation by HR-HPV. Restoration of the DREAM complex in HR-HPV positive cells may therefore have therapeutic benefits in HR-HPV positive cancers.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Siddharth Saini
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Fatmata Sesay
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Kevin Ko
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Jessica Felthousen-Rusbasan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Audra N. Iness
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
| | - Tara Nulton
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
| | - Brad Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA;
- Department of Pathology, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (K.K.); (T.N.); (B.W.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (S.S.); (F.S.); (J.F.-R.); (A.N.I.)
- Massey Cancer Center, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
| |
Collapse
|
14
|
A Conserved Amino Acid in the C Terminus of Human Papillomavirus E7 Mediates Binding to PTPN14 and Repression of Epithelial Differentiation. J Virol 2020; 94:JVI.01024-20. [PMID: 32581101 DOI: 10.1128/jvi.01024-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus (HPV) E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. The E7 proteins from diverse HPVs bind to the host cellular nonreceptor protein tyrosine phosphatase type 14 (PTPN14) and direct it for degradation through the activity of the E7-associated host E3 ubiquitin ligase UBR4. Here, we show that a highly conserved arginine residue in the C-terminal domain of diverse HPV E7 mediates the interaction with PTPN14. We found that disruption of PTPN14 binding through mutation of the C-terminal arginine did not impact the ability of several high-risk HPV E7 proteins to bind and degrade the retinoblastoma tumor suppressor or activate E2F target gene expression. HPVs infect human keratinocytes, and we previously reported that both PTPN14 degradation by HPV16 E7 and PTPN14 CRISPR knockout repress keratinocyte differentiation-related genes. Now, we have found that blocking PTPN14 binding through mutation of the conserved C-terminal arginine rendered both HPV16 and HPV18 E7 unable to repress differentiation-related gene expression. We then confirmed that the HPV18 E7 variant that could not bind PTPN14 was also impaired in repressing differentiation when expressed from the complete HPV18 genome. Finally, we found that the ability of HPV18 E7 to extend the life span of primary human keratinocytes required PTPN14 binding. CRISPR/Cas9 knockout of PTPN14 rescued keratinocyte life span extension in the presence of the PTPN14 binding-deficient HPV18 E7 variant. These results support the model that PTPN14 degradation by high-risk HPV E7 leads to repression of differentiation and contributes to its carcinogenic activity.IMPORTANCE The E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. HPV E7 binds the putative tumor suppressor PTPN14 and targets it for degradation using the ubiquitin ligase UBR4. PTPN14 binds to a C-terminal arginine highly conserved in diverse HPV E7. Our previous efforts to understand how PTPN14 degradation contributes to the carcinogenic activity of high-risk HPV E7 used variants of E7 unable to bind to UBR4. Now, by directly manipulating E7 binding to PTPN14 and using a PTPN14 knockout rescue experiment, we demonstrate that the degradation of PTPN14 is required for high-risk HPV18 E7 to extend keratinocyte life span. Our data show that PTPN14 binding by HPV16 E7 and HPV18 E7 represses keratinocyte differentiation. HPV-positive cancers are frequently poorly differentiated, and the HPV life cycle depends upon keratinocyte differentiation. The finding that PTPN14 binding by HPV E7 impairs differentiation has significant implications for HPV-mediated carcinogenesis and the HPV life cycle.
Collapse
|
15
|
Maugein A, Diedisheim M, Bailly K, Scharfmann R, Albagli O. The RB gene family controls the maturation state of the EndoC-βH2 human pancreatic β-cells. Differentiation 2020; 113:1-9. [PMID: 32120156 DOI: 10.1016/j.diff.2020.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/18/2023]
Abstract
The functional maturation of human pancreatic β-cells remains poorly understood. EndoC-βH2 is a human β-cell line with a reversible immortalized phenotype. Removal of the two oncogenes, SV40LT and hTERT introduced for its propagation, stops proliferation, triggers cell size increase and senescence, promotes mitochondrial activity and amplifies several β-cell traits and functions. Overall, these events recapitulate several aspects of functional β-cell maturation. We report here that selective depletion of SV40LT, but not of hTERT, is sufficient to revert EndoC-βH2 immortalization. SV40LT inhibits the activity of the RB family members and of P53. In EndoC-βH2 cells, the knock-down of RB itself, and, to a lesser extent, of its relative P130, precludes most events triggered by SV40LT depletion. In contrast, the knock-down of P53 does not prevent reversion of immortalization. Thus, an increase in RB and P130 activity, but not in P53 activity, is required for functional maturation of EndoC-βH2 cells upon SV40LT-depletion. In addition, RB and/or P130 depletion in SV40LT-expressing EndoC-βH2 cells decreases cell size, stimulates proliferation, and decreases the expression of key β-cell genes. Thus, despite SV40LT expression, EndoC-βH2 cells have a residual RB activity, which when suppressed reverts them to a more immature phenotype. These results show that the expression and activity levels of RB family members, especially RB itself, regulate the maturation state of EndoC-βH2 cells.
Collapse
Affiliation(s)
- Alicia Maugein
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France
| | - Marc Diedisheim
- Assistance Publique - Hôpitaux de Paris, Diabetology Department, Paris University, Cochin Hospital, and INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris University, 75006, Paris, France
| | - Karine Bailly
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France
| | - Raphaël Scharfmann
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France
| | - Olivier Albagli
- Paris University, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 75014, Paris, France.
| |
Collapse
|
16
|
Taghizadeh E, Jahangiri S, Rostami D, Taheri F, Renani PG, Taghizadeh H, Gheibi Hayat SM. Roles of E6 and E7 Human Papillomavirus Proteins in Molecular Pathogenesis of Cervical Cancer. Curr Protein Pept Sci 2019; 20:926-934. [PMID: 31244421 DOI: 10.2174/1389203720666190618101441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/11/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023]
Abstract
Human papillomavirus (HPV) cancers are expected to be major global health concerns in the upcoming decades. The growth of HPV-positive cancer cells depends on the consistent expression of oncoprotein which has been poorly taken into account in the cellular communication. Among them, E6/E7 oncoproteins are attractive therapeutic targets as their inhibition rapidly leads to the onset of aging in HPV-positive cancer cells. This cellular response is associated with the regeneration of p53, pRb anti-proliferative proteins as well as the mTOR signaling pathway; hence, the identification of involved and application of E6/E7 inhibitors can lead to new therapeutic strategies. In the present review, we focused on the pathogenicity of E6/E7 Proteins of human papillomavirus and their roles associated with the cervical cancer.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sepideh Jahangiri
- Genetics department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Forough Taheri
- Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Hassan Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
17
|
Yun HY, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin HC, Park H, Oh BH, Kim WK, Bae KH, Lee SC, Lee EW, Ku B, Kim SJ. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol 2019; 17:e3000367. [PMID: 31323018 PMCID: PMC6668832 DOI: 10.1371/journal.pbio.3000367] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7’s ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis. Human papillomaviruses cause various diseases associated with cellular hyperproliferation, including cervical cancer. Structural, biochemical, and cellular analyses reveal the molecular basis and significance of the intermolecular interaction between the E7 protein of human papillomavirus 18 and the human tumor suppressor protein PTPN14.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Models, Molecular
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Protein Binding
- Protein Domains
- Protein Tyrosine Phosphatases, Non-Receptor/chemistry
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Retinoblastoma Protein/chemistry
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Sequence Homology, Amino Acid
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Min Wook Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Shin
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyunmin Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Kon Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| |
Collapse
|
18
|
Bashaw AA, Teoh SM, Tuong ZK, Leggatt GR, Frazer IH, Chandra J. HPV16 E7-Driven Epithelial Hyperplasia Promotes Impaired Antigen Presentation and Regulatory T-Cell Development. J Invest Dermatol 2019; 139:2467-2476.e3. [PMID: 31207230 DOI: 10.1016/j.jid.2019.03.1162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/31/2019] [Indexed: 01/21/2023]
Abstract
Human papillomaviruses infect keratinocytes and can lead to hyperproliferative dysplasia and malignant transformation if not cleared by the immune system. Human papillomavirus has evolved an array of mechanisms to evade and manipulate the immune system to improve replication efficiency and promote persistent infection. We here demonstrate that hyperproliferative skin expressing the high-risk human papillomavirus 16 E7 oncogene as a transgene drives immunomodulation of dendritic cells (DCs), resulting in reduced capacity to take up antigen and prime effector CD4+ T cell responses. The phenotype of DCs in the E7-expressing hyperproliferative skin was not reversible by activation through intradermal immunization. Naïve CD4+ T cells primed by E7-driven hyperproliferative skin acquired FoxP3 expression and an anergic phenotype. DC and T help modulation was dependent on E7-retinoblastoma protein interaction-driven epithelial hyperproliferation, rather than on expression of E7. Inhibition of binding of E7 to retinoblastoma protein, and of consequent epithelial hyperplasia, was associated with normal skin DC phenotype, and T helper type 1 effector responses to immunization were restored. We conclude that human papillomavirus-induced epithelial hyperplasia modulates epithelial DCs and inhibits T helper type 1 immunity while polarizing T-cell differentiation to a regulatory or anergic phenotype.
Collapse
Affiliation(s)
- Abate Assefa Bashaw
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Siok M Teoh
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Janin Chandra
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
19
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Katayama M, Kiyono T, Kuroda K, Ueda K, Onuma M, Shirakawa H, Fukuda T. Rat-derived feeder cells immortalized by expression of mutant CDK4, cyclin D, and telomerase can support stem cell growth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:945-956. [PMID: 30826331 DOI: 10.1016/j.bbamcr.2019.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/27/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
The maintenance of stem cells often requires the support of feeder cells. Primary mouse embryonic fibroblasts (MEFs) have traditionally been used as feeder cells, and although these MEF-derived feeder cells have exhibited a reasonable performance, they require repeated cell isolation, since MEFs cannot expand indefinitely. To overcome this limitation, immortalized cells, such as STO cells, have been used. However, one major disadvantage is that previously reported immortalized cells can only support stem cell cultures for a relatively short period, typically 4 to 7 days. In this study, we found that our newly established rat-derived fibroblasts immortalized by the expression of mutant cyclin-dependent kinase 4, cyclin D, and telomerase reverse transcriptase, can function as feeder cells for relatively long cell culture periods of approximately 14 days. The rat-derived immortalized cells developed in this study should be a useful source of feeder cells to support stem cell research.
Collapse
Affiliation(s)
- Masafumi Katayama
- National Institute for Environmental Studies, Center for Environmental Biology and Ecosystem Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; National Institute for Environmental studies, Wildlife Genome Collaborative Research Group, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Tohru Kiyono
- National Cancer Center Research Institute, Division of Carcinogenesis and Cancer Prevention, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Kengo Kuroda
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Kazuma Ueda
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Manabu Onuma
- National Institute for Environmental Studies, Center for Environmental Biology and Ecosystem Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; National Institute for Environmental studies, Wildlife Genome Collaborative Research Group, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Hitoshi Shirakawa
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Tomokazu Fukuda
- National Institute for Environmental studies, Wildlife Genome Collaborative Research Group, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Iwate University, Graduate School of Science and Engineering, 4-3-5, Ueda, Morioka 020-8551, Japan; Soft-Path Engineering Research Center (SPERC), Iwate University, Morioka, Japan.
| |
Collapse
|
21
|
Vázquez-Ulloa E, Lizano M, Sjöqvist M, Olmedo-Nieva L, Contreras-Paredes A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Rev Med Virol 2018; 28:e1988. [PMID: 29956408 DOI: 10.1002/rmv.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
The Notch pathway is a conserved signaling pathway and a form of direct cell-cell communication related to many biological processes during development and adulthood. Deregulation of the Notch pathway is involved in many diseases, including cancer. Almost 20% of all cancer cases have an infectious etiology, with viruses responsible for at least 1.5 million new cancer cases per year. Seven groups of viruses have been classified as oncogenic: hepatitis B and C viruses (HBV and HCV respectively), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), human T lymphotropic virus (HTLV-1), human papillomavirus (HPV), and Merkel cell polyomavirus (MCPyV). These viruses share the ability to manipulate a variety of cell pathways that are critical in proliferation and differentiation, leading to malignant transformation. Viral proteins interact directly or indirectly with different members of the Notch pathway, altering their normal function. This review focuses exclusively on the direct interactions of viral oncoproteins with Notch elements, providing a deeper understanding of the dual behavior of the Notch pathway as activator or suppressor of neoplasia in virus-related cancers.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Tecnológico Nacional de México, Instituto Tecnológico de Gustavo A. Madero, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
| | - Leslie Olmedo-Nieva
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
22
|
Martínez-Ramírez I, Carrillo-García A, Contreras-Paredes A, Ortiz-Sánchez E, Cruz-Gregorio A, Lizano M. Regulation of Cellular Metabolism by High-Risk Human Papillomaviruses. Int J Mol Sci 2018; 19:ijms19071839. [PMID: 29932118 PMCID: PMC6073392 DOI: 10.3390/ijms19071839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
The alteration of glucose metabolism is one of the first biochemical characteristics associated with cancer cells since most of these cells increase glucose consumption and glycolytic rates even in the presence of oxygen, which has been called “aerobic glycolysis” or the Warburg effect. Human papillomavirus (HPV) is associated with approximately 5% of all human cancers worldwide, principally to cervical cancer. E6 and E7 are the main viral oncoproteins which are required to preserve the malignant phenotype. These viral proteins regulate the cell cycle through their interaction with tumor suppressor proteins p53 and pRB, respectively. Together with the viral proteins E5 and E2, E6 and E7 can favor the Warburg effect and contribute to radio- and chemoresistance through the increase in the activity of glycolytic enzymes, as well as the inhibition of the Krebs cycle and the respiratory chain. These processes lead to a fast production of ATP obtained by Warburg, which could help satisfy the high energy demands of cancer cells during proliferation. In this way HPV proteins could promote cancer hallmarks. However, it is also possible that during an early HPV infection, the Warburg effect could help in the achievement of an efficient viral replication.
Collapse
Affiliation(s)
- Imelda Martínez-Ramírez
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Elizabeth Ortiz-Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
| | - Alfredo Cruz-Gregorio
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 14080, Mexico.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
23
|
Calaf GM, Urzua U, Termini L, Aguayo F. Oxidative stress in female cancers. Oncotarget 2018; 9:23824-23842. [PMID: 29805775 PMCID: PMC5955122 DOI: 10.18632/oncotarget.25323] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Breast, cervical and ovarian cancers are highly prevalent in women worldwide. Environmental, hormonal and viral-related factors are especially relevant in the development of these tumors. These factors are strongly related to oxidative stress (OS) through the generation of reactive oxygen species (ROS). The OS is caused by an imbalance in the redox status of the organism and is literally defined as "an imbalance between ROS generation and its detoxification by biological system leading to impairment of damage repair by cell/tissue". The multistep progression of cancer suggests that OS is involved in cancer initiation, promotion and progression. In this review, we described the role of OS and the interplay with environmental, host and viral factors related to breast, cervical and ovarian cancers initiation, promotion and progression. In addition, the role of the natural antioxidant compound curcumin and other compounds for breast, cervical and ovarian cancers prevention/treatment is discussed.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación (IAI), Universidad de Tarapacá, Arica, Chile
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | - Ulises Urzua
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lara Termini
- Instituto do Câncer do Estado de São Paulo, Centro de Investigação Translacional em Oncologia, Laboratório de Oncologia Experimental, São Paulo, SP, Brazil
| | - Francisco Aguayo
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Kuo P, Tuong ZK, Teoh SM, Frazer IH, Mattarollo SR, Leggatt GR. HPV16E7-Induced Hyperplasia Promotes CXCL9/10 Expression and Induces CXCR3 + T-Cell Migration to Skin. J Invest Dermatol 2017; 138:1348-1359. [PMID: 29277541 DOI: 10.1016/j.jid.2017.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
Chemokines regulate tissue immunity by recruiting specific subsets of immune cells. Mice expressing the E7 protein of human papilloma virus 16 as a transgene from a keratin 14 promoter (K14.E7) show increased epidermal and dermal lymphocytic infiltrates, epidermal hyperplasia, and suppressed local immunity. Here, we show that CXCL9 and CXCL10 are overexpressed in non-hematopoietic cells in skin of K14.E7 mice when compared with non-transgenic animals, and recruit CXCR3+ lymphocytes to the hyperplastic skin. Overexpression of CXCL9 and CXCL10 is not observed in E7 transgenic mice with mutated Rb gene whose protein product cannot interact with E7 (K14.E7xRbΔL/ΔL) and in consequence lack hyperplastic epithelium. CXCR3+ T cells are preferentially recruited by CXCL9 and CXCL10 in supernatants of K14.E7 but not K14.E7xRbΔL/ΔL skin cultures in vitro. CXCR3 signalling promotes infiltration of a subset of effector T lymphocytes that enables donor lymphocyte deficient, E7-expressing skin graft rejection. Taken together, this suggests that recruitment of CXCR3+ T cells can be an important factor in the rejection of precancerous skin epithelium providing they can overcome local immunosuppressive mechanisms driven by skin-resident lymphocytes.
Collapse
Affiliation(s)
- Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
25
|
Bashaw AA, Leggatt GR, Chandra J, Tuong ZK, Frazer IH. Modulation of antigen presenting cell functions during chronic HPV infection. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2017; 4:58-65. [PMID: 29179871 PMCID: PMC5883240 DOI: 10.1016/j.pvr.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HR-HPV) infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs) are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.
Collapse
Affiliation(s)
- Abate Assefa Bashaw
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
26
|
Jazayeri SD, Kuo PT, Leggatt GR, Frazer IH. HPV16-E7-Specific Activated CD8 T Cells in E7 Transgenic Skin and Skin Grafts. Front Immunol 2017; 8:524. [PMID: 28523003 PMCID: PMC5415560 DOI: 10.3389/fimmu.2017.00524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Human papillomavirus (HPV) 16 E7 (E7) protein expression in skin promotes epithelial hyperproliferation and transformation to malignancy. Grafts of murine skin expressing E7 protein as a transgene in keratinocytes are not rejected from immunocompetent recipients, whereas grafts expressing ovalbumin (OVA), with or without coexpression of E7 protein, are promptly rejected, demonstrating that E7-associated non-antigen-specific local immunosuppression is not a major determinant of lack of rejection of E7 transgenic skin. To determine whether failure of rejection of E7 skin grafts is due to failure to attract E7-specific effector T cells, E7- and OVA-specific effector CD8+ T cells, activated in vitro, were transferred to animals bearing E7 transgenic skin grafts. Three days after T cell transfer, E7-specific T cells were present in significantly greater numbers than OVA-specific T cells in the grafted skin on animals bearing recently placed or healed E7 grafts, without graft rejection, and also in the ear skin of E7 transgenic animals, without obvious pathology. E7 and OVA-specific T cells were present in lesser numbers in healed E7 grafts than in recently placed grafts and in lesser numbers in recently placed E7 transgenic epidermal grafts without E7-associated hyperproliferation, derived from E7 transgenic mice with a mutated retinoblastoma gene. These data demonstrate that effector T cells are to some extent attracted to E7 transgenic skin specifically by E7 expression, but in large measure non-specifically by the epithelial proliferation associated with E7 expression, and by the local inflammation produced by grafting. Failure of E7 graft rejection was observed despite trafficking of E7-specific effector T cells to E7-expressing epithelium, a finding of consequence for immunotherapy of HPV 16 E7-associated human cancers.
Collapse
Affiliation(s)
| | - Paula T Kuo
- Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | | | - Ian H Frazer
- Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
28
|
Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, García-Villa E, Bonilla-Delgado J, Lagunas-Martínez A, Tapia JSO, Lambert PF, García-Carrancá A, Gariglio P. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology 2016; 499:230-242. [PMID: 27693927 DOI: 10.1016/j.virol.2016.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 01/24/2023]
Abstract
Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E2) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Yazmín Gómez-Gómez
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México; Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Rodolfo Ocadiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - Enrique García-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México
| | - José Bonilla-Delgado
- Unidad de Investigación, Hospital Juárez de México, Ciudad de México 07760, México
| | - Alfredo Lagunas-Martínez
- División de Biología Molecular de Patógenos, CISEI, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Jesús Santa-Olalla Tapia
- Unidad de Diagnóstico y Medicina Molecular, "Dr. Ruy Pérez Tamayo", Hospital del Niño y el Adolescente Morelense, Cuernavaca, Morelos, México; Facultad de Medicina, Universidad Autonóma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM) and División de Investigación Básica, Instituto Nacional de Cancerología (INCan), Secretaría de Salud, Ciudad de México 14080, México.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México.
| |
Collapse
|
29
|
A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury. EBioMedicine 2016; 9:314-323. [PMID: 27333029 PMCID: PMC4972546 DOI: 10.1016/j.ebiom.2016.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022] Open
Abstract
A validated animal model would assist with research on the immunological consequences of the chronic expression of stress keratins KRT6, KRT16, and KRT17, as observed in human pre-malignant hyperproliferative epithelium. Here we examine keratin gene expression profile in skin from mice expressing the E7 oncoprotein of HPV16 (K14E7) demonstrating persistently hyperproliferative epithelium, in nontransgenic mouse skin, and in hyperproliferative actinic keratosis lesions from human skin. We demonstrate that K14E7 mouse skin overexpresses stress keratins in a similar manner to human actinic keratoses, that overexpression is a consequence of epithelial hyperproliferation induced by E7, and that overexpression further increases in response to injury. As stress keratins modify local immunity and epithelial cell function and differentiation, the K14E7 mouse model should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local innate and adaptive immunity. Persistence of HPV infection in epithelial premalignancy is not fully understood. HPV16 E7 expression in skin induces expression of “stress” keratin. “Stress” keratin induction is also observed in human actinic keratosis. Induction of “stress” keratins persists after skin grafting of E7-expressing skin. Disruption of E7-Retinoblastoma binding abrogates keratin misregulation.
“Stress” keratins modify local immunity and epithelial cell function and differentiation. Thus, identification and validation of a suitable mouse model to study the influence of stress keratin expression normally and during tumor development is important. Mice that transgenically express high-risk HPV16 E7 oncoprotein in the skin (K14E7) presents with epithelial hyperplasia and is used for modeling HPV-associated pre-cancer. We show that “stress” keratins are induced in the K14E7 epithelium, similar to skin from patients with actinic keratosis. Thus the K14E7 mouse should permit study of how continued overexpression of stress keratins impacts on epithelial tumor development and on local immunity.
Collapse
|
30
|
Bergot AS, Ford N, Leggatt GR, Wells JW, Frazer IH, Grimbaldeston MA. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells. PLoS Pathog 2014; 10:e1004466. [PMID: 25340820 PMCID: PMC4207828 DOI: 10.1371/journal.ppat.1004466] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Human Papillomavirus (HPV) 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Neill Ford
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| | - Michele A. Grimbaldeston
- Division of Human Immunology, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
31
|
Abstract
E7 is an accessory protein that is not encoded by all papillomaviruses. The E7 amino terminus contains two regions of similarity to conserved regions 1 and 2 of the adenovirus E1A protein, which are also conserved in the simian vacuolating virus 40 large tumor antigen. The E7 carboxyl terminus consists of a zinc-binding motif, which is related to similar motifs in E6 proteins. E7 proteins play a central role in the human papillomavirus life cycle, reprogramming the cellular environment to be conducive to viral replication. E7 proteins encoded by the cancer-associated alpha human papillomaviruses have potent transforming activities, which together with E6, are necessary but not sufficient to render their host squamous epithelial cell tumorigenic. This article strives to provide a comprehensive summary of the published research studies on human papillomavirus E7 proteins.
Collapse
|
32
|
Choyce A, Yong M, Narayan S, Mattarollo SR, Liem A, Lambert PF, Frazer IH, Leggatt GR. Expression of a single, viral oncoprotein in skin epithelium is sufficient to recruit lymphocytes. PLoS One 2013; 8:e57798. [PMID: 23469070 PMCID: PMC3582605 DOI: 10.1371/journal.pone.0057798] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/26/2013] [Indexed: 11/19/2022] Open
Abstract
Established cancers are frequently associated with a lymphocytic infiltrate that fails to clear the tumour mass. In contrast, the importance of recruited lymphocytes during premalignancy is less well understood. In a mouse model of premalignant skin epithelium, transgenic mice that express the human papillomavirus type 16 (HPV16) E7 oncoprotein under a keratin 14 promoter (K14E7 mice) display epidermal hyperplasia and have a predominant infiltrate of lymphocytes consisting of both CD4 and CD8 T cells. Activated, but not naïve T cells, were shown to preferentially traffic to hyperplastic skin with an increased frequency of proliferative CD8+ T cells and CD4+ T cells expressing CCR6 within the tissue. Disruption of the interaction between E7 protein and retinoblastoma tumour suppressor protein (pRb) led to reduced epithelial hyperplasia and T cell infiltrate. Finally, while K14E7 donor skin grafts are readily accepted onto syngeneic, non-transgenic recipients, these same skin grafts lacking skin-resident lymphocytes were rejected. Our data suggests that expression of a single oncoprotein in the epidermis is sufficient for lymphocyte trafficking (including immunosuppressive lymphocytes) to premalignant skin.
Collapse
Affiliation(s)
- Allison Choyce
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Michelle Yong
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Sharmal Narayan
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Stephen R. Mattarollo
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Amy Liem
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
- * E-mail:
| |
Collapse
|
33
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
34
|
Requirement for stromal estrogen receptor alpha in cervical neoplasia. Discov Oncol 2012; 4:50-9. [PMID: 23065599 DOI: 10.1007/s12672-012-0125-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/02/2012] [Indexed: 12/22/2022] Open
Abstract
The major etiological factor for cervical cancer is the high-risk human papillomavirus (HPV), which encodes E6 and E7 oncogenes. However, HPV is not sufficient, and estrogen has been proposed as an etiological cofactor for the disease. Its requirement has been demonstrated in mouse models for HPV-associated cervical cancer (e.g., K14E7 transgenic mice). Although germline knockout of estrogen receptor alpha (ERα) renders mice resistant to cervical cancer, the cell-type-specific requirement for ERα is not known. In this study, we demonstrate that temporal deletion of stromal ERα induced complete regression of cervical dysplasia in K14E7 mice. Our results strongly support the hypothesis that stromal ERα is necessary for HPV-induced cervical carcinogenesis and implicate paracrine mechanisms involving ERα signaling in the development of estrogen-dependent cervical cancers. This is the first evidence to support the importance of stromal ERα in estrogen-dependent neoplastic disease of the female reproductive tract.
Collapse
|
35
|
Jabbar SF, Park S, Schweizer J, Berard-Bergery M, Pitot HC, Lee D, Lambert PF. Cervical cancers require the continuous expression of the human papillomavirus type 16 E7 oncoprotein even in the presence of the viral E6 oncoprotein. Cancer Res 2012; 72:4008-16. [PMID: 22700879 DOI: 10.1158/0008-5472.can-11-3085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPV), such as HPV-16, are etiologic agents of a variety of anogenital and oral malignancies, including nearly all cases of cervical cancer. Cervical cancers arising in transgenic mice that express HPV-16 E7 in an inducible manner require the continuous expression of E7 for their maintenance. However, in HPV-associated cancers in vivo, E6 and E7 invariably are coexpressed. In this study, we investigated whether cervical cancers rely on the continuous expression of E7 in the context of constitutively expressed E6. We placed the inducible HPV-16 E7 transgene onto a background in which HPV-16 E6 was constitutively expressed. In transgenic mice with high-grade cervical dysplastic lesions and cervical cancer, repressing the expression of E7 led to the regression of all cancers and the vast majority of high-grade dysplastic lesions. In addition, cervical cancers were occasionally observed in transgenic mice in which E7 was repressed and then reexpressed. Our findings indicate that even in the presence of constitutively expressed E6, the continuous expression of E7 is required for the maintenance of cervical cancers and most precancerous lesions. These data have important implications for the potential clinical use of drugs designed to inhibit the expression and/or function of E7 to treat HPV-associated cancers.
Collapse
Affiliation(s)
- Sean F Jabbar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
RXRα deletion and E6E7 oncogene expression are sufficient to induce cervical malignant lesions in vivo. Cancer Lett 2012; 317:226-36. [DOI: 10.1016/j.canlet.2011.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/01/2023]
|
37
|
Abstract
Head and neck squamous cell carcinomas (HNSCC) is a common cancer in humans long known to be caused by tobacco and alcohol use, but now an increasing percentage of HNSCC is recognized to be caused by the same human papillomaviruses (HPV) that cause cervical and other anogenital cancers. HPV-positive HNSCCs differ remarkably from HPV-negative HNSCCs in their clinical response and molecular properties. From studies in mice, we know that E7 is the dominant HPV oncoprotein in head and neck cancer. E7 is best known for its ability to inactivate pRb, the product of the retinoblastoma tumor susceptibility gene. However, loss of pRb function does not fully account for potency of E7 in causing head and neck cancer. In this study, we characterized the cancer susceptibility of mice deficient in the expression of pRb and either of two related "pocket" proteins, p107 and p130, that are also inactivated by E7. pRb/p107-deficient mice developed head and neck cancer as frequently as do HPV-16 E7 transgenic mice. The head and neck epithelia of the pRb/p107-deficient mice also displayed the same acute phenotypes and biomarker readouts as observed in the epithelia of E7 transgenic mice. Mice deficient for pRb and p130 in their head and neck epithelia showed intermediate acute and tumor phenotypes. We conclude that pRb and p107 act together to efficiently suppress head and neck cancer and are, therefore, highly relevant targets of HPV-16 E7 in its contribution to HPV-positive HNSCC.
Collapse
Affiliation(s)
- Myeong-Kyun Shin
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
38
|
Bourgo RJ, Thangavel C, Ertel A, Bergseid J, McClendon AK, Wilkens L, Witkiewicz AK, Wang JYJ, Knudsen ES. RB restricts DNA damage-initiated tumorigenesis through an LXCXE-dependent mechanism of transcriptional control. Mol Cell 2011; 43:663-72. [PMID: 21855804 DOI: 10.1016/j.molcel.2011.06.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 03/28/2011] [Accepted: 06/26/2011] [Indexed: 01/18/2023]
Abstract
The LXCXE peptide motif facilitates interaction between the RB tumor suppressor and a large number of cellular proteins that are expected to impinge on diverse biological processes. In vitro and in vivo analyses demonstrated that LXCXE binding function is dispensable for RB promoter association and control of basal gene expression. Dependence on this function of RB is unmasked after DNA damage, wherein LXCXE binding is essential for exerting control over E2F3 and suppressing cell-cycle progression in the presence of genotoxic stress. Gene expression profiling revealed that the transcriptional program coordinated by this specific aspect of RB is associated with progression of human hepatocellular carcinoma and poor disease outcome. Consistent with these findings, biological challenge revealed a requirement for LXCXE binding in suppression of genotoxin-initiated hepatocellular carcinoma in vivo. Together, these studies establish an essential role of the LXCXE binding motif for RB-mediated transcriptional control, response to genotoxic insult, and tumor suppression.
Collapse
Affiliation(s)
- Ryan J Bourgo
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jabbar S, Strati K, Shin MK, Pitot HC, Lambert PF. Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice. Virology 2010; 407:60-7. [PMID: 20797753 DOI: 10.1016/j.virol.2010.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/10/2010] [Accepted: 08/02/2010] [Indexed: 12/11/2022]
Abstract
High-risk human papillomaviruses (HPVs) contribute to cervical and other anogenital cancers, and they are also linked etiologically to a subset of head and neck squamous cell carcinomas (HNSCC). We previously established a model for HPV-associated HNSCC in which we treated transgenic mice expressing the papillomaviral oncoproteins with the chemical carcinogen 4-nitroquinoline-1-oxide (4-NQO). We found that the HPV-16 E7 oncoprotein was highly potent in causing HNSCC, and its dominance masked any potential oncogenic contribution of E6, a second papillomaviral oncoprotein commonly expressed in human cancers. In the current study, we shortened the duration of treatment with 4-NQO to reduce the incidence of cancers and discovered a striking synergy between E6 and E7 in causing HNSCC. Comparing the oncogenic properties of wild-type versus mutant E6 genes in this model for HNSCC uncovered a role for some but not other cellular targets of E6 previously shown to contribute to cervical cancer.
Collapse
Affiliation(s)
- Sean Jabbar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 1400 University Avenue, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
40
|
Li H, Zhan T, Li C, Liu M, Wang QK. Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXRbeta motif and NF-kappaB cytoplasmic sequestration. Biochem Biophys Res Commun 2009; 388:383-8. [PMID: 19665994 DOI: 10.1016/j.bbrc.2009.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/04/2009] [Indexed: 11/17/2022]
Abstract
Down-regulation of transcription of the MHC class I genes in HPV16 tumorigenic cells is partly due to HPV16E7 associated with the MHC class I promoter and repressed chromatin activation. In this study, we further demonstrated that HPV16E7 is physically associated with a putative RXRbeta binding motif (GGTCA) of the proximal promoter of the MHC class I genes by using reporter transcriptional assays and chromatin immunoprecipitation assays. Our data also provide evidence that HPV16E7 inhibits TNF-alpha-induced up-regulation of MHC class I transcription by impaired nuclear translocation of NF-kappaB. More importantly, CaSki tumor cells treated with TSA and transfected with the constitutively active mutant form of IKK-alpha (which can activate NF-kappaB directly) showed a maximal level of up-regulation of MHC-I expression. Taken together, our results suggest that HPV16E7 may employ two independent mechanisms to ensure that either the constitutive or inducible transcription of MHC class I genes is down-regulated.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | |
Collapse
|
41
|
Movva S, Rodriguez L, Arias-Pulido H, Verschraegen C. Novel chemotherapy approaches for cervical cancer. Cancer 2009; 115:3166-80. [DOI: 10.1002/cncr.24364] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Shin MK, Balsitis S, Brake T, Lambert PF. Human papillomavirus E7 oncoprotein overrides the tumor suppressor activity of p21Cip1 in cervical carcinogenesis. Cancer Res 2009; 69:5656-63. [PMID: 19584294 DOI: 10.1158/0008-5472.can-08-3711] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The E7 oncoprotein of the high-risk human papillomaviruses (HPV) is thought to contribute to cervical carcinogenesis at least in part by abrogating cell cycle regulation. E7 can dysregulate the cell cycle through its interaction with several cellular proteins including the retinoblastoma suppressor protein pRb, as well as the cyclin-dependent kinase inhibitor p21(Cip1). Inactivation of pRb in cervical epithelia is not sufficient to explain the ability of E7 to cause cervical cancers in transgenic mice. In the current study, we focused on the role of p21(Cip1) in cervical cancer. Cervical disease was significantly increased in p21(-/-) mice compared with p21(+/+) mice, showing that p21(Cip1) can function as a tumor suppressor in this tissue. Importantly, the ability of E7 to induce cervical cancers was not significantly enhanced on the p21-null background, consistent with the hypothesis that the ability of E7 to inhibit p21(Cip1) contributes to its carcinogenic properties. Further supportive of this hypothesis, cervical carcinogenesis in mice expressing a mutant form of HPV-16 E7, E7(CVQ), which fails to inactivate p21(Cip1), was significantly reduced compared with that in K14E7(WT) mice expressing wild-type HPV-16 E7. However, K14E7(CVQ) mice still displayed heightened levels of cervical carcinogenesis compared with that in nontransgenic mice, indicating that activities of E7 besides its capacity to inactivate p21(Cip1) also contribute to cervical carcinogenesis. Taken together, we conclude that p21(Cip1) functions as a tumor suppressor in cervical carcinogenesis and that p21(Cip1) inactivation by HPV-16 E7 partially contributes to the contribution of E7 to cervical carcinogenesis.
Collapse
Affiliation(s)
- Myeong-Kyun Shin
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
43
|
A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development. Mol Cell Biol 2009; 29:4455-66. [PMID: 19506017 DOI: 10.1128/mcb.00473-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) is a crucial mediator of breast development, and loss of TGF-beta-induced growth arrest is a hallmark of breast cancer. TGF-beta has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-beta cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1(DeltaL) and Rb1(NF)), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-beta growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-beta signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-beta cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-beta in growth control and mammary gland development.
Collapse
|
44
|
Abstract
Over the last two decades since discovery of human papillomavirus (HPV) type 16 and 18 DNAs in cervical cancers by Dr. Harald zur Hausen, HPVs have been well characterized as causative agents for cervical cancer. Viral DNA from a specific group of HPVs can be detected in at least 90% of all cervical cancers and two viral genes, E6 and E7, are invariably expressed in HPV-positive cervical cancer cells. Their gene products are known to inactivate the major tumor suppressors, p53 and pRB, respectively. In addition, one function of E6 is to activate telomerase, and E6 and E7 cooperate to effectively immortalize human primary epithelial cells. Though expression of E6 and E7 is itself not sufficient for cancer development, it seems to be either directly or indirectly involved in every stage of multi-step carcinogenesis. Indeed, it has been shown that only one or two genetic alterations in addition to expression of E6 and E7 are experimentally sufficient to confer tumorigenicity to normal human cervical keratinocytes. Epidemiological and biological studies suggest the potential efficacy of prophylactic vaccines to prevent genital HPV infection as an anti-cancer strategy. However, given the widespread nature of HPV infection and unresolved issues about the duration and type specificity of the currently available HPV vaccines, it is crucial that molecular details of the natural history of HPV infection as well as the biological activities of the viral oncoproteins be elucidated in order to provide the basis for development of new therapeutic strategies against HPV-associated malignancies. This review highlights the novel functions of E6 and E7 as well as the molecular mechanisms of HPV-induced carcinogenesis.
Collapse
|
45
|
Bousarghin L, Touze A, Gaud G, Iochmann S, Alvarez E, Reverdiau P, Gaitan J, Jourdan ML, Sizaret PY, Coursaget PL. Inhibition of cervical cancer cell growth by human papillomavirus virus-like particles packaged with human papillomavirus oncoprotein short hairpin RNAs. Mol Cancer Ther 2009; 8:357-65. [PMID: 19174559 DOI: 10.1158/1535-7163.mct-08-0626] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of human papillomavirus (HPV E6 and HPV E7) oncogenes in human cervical cells results in the development of cancer, and E6 and E7 proteins are therefore targets for preventing cervical cancer progression. Here, we describe the silencing of E6 and E7 expression in cervical carcinoma cells by RNA interference. In order to increase the efficacy of the RNA interference, HPV pseudovirions coding for a short hairpin RNA (shRNA) sequence were produced. The results indicated the degradation of E6 and E7 mRNAs when shRNA against E6 or E7 were delivered by pseudovirions in HPV-positive cells (CaSki and TC1 cells). E6 silencing resulted in the accumulation of cellular p53 and reduced cell viability. More significant cell death was observed when E7 expression was suppressed. Silencing E6 and E7 and the consequences for cancer cell growth were also investigated in vivo in mice using the capacity of murine TC1 cells expressing HPV-16 E6 and E7 oncogenes to induce fast-growing tumors. Treatment with lentiviruses and HPV virus-like particle vectors coding for an E7 shRNA sequence both resulted in dramatic inhibition of tumor growth. These results show the ability of pseudovirion-delivered shRNA to produce specific gene suppression and provide an effective means of reducing HPV-positive tumor growth.
Collapse
|
46
|
E7 oncoprotein of novel human papillomavirus type 108 lacking the E6 gene induces dysplasia in organotypic keratinocyte cultures. J Virol 2009; 83:2907-16. [PMID: 19153227 DOI: 10.1128/jvi.02490-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genome organization of the novel human papillomavirus type 108 (HPV108), isolated from a low-grade cervical lesion, deviates from those of other HPVs in lacking an E6 gene. The three related HPV types HPV103, HPV108, and HPV101 were isolated from cervicovaginal cells taken from normal genital mucosa (HPV103) and low-grade (HPV108) and high-grade cervical (HPV101) intraepithelial neoplasia (Z. Chen, M. Schiffman, R. Herrero, R. DeSalle, and R. D. Burk, Virology 360:447-453, 2007, and this report). Their unusual genome organization, against the background of considerable phylogenetic distance from the other HPV types usually associated with lesions of the genital tract, prompted us to investigate whether HPV108 E7 per se is sufficient to induce the above-mentioned clinical lesions. Expression of HPV108 E7 in organotypic keratinocyte cultures increases proliferation and apoptosis, focal nuclear polymorphism, and polychromasia. This is associated with irregular intra- and extracellular lipid accumulation and loss of the epithelial barrier. These alterations are linked to HPV108 E7 binding to pRb and inducing its decrease, an increase in PCNA expression, and BrdU incorporation, as well as increased p53 and p21(CIP1) protein levels. A delay in keratin K10 expression, increased expression of keratins K14 and K16, and loss of the corneal proteins involucrin and loricrin have also been noted. These modifications are suggestive of infection by a high-risk papillomavirus.
Collapse
|
47
|
Chung SH, Wiedmeyer K, Shai A, Korach KS, Lambert PF. Requirement for estrogen receptor alpha in a mouse model for human papillomavirus-associated cervical cancer. Cancer Res 2009; 68:9928-34. [PMID: 19047174 DOI: 10.1158/0008-5472.can-08-2051] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The majority of human cervical cancers are associated with the high-risk human papillomaviruses (HPV), which encode the potent E6 and E7 oncogenes. On prolonged treatment with physiologic levels of exogenous estrogen, K14E7 transgenic mice expressing HPV-16 E7 oncoprotein in their squamous epithelia succumb to uterine cervical cancer. Furthermore, prolonged withdrawal of exogenous estrogen results in complete or partial regression of tumors in this mouse model. In the current study, we investigated whether estrogen receptor alpha (ERalpha) is required for the development of cervical cancer in K14E7 transgenic mice. We show that exogenous estrogen fails to promote either dysplasia or cervical cancer in K14E7/ERalpha-/- mice despite the continued presence of the presumed cervical cancer precursor cell type, reserve cells, and evidence for E7 expression therein. We also observed that cervical cancers in our mouse models are strictly associated with atypical squamous metaplasia (ASM), which is believed to be the precursor for cervical cancer in women. Consistently, E7 and exogenous estrogen failed to promote ASM in the absence of ERalpha. We conclude that ERalpha plays a crucial role at an early stage of cervical carcinogenesis in this mouse model.
Collapse
Affiliation(s)
- Sang-Hyuk Chung
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The retinoblastoma tumour suppressor (RB) is a crucial regulator of cell-cycle progression that is invoked in response to a myriad of anti-mitogenic signals. It has been hypothesized that perturbations of the RB pathway confer a synonymous proliferative advantage to tumour cells; however, recent findings demonstrate context-specific outcomes associated with such lesions. Particularly, loss of RB function is associated with differential response to wide-ranging therapeutic agents. Thus, the status of this tumour suppressor may be particularly informative in directing treatment regimens.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
49
|
Strati K, Lambert PF. Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer. Cancer Res 2008; 67:11585-93. [PMID: 18089787 DOI: 10.1158/0008-5472.can-07-3007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Infection with high-risk human papillomaviruses (HPV) and in particular the expression of the viral proteins E6 and E7 have been associated with the etiology of a subset of head and neck squamous cell cancer (HNSCC). However, the individual consequences of E6 and E7 expression in an in vivo model have not been examined in these tissues. We have used transgenes that direct expression of the HPV16 E6 and E7 proteins to the head and neck tissues of mice to dissect the contribution of these proteins to head and neck carcinogenesis. We report here that E7 is the major transforming oncogene in HPV-associated HNSCC, whereas E6 is more likely to play a secondary role in contributing to later stages of carcinogenesis. Furthermore, a conditional deletion of Rb, a prominent target for E7, in the same tissues did not recapitulate all E7-mediated phenotypes. Although our results do not preclude an important role for the E7-pRb interaction, they highlight the importance of pRb-independent functions of E7 in head and neck carcinogenesis.
Collapse
Affiliation(s)
- Katerina Strati
- McArdle Laboratory for Cancer Research and Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
50
|
Balsitis S, Dick F, Dyson N, Lambert PF. Critical roles for non-pRb targets of human papillomavirus type 16 E7 in cervical carcinogenesis. Cancer Res 2007; 66:9393-400. [PMID: 17018593 PMCID: PMC2858286 DOI: 10.1158/0008-5472.can-06-0984] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-risk human papillomaviruses (HPV) encode two oncogenes, E6 and E7, expressed in nearly all cervical cancers. In vivo, HPV-16 E7 has been shown to induce multiple phenotypes in the context of transgenic mice, including cervical cancer. E7 is a multifunctional protein known best for its ability to inactivate the tumor suppressor pRb. To determine the importance of pRb inactivation by E7 in cervical cancer, we pursued studies with genetically engineered mice. E7 expression in estrogen-treated murine cervix induced dysplasia and invasive cancers as reported previously, but targeted Rb inactivation in cervical epithelium was not sufficient to induce any cervical dysplasia or neoplasia. Furthermore, E7 induced cervical cancer formation even when the E7-pRb interaction was disrupted by the use of a knock-in mouse carrying an E7-resistant mutant Rb allele. pRb inactivation was necessary but not sufficient for E7 to overcome differentiation-induced or DNA damage-induced cell cycle arrest, and expression patterns of the E2F-responsive genes Mcm7 and cyclin E indicate that other E2F regulators besides pRb are important targets of E7. Together, these data indicate that non-pRb targets of E7 play critical roles in cervical carcinogenesis.
Collapse
Affiliation(s)
- Scott Balsitis
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin
| | - Fred Dick
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin
| |
Collapse
|