1
|
Mitsi E, Nikolaou E, Goncalves A, Blizard A, Hill H, Farrar M, Hyder-Wright A, Akeju O, Hamilton J, Howard A, Elterish F, Solorzano C, Robinson R, Reiné J, Collins AM, Gordon SB, Moxon RE, Weiser JN, Bogaert D, Ferreira DM. RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding. Cell Host Microbe 2024; 32:1608-1620.e4. [PMID: 39181126 DOI: 10.1016/j.chom.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.
Collapse
Affiliation(s)
- Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Andre Goncalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Annie Blizard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oluwasefunmi Akeju
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Filora Elterish
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Carla Solorzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ryan Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jesus Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Malawi Liverpool Wellcome-Trust Programme, Queen Elizabeth Central Hospital Campus, P.O. Box 30096, Blantyre, Malawi
| | - Richard E Moxon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Debby Bogaert
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, the Netherlands
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
2
|
Ferous S, Siafakas N, Boufidou F, Patrinos GP, Tsakris A, Anastassopoulou C. Investigating ABO Blood Groups and Secretor Status in Relation to SARS-CoV-2 Infection and COVID-19 Severity. J Pers Med 2024; 14:346. [PMID: 38672973 PMCID: PMC11051264 DOI: 10.3390/jpm14040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
The ABO blood groups, Lewis antigens, and secretor systems are important components of transfusion medicine. These interconnected systems have been also shown to be associated with differing susceptibility to bacterial and viral infections, likely as the result of selection over the course of evolution and the constant tug of war between humans and infectious microbes. This comprehensive narrative review aimed to explore the literature and to present the current state of knowledge on reported associations of the ABO, Lewis, and secretor blood groups with SARS-CoV-2 infection and COVID-19 severity. Our main finding was that the A blood group may be associated with increased susceptibility to SARS-CoV-2 infection, and possibly also with increased disease severity and overall mortality. The proposed pathophysiological pathways explaining this potential association include antibody-mediated mechanisms and increased thrombotic risk amongst blood group A individuals, in addition to altered inflammatory cytokine expression profiles. Preliminary evidence does not support the association between ABO blood groups and COVID-19 vaccine response, or the risk of developing long COVID. Even though the emergency state of the pandemic is over, further research is needed especially in this area since tens of millions of people worldwide suffer from lingering COVID-19 symptoms.
Collapse
Affiliation(s)
- Stefanos Ferous
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Nikolaos Siafakas
- Department of Clinical Microbiology, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Fotini Boufidou
- Neurochemistry and Biological Markers Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - George P. Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.F.); (A.T.)
| | - Cleo Anastassopoulou
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (S.F.); (A.T.)
| |
Collapse
|
3
|
Ladas P, Porfyridis I, Tryfonos C, Ioannou A, Adamide T, Christodoulou C, Richter J. Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus. Microorganisms 2023; 11:2051. [PMID: 37630611 PMCID: PMC10458012 DOI: 10.3390/microorganisms11082051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Community-acquired pneumonia (CAP) remains the leading cause of hospitalization among infectious disease in Europe, and a major cause of morbidity and mortality. In order to determine and characterize the aetiology of CAP in hospitalized adults in Cyprus, respiratory and blood samples were obtained from hospitalized patients with CAP, and analyzed using Multiplex Real-Time PCR/RT-PCR, and ID/AMR enrichment panel (RPIP) analysis. Probe-based allelic discrimination was used to investigate genetic host factors in patients. The aetiology could be established in 87% of patients. The most prevalent viral pathogens detected were influenza A, SARS-CoV-2, and human rhinovirus. The most common bacterial pathogens detected were Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae. Antimicrobial resistance genes were identified in 23 patients. S. aureus was the most common AMR correlated strain in our study. A positive correlation was detected between bacterial infections and the NOS3 rs1799983 G allele and the FCGR2A rs1801274 G allele. A positive correlation was also detected between the TNF-α rs1800629 A allele and sepsis, while a negative correlation was detected with the ACE rs1799752 insertion genotype and the severity of pneumonia. In conclusion, the targeted NGS panel approach applied provides highly sensitive, comprehensive pathogen detection, in combination with antimicrobial resistance AMR insights that can guide treatment choices. In addition, several host factors have been identified that impact the disease progression and outcome.
Collapse
Affiliation(s)
- Petros Ladas
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| | - Ilias Porfyridis
- Pulmonary Department, Nicosia General Hospital, Lemesou 215, 2029 Strovolos, Nicosia, Cyprus; (I.P.); (A.I.); (T.A.)
| | - Christina Tryfonos
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| | - Anna Ioannou
- Pulmonary Department, Nicosia General Hospital, Lemesou 215, 2029 Strovolos, Nicosia, Cyprus; (I.P.); (A.I.); (T.A.)
| | - Tonia Adamide
- Pulmonary Department, Nicosia General Hospital, Lemesou 215, 2029 Strovolos, Nicosia, Cyprus; (I.P.); (A.I.); (T.A.)
| | - Christina Christodoulou
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| | - Jan Richter
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| |
Collapse
|
4
|
Kerner G, Neehus AL, Philippot Q, Bohlen J, Rinchai D, Kerrouche N, Puel A, Zhang SY, Boisson-Dupuis S, Abel L, Casanova JL, Patin E, Laval G, Quintana-Murci L. Genetic adaptation to pathogens and increased risk of inflammatory disorders in post-Neolithic Europe. CELL GENOMICS 2023; 3:100248. [PMID: 36819665 PMCID: PMC9932995 DOI: 10.1016/j.xgen.2022.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/24/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.
Collapse
Affiliation(s)
- Gaspard Kerner
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- University Paris Cité, Imagine Institute, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Guillaume Laval
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, 75015 Paris, France
- Collège de France, Chair of Human Genomics and Evolution, 75005 Paris, France
| |
Collapse
|
5
|
Kaur P, Gupta M, Sagar V. FUT2 gene as a genetic susceptible marker of infectious diseases: A Review. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2022; 13:1-14. [PMID: 35892094 PMCID: PMC9301175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Some blood group antigens are reported as a susceptibility marker for some diseases. For instance, HBGA (Histo-blood group antigen) which is controlled by gene FUT2 also considered as a susceptible marker. The FUT2 gene which exhibits the expression of alpha-1, 2-L-fucosyltransferase enzyme also leads to HBGA expression for the gut, and it provides a composition of the phenotypical profile that exists in some populations with unique histories of evolution and it can be considered as a marker of the genetic population. It is found to have an association with many diseases which is discussed in this review. Polymorphic mutations are known to inhibit and reduce its function which are population specific. Detailed understanding and deeper knowledge of its role in the pathogenesis and prevention of many diseases is required. FUT2 may also have a potential role in the case of COVID-19 as a susceptible marker due to its association with respiratory diseases and the ABO blood group. There is an utmost need for this kind of review knowing its importance and owing to limited collective information.
Collapse
Affiliation(s)
- Paramvir Kaur
- Department of Community Medicine and Public Health, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | - Madhu Gupta
- Department of Community Medicine and Public Health, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | - Vivek Sagar
- Department of Community Medicine and Public Health, Postgraduate Institute of Medical Education and Research Chandigarh, India
| |
Collapse
|
6
|
Shokri P, Golmohammadi S, Noori M, Nejadghaderi SA, Carson‐Chahhoud K, Safiri S. The relationship between blood groups and risk of infection with SARS-CoV-2 or development of severe outcomes: A review. Rev Med Virol 2022; 32:e2247. [PMID: 34997677 PMCID: PMC8209917 DOI: 10.1002/rmv.2247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/28/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a global catastrophe that has overwhelmed health care systems. Since initiation of the pandemic, identification of characteristics that might influence risk of infection and poor disease outcomes have been of paramount interest. Blood group phenotypes are genetically inherited characteristics whose association with certain infectious diseases have long been debated. The aim of this review is to identify whether a certain type of blood group may influence an individual's susceptibility to SARS-CoV-2 infection and developing severe outcomes. Our review shows that blood group O protects individuals against SARS-CoV-2, whereas blood group A predisposes them to being infected. Although the association between blood groups and outcomes of COVID-19 is not consistent, it is speculated that non-O blood group carriers with COVID-19 are at higher risk of developing severe outcomes in comparison to O blood group. The interaction between blood groups and SARS-CoV-2 infection is hypothesized to be as result of natural antibodies against blood group antigens that may act as a part of innate immune response to neutralize viral particles. Alternatively, blood group antigens could serve as additional receptors for the virus and individuals who are capable of expressing these antigens on epithelial cells, which are known as secretors, would then have a high propensity to be affected by SARS-CoV-2.
Collapse
Affiliation(s)
- Pourya Shokri
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Saeid Golmohammadi
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Maryam Noori
- Student Research CommitteeSchool of MedicineIran University of Medical SciencesTehranIran
| | - Seyed Aria Nejadghaderi
- School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Kristin Carson‐Chahhoud
- Australian Centre for Precision HealthUniversity of South AustraliaSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideSouth AustraliaAustralia
| | - Saeid Safiri
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical SciencesTabrizIran
- Social Determinants of Health Research CenterDepartment of Community MedicineFaculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
7
|
Binia A, Siegwald L, Sultana S, Shevlyakova M, Lefebvre G, Foata F, Combremont S, Charpagne A, Vidal K, Sprenger N, Rahman M, Palleja A, Eklund AC, Nielsen HB, Brüssow H, Sarker SA, Sakwinska O. The Influence of FUT2 and FUT3 Polymorphisms and Nasopharyngeal Microbiome on Respiratory Infections in Breastfed Bangladeshi Infants from the Microbiota and Health Study. mSphere 2021; 6:e0068621. [PMID: 34756056 PMCID: PMC8579893 DOI: 10.1128/msphere.00686-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Acute respiratory infections (ARIs) are one of the most common causes of morbidity and mortality in young children. The aim of our study was to examine whether variation in maternal FUT2 (α1,2-fucosyltransferase 2) and FUT3 (α1,3/4-fucosyltransferase 3) genes, which shape fucosylated human milk oligosaccharides (HMOs) in breast milk, are associated with the occurrence of ARIs in breastfed infants as well as the influence of the nasopharyngeal microbiome on ARI risk. Occurrences of ARIs were prospectively recorded in a cohort of 240 breastfed Bangladeshi infants from birth to 2 years. Secretor and Lewis status was established by sequencing of FUT2/3 genes. The nasopharyngeal microbiome was characterized by shotgun metagenomics, complemented by specific detection of respiratory pathogens; 88.6% of mothers and 91% of infants were identified as secretors. Maternal secretor status was associated with reduced ARI incidence among these infants in the period from birth to 6 months (incidence rate ratio [IRR], 0.66; 95% confidence interval [CI], 0.47 to 0.94; P = 0.020), but not at later time periods. The nasopharyngeal microbiome, despite precise characterization to the species level, was not predictive of subsequent ARIs. The observed risk reduction of ARIs among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. However, we found no evidence that modulation of the nasopharyngeal microbiome influenced ARI risk. IMPORTANCE The observed risk reduction of acute respiratory infections (ARIs) among infants of secretor mothers during the predominant breastfeeding period is consistent with the hypothesis that fucosylated oligosaccharides in human milk contribute to protection against respiratory infections. Respiratory pathogens were only weak modulators of risk, and the nasopharyngeal microbiome did not influence ARI risk, suggesting that the associated protective effects of human milk oligosaccharides (HMOs) are not conveyed via changes in the nasopharyngeal microbiome. Our observations add to the evidence for a role of fucosylated HMOs in protection against respiratory infections in exclusively or predominantly breastfed infants in low-resource settings. There is no indication that the nasopharyngeal microbiome substantially modulates the risk of subsequent mild ARIs. Larger studies are needed to provide mechanistic insights on links between secretor status, HMOs, and risk of respiratory infections.
Collapse
Affiliation(s)
| | | | - Shamima Sultana
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | | | | | | | - Mahbubar Rahman
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | - Shafiqul Alam Sarker
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
8
|
Pasangha E, Dhali A, D'Souza C, Umesh S. Are blood groups related to the distribution and severity of COVID-19? A cross-sectional study in a tertiary care hospital in South India. Qatar Med J 2021; 2021:63. [PMID: 34888199 PMCID: PMC8627574 DOI: 10.5339/qmj.2021.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Blood groups are inherited traits that affect the susceptibility/severity of a disease. A clear relationship between coronavirus disease 2019 (COVID-19) and ABO blood groups is yet to be established in the Indian population. This study aimed to demonstrate an association of the distribution and severity of COVID-19 with ABO blood groups. Methods: A cross-sectional study was conducted after obtaining ethics approval (IEC 207/20) among hospitalized patients using in-patient records and analyzed on SPSS-25. Chi-square tests were used for the analysis of categorical data and independent sample t-test/Mann–Whitney U tests were used for continuous data. Results: The B blood group had the highest prevalence among COVID-19-positive patients. The AB blood group was significantly associated with acute respiratory distress syndrome (ARDS) (p = 0.03), sepsis (p = 0.02), and septic shock (p = 0.02). The O blood group was associated with significantly lower rates of lymphopenia and leucocytosis. However, no significant clinical association was seen in the O blood group. Conclusion: This study has demonstrated that blood groups have a similar distribution among patients hospitalized with COVID-19 in the South Indian population. Additionally, it preludes to a possible association between the AB blood group and ARDS, sepsis, and septic shock. Further studies having a larger representation of AB blood groups, especially in patients hospitalized for critical COVID-19, with adjustment for possible covariates, are warranted to provide a reliable estimate of the risk in the South Indian population.
Collapse
Affiliation(s)
| | | | | | - Soumya Umesh
- Department of General Medicine, St John's Medical College, Bangalore, India
| |
Collapse
|
9
|
Maternal H-antigen secretor status is an early biomarker for potential preterm delivery. J Perinatol 2021; 41:2147-2155. [PMID: 33235282 DOI: 10.1038/s41372-020-00870-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pre-pregnancy or first trimester biomarkers predicting preterm delivery are lacking. The purpose of this study was to determine whether maternal H-antigen (secretor status) is a potential biomarker for preterm delivery. METHODS This cohort study examined maternal saliva samples and birth data gathered by the National Children's Study Vanguard pilot phase (2009-2014) and included 300 women who were ≥18 years old and provided birth data and saliva samples. The maternal secretor status phenotype was determined by quantifying H-antigen in saliva using enzyme-linked immunoassay. Mothers were stratified by secretor status and multivariable analysis estimated adjusted associations with preterm delivery. RESULTS Maternal lack of H-antigen production was an independent risk factor for preterm delivery after adjusting for known confounders (aOR 4.53; 95% CI: 1.74, 11.81; P = 0.002). CONCLUSIONS Maternal H-antigen may be a biomarker identifying women at-risk for preterm delivery. Prospective cohort studies validating these findings are needed.
Collapse
|
10
|
Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021; 311:151487. [PMID: 33662872 DOI: 10.1016/j.ijmm.2021.151487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.
Collapse
Affiliation(s)
- Alibek Galeev
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Aleksa Cepic
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany.
| |
Collapse
|
11
|
Hong S, Grande G, Yu C, Chapla DG, Reigh N, Yang JY, Yang Y, Izumori K, Moremen KW, Xie J, Wu P. hFUT1-Based Live-Cell Assay To Profile α1-2-Fucoside-Enhanced Influenza Virus A Infection. ACS Chem Biol 2020; 15:819-823. [PMID: 32271008 PMCID: PMC7521629 DOI: 10.1021/acschembio.9b00869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Host cell surface glycans play critical roles in influenza virus A (IVA) infection ranging from modulation of IVA attachment to membrane fusion and host tropism. Approaches for quick and sensitive profile of viral avidity toward a specific type of host cell glycan can contribute to the understanding of tropism switching among different IVA strains. Here, we developed a method based on chemoenzymatic glycan engineering to investigate the possible involvement of α1-2-fucosides in IVA infections. Using a truncated human fucosyltransferase 1 (hFUT1), we created α1-2-fucosides in situ on host cells to assess their influence on the host cell binding to IVA hemagglutinin and the susceptibility of host cells toward IVA-induced killing. We discovered that the newly created α1-2-fucosides on host cells enhanced the infection of several human pandemic IVA subtypes either directly or indirectly. These findings suggest that glycan epitopes other than sialic acid should also be considered for assessing the human pandemic risk of this viral pathogen.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Geramie Grande
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chenhua Yu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Natalie Reigh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Yi Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
12
|
Paganini D, Uyoga MA, Kortman GAM, Boekhorst J, Schneeberger S, Karanja S, Hennet T, Zimmermann MB. Maternal Human Milk Oligosaccharide Profile Modulates the Impact of an Intervention with Iron and Galacto-Oligosaccharides in Kenyan Infants. Nutrients 2019; 11:nu11112596. [PMID: 31671757 PMCID: PMC6893608 DOI: 10.3390/nu11112596] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
There is little data on human milk oligosaccharide (HMO) composition in Sub-Saharan Africa. Iron fortificants adversely affect the infant gut microbiota, while co-provision of prebiotic galacto-oligosaccharides (GOS) mitigates most of the adverse effects. Whether variations in maternal HMO profile can influence the infant response to iron and/or GOS fortificants is unknown. The aim of this study was to determine HMO profiles and the secretor/non-secretor phenotype of lactating Kenyan mothers and investigate their effects on the maternal and infant gut microbiota, and on the infant response to a fortification intervention with 5 mg iron (2.5 mg as sodium iron ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) and 7.5 g GOS. We studied mother–infant pairs (n = 80) participating in a 4-month intervention trial in which the infants (aged 6.5–9.5 months) received daily a micronutrient powder without iron, with iron or with iron and GOS. We assessed: (1) maternal secretor status and HMO composition; (2) effects of secretor status on the maternal and infant gut microbiota in a cross-sectional analysis at baseline of the intervention trial; and (3) interactions between secretor status and intervention groups during the intervention trial on the infant gut microbiota, gut inflammation, iron status, growth and infectious morbidity. Secretor prevalence was 72% and HMOs differed between secretors and non-secretors and over time of lactation. Secretor status did not predict the baseline composition of the maternal and infant gut microbiota. There was a secretor-status-by-intervention-group interaction on Bifidobacterium (p = 0.021), Z-scores for length-for-age (p = 0.022) and weight-for-age (p = 0.018), and soluble transferrin receptor (p = 0.041). In the no iron group, longitudinal prevalence of diarrhea was higher among infants of non-secretors (23.8%) than of secretors (10.4%) (p = 0.001). In conclusion, HMO profile may modulate the infant gut microbiota response to fortificant iron; compared to infants of secretor mothers, infants of non-secretor mothers may be more vulnerable to the adverse effect of iron but also benefit more from the co-provision of GOS.
Collapse
Affiliation(s)
- Daniela Paganini
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| | - Mary A Uyoga
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
- Department of Medical Epidemiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya.
| | | | - Jos Boekhorst
- NIZO Food Research BV, 6718 ZB Ede, The Netherlands.
| | - Sacha Schneeberger
- Department of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland.
| | - Simon Karanja
- Department of Medical Epidemiology, College of Health Sciences, Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya.
| | - Thierry Hennet
- Department of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland.
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
13
|
Barton SJ, Murray R, Lillycrop KA, Inskip HM, Harvey NC, Cooper C, Karnani N, Zolezzi IS, Sprenger N, Godfrey KM, Binia A. FUT2 Genetic Variants and Reported Respiratory and Gastrointestinal Illnesses During Infancy. J Infect Dis 2019; 219:836-843. [PMID: 30376117 PMCID: PMC6687504 DOI: 10.1093/infdis/jiy582] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fucosyltransferase 2 (FUT2) controls the production of digestive and respiratory epithelia of histo-blood group antigens involved in the attachment of pathogens. The aim of our study was to relate FUT2 variants to reported gastrointestinal and respiratory illnesses in infancy. METHODS In the Southampton Women's Survey, FUT2 genetic variants (single-nucleotide polymorphisms [SNPs] rs601338 and rs602662) were genotyped in 1831 infants and related to infant illnesses, after adjustment for sex, breastfeeding duration, and potential confounders. RESULTS For FUT2 SNP rs601338, the risk ratios for ≥1 bout of diarrhea during ages 6-12 months and ages 12-24 months per additional risk (G) allele were 1.23 (95% confidence interval [CI], 1.08-1.4; P = .002) and 1.41 (95% CI, 1.24-1.61; P = 1.7 × 10-7), respectively; the risk ratio for ≥1 diagnosis of a lower respiratory illness (ie, pneumonia or bronchiolitis) during ages 12-24 months per additional G allele was 2.66 (95% CI, 1.64-4.3; P = .00007). Similar associations were found between rs602662 and gastrointestinal and respiratory illnesses, owing to the high linkage disequilibrium with rs601338 (R2 = 0.92). Longer breastfeeding duration predicted a lower risk of diarrhea, independent of infant FUT2 genotype. CONCLUSIONS We confirmed that FUT2 G alleles are associated with a higher risk of infant gastrointestinal illnesses and identified novel associations with respiratory illnesses. FUT2 locus variants need consideration in future studies of gastrointestinal and respiratory illnesses among infants.
Collapse
Affiliation(s)
| | - Robert Murray
- Human Development and Health Academic Unit, University of Southampton, UK
| | - Karen A. Lillycrop
- Human Development and Health Academic Unit, University of Southampton, UK
- School of Biological Sciences, University of Southampton, Southampton General Hospital, UK SO16 6YD
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
| | | | | | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
- Human Development and Health Academic Unit, University of Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, UK
| | - Aristea Binia
- Nestlé Research Center, Lausanne, Nestec S.A., Switzerland
| |
Collapse
|
14
|
Mucins: the frontline defence of the lung. Biochem Soc Trans 2018; 46:1099-1106. [PMID: 30154090 PMCID: PMC6195635 DOI: 10.1042/bst20170402] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Mucus plays a vital role in protecting the lungs from environmental factors, but conversely, in muco-obstructive airway disease, mucus becomes pathologic. In its protective role, mucus entraps microbes and particles removing them from the lungs via the co-ordinated beating of motile cilia. This mechanism of lung defence is reliant upon a flowing mucus gel, and the major macromolecular components that determine the rheological properties of mucus are the polymeric mucins, MUC5AC and MUC5B. These large O-linked glycoproteins have direct roles in maintaining lung homeostasis. MUC5B is essential for interaction with the ciliary clearance system and MUC5AC is up-regulated in response to allergic inflammatory challenge. Mucus with abnormal biophysical properties is a feature of muco-obstructive respiratory disease and can result from many different mechanisms including alterations in mucin polymer assembly, mucin concentration and the macromolecular form in mucus, as well as changes in airway surface hydration, pH and ion composition. The abnormal mucus results in defective lung protection via compromised ciliary clearance, leading to infection and inflammation.
Collapse
|
15
|
Taylor SL, McGuckin MA, Wesselingh S, Rogers GB. Infection's Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility. Trends Microbiol 2018; 26:92-101. [PMID: 29079498 PMCID: PMC7125966 DOI: 10.1016/j.tim.2017.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/10/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Abstract
Glycans form a highly variable constituent of our mucosal surfaces and profoundly affect our susceptibility to infection and disease. The diversity and importance of these surface glycans can be seen in individuals who lack a functional copy of the fucosyltransferase gene, FUT2. Representing around one-fifth of the population, these individuals have an altered susceptibility to many bacterial and viral infections and diseases. The mediation of host-pathogen interactions by mucosal glycans, such as those added by FUT2, is poorly understood. We highlight, with specific examples, important mechanisms by which host glycans influence infection dynamics, including by: acting as pathogen receptors (or receptor-decoys), promoting microbial stability, altering the physical characteristics of mucus, and acting as immunological markers. We argue that the effect glycans have on infection dynamics has profound implications for many aspects of healthcare and policy, including clinical management, outbreak control, and vaccination policy.
Collapse
Affiliation(s)
- Steven L Taylor
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; The SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Michael A McGuckin
- Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Steve Wesselingh
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; The SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- The South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; The SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
16
|
Morgene MF, Botelho-Nevers E, Grattard F, Pillet S, Berthelot P, Pozzetto B, Verhoeven PO. Staphylococcus aureus colonization and non-influenza respiratory viruses: Interactions and synergism mechanisms. Virulence 2018; 9:1354-1363. [PMID: 30058450 PMCID: PMC6177244 DOI: 10.1080/21505594.2018.1504561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Viral infections of the respiratory tract can be complicated by bacterial superinfection, resulting in a significantly longer duration of illness and even a fatal outcome. In this review, we focused on interactions between S. aureus and non-influenza viruses. Clinical data evidenced that rhinovirus infection may increase the S. aureus carriage load in humans and its spread. In children, respiratory syncytial virus infection is associated with S. aureus carriage. The mechanisms by which some non-influenza respiratory viruses predispose host cells to S. aureus superinfection can be summarized in three categories: i) modifying expression levels of cellular patterns involved in S. aureus adhesion and/or internalization, ii) inducing S. aureus invasion of epithelial cells due to the disruption of tight junctions, and iii) decreasing S. aureus clearance by altering the immune response. The comprehension of pathways involved in S. aureus-respiratory virus interactions may help developing new strategies of preventive and curative therapy.
Collapse
Affiliation(s)
- M. Fedy Morgene
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
| | - Elisabeth Botelho-Nevers
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Infectious Diseases Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Florence Grattard
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Sylvie Pillet
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Philippe Berthelot
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Bruno Pozzetto
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Paul O. Verhoeven
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), University of Lyon, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
17
|
Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat Commun 2017; 8:599. [PMID: 28928442 PMCID: PMC5605711 DOI: 10.1038/s41467-017-00257-5] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/14/2017] [Indexed: 12/04/2022] Open
Abstract
Infectious diseases have a profound impact on our health and many studies suggest that host genetics play a major role in the pathogenesis of most of them. We perform 23 genome-wide association studies for common infections and infection-associated procedures, including chickenpox, shingles, cold sores, mononucleosis, mumps, hepatitis B, plantar warts, positive tuberculosis test results, strep throat, scarlet fever, pneumonia, bacterial meningitis, yeast infections, urinary tract infections, tonsillectomy, childhood ear infections, myringotomy, measles, hepatitis A, rheumatic fever, common colds, rubella and chronic sinus infection, in over 200,000 individuals of European ancestry. We detect 59 genome-wide significant (P < 5 × 10−8) associations in genes with key roles in immunity and embryonic development. We apply fine-mapping analysis to dissect associations in the human leukocyte antigen region, which suggests important roles of specific amino acid polymorphisms in the antigen-binding clefts. Our findings provide an important step toward dissecting the host genetic architecture of response to common infections. Susceptibility to infectious diseases is, among others, influenced by the genetic landscape of the host. Here, Tian and colleagues perform genome-wide association studies for 23 common infections and find 59 risk loci for 17 of these, both within the HLA region and non-HLA loci.
Collapse
|
18
|
Loebinger M. Sugar coating bronchiectasis. Thorax 2017; 72:300-301. [DOI: 10.1136/thoraxjnl-2016-209274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Taylor SL, Woodman RJ, Chen AC, Burr LD, Gordon DL, McGuckin MA, Wesselingh S, Rogers GB. FUT2 genotype influences lung function, exacerbation frequency and airway microbiota in non-CF bronchiectasis. Thorax 2017; 72:304-310. [PMID: 27503233 DOI: 10.1136/thoraxjnl-2016-208775] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/23/2016] [Accepted: 07/12/2016] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To assess whether FUT2 (secretor) genotype affects disease severity and airway infection in patients with non-cystic fibrosis bronchiectasis. PARTICIPANTS Induced sputum samples were obtained from 112 adult patients with high-resolution CT scan-proven bronchiectasis and at least two exacerbations in the previous year, as part of an unrelated randomised control trial. OUTCOME MEASURES Presence of null FUT2 polymorphisms were determined by gene sequencing and verified by endobronchial biopsy histochemical staining. Outcome measures were FEV1% predicted, exacerbation frequency, and bacterial, fungal and viral components of the microbiota (measured by culture independent approaches). RESULTS Patients were grouped by FUT2 loss-of-function genotype; categorised as non-secretors (n=27, sese), heterozygous secretors (n=54, Sese) or homozygous secretors (n=31, SeSe). FEV1% was significantly lower in SeSe patients compared with sese patients (mean 61.6 (SD 20.0) vs 74.5 (18.0); p=0.023). Exacerbation frequency was significantly higher in SeSe (mean count 5.77) compared with sese (4.07; p=0.004) and Sese (4.63; p=0.026) genotypes. The time until first exacerbation was significantly shorter in SeSe compared with Sese (HR=0.571 (95% CI 0.343 to 0.950); p=0.031), with a similar trend for sese patients (HR=0.577 (0.311 to 1.07); p=0.081). sese had a significantly reduced frequency of Pseudomonas aeruginosa-dominated airway infection (8.7%) compared with Sese (31%; p=0.042) and SeSe (36%; p=0.035). In contrast, fungal, viral and non-dominant bacterial components of the microbiome were not significantly different between FUT2 genotypes. CONCLUSIONS FUT2 genotype in patients with non-cystic fibrosis bronchiectasis was significantly associated with disease outcomes, with homozygous secretors exhibiting lower lung function, higher exacerbation number and a higher frequency of P. aeruginosa-dominated infection. TRIAL REGISTRATION NUMBER ACTRN12609000578202 (anzctr.org.au); Pre-results.
Collapse
Affiliation(s)
- Steven L Taylor
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Alice Ch Chen
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Lucy D Burr
- Immunity, Infection, and Inflammation Program, Mater Research Institute, University of Queensland and Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Health Services, South Brisbane, Queensland, Australia
| | - David L Gordon
- Department of Microbiology and Infectious Diseases, Flinders University, Adelaide, South Australia, Australia
- SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Michael A McGuckin
- Immunity, Infection, and Inflammation Program, Mater Research Institute, University of Queensland and Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Steve Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Microbiome Research Laboratory, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Dotz V, Wuhrer M. Histo-blood group glycans in the context of personalized medicine. Biochim Biophys Acta Gen Subj 2016; 1860:1596-607. [PMID: 26748235 PMCID: PMC7117023 DOI: 10.1016/j.bbagen.2015.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide structures which may be conjugated to lipids or proteins. They are known to be important recognition motifs not only in the context of blood transfusions, but also in infection and cancer development. SCOPE OF REVIEW Current knowledge on the molecular background and the implication of histo-blood group glycans in the prevention and therapy of infectious and non-communicable diseases, such as cancer and cardiovascular disease, is presented. MAJOR CONCLUSIONS Glycan-based histo-blood groups are associated with intestinal microbiota composition, the risk of various diseases as well as therapeutic success of, e.g., vaccination. Their potential as prebiotic or anti-microbial agents, as disease biomarkers and vaccine targets should be further investigated in future studies. For this, recent and future technological advancements will be of particular importance, especially with regard to the unambiguous structural characterization of the glycan portion in combination with information on the protein and lipid carriers of histo-blood group-active glycans in large cohorts. GENERAL SIGNIFICANCE Histo-blood group glycans have a unique linking position in the complex network of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly promising targets for novel approaches in the field of personalized medicine. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Viktoria Dotz
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
21
|
Politis C, Parara M, Kremastinou J, Hasapopoulou E, Iniotaki A, Siorenta A, Richardson C, Papa A, Kavallierou L, Asariotou M, Katsarou O, Mougiou A, Dadiotis L, Alexandropoulou Z, Megalou A, Magoula E, Papadopoulou M, Pervanidou D, Baka A, Hadjichristodoulou C. Associations of ABO, D, and Lewis blood groups and HLA Class I and Class II alleles with West Nile virus Lineage 2 disease outcome in Greece, 2010 to 2013. Transfusion 2016; 56:2115-21. [PMID: 27245377 DOI: 10.1111/trf.13667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/10/2016] [Accepted: 04/10/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND West Nile virus (WNV) infection, commonly asymptomatic, may cause mild West Nile fever (WNF) or potentially fatal neuroinvasive disease (WNND). An outbreak of 262 cases of the new Lineage 2 strain in Greece in 2010 continued with high mortality (17%) in WNND. The objective was to investigate ABO, D, and Lewis blood groups, as well as HLA Class I and Class II alleles, in relation to WNV Lineage 2 disease morbidity. STUDY DESIGN AND METHODS A cohort of 132 Greek WNV cases in 2010 to 2013 (65% male; mean age 64 years; 41% WNF, 59% WNND) was compared to 51,339 healthy WNV-negative blood donors and 246 healthy subjects. RESULTS Blood group A was more common in WNV cases (51%) than blood donors (39%) and group O less common (32% vs. 42%). D negativity within group A was higher in WNV than in blood donors (18% vs. 10%, p = 0.044). The frequency of secretors (Lewis(a-b+)) was 60% in WNV and 68% in donors (p = 0.16). HLA alleles C*08, DRB1*O4:O5, and DQB1*O2 occurred significantly less frequently in WNV than controls (p < 0.05 unadjusted for multiple testing) and DRB1*10:O1 more frequently (p = 0.039). CONCLUSION This first study of symptomatic WNV Lineage 2 suggests A/D negativity as a new risk factor associated with WNV infection and level of morbidity. Further studies are required of the possibility that HLA C*08, DRB1*O4:O5, and DQB1*O2 are protective alleles and DRB1*10:O1 a "susceptible" allele to WNV infection and the role of secretor status in relation to WNV infection.
Collapse
Affiliation(s)
- Constantina Politis
- Coordinating Haemovigilance Centre.,Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | - Myrsini Parara
- Coordinating Haemovigilance Centre.,Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | | | - Eleni Hasapopoulou
- AHEPA University Hospital Blood Centre Thessaloniki, Thessaloniki, Greece
| | | | | | - Clive Richardson
- Coordinating Haemovigilance Centre.,Panteion University of Social and Political Sciences, Athens, Greece
| | - Anna Papa
- Arboviruses National Reference Laboratory, Aristoteleio University, Thessaloniki, Greece
| | - Lilian Kavallierou
- Coordinating Haemovigilance Centre.,Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | - Marina Asariotou
- Coordinating Haemovigilance Centre.,Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | - Olga Katsarou
- Laiko General Hospital Blood Establishment, Athens, Greece
| | | | - Lukas Dadiotis
- Tzanio General Hospital Blood Establishment, Piraeus, Greece
| | | | - Angelica Megalou
- Evangelismos General Hospital Blood Establishment, Athens, Greece
| | | | | | - Danai Pervanidou
- Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | - Agoritsa Baka
- Hellenic Centre for Disease Control and Prevention, Athens, Greece
| | | |
Collapse
|
22
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Demmert M, Schaper A, Pagel J, Gebauer C, Emeis M, Heitmann F, Kribs A, Siegel J, Müller D, Keller-Wackerbauer A, Gerleve H, Wieg C, Herting E, Göpel W, Härtel C. FUT 2 polymorphism and outcome in very-low-birth-weight infants. Pediatr Res 2015; 77:586-90. [PMID: 25642664 DOI: 10.1038/pr.2015.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/02/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND To determine whether the secretor gene fucosyltransferase (FUT)2 polymorphism G428A is predictive for adverse outcomes in a large cohort of very-low-birth weight (VLBW) infants. METHODS We prospectively enrolled 2,406 VLBW infants from the population-based multicenter cohort of the German Neonatal network cohort (2009-2011). The secretor genotype (rs601338) was assessed from DNA samples extracted from buccal swabs. Primary study outcomes were clinical sepsis, blood-culture confirmed sepsis, intracerebral hemorrhage (ICH), necrotizing enterocolitis (NEC) or focal intestinal perforation requiring surgery, and death. RESULTS Based on the assumption of a recessive genetic model, AA individuals had a higher incidence of ICH (AA: 19.0% vs. GG/AG 14.9%, P = 0.04) which was not significant in the additive genetic model (multivariable logistic regression analysis; allele carriers: 365 cases, 1,685 controls; OR: 1.2; 95% CI: 0.99-1.4; P = 0.06). Other outcomes were not influenced by FUT2 genotype in either genetic model. CONCLUSION This large-scale multicenter study did not confirm previously reported associations between FUT2 genotype and adverse outcomes in preterm infants.
Collapse
Affiliation(s)
- Martin Demmert
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Anne Schaper
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Julia Pagel
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Corinna Gebauer
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
| | - Michael Emeis
- Department of Neonatology, Vivantes-Klinikum Berlin-Neukölln, Berlin, Germany
| | | | - Angela Kribs
- Department of Pediatrics, University of Cologne, Köln, Germany
| | - Jens Siegel
- Department of Neonatology, Children´s Hospital Auf der Bult, Hanover, Germany
| | - Dirk Müller
- Department of Neonatology, Klinikum Kassel, Kassel, Germany
| | | | - Hubert Gerleve
- Department of Neonatology, Klinikum Coesfeld, Coesfeld, Germany
| | - Christian Wieg
- Department of Neonatology, Klinikum Aschaffenburg, Aschaffenburg, Germany
| | - Egbert Herting
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | - Wolfgang Göpel
- Department of Pediatrics, University at Lübeck, Lübeck, Germany
| | | |
Collapse
|
24
|
De Leoz MLA, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA, German JB, Mills DA, Lebrilla CB. Human milk glycomics and gut microbial genomics in infant feces show a correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. J Proteome Res 2014; 14:491-502. [PMID: 25300177 PMCID: PMC4286166 DOI: 10.1021/pr500759e] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Human
milk oligosaccharides (HMOs) play a key role in shaping and
maintaining a healthy infant gut microbiota. This article demonstrates
the potential of combining recent advances in glycomics and genomics
to correlate abundances of fecal microbes and fecal HMOs. Serial fecal
specimens from two healthy breast-fed infants were analyzed by bacterial
DNA sequencing to characterize the microbiota and by mass spectrometry
to determine abundances of specific HMOs that passed through the intestinal
tract without being consumed by the luminal bacteria. In both infants,
the fecal bacterial population shifted from non-HMO-consuming microbes
to HMO-consuming bacteria during the first few weeks of life. An initial
rise in fecal HMOs corresponded with bacterial populations composed
primarily of non-HMO-consuming Enterobacteriaceae and Staphylococcaeae. This was followed
by decreases in fecal HMOs as the proportion of HMO-consuming Bacteroidaceae and Bifidobacteriaceae increased. Analysis of HMO structures with isomer differentiation
revealed that HMO consumption is highly structure-specific, with unique
isomers being consumed and others passing through the gut unaltered.
These results represent a proof-of-concept and are consistent with
the highly selective, prebiotic effect of HMOs in shaping the gut
microbiota in the first weeks of life. The analysis of selective fecal
bacterial substrates as a measure of alterations in the gut microbiota
may be a potential marker of dysbiosis.
Collapse
Affiliation(s)
- Maria Lorna A De Leoz
- Departments of Chemistry, ‡Viticulture and Enology, §Food Science and Technology, ∥Pediatrics, and ⊥Biochemistry, #Foods for Health Institute, University of California Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Castanys-Muñoz E, Martin MJ, Prieto PA. 2'-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutr Rev 2013; 71:773-89. [PMID: 24246032 DOI: 10.1111/nure.12079] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lactose is the preeminent soluble glycan in milk and a significant source of energy for most newborn mammals. Elongation of lactose with additional monosaccharides gives rise to a varied repertoire of free soluble glycans such as 2'-fucosyllactose (2'-FL), which is the most abundant oligosaccharide in human milk. In infants, 2'-FL is resistant to digestion and reaches the colon where it is partially fermented, behaving as soluble prebiotic fiber. Evidence also suggests that portions of small soluble milk glycans, including 2'-FL, are absorbed, thus raising the possibility of systemic biological effects. 2'-FL bears an epitope of the Secretor histo-blood group system; approximately 70-80% of all milk samples contain 2'-FL, since its synthesis depends on a fucosyltransferase that is not uniformly expressed. The fact that some infants are not exposed to 2'-FL has helped researchers to retrospectively probe for biological activities of this glycan. This review summarizes the attributes of 2'-FL in terms of its occurrence in mammalian phylogeny, its postulated biological activities, and its variability in human milk.
Collapse
|
26
|
Kashyap PC, Marcobal A, Ursell LK, Smits SA, Sonnenburg ED, Costello EK, Higginbottom SK, Domino SE, Holmes SP, Relman DA, Knight R, Gordon JI, Sonnenburg JL. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc Natl Acad Sci U S A 2013; 110:17059-64. [PMID: 24062455 PMCID: PMC3800993 DOI: 10.1073/pnas.1306070110] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We investigate how host mucus glycan composition interacts with dietary carbohydrate content to influence the composition and expressed functions of a human gut community. The humanized gnotobiotic mice mimic humans with a nonsecretor phenotype due to knockout of their α1-2 fucosyltransferase (Fut2) gene. The fecal microbiota of Fut2(-) mice that lack fucosylated host glycans show decreased alpha diversity relative to Fut2(+) mice and exhibit significant differences in community composition. A glucose-rich plant polysaccharide-deficient (PD) diet exerted a strong effect on the microbiota membership but eliminated the effect of Fut2 genotype. Additionally fecal metabolites predicted host genotype in mice on a polysaccharide-rich standard diet but not on a PD diet. A more detailed mechanistic analysis of these interactions involved colonization of gnotobiotic Fut2(+) and Fut2(-) mice with Bacteroides thetaiotaomicron, a prominent member of the human gut microbiota known to adaptively forage host mucosal glycans when dietary polysaccharides are absent. Within Fut2(-) mice, the B. thetaiotaomicron fucose catabolic pathway was markedly down-regulated, whereas BT4241-4247, an operon responsive to terminal β-galactose, the precursor that accumulates in the Fut2(-) mice, was significantly up-regulated. These changes in B. thetaiotaomicron gene expression were only evident in mice fed a PD diet, wherein B. thetaiotaomicron relies on host mucus consumption. Furthermore, up-regulation of the BT4241-4247 operon was also seen in humanized Fut2(-) mice. Together, these data demonstrate that differences in host genotype that affect the carbohydrate landscape of the distal gut interact with diet to alter the composition and function of resident microbes in a diet-dependent manner.
Collapse
Affiliation(s)
- Purna C. Kashyap
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Angela Marcobal
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Luke K. Ursell
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309
| | - Samuel A. Smits
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Erica D. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth K. Costello
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K. Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | - Susan P. Holmes
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304; and
| | - Rob Knight
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309
| | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
27
|
De Leoz MLA, Gaerlan SC, Strum JS, Dimapasoc LM, Mirmiran M, Tancredi DJ, Smilowitz JT, Kalanetra KM, Mills DA, German JB, Lebrilla CB, Underwood MA. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res 2012; 11:4662-72. [PMID: 22900748 DOI: 10.1021/pr3004979] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Breast milk is the ideal nutrition for term infants but must be supplemented to provide adequate growth for most premature infants. Human milk oligosaccharides (HMOs) are remarkably abundant and diverse in breast milk and yet provide no nutritive value to the infant. HMOs appear to have at least two major functions: prebiotic activity (stimulation of the growth of commensal bacteria in the gut) and protection against pathogens. Investigations of HMOs in milk from women delivering preterm have been limited. We present the first detailed mass spectrometric analysis of the fucosylation and sialylation in HMOs in serial specimens of milk from 15 women delivering preterm and 7 women delivering at term using nanohigh performance liquid chromatography chip/time-of-flight mass spectrometry. A mixed-effects model with Levene's test was used for the statistical analyses. We find that lacto-N-tetraose, a core HMO, is both more abundant and more highly variable in the milk of women delivering preterm. Furthermore, fucosylation in preterm milk is not as well regulated as in term milk, resulting in higher within and between mother variation in women delivering preterm vs term. Of particular clinical interest, the α1,2-linked fucosylated oligosaccharide 2'-fucosyllactose, an indicator of secretor status, is not consistently present across lactation of several mothers that delivered preterm. The immaturity of HMO production does not appear to resolve over the time of lactation and may have relevance to the susceptibility of premature infants to necrotizing enterocolitis, late onset sepsis, and related neurodevelopmental impairments.
Collapse
|
28
|
Horby P, Nguyen NY, Dunstan SJ, Baillie JK. The role of host genetics in susceptibility to influenza: a systematic review. PLoS One 2012; 7:e33180. [PMID: 22438897 PMCID: PMC3305291 DOI: 10.1371/journal.pone.0033180] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/06/2012] [Indexed: 12/24/2022] Open
Abstract
Background The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380). Methods and Findings PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven. Conclusion The fundamental question “Is susceptibility to severe influenza in humans heritable?” remains unanswered. Not because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe influenza through multi-national host genetic studies.
Collapse
Affiliation(s)
- Peter Horby
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, Hanoi, Vietnam.
| | | | | | | |
Collapse
|
29
|
Rausch P, Rehman A, Künzel S, Häsler R, Ott SJ, Schreiber S, Rosenstiel P, Franke A, Baines JF. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A 2011; 108:19030-5. [PMID: 22068912 PMCID: PMC3223430 DOI: 10.1073/pnas.1106408108] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The FUT2 (Secretor) gene is responsible for the presence of ABO histo-blood group antigens on the gastrointestinal mucosa and in bodily secretions. Individuals lacking a functional copy of FUT2 are known as "nonsecretors" and display an array of differences in susceptibility to infection and disease, including Crohn disease. To determine whether variation in resident microbial communities with respect to FUT2 genotype is a potential factor contributing to susceptibility, we performed 454-based community profiling of the intestinal microbiota in a panel of healthy subjects and Crohn disease patients and determined their genotype for the primary nonsecretor allele in Caucasian populations, W143X (G428A). Consistent with previous studies, we observe significant deviations in the microbial communities of individuals with Crohn disease. Furthermore, the FUT2 genotype explains substantial differences in community composition, diversity, and structure, and we identified several bacterial species displaying disease-by-genotype associations. These findings indicate that alterations in resident microbial communities may in part explain the variety of host susceptibilities surrounding nonsecretor status and that FUT2 is an important genetic factor influencing host-microbial diversity.
Collapse
Affiliation(s)
- Philipp Rausch
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
- Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Stephan J. Ott
- Department of General Internal Medicine, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
- Department of General Internal Medicine, Christian-Albrechts-University of Kiel, University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany; and
| | - John F. Baines
- Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
- Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany
| |
Collapse
|
30
|
Innes AL, McGrath KW, Dougherty RH, McCulloch CE, Woodruff PG, Seibold MA, Okamoto KS, Ingmundson KJ, Solon MC, Carrington SD, Fahy JV. The H antigen at epithelial surfaces is associated with susceptibility to asthma exacerbation. Am J Respir Crit Care Med 2010; 183:189-94. [PMID: 20732988 DOI: 10.1164/rccm.201003-0488oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Acute asthma exacerbations, precipitated by viral infections, are a significant cause of morbidity, but not all patients with asthma are equally susceptible. OBJECTIVES To explore susceptibility factors for asthma exacerbations, we considered a role for histoblood group antigens because they are implicated in mechanisms of gastrointestinal viral infection, specifically the O-secretor mucin glycan phenotype. We investigated if this phenotype is associated with susceptibility to asthma exacerbation. METHODS We performed two consecutive case-control studies in subjects with asthma who were either prone or resistant to asthma exacerbations. Exacerbation-prone cases had frequent use of prednisone for an asthma exacerbation and frequent asthma-related healthcare utilization, whereas exacerbation-resistant control subjects had rarely reported asthma exacerbations. The frequency of different mucin glycan phenotypes, defined by the presence or absence of H (O), A, B, or AB antigens, was compared in cases and control subjects. MEASUREMENTS AND MAIN RESULTS In an initial study consisting of 49 subjects with asthma (23 cases and 26 control subjects), we found that having the O-secretor phenotype was associated with a 5.8-fold increase in the odds of being a case (95% confidence interval, 1.7-21.0; P = 0.006). In a replication study consisting of 204 subjects with asthma (101 cases and 103 control subjects), we found that having the O-secretor phenotype was associated with a 2.3-fold increased odds of being a case (95% confidence interval, 1.2-4.4; P = 0.02). CONCLUSIONS The O-secretor mucin glycan phenotype is associated with susceptibility to asthma exacerbation. Clinical trial registered at www.clinicaltrials.gov (NCT00201266).
Collapse
Affiliation(s)
- Anh L Innes
- The Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The relative contribution of founder effects and natural selection to the observed distribution of human blood groups has been debated since blood group frequencies were shown to differ between populations almost a century ago. Advances in our understanding of the migration patterns of early humans from Africa to populate the rest of the world obtained through the use of Y chromosome and mtDNA markers do much to inform this debate. There are clear examples of protection against infectious diseases from inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions particularly in respect of Helicobacter pylori, norovirus, and cholera infections. However, available evidence suggests surviving malaria is the most significant selective force affecting the expression of blood groups. Red cells lacking or having altered forms of blood group-active molecules are commonly found in regions of the world in which malaria is endemic, notably the Fy(a-b-) phenotype and the S-s- phenotype in Africa and the Ge- and SAO phenotypes in South East Asia. Founder effects provide a more convincing explanation for the distribution of the D- phenotype and the occurrence of hemolytic disease of the fetus and newborn in Europe and Central Asia.
Collapse
|
32
|
Abstract
Noroviruses have emerged as a major cause of acute gastroenteritis in humans of all ages and are responsible for 200,000 deaths every year, mainly in developing countries. Despite high infectivity and lack of long-term immunity, authentic and volunteer studies have shown existence of inherited protective factors. Recent studies have shown that secretor status controlled by the α1,2-fucosyltransferase gene located on chromosome 19 determines susceptibility to most, if not all, norovirus infections, with individuals homozygous for the G428A nonsense mutation (nonsecretors) representing 20% of the highly protected European population.
Collapse
Affiliation(s)
- Elin Kindberg
- Division of Molecular Virology, Department of Clinical & Experimental Medicine, Medical Faculty, University of Linköping, 58185 Linköping, Sweden
| | - Lennart Svensson
- Professor, Division of Molecular Virology, Department of Clinical & Experimental Medicine, University of Linköping, 58185 Linköping, Sweden
| |
Collapse
|
33
|
Fumagalli M, Cagliani R, Pozzoli U, Riva S, Comi GP, Menozzi G, Bresolin N, Sironi M. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genes Dev 2009; 19:199-212. [PMID: 18997004 PMCID: PMC2652214 DOI: 10.1101/gr.082768.108] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 11/04/2008] [Indexed: 12/31/2022]
Abstract
Historically, allelic variations in blood group antigen (BGA) genes have been regarded as possible susceptibility factors for infectious diseases. Since host-pathogen interactions are major determinants in evolution, BGAs can be thought of as selection targets. In order to verify this hypothesis, we obtained an estimate of pathogen richness for geographic locations corresponding to 52 populations distributed worldwide; after correction for multiple tests and for variables different from selective forces, significant correlations with pathogen richness were obtained for multiple variants at 11 BGA loci out of 26. In line with this finding, we demonstrate that three BGA genes, namely CD55, CD151, and SLC14A1, have been subjected to balancing selection, a process, rare outside MHC genes, which maintains variability at a locus. Moreover, we identified a gene region immediately upstream the transcription start site of FUT2 which has undergone non-neutral evolution independently from the coding region. Finally, in the case of BSG, we describe the presence of a highly divergent haplotype clade and the possible reasons for its maintenance, including frequency-dependent balancing selection, are discussed. These data indicate that BGAs have been playing a central role in the host-pathogen arms race during human evolutionary history and no other gene category shows similar levels of widespread selection, with the only exception of loci involved in antigen recognition.
Collapse
Affiliation(s)
- Matteo Fumagalli
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, 23842 Bosisio Parini (LC), Italy
- Bioengineering Department, Politecnico di Milano, 20133 Milan, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, 23842 Bosisio Parini (LC), Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, 23842 Bosisio Parini (LC), Italy
| | - Stefania Riva
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, 23842 Bosisio Parini (LC), Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena Foundation, 20100 Milan, Italy
| | - Giorgia Menozzi
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, 23842 Bosisio Parini (LC), Italy
| | - Nereo Bresolin
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, 23842 Bosisio Parini (LC), Italy
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena Foundation, 20100 Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. Medea, Bioinformatic Lab, 23842 Bosisio Parini (LC), Italy
| |
Collapse
|
34
|
Fry AE, Griffiths MJ, Auburn S, Diakite M, Forton JT, Green A, Richardson A, Wilson J, Jallow M, Sisay-Joof F, Pinder M, Peshu N, Williams TN, Marsh K, Molyneux ME, Taylor TE, Rockett KA, Kwiatkowski DP. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria. Hum Mol Genet 2007; 17:567-76. [PMID: 18003641 PMCID: PMC2657867 DOI: 10.1093/hmg/ddm331] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across three African populations. Using population- and family-based tests, we demonstrated that alleles producing functional ABO enzymes are associated with greater risk of severe malaria phenotypes (particularly malarial anemia) in comparison with the frameshift deletion underlying blood group O: case-control allelic odds ratio (OR), 1.2; 95% confidence interval (CI), 1.09-1.32; P = 0.0003; family-studies allelic OR, 1.19; 95% CI, 1.08-1.32; P = 0.001; pooled across all studies allelic OR, 1.18; 95% CI, 1.11-1.26; P = 2 x 10(-7). We found suggestive evidence of a parent-of-origin effect at the ABO locus by analyzing the family trios. Non-O haplotypes inherited from mothers, but not fathers, are significantly associated with severe malaria (likelihood ratio test of Weinberg, P = 0.046). Finally, we used HapMap data to demonstrate a region of low F(ST) (-0.001) between the three main HapMap population groups across the ABO locus, an outlier in the empirical distribution of F(ST) across chromosome 9 (approximately 99.5-99.9th centile). This low F(ST) region may be a signal of long-standing balancing selection at the ABO locus, caused by multiple infectious pathogens including P. falciparum.
Collapse
Affiliation(s)
- Andrew E Fry
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Burgner D, Jamieson SE, Blackwell JM. Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? THE LANCET. INFECTIOUS DISEASES 2006; 6:653-63. [PMID: 17008174 PMCID: PMC2330096 DOI: 10.1016/s1473-3099(06)70601-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic epidemiology, including twin studies, provides robust evidence that genetic variation in human populations contributes to susceptibility to infectious disease. One of the major limitations of studies that attempt to identify the genes and mechanisms that underlie this susceptibility has been lack of power caused by small sample size. With the development of novel technologies, burgeoning information on the human genome, the HapMap project, and human genetic diversity, we are at the beginning of a new era in the study of the genetics of complex diseases. This review looks afresh at the epidemiological evidence that supports a role for genetics in susceptibility to infectious disease, examines the somewhat limited achievements to date, and discusses current advances in methodology and technology that will potentially lead to translational data in the future.
Collapse
Affiliation(s)
- David Burgner
- School of Paediatrics and Child Health, University of Western Australia, Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Sarra E Jamieson
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Jenefer M Blackwell
- Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
36
|
Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? THE LANCET. INFECTIOUS DISEASES 2006. [PMID: 17008174 DOI: 10.1016/s1473-3099(06)70601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Genetic epidemiology, including twin studies, provides robust evidence that genetic variation in human populations contributes to susceptibility to infectious disease. One of the major limitations of studies that attempt to identify the genes and mechanisms that underlie this susceptibility has been lack of power caused by small sample size. With the development of novel technologies, burgeoning information on the human genome, the HapMap project, and human genetic diversity, we are at the beginning of a new era in the study of the genetics of complex diseases. This review looks afresh at the epidemiological evidence that supports a role for genetics in susceptibility to infectious disease, examines the somewhat limited achievements to date, and discusses current advances in methodology and technology that will potentially lead to translational data in the future.
Collapse
|
37
|
Le Pendu J, Ruvoën-Clouet N, Kindberg E, Svensson L. Mendelian resistance to human norovirus infections. Semin Immunol 2006; 18:375-86. [PMID: 16973373 PMCID: PMC7129677 DOI: 10.1016/j.smim.2006.07.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 07/14/2006] [Indexed: 01/20/2023]
Abstract
Noroviruses have emerged as a major cause of acute gastroenteritis in humans of all ages. Despite high infectivity of the virus and lack of long-term immunity, volunteer and authentic studies has suggested the existence of inherited protective factors. Recent studies have shown that histo-blood group antigens (HBGAs) and in particular secretor status controlled by the α1,2fucosyltransferase FUT2 gene determine susceptibility to norovirus infections, with nonsecretors (FUT2−/−), representing 20% of Europeans, being highly resistant to symptomatic infections with major strains of norovirus. Moreover, the capsid protein from distinct strains shows different HBGA specificities, suggesting a host–pathogen co-evolution driven by carbohydrate–protein interactions.
Collapse
Affiliation(s)
- Jacques Le Pendu
- Inserm U601, University of Nantes, Institute of Biology, 9 Quai Moncousu, 44093 Nantes, Cedex 01, France.
| | | | | | | |
Collapse
|
38
|
Chen YL, Chen JC, Lin TM, Huang TJ, Wang ST, Lee MF, Wang JY. ABO/secretor genetic complex is associated with the susceptibility of childhood asthma in Taiwan. Clin Exp Allergy 2006; 35:926-32. [PMID: 16008680 DOI: 10.1111/j.1365-2222.2005.02278.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Histo-blood groups, ABO, Lewis (Le) and secretor (Se) were found to be associated with lower lung function and wheezing in coal miners as well as in asthmatic children in some studies but not others, possibly reflecting the genetic heterogeneity among different ethnicities and local environmental exposure. OBJECTIVE The present study was conducted to determine the association between ABO, Lewis and secretor genetic complex with susceptibility of childhood asthma in Taiwan. METHODS We randomly selected 136 asthmatic children and 161 age-matched controls from a childhood asthma survey conducted in primary schools. ABO and Lewis blood groups were determined by red blood cell agglutination methods. Analysis of Se genotype was performed by PCR with sequence-specific primers. RESULTS There was a higher prevalence rate in secretor subjects (Se/Se) (odds ratio (OR)=1.7, confidence interval (CI)=1.022-2.938) in asthma as compared with controls. The combined effect of these three blood systems revealed that blood group O/secretor phenotype (Se/Se) (OR=2.7, CI=1.126-6.033), and blood group O/Le(a-b-) (OR=3.6, CI=1.080-11.963, P<0.03) individuals were significantly associated with asthma. The Lewis Le(a-b-) recessive genotype (OR=3.3, CI=1.267-8.482), or the joint blood group O/Le(a-b-) phenotype (OR=5.2, CI=1.259-21.429, P<0.02), was significantly associated with high serum IgE (>500 IU), respectively. There was no association of these three blood systems with the sensitivity of dust mite, Dermatophagoide pteronyssinus, in our study population. CONCLUSIONS We concluded that blood group O/secretors (Se/Se) and O/Le(a-b-) were associated with childhood asthma, and may act as one of the predominant factors for environmental triggers of allergy for asthmatic children in Taiwan.
Collapse
Affiliation(s)
- Y-L Chen
- Laboratory of Molecular Diagnostics, Department of Clinical Pathology, Chi-Mei Hospital, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Walsh EC, Sabeti P, Hutcheson HB, Fry B, Schaffner SF, de Bakker PIW, Varilly P, Palma AA, Roy J, Cooper R, Winkler C, Zeng Y, de The G, Lander ES, O'Brien S, Altshuler D. Searching for signals of evolutionary selection in 168 genes related to immune function. Hum Genet 2005; 119:92-102. [PMID: 16362345 DOI: 10.1007/s00439-005-0090-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 09/06/2005] [Indexed: 12/31/2022]
Abstract
Pathogens have played a substantial role in human evolution, with past infections shaping genetic variation at loci influencing immune function. We selected 168 genes known to be involved in the immune response, genotyped common single nucleotide polymorphisms across each gene in three population samples (CEPH Europeans from Utah, Han Chinese from Guangxi, and Yoruba Nigerians from Southwest Nigeria) and searched for evidence of selection based on four tests for non-neutral evolution: minor allele frequency (MAF), derived allele frequency (DAF), Fst versus heterozygosity and extended haplotype homozygosity (EHH). Six of the 168 genes show some evidence for non-neutral evolution in this initial screen, with two showing similar signals in independent data from the International HapMap Project. These analyses identify two loci involved in immune function that are candidates for having been subject to evolutionary selection, and highlight a number of analytical challenges in searching for selection in genome-wide polymorphism data.
Collapse
Affiliation(s)
- Emily C Walsh
- Novartis Institutes for Biomedical Research, 250 Mass Ave, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bottini N, Ronchetti F, Gloria-Bottini F, Stefanini L, Bottini E, Lucarini N. Atopic and nonatopic asthma in children. J Asthma 2005; 42:25-8. [PMID: 15801324 DOI: 10.1081/jas-200044756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In 155 asthmatic children we have studied the relationship between prick test positivity and a set of genetic factors previously found to be associated with bronchial asthma. Among these factors, MN system (p = 0.009) and age at onset of symptoms (p = 0.05) are the most important variables separating prick test negative from prick test positive children. MN and age at onset influence independently prick test positivity pointing to an additive effect of the two variables. M phenotype appears correlated positively with an increased susceptibility to nonallergic asthma in all age groups, whereas N phenotype appears correlated positively with age at onset but in allergic asthma only. The MN system codifies for glycophorin A, a sialoglycoprotein that represents a major ligand for several bacteria and viruses that recognize the N-acetylneuraminic acid present in this protein. The present data suggest that genetic variability in this system might influence bacterial and viral competition and mucosal damage influencing susceptibility to asthmatic reactions in absence of IgE hyperproduction.
Collapse
Affiliation(s)
- N Bottini
- The Burnham Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
41
|
Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, Farkas T, Chaturvedi P, Pickering LK, Newburg DS. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 2004; 145:297-303. [PMID: 15343178 DOI: 10.1016/j.jpeds.2004.04.054] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine the association between maternal milk levels of 2-linked fucosylated oligosaccharide and prevention of diarrhea as a result of Campylobacter, caliciviruses, and diarrhea of all causes in breast-fed infants. STUDY DESIGN Data and banked samples were analyzed from 93 breast-feeding mother-infant pairs who were prospectively studied during 1988-1991 from birth to 2 years with infant feeding and diarrhea data collected weekly; diarrhea was diagnosed by a study physician. Milk samples obtained 1 to 5 weeks postpartum were analyzed for oligosaccharide content. Data were analyzed by Poisson regression. RESULTS Total 2-linked fucosyloligosaccharide in maternal milk ranged from 0.8 to 20.8 mmol/L (50%-92% of milk oligosaccharide). Moderate-to-severe diarrhea of all causes (n=77 cases) occurred less often (P=.001) in infants whose milk contained high levels of total 2-linked fucosyloligosaccharide as a percent of milk oligosaccharide. Campylobacter diarrhea (n=31 cases) occurred less often (P=.004) in infants whose mother's milk contained high levels of 2'-FL, a specific 2-linked fucosyloligosaccharide, and calicivirus diarrhea (n=16 cases) occurred less often (P=.012) in infants whose mother's milk contained high levels of lacto-N-difucohexaose (LDFH-I), another 2-linked fucosyloligosaccharide. CONCLUSION This study provides novel evidence suggesting that human milk oligosaccharides are clinically relevant to protection against infant diarrhea.
Collapse
Affiliation(s)
- Ardythe L Morrow
- Center for Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tan M, Huang P, Meller J, Zhong W, Farkas T, Jiang X. Mutations within the P2 domain of norovirus capsid affect binding to human histo-blood group antigens: evidence for a binding pocket. J Virol 2003; 77:12562-71. [PMID: 14610179 PMCID: PMC262557 DOI: 10.1128/jvi.77.23.12562-12571.2003] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 08/18/2003] [Indexed: 12/16/2022] Open
Abstract
Noroviruses (NORs) are an important cause of acute gastroenteritis. Recent studies of NOR receptors showed that different NORs bind to different histo-blood group antigens (HBGAs), and at least four distinct binding patterns were observed. To determine the structure-function relationship for NORs and their receptors, two strains representing two of the four binding patterns were studied. Strain VA387 binds to HBGAs of A, B, and O secretors, whereas strain MOH binds to HBGAs of A and B secretors only. Using multiple sequence alignments, homology modeling, and structural analysis of NOR capsids, we identified a plausible "pocket" in the P2 domain that may be responsible for binding to HBGA receptors. This pocket consists of a conserved RGD/K motif surrounded by three strain-specific hot spots (N(302), T(337), and Q(375) for VA387 and N(302), N(338), and E(378) for MOH). Subsequent mutagenesis experiments demonstrated that all four sites played important roles in binding. A single amino acid mutation at T(337) (to A) in VA387 or a double amino acid mutation at RN(338) (to TT) in MOH abolished binding completely. Change of the entire RGD motif to SAS abolished binding in case of VA387, whereas single amino acid mutations in that motif did not have an apparent effect on binding to A and B antigens but decreased binding to H antigen. Multiple mutations at the RGK motif of MOH (SIRGK to TFRGD) completely knocked out the binding. Mutation of N(302) or Q(375) in VA387 affected binding to type O HBGA only, while switch mutants with three amino acid changes at either site from MOH to VA387 resulted in a weak binding to type O HBGAs. A further switch mutant with three amino acid changes at E(378) from MOH to VA387 diminished the binding to type A HBGA only. Taken together, our data indicate that the binding pocket likely exists on NOR capsids. Direct evidence of this hypothesis requires crystallography studies.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases and Division of Pediatric Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
43
|
Yui I, Hoshi A, Shigeta Y, Takami T, Nakayama T. Detection of human respiratory syncytial virus sequences in peripheral blood mononuclear cells. J Med Virol 2003; 70:481-9. [PMID: 12767015 DOI: 10.1002/jmv.10421] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peripheral blood mononuclear cells (PBMC) obtained from patients with lower respiratory infections were examined for the detection of human respiratory syncytial virus (RSV) sequences in the N region using the reverse transcription polymerase chain reaction (RT-PCR). RSV infection was confirmed by at least one method, i.e., virus isolation, enzyme immunoassay for viral antigen, and RT-PCR of nasopharyngeal secretions (NPS) samples. The detection rate for RSV RNA in PBMC obtained from RSV-infected patients was 40% (38/94), compared to 5% (1/20) in controls (P = 0.002). Between the groups positive (38) and negative (56) for RSV RNA in PBMC, there was no significant difference in clinical parameters. Seven patients had eight episodes of reinfection and RSV RNA was detected in 50% (4/8) during consecutive infections. Sequences of their PBMC samples were distinct from those of prototype strains of subgroup A and B. However, they were not always consistent with those of paired NPS samples. The findings suggested that RSV RNA could be detected in PBMC even during reinfection and as might have the possibility of quasispecies dynamics, reflecting the nature of RNA viruses.
Collapse
Affiliation(s)
- Ikuko Yui
- Kitasato Institute for Life Sciences, Laboratory of Viral Infection, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
44
|
Angiolillo DJ, Liuzzo G, Pelliccioni S, De Candia E, Landolfi R, Crea F, Maseri A, Biasucci LM. Combined role of the Lewis antigenic system, Chlamydia pneumoniae, and C-reactive protein in unstable angina. J Am Coll Cardiol 2003; 41:546-50. [PMID: 12598063 DOI: 10.1016/s0735-1097(02)02899-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The goal of this study was to assess the prognostic role of the Lewis antigenic system, Chlamydia pneumoniae (CP) seropositivity (CP+), and C-reactive protein (CRP) levels in unstable angina (UA). BACKGROUND The role of CP infection in acute coronary syndromes is contradictory. The Lewis antigenic system, a genetically determined blood group system associated with infections and several disorders, including ischemic heart disease, might influence the susceptibility to CP infection, inflammatory response, and risk of cardiac ischemic events. METHODS The CRP levels, Lewis antigens, and CP+ were measured in 54 patients with Braunwald's class IIIB UA. All patients were followed up for one year, and the occurrence of new coronary events (coronary death, myocardial infarction, and recurrence of instability) were recorded. RESULTS Twenty-five coronary events occurred during follow-up. At univariate analysis CRP >3 mg/l (CRP+) (p = 0.0056), Lewis antigen b (Leb+) (p = 0.028), and the combination of Leb+ and CP+ (p = 0.006) and of CRP+ and Leb+ (p = 0.003) were associated with new coronary events, while CP+ alone was not. At multivariate analysis, CRP+ (p = 0.008) and combined Leb+CP+ (p = 0.03) were independent predictors of worse outcome. The event rate was 64% in CRP+ patients, 67% in Leb+CP+ patients, and 86% in CRP+Leb+CP+ patients. Combined Leb+CP+, but not Leb+ and CP+ alone, was related to CRP levels (p = 0.03). Among CP+ patients, CRP levels were higher in Leb+ than Leb- (p = 0.028). CONCLUSIONS Our data demonstrate that in UA the Lewis antigenic system plays an important role, probably determining individual susceptibility to the detrimental effects of CP infection and by determining an enhanced inflammatory response.
Collapse
Affiliation(s)
- Dominick J Angiolillo
- Institute of Cardiology, Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Koda Y, Tachida H, Pang H, Liu Y, Soejima M, Ghaderi AA, Takenaka O, Kimura H. Contrasting patterns of polymorphisms at the ABO-secretor gene (FUT2) and plasma alpha(1,3)fucosyltransferase gene (FUT6) in human populations. Genetics 2001; 158:747-56. [PMID: 11404338 PMCID: PMC1461689 DOI: 10.1093/genetics/158.2.747] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The coding sequences ( approximately 1 kb) of FUT2 [ABO-Secretor type alpha(1,2)fucosyltransferase] and of FUT6 [plasma alpha(1,3)fucosyltransferase] were analyzed for allelic polymorphism by direct sequencing in five populations. The nucleotide diversities of FUT2 estimated from pairwise sequence differences were 0.0045, 0.0042, 0.0042, 0.0009, and 0.0008 in Africans, European-Africans, Iranians, Chinese, and Japanese, respectively. The nucleotide diversities of FUT6 were 0.0024, 0.0016, 0.0015, 0.0017, and 0.0020 in Africans, European-Africans, Iranians, Chinese, and Japanese, respectively. At FUT2, excesses in pairwise sequence differences compared to the number of polymorphic sites as indicated by a significantly positive Tajima's D were observed in European-Africans and in Iranians. The data do not fit expectations of the equilibrium neutral model with an infinite number of sites. On the other hand, Tajima's D's at FUT6 in each of the five populations and at FUT2 in Africans, Chinese, and Japanese were not significantly different from zero. F(ST) between the Asians and the others measured at FUT2 was higher than at FUT6. These results suggest that natural selection was responsible for the generation of the FUT2 polymorphism in European-Africans and in Iranians.
Collapse
Affiliation(s)
- Y Koda
- Division of Human Genetics, Department of Forensic Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ronchetti F, Villa MP, Ronchetti R, Bonci E, Latini L, Pascone R, Bottini N, Gloria-Bottini F. ABO/Secretor genetic complex and susceptibility to asthma in childhood. Eur Respir J 2001; 17:1236-8. [PMID: 11491170 DOI: 10.1183/09031936.01.99109101] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A positive association has recently been reported in adult subjects between O/nonSecretor phenotype and asthma. To confirm this association, this study investigated the joint ABO/Secretor phenotype in a cohort of 165 asthmatic children. Three-hundred and sixty-two consecutive newborn infants from the same population were also studied as controls. The proportion of O/nonSecretor in asthmatic children was higher than in controls, thus confirming the association found in adults. The association was more marked in males than in females. In males, the pattern of association between the joint ABO/Secretor phenotype and asthma is dependent on the age at on-set of symptoms. Since the oligosaccharide composition of cell membrane and mucosal secretions is controlled by the cooperative interaction of ABO and Secretor genes, and since such composition influences the adhesion of infectious agents, the age pattern could reflect a more general interaction between developmental maturation and oligosaccharide structure concerning their effects on susceptibility to viral and bacterial agents.
Collapse
Affiliation(s)
- F Ronchetti
- Institute of Pediatric Clinic, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Fujitani N, Liu Y, Okamura T, Kimura H. Distribution of H type 1-4 chains of the ABO(H) system in different cell types of human respiratory epithelium. J Histochem Cytochem 2000; 48:1649-56. [PMID: 11101633 DOI: 10.1177/002215540004801208] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We used three anti-H monoclonal antibodies (MAbs) specific for H Type 1, H Type 2, and H Type 3/4 antigens to investigate the distribution of H Type 1-H Type 4 chains of the ABO(H) histo-blood group in the human respiratory system. Strong staining of H Type 1 chain and weak staining of H Type 2 chain were observed in mucous cells of submucosal glands of bronchial epithelium, which were dependent on the secretor status. No H Type 3/4 chains were detected in mucous cells. Serous cells of submucosal glands of respiratory system showed no staining by three anti-H antibodies. H Type 1 and H Type 3/4 antigens were detected heterogeneously in apical surfaces of bronchial epithelium from secretors but not from nonsecretors. In contrast, basal cells of bronchial epithelium expressed H Type 2 irrespective of the secretor status, probably regulated by the H gene. Some alveolar Type II cells contained only H Types 3/4, which were dependent on the secretor status, whereas alveolar Type I cells had no H antigens. Our results indicated that different cell types in respiratory epithelium expressed different types of carbohydrate chains of histo-blood group antigens under the control of the H or the Se gene.
Collapse
Affiliation(s)
- N Fujitani
- Department of Forensic Medicine and Human Genetics, Faculty of Science, Okayama University of Science, Okayama, Japan
| | | | | | | |
Collapse
|
48
|
Abstract
The medical literature contains a large number of publications attempting to correlate blood groups with disease. Many of these reports are poorly documented and have limited scientific validity. Only a few agents, such as malaria parasites and parvovirus B19, infect red blood cells (RBCs) and precursors. Most other agents use RBCs as carriers to the target tissue. There is an excess of blood group A individuals among cancer patients compared with normal individuals; malignancy has also been associated with the Lewis antigen. Plasmodium vivax only enters RBCs when the Fy6 Duffy protein is present. Certain Escherichia coli organisms will only attach to epithelial cells carrying P or Dr blood group antigens. The P antigen Is also the receptor for parvovirus B19. Le(b) appears to be the receptor for Helicobacter pylori in gastric tissue. The high frequency blood group antigen AnWJ is the receptor for Haemophilus influenzae. Knowledge of the functions of RBC surface molecules Is expanding and the ability to generate experimental animals devoid of certain molecules will clarify their physiological role.
Collapse
Affiliation(s)
- M Rios
- Science and Technology Laboratory, New York Blood Center, New York 10021, USA
| | | |
Collapse
|
49
|
Stabellini G, Calastrini C, Gilli P, Bedani PL. Urinary glycosaminoglycans in recurrent urinary tract infections in kidney transplant patients. Biomed Pharmacother 1999; 53:274-7. [PMID: 10424249 DOI: 10.1016/s0753-3322(99)80098-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Glycosaminoglycans have generalized antibacterial anti-adherent activity, and cooperate with secretory immunoglobulin-A in anti-infection defense mechanisms of the urinary tract. Cyclosporin A modulates T-lymphocytes and fibroblast functions. In this report we analyze urinary glycosaminoglycans and secretory immunoglobulin-A in renal transplant patients with recurrent urinary tract infections treated with cyclosporin. The results show a significant decrease of total glycosaminoglycans and secretory immunoglobulin-A in recurrent urinary tract infections which is unrelated to cyclosporin treatment. The data support the hypothesis that recurrent urinary tract infections may be the consequence of a genetic pathology rather than cyclosporin-induced alterations.
Collapse
|
50
|
Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 1998; 79:83-9. [PMID: 10645445 DOI: 10.1054/tuld.1998.0009] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SETTING A study of tuberculosis cases and healthy blood donor controls from the Western Region of The Gambia, West Africa. OBJECTIVE To investigate the potential role of candidate gene polymorphisms in host susceptibility to tuberculosis. DESIGN Single base change polymorphisms in interleukin 1 beta (IL1 beta), interleukin 10 (IL10) and fucosyltransferase-2 (FUT-2), microsatellite polymorphisms in interleukin 1 alpha (IL1 alpha) and IL10 and a minisatellite polymorphism in interleukin 1 receptor antagonist (IL1RA) were typed in over 400 tuberculosis cases and 400 healthy blood donor controls. RESULTS IL1 gene cluster polymorphisms (IL1RA and possibly IL1 alpha) showed marginally significant association with tuberculosis. In particular IL1RA allele 2 heterozygotes were less frequent among tuberculosis cases than controls (P = 0.03). IL1 beta, IL10 and FUT-2 polymorphisms were not associated with tuberculosis. CONCLUSION Genetic susceptibility to tuberculosis among Gambians may be partly determined by genes in the IL1 gene cluster on chromosome 2. Further association studies will be required on other population groups to confirm whether these results are of biological significance.
Collapse
Affiliation(s)
- R Bellamy
- Wellcome Trust Centre for Human Genetics, Oxford University, UK.
| | | | | | | | | | | |
Collapse
|