1
|
Cezanne A, Foo S, Kuo YW, Baum B. The Archaeal Cell Cycle. Annu Rev Cell Dev Biol 2024; 40:1-23. [PMID: 38748857 DOI: 10.1146/annurev-cellbio-111822-120242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Alice Cezanne
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Sherman Foo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Yin-Wei Kuo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| |
Collapse
|
2
|
Almeida LTGDE, Brito AS, Cioccari GM, Souza AADE, Mizusaki AMP, Lima SGDE. Lipid biomarker profile of the Permian organic-rich shales (Irati Formation) in the northernmost of Parana Basin, Brazil. AN ACAD BRAS CIENC 2024; 96:e20230970. [PMID: 38985033 DOI: 10.1590/0001-3765202420230970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/09/2024] [Indexed: 07/11/2024] Open
Abstract
The Irati Formation (Paraná Basin) is a mixed carbonate and organic-rich shale sequence intruded by Jurassic-Cretaceous basic rocks, featuring Brazil's most important oil shale deposits with different maturity levels. For the first time, the distribution of oil shale biomarkers from an outcrop section (quarry) of the Irati Formation in the northernmost Paraná Basin was analyzed by GC-MS and GC-MS/MS to determine the thermal evolution, organic matter origin and the depositional paleoenvironment. The organic-rich shale at the northernmost border of the basin has high similarity with the central and southernmost areas, indicating a primary control able to induce cyclic sedimentation in a broad (106 km2) and restricted environment. PCA and HCA analysis of bulk and molecular parameters showed changes in the organic matter composition and paleoenvironmental conditions throughout the stratigraphic column. Nonetheless, there are significant differences compared to the central-eastern and southern areas of the basin. Contrasting with the southern region, the north, predominates biphytane, low and medium gammacerane index. Pr/n-C17, Ph/n-C18, HI and OI values suggest type II/III kerogen from marine organic matter with freshwater input. Among the steranes, those of stereochemistry ααα 20R predominate over ααα 20S, and the presence of βTm indicates the shales are less thermally evolved.
Collapse
Affiliation(s)
- Lorena Tuane G DE Almeida
- Programa de Pós-Graduação em Química, Universidade Federal do Piauí/UFPI, Centro de Ciências da Natureza, Campus Ministro Petrônio Portella, s/n, Ininga, 64049-550 Teresina, PI, Brazil
| | - Ailton S Brito
- Programa de Pós-Graduação em Química, Universidade Federal do Piauí/UFPI, Centro de Ciências da Natureza, Campus Ministro Petrônio Portella, s/n, Ininga, 64049-550 Teresina, PI, Brazil
| | - Giovani M Cioccari
- Universidade Federal de Pelotas, Centro de Engenharias/CENG, Praça Domingos Rodrigues, 02, Centro, 96010-440 Pelotas, RS, Brazil
| | - Alexandre A DE Souza
- Programa de Pós-Graduação em Química, Universidade Federal do Piauí/UFPI, Centro de Ciências da Natureza, Campus Ministro Petrônio Portella, s/n, Ininga, 64049-550 Teresina, PI, Brazil
| | - Ana Maria P Mizusaki
- Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Departamento de Paleontologia e Estratigrafia, Campus do Vale, Av. Bento Gonçalves, 9500, Prédio 43127, sala 112, 91501-970 Porto Alegre, RS, Brazil
| | - Sidney G DE Lima
- Programa de Pós-Graduação em Química, Universidade Federal do Piauí/UFPI, Centro de Ciências da Natureza, Campus Ministro Petrônio Portella, s/n, Ininga, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
3
|
Oka S, Watanabe M, Ito E, Takeyama A, Matsuoka T, Takahashi M, Izumi Y, Arichi N, Ohno H, Yamasaki S, Inuki S. Archaeal Glycerolipids Are Recognized by C-Type Lectin Receptor Mincle. J Am Chem Soc 2023; 145:18538-18548. [PMID: 37555666 DOI: 10.1021/jacs.3c05473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, various metabolites derived from host microbes have been reported to modulate the immune system, with potential involvement in health or diseases. Archaea, prokaryotic organisms, are present in the human body, but their connection with the host is largely unknown when compared to other microorganisms such as bacteria. This study focused on unique glycerolipids from symbiotic methanogenic archaea and evaluated their activities toward an innate immune receptor. The results revealed that archaeal lipids were recognized by the C-type lectin receptor Mincle and induced immune responses. A concurrent structure-activity relationship study identified the key structural features of archaeal lipids required for recognition by Mincle. Subsequent gene expression profiling suggested qualitative differences between the symbiotic archaeal lipid and the pathogenic bacteria-derived lipid. These findings have broad implications for understanding the function of symbiotic archaea in host health and diseases.
Collapse
Affiliation(s)
- Shiori Oka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Miyuki Watanabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Emi Ito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Ami Takeyama
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
5
|
Tourte M, Coffinet S, Wörmer L, Lipp JS, Hinrichs KU, Oger PM. The Exploration of the Thermococcus barophilus Lipidome Reveals the Widest Variety of Phosphoglycolipids in Thermococcales. Front Microbiol 2022; 13:869479. [PMID: 35865931 PMCID: PMC9294538 DOI: 10.3389/fmicb.2022.869479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most distinctive characteristics of archaea is their unique lipids. While the general nature of archaeal lipids has been linked to their tolerance to extreme conditions, little is known about the diversity of lipidic structures archaea are able to synthesize, which hinders the elucidation of the physicochemical properties of their cell membrane. In an effort to widen the known lipid repertoire of the piezophilic and hyperthermophilic model archaeon Thermococcus barophilus, we comprehensively characterized its intact polar lipid (IPL), core lipid (CL), and polar head group compositions using a combination of cutting-edge liquid chromatography and mass spectrometric ionization systems. We tentatively identified 82 different IPLs based on five distinct CLs and 10 polar head group derivatives of phosphatidylhexoses, including compounds reported here for the first time, e.g., di-N-acetylhexosamine phosphatidylhexose-bearing lipids. Despite having extended the knowledge on the lipidome, our results also indicate that the majority of T. barophilus lipids remain inaccessible to current analytical procedures and that improvements in lipid extraction and analysis are still required. This expanded yet incomplete lipidome nonetheless opens new avenues for understanding the physiology, physicochemical properties, and organization of the membrane in this archaeon as well as other archaea.
Collapse
Affiliation(s)
- Maxime Tourte
- Univ. Lyon, Univ. Lyon 1, CNRS, UMR 5240, Villeurbanne, France
- Univ. Lyon, INSA Lyon, CNRS, UMR 5240, Villeurbanne, France
| | - Sarah Coffinet
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Lars Wörmer
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Julius S. Lipp
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
6
|
Fiore M, Chieffo C, Lopez A, Fayolle D, Ruiz J, Soulère L, Oger P, Altamura E, Popowycz F, Buchet R. Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. ASTROBIOLOGY 2022; 22:598-627. [PMID: 35196460 DOI: 10.1089/ast.2021.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phospholipids are essential components of biological membranes and are involved in cell signalization, in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant biomolecules.
Collapse
Affiliation(s)
- Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Carolina Chieffo
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Dimitri Fayolle
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| | - Johal Ruiz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Laurent Soulère
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - Philippe Oger
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Université de Lyon, Claude Bernard Lyon 1, Villeurbanne, France
| | - Emiliano Altamura
- Chemistry Department, Università degli studi di Bari "Aldo Moro," Bari, Italy
| | - Florence Popowycz
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
- Institut National Des Sciences Appliquées, INSA Lyon, Villeurbanne, France
| | - René Buchet
- Université de Lyon, Université Claude Bernard Lyon 1, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, UMR 5246, CNRS, CPE, Villeurbanne, France
| |
Collapse
|
7
|
Baumann LMF, Taubner RS, Oláh K, Rohrweber AC, Schuster B, Birgel D, Rittmann SKMR. Quantitative Analysis of Core Lipid Production in Methanothermobacter marburgensis at Different Scales. Bioengineering (Basel) 2022; 9:169. [PMID: 35447729 PMCID: PMC9027985 DOI: 10.3390/bioengineering9040169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeal lipids have a high biotechnological potential, caused by their high resistance to oxidative stress, extreme pH values and temperatures, as well as their ability to withstand phospholipases. Further, methanogens, a specific group of archaea, are already well-established in the field of biotechnology because of their ability to use carbon dioxide and molecular hydrogen or organic substrates. In this study, we show the potential of the model organism Methanothermobacter marburgensis to act both as a carbon dioxide based biological methane producer and as a potential supplier of archaeal lipids. Different cultivation settings were tested to gain an insight into the optimal conditions to produce specific core lipids. The study shows that up-scaling at a constant particle number (n/n = const.) seems to be a promising approach. Further optimizations regarding the length and number of the incubation periods and the ratio of the interaction area to the total liquid volume are necessary for scaling these settings for industrial purposes.
Collapse
Affiliation(s)
- Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Kinga Oláh
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Ann-Cathrin Rohrweber
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Arkeon GmbH, Technopark 1, 3430 Tulln an der Donau, Austria
| |
Collapse
|
8
|
Slater GF, Goad CA, Lindsay MBJ, Mumford KG, Colenbrander Nelson TE, Brady AL, Jessen GL, Warren LA. Isotopic and Chemical Assessment of the Dynamics of Methane Sources and Microbial Cycling during Early Development of an Oil Sands Pit Lake. Microorganisms 2021; 9:2509. [PMID: 34946113 PMCID: PMC8703832 DOI: 10.3390/microorganisms9122509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit the development of persistent oxygen concentrations within the water column, which are critical to the success of this reclamation approach. Here, we describe the results of a four-year (2015-2018) chemical and isotopic (δ13C) investigation into the dynamics of microbial methane cycling within Base Mine Lake (BML), the first full-scale pit lake commissioned in the AOSR. Overall, the water-column methane concentrations decreased over the course of the study, though this was dynamic both seasonally and annually. Phospholipid fatty acid (PLFA) distributions and δ13C demonstrated that dissolved methane, primarily input via fluid fine tailings (FFT) porewater advection, was oxidized by the water column microbial community at all sampling times. Modeling and under-ice observations indicated that the dissolution of methane from bubbles during ebullition, or when trapped beneath ice, was also an important source of dissolved methane. The addition of alum to BML in the fall of 2016 impacted the microbial cycling in BML, leading to decreased methane oxidation rates, the short-term dominance of a phototrophic community, and longer-term shifts in the microbial community metabolism. Overall, our results highlight a need to understand the dynamic nature of these microbial communities and the impact of perturbations on the associated biogeochemical cycling within oil sands pit lakes.
Collapse
Affiliation(s)
- Greg F. Slater
- School of Earth, Environment and Society, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.A.G.); (A.L.B.)
| | - Corey A. Goad
- School of Earth, Environment and Society, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.A.G.); (A.L.B.)
| | - Matthew B. J. Lindsay
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada;
| | - Kevin G. Mumford
- Department of Civil Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Tara E. Colenbrander Nelson
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada; (T.E.C.N.); (L.A.W.)
| | - Allyson L. Brady
- School of Earth, Environment and Society, McMaster University, Hamilton, ON L8S 4K1, Canada; (C.A.G.); (A.L.B.)
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnologicas, Faculated de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Lesley A. Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada; (T.E.C.N.); (L.A.W.)
| |
Collapse
|
9
|
Membrane properties of amacrocyclic tetraether bisphosphatidylcholine lipid: Effect of a single membrane-spanning polymethylene cross-linkage between two head groups of ditetradecylphosphatidylcholine membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183569. [PMID: 33549531 DOI: 10.1016/j.bbamem.2021.183569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022]
Abstract
The plasma membranes of archaea are abundant in macrocyclic tetraether lipids that contain a single or double long transmembrane hydrocarbon chains connecting the two glycerol backbones at both ends. In this study, a novel amacrocyclic bisphosphatidylcholine lipid bearing a single membrane-spanning octacosamethylene chain, 1,1'-O-octacosamethylene-2,2'-di-O-tetradecyl-bis-(sn-glycero)-3,3'-diphosphocholine (AC-(di-O-C14PC)2), was synthesized to elucidate effects of the interlayer cross-linkage on membrane properties based on comparison with its corresponding diether phosphatidylcholine, 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DTPC), that forms bilayer membrane. Several physicochemical techniques demonstrated that while AC-(di-O-C14PC)2 monolayer, which adopts a particularly high-ordered structure in the gel phase, shows remarkably high thermotropic transition temperature compared to DTPC bilayer, the fluidity of both phospholipids above the transition temperature is comparable. Nonetheless, the fluorescent dye leakage from inside the AC-(di-O-C14PC)2 vesicles in the fluid phase is highly suppressed. The origin of the membrane properties characteristic of AC-(di-O-C14PC)2 monolayer is discussed in terms of the single long transmembrane hydrophobic linkage and the diffusional motion of the lipid molecules.
Collapse
|
10
|
Bharathi M, Senthil Kumar N, Chellapandi P. Functional Prediction and Assignment of Methanobrevibacter ruminantium M1 Operome Using a Combined Bioinformatics Approach. Front Genet 2020; 11:593990. [PMID: 33391347 PMCID: PMC7772410 DOI: 10.3389/fgene.2020.593990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rod-shaped rumen methanogen with the ability to use H2 and CO2, and formate as substrates for methane formation in the ruminants. Enteric methane emitted from this organism can also be influential to the loss of dietary energy in ruminants and humans. To date, there is no successful technology to reduce methane due to a lack of knowledge on its molecular machinery and 73% conserved hypothetical proteins (HPs; operome) whose functions are still not ascertained perceptively. To address this issue, we have predicted and assigned a precise function to HPs and categorize them as metabolic enzymes, binding proteins, and transport proteins using a combined bioinformatics approach. The results of our study show that 257 (34%) HPs have well-defined functions and contributed essential roles in its growth physiology and host adaptation. The genome-neighborhood analysis identified 6 operon-like clusters such as hsp, TRAM, dsr, cbs and cas, which are responsible for protein folding, sudden heat-shock, host defense, and protection against the toxicities in the rumen. The functions predicted from MRU operome comprised of 96 metabolic enzymes with 17 metabolic subsystems, 31 transcriptional regulators, 23 transport, and 11 binding proteins. Functional annotation of its operome is thus more imperative to unravel the molecular and cellular machinery at the systems-level. The functional assignment of its operome would advance strategies to develop new anti-methanogenic targets to mitigate methane production. Hence, our approach provides new insight into the understanding of its growth physiology and lifestyle in the ruminants and also to reduce anthropogenic greenhouse gas emissions worldwide.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - N Senthil Kumar
- Human Genetics Lab, Department of Biotechnology, School of Life Sciences, Mizoram University (Central University), Aizawl, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
11
|
Thirumalaisamy G, Malik PK, Kolte AP, Trivedi S, Dhali A, Bhatta R. Effect of silkworm ( Bombyx mori) pupae oil supplementation on enteric methane emission and methanogens diversity in sheep. Anim Biotechnol 2020; 33:128-140. [PMID: 32573336 DOI: 10.1080/10495398.2020.1781147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In vitro and in vivo studies were conducted to examine the effect of silkworm pupae oil on methane (CH4) emission and methanogens diversity. Five graded levels (2, 4, 6, 8 and 10%) of silkworm pupae oil were tested in vitro. Eighteen Mandya adult sheep were divided into three groups. All the animals were fed on similar basal diet except the oil supplementation in test groups. Oil level for supplementation was decided on the basis of in vitro study. In vitro study indicated a reduction of 22% in CH4 production with 2% oil supplementation. Animals in test groups were supplemented with oil (2%) either daily (CON) or intermittently (INT) on every alternate week for all the seven days. A significant reduction of 17-20% in enteric CH4 emission (g/d) was achieved due to oil supplementation in sheep. However, No variation was established between test groups CON and INT. In present study, Methanobrevibacter was major genus contributed ∼90% of the total rumen methanogens; whilst Methanobrevibacter gottschalkii was the most abundant methanogens species. Abundance of Methanobrevibacter ruminantium was affected with the oil supplementation. It can be concluded that the silkworm pupae oil at 2% can decrease CH4 emission by 15-20%.
Collapse
Affiliation(s)
- G Thirumalaisamy
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - P K Malik
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - A P Kolte
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - S Trivedi
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - A Dhali
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - R Bhatta
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|
12
|
The Cell Membrane of Sulfolobus spp.-Homeoviscous Adaption and Biotechnological Applications. Int J Mol Sci 2020; 21:ijms21113935. [PMID: 32486295 PMCID: PMC7312580 DOI: 10.3390/ijms21113935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids.
Collapse
|
13
|
Kurth JM, Smit NT, Berger S, Schouten S, Jetten MSM, Welte CU. Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea. FEMS Microbiol Ecol 2020; 95:5509572. [PMID: 31150548 PMCID: PMC6581649 DOI: 10.1093/femsec/fiz082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022] Open
Abstract
The anaerobic oxidation of methane (AOM) is a microbial process present in marine and freshwater environments. AOM is important for reducing the emission of the second most important greenhouse gas methane. In marine environments anaerobic methanotrophic archaea (ANME) are involved in sulfate-reducing AOM. In contrast, Ca. Methanoperedens of the ANME-2d cluster carries out nitrate AOM in freshwater ecosystems. Despite the importance of those organisms for AOM in non-marine environments little is known about their lipid composition or carbon sources. To close this gap, we analysed the lipid composition of ANME-2d archaea and found that they mainly synthesise archaeol and hydroxyarchaeol as well as different (hydroxy-) glycerol dialkyl glycerol tetraethers, albeit in much lower amounts. Abundant lipid headgroups were dihexose, monomethyl-phosphatidyl ethanolamine and phosphatidyl hexose. Moreover, a monopentose was detected as a lipid headgroup that is rare among microorganisms. Batch incubations with 13C labelled bicarbonate and methane showed that methane is the main carbon source of ANME-2d archaea varying from ANME-1 archaea that primarily assimilate dissolved inorganic carbon (DIC). ANME-2d archaea also assimilate DIC, but to a lower extent than methane. The lipid characterisation and analysis of the carbon source of Ca. Methanoperedens facilitates distinction between ANME-2d and other ANMEs.
Collapse
Affiliation(s)
- Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Nadine T Smit
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry and Utrecht University, P.O. Box 59, 1790 AB Den Burg (Texel), The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Stefanie Berger
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Stefan Schouten
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry and Utrecht University, P.O. Box 59, 1790 AB Den Burg (Texel), The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
14
|
Boral D, Rao VK, Ramasamy S. Archeal Di-O-geranylgeranyl Glyceryl Phosphate Synthase of a UbiA Superfamily Member Provides Insight into the Multiple Human Diseases. Protein Pept Lett 2019; 27:568-573. [PMID: 31814543 DOI: 10.2174/0929866526666191209143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
One of the unique characteristic features of the domain archaea, are the lipids that form the hydrophobic core of their cell membrane. These membrane lipids are characterized by distinctive isoprenoid biochemistry and the building blocks are two core lipid structures, sn-2,3- diphytanyl glycerol diether (archaeol) and sn-2,3-dibiphytanyl diglycerol tetraether (caldarchaeol). Archaeol has two phytanyl chains (C20) in a bilayer structure connected to the glycerol moiety by an ether bond. The enzyme involved in this bilayer formation is Di-O-Geranylgeranyl Glyceryl Phosphate Synthase (DGGGPS), which is a member of a very versatile superfamily of enzymes known as UbiA superfamily. Multiple sequence analysis of the typical members of the UbiA superfamily indicates that the majority of conserved residues are located around the central cavity of these enzymes. Interestingly few of these conserved residues in the human homologs are centrally implicated in several human diseases, on basis of the major mutations reported against these diseases in the earlier clinical studies. It remains to be investigated about the role of these conserved residues in the biochemistry of these enzymes. The binding and active site of these enzymes found to be similar architecture but have different substrate affinities ranging from aromatic to linear compounds. So further investigation of UbiA superfamily may be translated to novel therapeutic and diagnostic application of these proteins in human disease management.
Collapse
Affiliation(s)
- Debjyoti Boral
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
| | | | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune-411008, India
| |
Collapse
|
15
|
Taubner RS, Baumann LMF, Bauersachs T, Clifford EL, Mähnert B, Reischl B, Seifert R, Peckmann J, Rittmann SKMR, Birgel D. Membrane Lipid Composition and Amino Acid Excretion Patterns of Methanothermococcus okinawensis Grown in the Presence of Inhibitors Detected in the Enceladian Plume. Life (Basel) 2019; 9:E85. [PMID: 31739502 PMCID: PMC6958431 DOI: 10.3390/life9040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/05/2023] Open
Abstract
Lipids and amino acids are regarded as important biomarkers for the search for extraterrestrial life in the Solar System. Such biomarkers may be used to trace methanogenic life on other planets or moons in the Solar System, such as Saturn's icy moon Enceladus. However, little is known about the environmental conditions shaping the synthesis of lipids and amino acids. Here, we present the lipid production and amino acid excretion patterns of the methanogenic archaeon Methanothermococcus okinawensis after exposing it to different multivariate concentrations of the inhibitors ammonium, formaldehyde, and methanol present in the Enceladian plume. M. okinawensis shows different patterns of lipid and amino acids excretion, depending on the amount of these inhibitors in the growth medium. While methanol did not show a significant impact on growth, lipid or amino acid production rates, ammonium and formaldehyde strongly affected these parameters. These findings are important for understanding the eco-physiology of methanogens on Earth and have implications for the use of biomarkers as possible signs of extraterrestrial life for future space missions in the Solar System.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Thorsten Bauersachs
- Institute of Geosciences, Department of Organic Geochemistry, Christian-Albrechts-Universität, 24118 Kiel, Germany;
| | - Elisabeth L. Clifford
- Department of Limnology and Bio-Oceanography, Universität Wien, 1010 Vienna, Austria; (E.L.C.); (B.M.)
| | - Barbara Mähnert
- Department of Limnology and Bio-Oceanography, Universität Wien, 1010 Vienna, Austria; (E.L.C.); (B.M.)
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Richard Seifert
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1010 Vienna, Austria; (R.-S.T.); (B.R.); (S.K.-M.R.R.)
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146 Hamburg, Germany; (L.M.F.B.); (R.S.); (J.P.)
| |
Collapse
|
16
|
Bale NJ, Palatinszky M, Rijpstra WIC, Herbold CW, Wagner M, Sinninghe Damsté JS. Membrane Lipid Composition of the Moderately Thermophilic Ammonia-Oxidizing Archaeon " Candidatus Nitrosotenuis uzonensis" at Different Growth Temperatures. Appl Environ Microbiol 2019; 85:e01332-19. [PMID: 31420340 PMCID: PMC6805073 DOI: 10.1128/aem.01332-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Nitrosotenuis uzonensis" is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (cren') were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and cren' increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the "Ca Nitrosotenuis uzonensis" cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of "Ca Nitrosotenuis uzonensis" demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high cren' content.IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. "Ca Nitrosotenuis uzonensis" is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of "Ca Nitrosotenuis uzonensis" cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.
Collapse
Affiliation(s)
- Nicole J Bale
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
| | - Marton Palatinszky
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - W Irene C Rijpstra
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Yamagami M, Tsuchikawa H, Cui J, Umegawa Y, Miyazaki Y, Seo S, Shinoda W, Murata M. Average Conformation of Branched Chain Lipid PGP-Me That Accounts for the Thermal Stability and High-Salinity Resistance of Archaeal Membranes. Biochemistry 2019; 58:3869-3879. [DOI: 10.1021/acs.biochem.9b00469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masaki Yamagami
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Tsuchikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jin Cui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yusuke Miyazaki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- JST ERATO, Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
18
|
Chaves Torres L, Kaur G, Melbourne LA, Pancost RD. Selective chemical degradation of silica sinters of the Taupo Volcanic Zone (New Zealand). Implications for early Earth and Astrobiology. GEOBIOLOGY 2019; 17:449-464. [PMID: 31020785 DOI: 10.1111/gbi.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/26/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Most organic matter (OM) on Earth occurs as kerogen-like materials, that is naturally formed macromolecules insoluble with standard organic solvents. The formation of this insoluble organic matter (IOM) is a topic of much interest, especially when it limits the detection of compounds of geomicrobiological interest. For example, studies that search for biomarker evidence of life on early Earth or other planets usually use solvent-based extractions. This leaves behind a pool of OM as unexplored post-extraction residues, potentially containing diagnostic biomarkers. Since the IOM has an enhanced potential for preservation compared to soluble OM, analysing IOM-released biomarkers can also provide even deeper insights into the ecology of ancient settings, with implications for early Earth and Astrobiology investigations. Here, we analyse the prokaryotic lipid biosignature within soluble and IOM of the Taupo Volcanic Zone (TVZ) silica sinters, which are key analogues in the search for life. We apply sequential solvent extractions and a selective chemical degradation upon the post-solvent extraction residue. Moreover, we compare the IOM from TVZ sinters to analogous studies on peat and marine sediments to assess patterns in OM insolubilisation across the geosphere. Consistent with previous work, we find significant but variable proportions-1%-45% of the total prokaryotic lipids recovered-associated with IOM fractions. This occurs even in recently formed silica sinters, likely indicating inherent cell insolubility. Moreover, archaeal lipids seem more prone to insolubilisation as compared to the bacterial analogues, which might enhance their preservation and also bias overall biomarkers interpretation. These observations are similar to those observed in other settings, confirming that even in a setting where the OM derives predominantly from prokaryotic sources, patterns of IOM formation/occurrence are conserved. Differences with other settings, however, such as the occurrence of archaeol in IOM fractions, could be indicative of different mechanisms for IOM formation that merit further exploration.
Collapse
Affiliation(s)
- Lidia Chaves Torres
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Gurpreet Kaur
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Leanne A Melbourne
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
| | - Richard D Pancost
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
- Cabot Institute, University of Bristol, Bristol, UK
- School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
19
|
Sangavai C, Bharathi M, Ganesh SP, Chellapandi P. Kinetic modeling of Stickland reactions-coupled methanogenesis for a methanogenic culture. AMB Express 2019; 9:82. [PMID: 31183623 PMCID: PMC6557928 DOI: 10.1186/s13568-019-0803-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/22/2019] [Indexed: 12/03/2022] Open
Abstract
Studying amino acid catabolism-coupled methanogenesis is the important standpoints to decipher the metabolic behavior of a methanogenic culture. l-Glycine and l-alanine are acted as sole carbon and nitrogen sources for acidogenic bacteria. One amino acid is oxidized and another one is reduced for acetate production via pyruvate by oxidative deamination process in the Stickland reactions. Herein, we have developed a kinetic model for the Stickland reactions-coupled methanogenesis (SRCM) and simulated objectively to maximize the rate of methane production. We collected the metabolic information from enzyme kinetic parameters for amino acid catabolism of Clostridium acetobutylicum ATCC 824 and methanogenesis of Methanosarcina acetivorans C2A. The SRCM model of this study consisted of 18 reactions and 61 metabolites with enzyme kinetic parameters derived experimental data. The internal or external metabolic flux rate of this system found to control the acidogenesis and methanogenesis in a methanogenic culture. Using the SRCM model, flux distributions were calculated for each reaction and metabolite in order to maximize the methane production rate from the glycine–alanine pair. Results of this study, we demonstrated the metabolic behavior, metabolite pairing while mutually interact, and advantages of syntrophic metabolism of amino acid-directed methane production in a methanogenic starter culture.
Collapse
|
20
|
Bale NJ, Sorokin DY, Hopmans EC, Koenen M, Rijpstra WIC, Villanueva L, Wienk H, Sinninghe Damsté JS. New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes. Front Microbiol 2019; 10:377. [PMID: 30930858 PMCID: PMC6423904 DOI: 10.3389/fmicb.2019.00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
We analyzed the polar membrane lipids of 13 strains of halo(alkali)philic euryarchaea from hypersaline lakes. Nine belong to the class Halobacteria, representing two functional groups: aerobic polysaccharide utilizers and sulfur-respiring anaerobes. The other four strains represent halo(alkali)philic methanogens from the class Methanomicrobia and a recently discovered class Methanonatronarchaeia. A wide range of polar lipids were detected across the 13 strains including dialkyl glycerol diethers (archaeols), membrane-spanning glycerol tetraethers and diether-based cardiolipins. The archaeols contained a range of core lipid structures, including combinations of C20 and C25 isoprenoidal alkyl chains, unsaturations, and hydroxy moieties. Several diether lipids were novel, including: (a) a phosphatidylglycerolhexose (PG-Gly) headgroup, (b) a N,N,N-trimethyl aminopentanetetrol (APT)-like lipid with a methoxy group in place of a hydroxy group on the pentanetetrol, (c) a series of polar lipids with a headgroup with elemental composition of either C12H25NO13S or C12H25NO16S2, and (d) novel cardiolipins containing a putative phosphatidylglycerolphosphate glycerophosphate (PGPGP) polar moiety. We found that the lipid distribution of the 13 strains could be generally separated into two groups, the methanogens (group) and the Halobacteria (class) based on the presence of specific core lipids. Within the methanogens, adaption to a high or more moderate salt concentration resulted in different ratios of glycerol dialkyl glycerol tetraethers (GDGTs) to archaeol. The methanogen Methanosalsum natronophilum AME2T had the most complex diether lipid composition of any of the 13 strains, including hydroxy archaeol and macrocyclic archaeol which we surmise is an order-specific membrane adaption. The zwitterionic headgroups APT and APT-Me were detected only in the Methanomicrobiales member Methanocalculus alkaliphilus AMF2T which also contained the highest level of unsaturated lipids. Only alkaliphilic members of the Natrialbales order contained PGPGP cardiolipins and the PG-Gly headgroup. The four analyzed neutrophilic members of the Halobacteria were characterized by the presence of sulfur-containing headgroups and glycolipids. The presence of cardiolipins with one or more i-C25 alkyl chains, generally termed extended archaeol (EXT-AR), in one of the Methanonatronarchaeia strains was unexpected as only one other order of methanogenic archaea has been reported to produce EXT-AR. We examined this further by looking into the genomic potential of various archaea to produce EXT-AR.
Collapse
Affiliation(s)
- Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Dimitry Y. Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - W. Irene C. Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
| | - Hans Wienk
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Institute for Sea Research, Utrecht University, Texel, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
21
|
Methanogens: pushing the boundaries of biology. Emerg Top Life Sci 2018; 2:629-646. [PMID: 33525834 PMCID: PMC7289024 DOI: 10.1042/etls20180031] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023]
Abstract
Methanogens are anaerobic archaea that grow by producing methane gas. These microbes and their exotic metabolism have inspired decades of microbial physiology research that continues to push the boundary of what we know about how microbes conserve energy to grow. The study of methanogens has helped to elucidate the thermodynamic and bioenergetics basis of life, contributed our understanding of evolution and biodiversity, and has garnered an appreciation for the societal utility of studying trophic interactions between environmental microbes, as methanogens are important in microbial conversion of biogenic carbon into methane, a high-energy fuel. This review discusses the theoretical basis for energy conservation by methanogens and identifies gaps in methanogen biology that may be filled by undiscovered or yet-to-be engineered organisms.
Collapse
|
22
|
Archaea: forgotten players in the microbiome. Emerg Top Life Sci 2018; 2:459-468. [PMID: 33525830 DOI: 10.1042/etls20180035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
Abstract
Archaea, the third domain of life containing unique membrane composition and highly diverse cell wall structures, were only recognized 40 years ago. Initially identified in extreme environments, they are currently recognized as organisms ubiquitously present in most, if not all, microbiomes associated with eukaryotic hosts. However, they have been mostly overseen in microbiome studies due to the lack of standardized detection protocols and to the fact that no archaeal pathogen is currently known. Recent years clearly showed that (i) archaea are part of the microbiomes associated with plants, animals and humans, (ii) form biofilms and (iii) interact and activate the human immune system. Future studies will not only define the host-associated diversity of archaea (referred to as 'archaeome') but also contribute to our understanding of the comprehensive metabolic interplay between archaea and bacteria and the long-term gain insights into their role in human health and their potential role(s) during disease development.
Collapse
|
23
|
Linde M, Heyn K, Merkl R, Sterner R, Babinger P. Hexamerization of Geranylgeranylglyceryl Phosphate Synthase Ensures Structural Integrity and Catalytic Activity at High Temperatures. Biochemistry 2018; 57:2335-2348. [DOI: 10.1021/acs.biochem.7b01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mona Linde
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Kristina Heyn
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
24
|
Sollich M, Yoshinaga MY, Häusler S, Price RE, Hinrichs KU, Bühring SI. Heat Stress Dictates Microbial Lipid Composition along a Thermal Gradient in Marine Sediments. Front Microbiol 2017; 8:1550. [PMID: 28878741 PMCID: PMC5572230 DOI: 10.3389/fmicb.2017.01550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Temperature exerts a first-order control on microbial populations, which constantly adjust the fluidity and permeability of their cell membrane lipids to minimize loss of energy by ion diffusion across the membrane. Analytical advances in liquid chromatography coupled to mass spectrometry have allowed the detection of a stunning diversity of bacterial and archaeal lipids in extreme environments such as hot springs, hydrothermal vents and deep subsurface marine sediments. Here, we investigated a thermal gradient from 18 to 101°C across a marine sediment field and tested the hypothesis that cell membrane lipids provide a major biochemical basis for the bioenergetics of archaea and bacteria under heat stress. This paper features a detailed lipidomics approach with the focus on membrane lipid structure-function. Membrane lipids analyzed here include polar lipids of bacteria and polar and core lipids of archaea. Reflecting the low permeability of their ether-linked isoprenoids, we found that archaeal polar lipids generally dominate over bacterial lipids in deep layers of the sediments influenced by hydrothermal fluids. A close examination of archaeal and bacterial lipids revealed a membrane quandary: not only low permeability, but also increased fluidity of membranes are required as a unified property of microbial membranes for energy conservation under heat stress. For instance, bacterial fatty acids were composed of longer chain lengths in concert with higher degree of unsaturation while archaea modified their tetraethers by incorporation of additional methyl groups at elevated sediment temperatures. It is possible that these configurations toward a more fluidized membrane at elevated temperatures are counterbalanced by the high abundance of archaeal glycolipids and bacterial sphingolipids, which could reduce membrane permeability through strong intermolecular hydrogen bonding. Our results provide a new angle for interpreting membrane lipid structure-function enabling archaea and bacteria to survive and grow in hydrothermal systems.
Collapse
Affiliation(s)
- Miriam Sollich
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Marcos Y Yoshinaga
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,Institute of Chemistry, University of São PauloSão Paulo, Brazil
| | - Stefan Häusler
- Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Roy E Price
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany.,School of Marine and Atmospheric Sciences, Stony Brook University, Stony BrookNY, United States
| | - Kai-Uwe Hinrichs
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| | - Solveig I Bühring
- University of Bremen, MARUM Center for Marine Environmental SciencesBremen, Germany
| |
Collapse
|
25
|
Tipthara P, Kunacheva C, Soh YNA, Wong SCC, Pin NS, Stuckey DC, Boehm BO. Global Profiling of Metabolite and Lipid Soluble Microbial Products in Anaerobic Wastewater Reactor Supernatant Using UPLC-MS E. J Proteome Res 2017; 16:559-570. [PMID: 28067053 DOI: 10.1021/acs.jproteome.6b00681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of soluble microbial products (SMPs) released during bacterial metabolism in mixed cultures in bioreactors is essential to understanding fundamental mechanisms of their biological production. SMPs constitute one of the main foulants (together with colloids and bacterial flocs) in membrane bioreactors widely used to treat and ultimately recycle wastewater. More importantly, the composition and origin of potentially toxic, carcinogenic, or mutagenic SMPs in renewable/reused water supplies must be determined and controlled. Certain classes of SMPs have previously been studied by GC-MS, LC-MS, and MALDI-ToF MS; however, a more comprehensive LC-MS-based method for SMP identification is currently lacking. Here we develop a UPLC-MS approach to profile and identify metabolite SMPs in the supernatant of an anaerobic batch bioreactor. The small biomolecules were extracted into two fractions based on their polarity, and separate methods were then used for the polar and nonpolar metabolites in the aqueous and lipid fractions, respectively. SMPs that increased in the supernatant after feed addition were identified primarily as phospholipids, ceramides, with cardiolipins in the highest relative abundance, and these lipids have not been previously reported in wastewater effluent.
Collapse
Affiliation(s)
- Phornpimon Tipthara
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| | - Chinagarn Kunacheva
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141
| | - Yan Ni Annie Soh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141
| | - Stephen C C Wong
- Waters Pacific Pte. Ltd. , Singapore Science Park 2, Singapore 117528
| | - Ng Sean Pin
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University , Singapore 637141.,Department of Chemical Engineering, Imperial College London , London SW7 2AZ, United Kingdom
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University , Singapore 636921
| |
Collapse
|
26
|
Jain S, Caforio A, Driessen AJM. Biosynthesis of archaeal membrane ether lipids. Front Microbiol 2014; 5:641. [PMID: 25505460 PMCID: PMC4244643 DOI: 10.3389/fmicb.2014.00641] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 01/05/2023] Open
Abstract
A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.
Collapse
Affiliation(s)
- Samta Jain
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands ; The Zernike Institute for Advanced Materials, University of Groningen, Groningen Netherlands
| | - Antonella Caforio
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands ; The Zernike Institute for Advanced Materials, University of Groningen, Groningen Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen Netherlands ; The Zernike Institute for Advanced Materials, University of Groningen, Groningen Netherlands
| |
Collapse
|
27
|
Holocene variations in peatland methane cycling associated with the Asian summer monsoon system. Nat Commun 2014; 5:4631. [PMID: 25135106 PMCID: PMC4143914 DOI: 10.1038/ncomms5631] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/09/2014] [Indexed: 11/21/2022] Open
Abstract
Atmospheric methane concentrations decreased during the early to middle Holocene; however, the governing mechanisms remain controversial. Although it has been suggested that the mid-Holocene minimum methane emissions are associated with hydrological change, direct evidence is lacking. Here we report a new independent approach, linking hydrological change in peat sediments from the Tibetan Plateau to changes in archaeal diether concentrations and diploptene δ13C values as tracers for methanogenesis and methanotrophy, respectively. A minimum in inferred methanogenesis occurred during the mid-Holocene, which, locally, corresponds with the driest conditions of the Holocene, reflecting a minimum in Asian monsoon precipitation. The close coupling between precipitation and methanogenesis is validated by climate simulations, which also suggest a regionally widespread impact. Importantly, the minimum in methanogenesis is associated with a maximum in methanotrophy. Therefore, methane emissions in the Tibetan Plateau region were apparently lower during the mid-Holocene and partially controlled by interactions of large-scale atmospheric circulation. Although it has been widely suggested that the mid-Holocene minimum methane emissions are associated with hydrological change, direct evidence is missing. Here, the authors present evidence from the Tibetan Plateau using tracers of methanogenesis and methanotrophy, in combination with climate simulations.
Collapse
|
28
|
Dibrova DV, Galperin MY, Mulkidjanian AY. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ Microbiol 2014; 16:907-18. [PMID: 24818264 DOI: 10.1111/1462-2920.12359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analysing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids [acyl-coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase] with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyse biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications.
Collapse
|
29
|
Koga Y. From promiscuity to the lipid divide: on the evolution of distinct membranes in Archaea and Bacteria. J Mol Evol 2014; 78:234-42. [PMID: 24573438 DOI: 10.1007/s00239-014-9613-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
The structural and biosynthetic features of archaeal phospholipids provide clues to the membrane lipid composition in the last universal common ancestor (LUCA) membranes. The evident similarity of the phospholipid biosynthetic pathways in Archaea and Bacteria suggests that one set of these biosynthetic enzymes would have worked on a wide range of lipids composed of enantiomeric glycerophosphate backbones linked with a variety of hydrocarbon chains. This notion was supported by the discovery of a wide range reactivity of enzymes belonging to the CDP-alcohol phosphatidyltransferase family. It is hypothesized that lipid promiscuity is generated from the prebiotic surface metabolism on pyrite proposed by Wächtershäuser. The significance of the phosphate groups on the intermediates of phospholipid biosynthesis and the extra anionic groups of a polar head group suggested the likely involvement of surface metabolism. Anionic groups are essential for surface metabolism. Since the early chemical evolution reactions are presumed to be non-specific, every combination of the available lipid component parts would be expected to be formed. The mixed lipid membranes present in LUCA were segregated and this led to the differentiation of Archaea and Bacteria, as described previously. The proper arrangement of membrane lipids was generated by the physicochemical drive arising from the promiscuity of the primordial membrane lipids.
Collapse
Affiliation(s)
- Yosuke Koga
- University of Occupational and Environmental Health, 9-14-20 Hinosato, Munakata, Fukuoka, 811-3425, Japan,
| |
Collapse
|
30
|
Gambacorta A, Gliozzi A, De Rosa M. Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol 2014; 11:115-31. [PMID: 24414415 DOI: 10.1007/bf00339140] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The lipids of Archaea, based on glycerol isopranoid ethers, can be used taxonomically to distinguish between phenotypic subgroups of the domain to delineate them clearly from all other organisms. This review is a general survey of the structural features of archaeal lipids and how they relate to survival in the harsh environments in which the Archaea live. The molecular organization of archaeal lipids in monolayers, artificial black membranes and vesicles and the unique properties and possible biotechnological applications of liposomes of the lipids are presented. The results with these liposomes are compared with similar data obtained with synthetic compounds which mimic the structure of archaeal lipids. Studies on computer simulation are also reported.
Collapse
|
31
|
Sousa DZ, Salvador AF, Ramos J, Guedes AP, Barbosa S, Stams AJM, Alves MM, Pereira MA. Activity and viability of methanogens in anaerobic digestion of unsaturated and saturated long-chain fatty acids. Appl Environ Microbiol 2013; 79:4239-45. [PMID: 23645196 PMCID: PMC3697517 DOI: 10.1128/aem.00035-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/26/2013] [Indexed: 11/20/2022] Open
Abstract
Lipids can be anaerobically digested to methane, but methanogens are often considered to be highly sensitive to the long-chain fatty acids (LCFA) deriving from lipids hydrolysis. In this study, the effect of unsaturated (oleate [C18:1]) and saturated (stearate [C18:0] and palmitate [C16:0]) LCFA toward methanogenic archaea was studied in batch enrichments and in pure cultures. Overall, oleate had a more stringent effect on methanogens than saturated LCFA, and the degree of tolerance to LCFA was different among distinct species of methanogens. Methanobacterium formicicum was able to grow in both oleate- and palmitate-degrading enrichments (OM and PM cultures, respectively), whereas Methanospirillum hungatei only survived in a PM culture. The two acetoclastic methanogens tested, Methanosarcina mazei and Methanosaeta concilii, could be detected in both enrichment cultures, with better survival in PM cultures than in OM cultures. Viability tests using live/dead staining further confirmed that exponential growth-phase cultures of M. hungatei are more sensitive to oleate than are M. formicicum cultures; exposure to 0.5 mM oleate damaged 99% ± 1% of the cell membranes of M. hungatei and 53% ± 10% of the cell membranes of M. formicicum. In terms of methanogenic activity, M. hungatei was inhibited for 50% by 0.3, 0.4, and 1 mM oleate, stearate, and palmitate, respectively. M. formicicum was more resilient, since 1 mM oleate and >4 mM stearate or palmitate was needed to cause 50% inhibition on methanogenic activity.
Collapse
Affiliation(s)
- Diana Z. Sousa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Andreia F. Salvador
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Juliana Ramos
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Ana P. Guedes
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sónia Barbosa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Alfons J. M. Stams
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - M. Madalena Alves
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - M. Alcina Pereira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
32
|
|
33
|
Archaeol: an indicator of methanogenesis in water-saturated soils. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:896727. [PMID: 23226972 PMCID: PMC3512251 DOI: 10.1155/2012/896727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/16/2012] [Indexed: 11/23/2022]
Abstract
Oxic soils typically are a sink for methane due to the presence of high-affinity methanotrophic Bacteria capable of oxidising methane. However, soils experiencing water saturation are able to host significant methanogenic archaeal communities, potentially affecting the capacity of the soil to act as a methane sink. In order to provide insight into methanogenic populations in such soils, the distribution of archaeol in free and conjugated forms was investigated as an indicator of fossilised and living methanogenic biomass using gas chromatography-mass spectrometry with selected ion monitoring. Of three soils studied, only one organic matter-rich site contained archaeol in quantifiable amounts. Assessment of the subsurface profile revealed a dominance of archaeol bound by glycosidic headgroups over phospholipids implying derivation from fossilised biomass. Moisture content, through control of organic carbon and anoxia, seemed to govern trends in methanogen biomass. Archaeol and crenarchaeol profiles differed, implying the former was not of thaumarcheotal origin. Based on these results, we propose the use of intact archaeol as a useful biomarker for methanogen biomass in soil and to track changes in moisture status and aeration related to climate change.
Collapse
|
34
|
Coupled TLC and MALDI-TOF/MS analyses of the lipid extract of the hyperthermophilic archaeon Pyrococcus furiosus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:957852. [PMID: 23193375 PMCID: PMC3502756 DOI: 10.1155/2012/957852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022]
Abstract
The lipidome of the marine hyperthermophilic archaeon Pyrococcus furiosus was studied by means of combined thin-layer chromatography and MALDI-TOF/MS analyses of the total lipid extract. 80–90% of the major polar lipids were represented by archaeol lipids (diethers) and the remaining part by caldarchaeol lipids (tetraethers). The direct analysis of lipids on chromatography plate showed the presence of the diphytanylglycerol analogues of phosphatidylinositol and phosphatidylglycerol, the N-acetylglucosamine-diphytanylglycerol phosphate plus some caldarchaeol lipids different from those previously described. In addition, evidence for the presence of the dimeric ether lipid cardiolipin is reported, suggesting that cardiolipins are ubiquitous in archaea.
Collapse
|
35
|
Thermal adaptation of the archaeal and bacterial lipid membranes. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:789652. [PMID: 22927779 PMCID: PMC3426160 DOI: 10.1155/2012/789652] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/12/2012] [Indexed: 12/03/2022]
Abstract
The physiological characteristics that distinguish archaeal and bacterial lipids, as well as those that define thermophilic lipids, are discussed from three points of view that (1) the role of the chemical stability of lipids in the heat tolerance of thermophilic organisms: (2) the relevance of the increase in the proportion of certain lipids as the growth temperature increases: (3) the lipid bilayer membrane properties that enable membranes to function at high temperatures. It is concluded that no single, chemically stable lipid by itself was responsible for the adaptation of surviving at high temperatures. Lipid membranes that function effectively require the two properties of a high permeability barrier and a liquid crystalline state. Archaeal membranes realize these two properties throughout the whole biological temperature range by means of their isoprenoid chains. Bacterial membranes meet these requirements only at or just above the phase-transition temperature, and therefore their fatty acid composition must be elaborately regulated. A recent hypothesis sketched a scenario of the evolution of lipids in which the “lipid divide” emerged concomitantly with the differentiation of archaea and bacteria. The two modes of thermal adaptation were established concurrently with the “lipid divide.”
Collapse
|
36
|
Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b thaumarchaeota in soil. Appl Environ Microbiol 2012; 78:6866-74. [PMID: 22820324 DOI: 10.1128/aem.01681-12] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ecological studies of thaumarchaeota often apply glycerol dibiphytanyl glycerol tetraether (GDGT)-based intact membrane lipids. However, these components have only been characterized for thaumarchaeota from aquatic environments. Thaumarchaeota have been shown to play an important role in the nitrogen cycle in soil as ammonium oxidizers, and GDGTs are common lipids encountered in soil. We report the core and intact polar lipid (IPL) GDGTs produced by three newly available thaumarchaeota isolated from grassland soil in Austria ("Nitrososphaera viennensis," group I.1b) and enriched from agricultural soils in South Korea ("Candidatus Nitrosoarchaeum koreensis" MY1, group I.1a; and "Candidatus Nitrososphaera" strain JG1, group I.1b). The soil thaumarchaeota all synthesize crenarchaeol as their major core GDGT, in agreement with the fact that crenarchaeol has also been detected in thaumarchaeota from aquatic environments. The crenarchaeol regioisomer apparently is produced in significant quantities only by soil thaumarchaeota of the I.1b subgroup. In addition, GDGTs with 0 to 4 cyclopentane moieties and GDGTs containing an additional hydroxyl group were detected. The IPL head groups of their membrane lipids comprised mainly monohexose, dihexose, trihexose, phosphohexose, and hexose-phosphohexose moieties. The hexose-phosphohexose head group bound to crenarchaeol occurred in all soil thaumarchaeota, and this IPL is at present the only lipid that is detected in all thaumarchaeota analyzed so far. This specificity and its lability indicate that it is the most suitable biomarker lipid to trace living thaumarchaeota. This study, in combination with previous studies, also suggests that hydroxylated GDGTs occur in the I.1a, but not in the I.1b, subgroup of the thaumarchaeota.
Collapse
|
37
|
Lipidomic analysis of bacterial plasmalogens. Folia Microbiol (Praha) 2012; 57:463-72. [DOI: 10.1007/s12223-012-0178-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/13/2012] [Indexed: 11/27/2022]
|
38
|
Novel cardiolipins from uncultured methane-metabolizing archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:832097. [PMID: 22654563 PMCID: PMC3359654 DOI: 10.1155/2012/832097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/28/2012] [Indexed: 11/19/2022]
Abstract
Novel cardiolipins from Archaea were detected by screening the intact polar lipid (IPL) composition of microbial communities associated with methane seepage in deep-sea sediments from the Pakistan margin by high-performance liquid chromatography electrospray ionization mass spectrometry. A series of tentatively identified cardiolipin analogues (dimeric phospholipids or bisphosphatidylglycerol, BPG) represented 0.5% to 5% of total archaeal IPLs. These molecules are similar to the recently described cardiolipin analogues with four phytanyl chains from extreme halophilic archaea. It is worth noting that cardiolipin analogues from the seep archaeal communities are composed of four isoprenoidal chains, which may contain differences in chain length (20 and 25 carbon atoms) and degrees of unsaturation and the presence of a hydroxyl group. Two novel diether lipids, structurally related to the BPGs, are described and interpreted as degradation products of archaeal cardiolipin analogues. Since archaeal communities in seep sediments are dominated by anaerobic methanotrophs, our observations have implications for characterizing structural components of archaeal membranes, in which BPGs are presumed to contribute to modulation of cell permeability properties. Whether BPGs facilitate interspecies interaction in syntrophic methanotrophic consortia remains to be tested.
Collapse
|
39
|
Neelon K, Roberts MF, Stec B. Crystal structure of a trapped catalytic intermediate suggests that forced atomic proximity drives the catalysis of mIPS. Biophys J 2012; 101:2816-24. [PMID: 22261071 DOI: 10.1016/j.bpj.2011.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/13/2011] [Accepted: 10/24/2011] [Indexed: 12/11/2022] Open
Abstract
1-L-myo-inositol-phosphate synthase (mIPS) catalyzes the first step of the unique, de novo pathway of inositol biosynthesis. However, details about the complex mIPS catalytic mechanism, which requires oxidation, enolization, intramolecular aldol cyclization, and reduction, are not fully known. To gain further insight into this mechanism, we determined the crystal structure of the wild-type mIPS from Archaeoglobus fulgidus at 1.7 Å, as well as the crystal structures of three active-site mutants. Additionally, we obtained the structure of mIPS with a trapped 5-keto-glucose-6-phosphate intermediate at 2 Å resolution by a novel (to our knowledge) process of activating the crystal at high temperature. A comparison of all of the crystal structures of mIPS described in this work suggests a novel type of catalytic mechanism that relies on the forced atomic proximity of functional groups. The lysine cluster is contained in a small volume in the active site, where random motions of these side chains are responsible for the progress of the complex multistep reaction as well as for the low rate of catalysis. The mechanism requires that functional groups of Lys-274, Lys-278, Lys-306, and Lys-367 assume differential roles in the protonation/deprotonation steps that must occur during the mIPS reaction. This mechanism is supported by the complete loss of activity of the enzyme caused by the Leu-257 mutation to Ala that releases the lysine containment.
Collapse
Affiliation(s)
- Kelly Neelon
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | |
Collapse
|
40
|
Lü Z, Lu Y. Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil. PLoS One 2012; 7:e35279. [PMID: 22530002 PMCID: PMC3328440 DOI: 10.1371/journal.pone.0035279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/15/2012] [Indexed: 11/18/2022] Open
Abstract
Background Methanocellales contributes significantly to anthropogenic methane emissions that cause global warming, but few pure cultures for Methanocellales are available to permit subsequent laboratory studies (physiology, biochemistry, etc.). Methodology/Principal Findings By combining anaerobic culture and molecular techniques, a novel thermophilic methanogen, strain HZ254T was isolated from a Chinese rice field soil located in Hangzhou, China. The phylogenetic analyses of both the 16S rRNA gene and mcrA gene (encoding the α subunit of methyl-coenzyme M reductase) confirmed its affiliation with Methanocellales, and Methanocella paludicola SANAET was the most closely related species. Cells were non-motile rods, albeit with a flagellum, 1.4–2.8 µm long and by 0.2–0.3 µm in width. They grew at 37–60°C (optimally at 55°C) and salinity of 0–5 g NaCl l−1 (optimally at 0–1 g NaCl l−1). The pH range for growth was 6.4–7.2 (optimum 6.8). Under the optimum growth condition, the doubling time was 6.5–7.8 h, which is the shortest ever observed in Methanocellales. Strain HZ254T utilized H2/CO2 but not formate for growth and methane production. The DNA G+C content of this organism was 52.7 mol%. The sequence identities of 16S rRNA gene and mcrA gene between strain HZ254T and SANAET were 95.0 and 87.5% respectively, and the genome based Average Nucleotide Identity value between them was 74.8%. These two strains differed in phenotypic features with regard to substrate utilization, possession of a flagellum, doubling time (under optimal conditions), NaCl and temperature ranges. Taking account of the phenotypic and phylogenetic characteristics, we propose strain HZ254T as a representative of a novel species, Methanocella conradii sp. nov. The type strain is HZ254T ( = CGMCC 1.5162T = JCM 17849T = DSM 24694T). Conclusions/Significance Strain HZ254T could potentially serve as an excellent laboratory model for studying Methanocellales due to its fast growth and consistent cultivability.
Collapse
Affiliation(s)
- Zhe Lü
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yahai Lu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Hanif M, Atsuta Y, Fujie K, Daimon H. Supercritical fluid extraction of bacterial and archaeal lipid biomarkers from anaerobically digested sludge. Int J Mol Sci 2012; 13:3022-3037. [PMID: 22489140 PMCID: PMC3317701 DOI: 10.3390/ijms13033022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 11/16/2022] Open
Abstract
Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; E-Mails: (M.H.); (Y.A.)
- Center for Energy Resources Development, Agency for the Assessment and Application of Technology, Jakarta 10340, Indonesia
| | - Yoichi Atsuta
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; E-Mails: (M.H.); (Y.A.)
| | - Koichi Fujie
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa 240-8501, Japan; E-Mail:
| | - Hiroyuki Daimon
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580, Japan; E-Mails: (M.H.); (Y.A.)
| |
Collapse
|
42
|
Identification of plasmalogens in the cytoplasmic membrane of Bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 2011; 78:880-4. [PMID: 22138986 DOI: 10.1128/aem.06968-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmalogens are ether-linked lipids that may influence oxidative stress resistance of eukaryotic cell membranes. Since bacterial membrane composition can influence environmental stress resistance, we explored the prevalence of plasmalogens in the cytoplasmic membrane of Bifidobacterium animalis subsp. lactis. Results showed plasmalogens are a major component of the B. animalis subsp. lactis membrane.
Collapse
|
43
|
Hedin LE, Illergård K, Elofsson A. An Introduction to Membrane Proteins. J Proteome Res 2011; 10:3324-31. [DOI: 10.1021/pr200145a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Linnea E. Hedin
- Department of Biochemitry and Biophysics, Stockholm Bioinformatics Center, Center for Biomembrane Research, Science for life laboratory, Swedish E-science Research Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Kristoffer Illergård
- Department of Biochemitry and Biophysics, Stockholm Bioinformatics Center, Center for Biomembrane Research, Science for life laboratory, Swedish E-science Research Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Arne Elofsson
- Department of Biochemitry and Biophysics, Stockholm Bioinformatics Center, Center for Biomembrane Research, Science for life laboratory, Swedish E-science Research Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
44
|
Magnusson CD, Haraldsson GG. Ether lipids. Chem Phys Lipids 2011; 164:315-40. [PMID: 21635876 DOI: 10.1016/j.chemphyslip.2011.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 11/25/2022]
Abstract
The naturally occurring 1-O-alkyl-sn-glycerols and their methoxylated congeners, 1-O-(2'-methoxyalkyl)-sn-glycerols, are biologically active compounds, ubiquitously found in nature as diacyl glyceryl ether lipids and phosphoether lipids. The chief objective of this article is to provide a comprehensive and up to date review on such ether lipids. The occurrence and distribution of these compounds in nature are extensively reviewed, their chemical structure and molecular variety, their biosynthesis and chemical synthesis and, finally, their various biological effects are described and discussed. An unprecedented biosynthesis of the 2'-methoxylated alkylglycerols is proposed. The first synthesis of enantiopure (Z)-(2'R)-1-O-(2'-methoxyhexadec-4'-enyl)-sn-glycerol, the most prevalent 2'-methoxylated type alkylglycerol present in cartilaginous fish, is described. It was accomplished by a highly convergent five step process.
Collapse
|
45
|
13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 2011. [PMID: 21515715 DOI: 10.1128/aem.00466‐11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C(15) and C(16:1ω7C) as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.
Collapse
|
46
|
13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 2011. [PMID: 21515715 DOI: 10.1128/aem.00466–11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C(15) and C(16:1ω7C) as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.
Collapse
|
47
|
13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 2011; 77:4147-54. [PMID: 21515715 DOI: 10.1128/aem.00466-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C(15) and C(16:1ω7C) as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.
Collapse
|
48
|
Early evolution of membrane lipids: how did the lipid divide occur? J Mol Evol 2011; 72:274-82. [PMID: 21259003 DOI: 10.1007/s00239-011-9428-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
Abstract
The ubiquitous distribution, homology over three domains, and key role in the membrane formation of the enzymes of the CDP-alcohol phosphatidyltransferase family, as well as phylogenetic analyses of lipid synthesizing enzymes suggest that the membranes of Wächtershäuser's hypothetical pre-cells (universal common ancestor) [Mol Microbiol 47:13-22 (2003)] comprised a lipid bilayer with four types of core lipids [G-1-P-isoprenoid ether (Ai), G-3-P-fatty acyl ester (Bf), G-1-P-fatty acyl ester (Af) and G-3-P-isoprenoid ether (Bi)]. Here, a complementary hypothesis is presented to explain the difference between archaeal and bacterial lipids (lipid divide). The main driving force of lipid segregation is assumed to be glycerophosphate (GP) enantiomers, as Wächtershäuser proposed, but in the present study the hydrocarbon chains bound to each backbone are also hypothesized to affect lipid segregation. It is assumed that segregation was stimulated by different hydrocarbon chains bound to different GP backbones (Ai:Bf or Af:Bi). Because Ai and Bi are diastereomers and Af and Bf are enantiomers, Ai:Bf and Af:Bi are not equivalent. G-1-P-isoprenoid ether is provisionally assumed to segregate more easily from Bf than Bi does from Af. G-1-P-isoprenoid ether and Bf could more easily achieve the more stable homochiral membranes that are the ancestors of Archaea and Bacteria. This can explain why the extant archaeal and bacterial membrane lipids are mainly composed by Ai and Bf lipids, respectively. Because polar head groups were localized in the cytoplasmic compartment of pre-cells, they were equally carried over to Archaea and Bacteria during differentiation. Consequently, the both descendants shared the main head groups of membrane phospholipids.
Collapse
|
49
|
Anderson I, Djao ODN, Misra M, Chertkov O, Nolan M, Lucas S, Lapidus A, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Brambilla E, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Sikorski J, Spring S, Rohde M, Eichinger K, Huber H, Wirth R, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Methanothermus fervidus type strain (V24S). Stand Genomic Sci 2010; 3:315-24. [PMID: 21304736 PMCID: PMC3035299 DOI: 10.4056/sigs.1283367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methanothermus fervidus Stetter 1982 is the type strain of the genus Methanothermus. This hyperthermophilic genus is of a thought to be endemic in Icelandic hot springs. M. fervidus was not only the first characterized organism with a maximal growth temperature (97°C) close to the boiling point of water, but also the first archaeon in which a detailed functional analysis of its histone protein was reported and the first one in which the function of 2,3-cyclodiphosphoglycerate in thermoadaptation was characterized. Strain V24S(T) is of interest because of its very low substrate ranges, it grows only on H(2) + CO(2). This is the first completed genome sequence of the family Methanothermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,243,342 bp long genome with its 1,311 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
50
|
Domínguez de María P, van Gemert RW, Straathof AJJ, Hanefeld U. Biosynthesis of ethers: unusual or common natural events? Nat Prod Rep 2010; 27:370-92. [PMID: 20179877 DOI: 10.1039/b809416k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ether bonds are found in a wide variety of natural products--mainly secondary metabolites--including lipids, oxiranes, terpenoids, flavonoids, polyketides, and carbohydrate derivatives, to name some representative examples. To furnish such a biodiversity of structures, a large number of different enzymes are involved in several different biosynthetic pathways. Depending on the compound and on the (micro) environment in which the reaction is performed, ethers are produced by very different (enzymatic) reactions, thus providing an impressive display of how Nature has combined evolution and thermodynamics to be able to produce a vast number of compounds. In addition, many of these compounds possess different biological activities of pharmacological interest. Moreover, some of these ethers (i.e., epoxides) have high chemical reactivity, and can be useful starting materials for further synthetic processes. This review aims to provide an overview of the different strategies that are found in Nature for the formation of these "bioethers". Both fundamental and practical insights of the biosynthetic processes will be discussed.
Collapse
|