1
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Horovitz O. Nutritional Psychology: Review the Interplay Between Nutrition and Mental Health. Nutr Rev 2024:nuae158. [PMID: 39441711 DOI: 10.1093/nutrit/nuae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Nutritional psychology is a burgeoning field that examines the intricate relationship between nutrition and mental health. This concept, its historical development, and its current significance in understanding the complex interplay between diet and psychological well-being are explored in this article. The influence of various nutrients on mental health, the role of dietary patterns, and the impact of nutrition on specific mental disorders are examined. Highlighted are the potential mechanisms underlying the nutrition-mental health connection, and the implications for clinical practice and public health interventions are discussed. The discussion in this article underscores the importance of considering nutrition as essential in mental health promotion and treatment.
Collapse
Affiliation(s)
- Omer Horovitz
- The Physiology and Behavior Laboratory, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
- Psychology Department, Tel-Hai Academic College, Qiryat Shemona 1220800, Israel
| |
Collapse
|
3
|
Lam CS, Hua R, Loong HHF, Chung VCH, Cheung YT. Association between fish oil and glucosamine use and mortality in patients diagnosed with cancer: the role of the Life Essential 8 score and cancer prognosis. Nutr J 2024; 23:124. [PMID: 39415179 PMCID: PMC11484474 DOI: 10.1186/s12937-024-01032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The effect of supplements on mortality risk in patients with cancer remains uncertain and has scarcely been investigated in subgroups of patients with varying characteristics. This study aimed to investigate the association between two popular supplements, fish oil and glucosamine, and mortality risk in a large population-based cohort and determine whether cardiovascular health and clinical prognosis influence these associations. METHODS This prospective cohort study analyzed the data of UK Biobank participants who were diagnosed with cancer. The associations of fish oil and glucosamine consumption with mortality were analyzed using Cox proportional hazards models. Subgroup analyses were performed to assess the effects of Life Essential 8 [LE8] scores (a measure of cardiovascular health) and cancer prognosis (grouped according to the survival rates of specific cancer types) on the associations between supplement use and mortality. RESULTS This analysis included 14,920 participants (mean age = 59.9 years; 60.2% female). One third (34.1%) of the participants reported using fish oil, and one fifth (20.5%) reported using glucosamine. Over a median follow-up of 12.0 years, 2,708 all-cause deaths were registered. The use of fish oil was associated with reduced risks of all-cause mortality (adjusted hazard ratio [aHR] = 0.89, 95% Confidence Interval [CI] = 0.81-0.97) and cancer mortality (aHR = 0.89, 95% CI = 0.81-0.98). Similarly, glucosamine use was associated with reduced risks of all-cause mortality (aHR = 0.83, 95% CI = 0.74-0.92) and cancer mortality (aHR = 0.83, 95% CI = 0.74-0.93) in the fully adjusted model. Subgroup analyses revealed that the protective effects of fish oil and glucosamine against mortality risk were only observed in patients with LE8 scores lower than the mean score or a poor cancer prognosis. Additionally, the association between glucosamine use and a reduced risk of CVD-related mortality was only observed in patients with lower LE8 scores. CONCLUSIONS This large cohort study identified the potential differential impact of LE8 scores and cancer prognosis on the associations of fish oil and glucosamine supplementation with survival in patients with cancer. This suggests the importance of considering these factors in future research on supplements and in the provision of personalized integrative cancer care.
Collapse
Affiliation(s)
- Chun Sing Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rong Hua
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Herbert Ho-Fung Loong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Chi-Ho Chung
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Ting Cheung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Aadinath W, K S P S T, Saravanakumar I, Muthuvijayan V. Iron oxide nanoparticle-stabilized Pickering emulsion-templated porous scaffolds loaded with polyunsaturated fatty acids (PUFAs) for bone tissue engineering. J Mater Chem B 2024; 12:9312-9324. [PMID: 39171408 DOI: 10.1039/d4tb00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Dietary intake of ω-3-polyunsaturated fatty acids (PUFAs) can significantly improve the expression levels of alkaline phosphatase (ALP) and osteocalcin. However, PUFAs are hydrophobic and highly sensitive to temperature, oxygen concentration, pH, and ionic strength. Hence, it is challenging to use PUFAs as bioactive compounds for bone tissue engineering. Here, we encapsulated PUFAs in liposomes to improve their stability. The hydrodynamic size of the PUFA-loaded liposomes was found to be 121.3 ± 35 nm. GC-MS analysis showed that the encapsulation efficiency of the PUFAs was 19.9 ± 3.4%. These PUFA-loaded liposomes were loaded into porous scaffolds that were prepared by polymerizing glycidyl methacrylate and trimethylolpropane triacrylate monomers using the Pickering emulsion polymerization technique. Oleic acid-coated iron oxide nanoparticles were used as the stabilizing agent to prepare these acrylate-based scaffolds containing PUFA-loaded liposomes (P-Lipo-IO(GMA-TMPTA)). SEM micrographs confirmed the porous nature of the scaffolds and the presence of well-adhered liposomes. An in vitro cytotoxicity study conducted using MG63 cells confirmed that these scaffolds showed desirable cytocompatibility. Cell adhesion study showed a well-spread morphology, indicating firm adhesion of the cells. The alizarin red staining of P-Lipo-IO(GMA-TMPTA) scaffolds showed 3- and 2-fold higher calcium deposition compared to the control on days 7 and 14, respectively. ALP activity was also 2-fold higher than that of the control on day 14. RT-PCR analysis of cells exposed to P-Lipo-IO(GMA-TMPTA) scaffolds showed significantly higher expression of osteogenic markers compared to the control. An antibacterial study conducted on Staphylococcus aureus showed a higher percentage inhibition and reactive oxygen species generation in samples treated with P-Lipo-IO(GMA-TMPTA) scaffolds. These desirable biological properties indicate that the developed scaffolds are suitable for bone tissue engineering.
Collapse
Affiliation(s)
- W Aadinath
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Teja K S P S
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Iniyan Saravanakumar
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Vignesh Muthuvijayan
- Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
5
|
Gui Y, He D, Li J, Zhao H. Omega-3 PUFAs' efficacy in the therapy of coronary artery disease combined with anxiety or depression: a meta-analysis. Front Psychiatry 2024; 15:1368007. [PMID: 38979505 PMCID: PMC11228296 DOI: 10.3389/fpsyt.2024.1368007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Objective The evidence demonstrates that omega-3 polyunsaturated fatty acids (omega-3 PUFAs) protect the cardiovascular system and alleviate anxious or depressive situations. We conducted a meta-analysis to evaluate the effectiveness of omega-3 PUFAs in the treatment of anxiety or depressive states in patients with coronary artery disease. Methods This meta-analysis analyzed data from randomized controlled trials to determine the efficacy of omega-3 PUFAs alone or in combination with conventional psychotropic medications in coronary artery disease patients suffering from anxiety or depression. Primary outcomes included changes in depression scores, the Beck Anxiety Inventory (BAI) scores, and the omega-3 index. Results Included were 6 trials involving 2,570 participants. Compared to controls,omega-3 PUFAs did not improve depression or anxiety {depression: [SMD=0.09 (95% CI: -0.07, 0.26)], anxiety [BAI: SMD=0.07 (95% CI: -0.17, 0.32)]}; For the results of the subgroup analyses, analyzed by different types of depression scales, four studies used the HAMD scale [SMD=0.19 (95% CI: -0.20, 0.58)]; 5 studies used the BDI-II scale [SMD=0.01 (95% CI: -0.07, 0.09)], all of which indicated no decrease in depression scale scores; analyzed by different types of intervention, 3 studies used the omega-3 PUFAs group [SMD=0.24 (95% CI: -0.26, 0.74)]; 2 studies used sertraline + omega-3 PUFAs [SMD=-0.08 (95% CI: -0.46, 0.31)], and the omega-3 index was elevated [SMD=1.33 (95% CI: 0.18, 2.49)], suggesting that the body's omega-3 content was indeed replenished but did not change the patient's depressive state; analyzed by different courses of therapy, a 10-week course of therapy [SMD=0.02 (95% CI: -0.23, 0.26)] and a 12-week course of therapy [SMD=0.40 (95% CI: -0.40, 1.20)] both resulted in a lack of improvement in depressive symptoms. Conclusion According to the available evidence, omega-3 PUFAs do not alleviate anxiety or depression in coronary artery disease patients. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023391259.
Collapse
Affiliation(s)
- Yiwei Gui
- Beijing University of Chinese Medicine, Beijing, China
| | - Dongyu He
- Hainan Medical University, Haikou, China
| | - Junwei Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Oriental Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Balta MG, Schreurs O, Blix IJS, Schenck K. The effect of resolvin D1 n-3 DPA on primary oral epithelial cell migration in vitro. Eur J Oral Sci 2024; 132:e12981. [PMID: 38403843 DOI: 10.1111/eos.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Specialized pro-resolving lipid mediators (SPMs) are known for their anti-inflammatory and pro-resolving actions. The aim of the present study was to find new functions of the SPM resolvin D1n-3 DPA (RvD1n-3 DPA) on oral epithelial cells. As a starting point, we used a dataset obtained by RNA high-throughput sequencing of oral epithelial cells exposed to TNF-α and RvD1n-3 DPA versus TNF-α alone. GOrilla enrichment analysis showed that the actin cytoskeleton was significantly overrepresented after adjustment for multiple hypothesis testing. As actin, amongst others, is closely related to cell migration, we then explored whether RvD1n-3 DPA can modulate oral epithelial cell migration. To this end, we used an in vitro cell migration model, including TNF-α treatment, to mimic an inflammatory cell state. The analysis revealed that RvD1n-3 DPA increased oral epithelial cell migration in the presence but not in the absence of TNF-α. Addition of RvD1n-3 DPA also induced F actin accumulation around the cell nucleus, indicating that RvD1n-3 DPA potentially can mediate processes of intracellular transport. This indicates that this lipid mediator may be a promising therapeutic candidate in oral mucosal wound healing.
Collapse
Affiliation(s)
- Maria G Balta
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Olav Schreurs
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Inger Johanne Schytte Blix
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Nunes VS, Abrahão O, Rogério AP, Serhan CN. ALX/FPR2 Activation by Stereoisomers of D1 Resolvins Elucidating with Molecular Dynamics Simulation. J Phys Chem B 2023; 127:6479-6486. [PMID: 37428488 PMCID: PMC10528287 DOI: 10.1021/acs.jpcb.3c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Chronic inflammation contributes to several diseases, but its resolution is driven by specialized pro-resolving mediators (SPM) such as resolvin D1 (RvD1) and its epimer aspirin-triggered resolvin D1 (AT-RvD1), both biosynthesized from ω-3 fatty docosahexaenoic acid (DHA). RvD1 and AT-RvD1 have anti-inflammatory and pro-resolution potentials, and their effects could be mediated by formyl peptide receptor type 2 receptor ALX/FPR2, a G-protein-coupled receptor (GPCR). In this work, we performed 44 μs of molecular dynamics simulations with two complexes: FPR2@AT-RvD1 and FPR2@RvD1. Our results show the following: (i) in the AT-RvD1 simulations, the ALX/FPR2 receptor remained in the active state in 62% of the frames, while in the RVD1 simulations, the receptor remained in the active state in 74% of the frames; (ii) two residues, R201 and R205, of ALX/FPR2 appear, establishing interactions with both resolvins in all simulations (22 in total); (iii) RvD1 hydrogen bonds with R201 and R205 presented higher frequency than AT-RvD1; and (iv) residues R201 and R205 are the two receptor hotspots, demonstrated by the binding free calculations. Such results show that the ALX/FPR2 receptor remained in the active state for longer in the FPR2@RvD1 simulations than in the FPR2@AT-RvD1 simulations.
Collapse
Affiliation(s)
- Vinicius S. Nunes
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brasil
- Laboratório de Química Computacional Medicinal, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Odonírio Abrahão
- Laboratório de Química Computacional Medicinal, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Alexandre P. Rogério
- Laboratório de Imunofarmacologia Experimental, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Tao H, Mo Y, Liu W, Wang H. A review on gout: Looking back and looking ahead. Int Immunopharmacol 2023; 117:109977. [PMID: 37012869 DOI: 10.1016/j.intimp.2023.109977] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Gout is a metabolic disease caused by the deposition of monosodium urate (MSU) crystals inside joints, which leads to inflammation and tissue damage. Increased concentration of serum urate is an essential step in the development of gout. Serum urate is regulated by urate transporters in the kidney and intestine, especially GLUT9 (SLC2A9), URAT1 (SLC22A12) and ABCG. Activation of NLRP3 inflammasome bodies and subsequent release of IL-1β by monosodium urate crystals induce the crescendo of acute gouty arthritis, while neutrophil extracellular traps (NETs) are considered to drive the self-resolving of gout within a few days. If untreated, acute gout may eventually develop into chronic tophaceous gout characterized by tophi, chronic gouty synovitis, and structural joint damage, leading the crushing burden of treatment. Although the research on the pathological mechanism of gout has been gradually deepened in recent years, many clinical manifestations of gout are still unable to be fully elucidated. Here, we reviewed the molecular pathological mechanism behind various clinical manifestations of gout, with a view to making contributions to further understanding and treatment.
Collapse
|
9
|
Wang L, Li J, Liao R, Li Y, Jiang L, Zhang Z, Geng J, Fu P, Su B, Zhao Y. Resolvin D1 attenuates sepsis induced acute kidney injury targeting mitochondria and NF-κB signaling pathway. Heliyon 2022; 8:e12269. [PMID: 36578378 PMCID: PMC9791840 DOI: 10.1016/j.heliyon.2022.e12269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background Acute kidney injury is a highly common and multifactorial renal disease resulting in significant morbidity and mortality, especially sepsis-induced acute kidney injury. There is no effective therapy available to treat or prevent sepsis-induced acute kidney injury. One of the specialized pro-resolving mediators, Resolvin D1 exhibits special anti-inflammatory effects in several inflammatory disease models, but there is little evidence about the effect and mechanism of Resolvin D1 in sepsis-induced acute kidney injury. Methods We conducted experiments to explore the effect and mechanism of Resolvin D1 in sepsis-induced acute kidney injury. In vitro, human proximal tubular epithelial cells were used to test the apoptosis ratio, cell viability and reactive oxygen species level. In vivo, C57BL/6 mice were injected with lipopolysaccharide to establish a sepsis-induced acute kidney injury model. Renal function and structure, apoptosis ratio of kidney cells, mitochondrial structure and function and related protein and gene levels were assessed. Results In vitro, the resolvin D1-treated group showed higher cell viability and lower reactive oxygen species levels and apoptosis ratios than the LPS group. In vivo, Resolvin D1 can not only improve renal function and mitochondrial function but also reduce the apoptosis ratio, while mediating mitochondrial dynamics and inhibiting NF-κB pathway. Conclusions Resolvin D1 has a good renoprotective effect by maintaining mitochondrial dynamics and inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Liya Wang
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiameng Li
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruoxi Liao
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yupei Li
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China,Disaster Medicine Center, Sichuan University, Chengdu, 610041, China
| | - Luojia Jiang
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuyun Zhang
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiwen Geng
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China,Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Baihai Su
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China,The First People's Hospital of Shuangliu District, Chengdu, 610200, China,Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China,Disaster Medicine Center, Sichuan University, Chengdu, 610041, China,Med-X Center for Materials, Sichuan University, Chengdu 610041, China,Corresponding author.
| | - Yuliang Zhao
- Department of Nephrology, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, China,Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China,Corresponding author.
| |
Collapse
|
10
|
Ding J, Fu Z, Zhu Y, He J, Ma L, Bu D. Enhancing docosahexaenoic acid production of Schizochytrium sp. by optimizing fermentation using central composite design. BMC Biotechnol 2022; 22:39. [PMID: 36494804 PMCID: PMC9737722 DOI: 10.1186/s12896-022-00769-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Docosahexaenoic acid (DHA) can improve human and animal health, particularly including anti-inflammatory, antioxidant, anticancer, neurological, and visual functions. Schizochytrium sp. is a marine heterotrophic protist producing oil with high DHA content, which is widely used in animal and food production. However, different fermentation conditions have intensive impacts on the growth and DHA content of Schizochytrium sp. Thus, this study aimed to enhance the DHA yield and concentration of Schizochytrium sp. I-F-9 by optimizing the fermentation medium. First, a single-factor design was conducted to select a target carbon and nitrogen source from several generic sources (glucose, sucrose, glycerol, maltose, corn syrup, yeast extract, urea, peptone, and ammonium sulfate). The Plackett-Burman design and the central composite design (CCD) were utilized to optimize the fermentation mediums. Schizochytrium sp. in 50-mL fermentation broth was cultured in a 250 mL shake flask at 28 °C and 200 rpm for 120 h before collecting the cell pellet. Subsequently, the cell walls were destroyed with hydrochloric acid to extract the fatty acid using n-hexane. The DHA content was detected by gas chromatography. The single-factor test indicated that glucose and peptone, respectively, significantly improved the DHA content of Schizochytrium sp. compared to the other carbon and nitrogen sources. Glucose, sodium glutamate, and sea crystal were the key factors affecting DHA production in the Plackett-Burman test (P = 0.0247). The CCD result showed that DHA production was elevated by 34.73% compared with the initial yield (from 6.18 ± 0.063 to 8.33 ± 0.052 g/L). Therefore, the results of this study demonstrated an efficient strategy to increase the yield and content of DHA of Schizochytrium sp.
Collapse
Affiliation(s)
- Jun Ding
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Zilin Fu
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Yingkun Zhu
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Junhao He
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Lu Ma
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| | - Dengpan Bu
- grid.410727.70000 0001 0526 1937State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193 China
| |
Collapse
|
11
|
Hussein J, El-Bana MA, El-kHayat Z, El-Naggar ME, Farrag AR, Medhat D. Eicosapentaenoic acid loaded silica nanoemulsion attenuates hepatic inflammation through the enhancement of cell membrane components. Biol Proced Online 2022; 24:11. [PMID: 36071378 PMCID: PMC9454130 DOI: 10.1186/s12575-022-00173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Liver inflammation is a multistep process that is linked with cell membrane fatty acids composition. The effectiveness of eicosapentaenoic acid (EPA) undergoes an irreversible change during processing due to their unsaturated nature; so the formation of nanocarrier for EPA is crucial for improving EPA’s bioavailability and pharmacological properties. Objective In this study we aimed to evaluate the efficiency of EPA alone or loaded silica nanoemulsion on the management of hepatic inflammation induced by diethyl nitrosamine (DEN) through the enhancement of the cell membrane structure and functions. Methods The new formula of EPA was prepared to modify the properties of EPA. Forty-eight male Wistar albino rats were classified into: control, EPA, EPA loaded silica nanoemulsion (EPA–NE), DEN induced hepatic inflammation; DEN induced hepatic inflammation treated with EPA or EPA –NE groups. Plasma tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), liver hydroxyproline (Hyp) content, and liver oxidant and anti-oxidants were estimated. Urinary 8- hydroxyguanozine (8- OHdG) and erythrocyte membrane fatty acids fractions were estimated by High-performance liquid chromatography (HPLC). Also, histopathology studies were done to verify our hypothesis. Results It was appeared that administration of EPA, in particular EPA loaded silica nanoemulsion, ameliorated the inflammatory response, increased the activity of the anti-oxidants, reduced levels of oxidants, and improved cell membrane structure compared to hepatic inflammation induced by DEN group. Histopathological examination confirmed these results. Conclusion EPA and notably EPA loaded silica nanoemulsion strongly recommended as a promising supplement in the management of hepatic inflammation.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt.
| | - Mona A El-Bana
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt
| | - Zakaria El-kHayat
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt
| | - Mehrez E El-Naggar
- Pre-Treatment and Finishing of Cellulosic Fabric Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Dalia Medhat
- Medical Biochemistry Department, National Research Center, 33 El Behouth St.Dokki, Giza, 12622, Egypt
| |
Collapse
|
12
|
Sharma M, Singh V, Sharma R, Koul A, McCarthy ET, Savin VJ, Joshi T, Srivastava T. Glomerular Biomechanical Stress and Lipid Mediators during Cellular Changes Leading to Chronic Kidney Disease. Biomedicines 2022; 10:407. [PMID: 35203616 PMCID: PMC8962328 DOI: 10.3390/biomedicines10020407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperfiltration is an important underlying cause of glomerular dysfunction associated with several systemic and intrinsic glomerular conditions leading to chronic kidney disease (CKD). These include obesity, diabetes, hypertension, focal segmental glomerulosclerosis (FSGS), congenital abnormalities and reduced renal mass (low nephron number). Hyperfiltration-associated biomechanical forces directly impact the cell membrane, generating tensile and fluid flow shear stresses in multiple segments of the nephron. Ongoing research suggests these biomechanical forces as the initial mediators of hyperfiltration-induced deterioration of podocyte structure and function leading to their detachment and irreplaceable loss from the glomerular filtration barrier. Membrane lipid-derived polyunsaturated fatty acids (PUFA) and their metabolites are potent transducers of biomechanical stress from the cell surface to intracellular compartments. Omega-6 and ω-3 long-chain PUFA from membrane phospholipids generate many versatile and autacoid oxylipins that modulate pro-inflammatory as well as anti-inflammatory autocrine and paracrine signaling. We advance the idea that lipid signaling molecules, related enzymes, metabolites and receptors are not just mediators of cellular stress but also potential targets for developing novel interventions. With the growing emphasis on lifestyle changes for wellness, dietary fatty acids are potential adjunct-therapeutics to minimize/treat hyperfiltration-induced progressive glomerular damage and CKD.
Collapse
Affiliation(s)
- Mukut Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Vikas Singh
- Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Arnav Koul
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, MO 66160, USA;
| | - Virginia J. Savin
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65201, USA;
| | - Tarak Srivastava
- Midwest Veterans’ Biomedical Research Foundation, Kansas City, MO 64128, USA; (A.K.); (V.J.S.); (T.S.)
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri, Kansas City, MO 64108, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| |
Collapse
|
13
|
Giosuè A, Calabrese I, Lupoli R, Riccardi G, Vaccaro O, Vitale M. Relations between the Consumption of Fatty or Lean Fish and Risk of Cardiovascular Disease and All-Cause Mortality: A Systematic Review and Meta-Analysis. Adv Nutr 2022; 13:1554-1565. [PMID: 35108375 PMCID: PMC9526843 DOI: 10.1093/advances/nmac006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/07/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Fish consumption is associated with a reduced risk of cardiovascular diseases (CVDs) partly ascribed to the high content of long-chain (LC) n-3 PUFAs; however, not all fish types are equally rich in these components. To date, it is not clear whether the beneficial effects of fish consumption are shared by fatty and lean fish. Therefore, the aim of this meta-analysis was to synthesize knowledge regarding the relation between the intake of fatty fish or lean fish and the risk of cardiovascular events and all-cause mortality. We conducted a systematic search in PubMed, Web of Science, and Embase until May 2021 for full text with a prospective design involving humans providing data for the highest compared with the lowest fish consumption categories. Summary risk ratios (RRs) and 95% CIs were estimated using a random-effects model. Out of 1902 articles retrieved from the literature search, 19 reports met the criteria for inclusion in the meta-analysis. Altogether, studies on fatty fish comprised 1,320,596 person-years of follow-up, 20,531 incident coronary heart disease (CHD) cases, 9256 incident CVD cases, and 104,763 total deaths. Studies on lean fish comprised 937,362 person-years of follow-up, 21,636 incident CHD cases, 7315 incident CVD cases, and 16,831 total deaths. An inverse association was present for fatty fish with CHD incidence (RR: 0.92; 95% CI: 0.86, 0.97), CHD mortality (RR: 0.83; 95% CI: 0.70, 0.98), and total mortality (RR: 0.97; 95% CI: 0.94, 0.99). This was not the case for lean fish. The summary estimates for CVD incidence and mortality did not show significant association with both fatty fish and lean fish consumption. The study findings are innovative in highlighting that the health benefits so far linked to fish consumption are, in fact, driven by fatty fish.
Collapse
Affiliation(s)
- Annalisa Giosuè
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Ilaria Calabrese
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Roberta Lupoli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | | | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| |
Collapse
|
14
|
Zong Y, Cheng C, Li K, Xue R, Chen Z, Liu X, Wu K. Metabolomic Alterations in the Tear Fluids of Patients With Superior Limbic Keratoconjunctivitis. Front Med (Lausanne) 2022; 8:797630. [PMID: 35118093 PMCID: PMC8804220 DOI: 10.3389/fmed.2021.797630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
PurposeSuperior limbic keratoconjunctivitis (SLK) is a bilateral, chronic inflammatory disease that recurs for up to several years; however, the fundamental processes involved in its pathogenic mechanisms remain unknown. We aimed to investigate the metabolomic alterations in the tear fluids of patients with superior limbic keratoconjunctivitis (SLK) compared with those of healthy volunteers (Ctrl group).MethodsWe performed a cross-sectional study involving 42 subjects. Tear fluid was taken from one eye of 24 SLK patients (40.13 ± 14.55 years, 83.33% female) and 18 healthy volunteers (Ctrl, 39.89 ± 9.2 years, 72.22% female) using Schirmer strips. After the liquid extraction of tear metabolites, samples were infused into the QE HFX Orbitrap mass spectrometer in both positive and negative ion mode. Metabolites were quantitatively analyzed and matched with entries in the HMDB database. Metabolic differences between the SLK group and the control group were identified based on multivariate statistical analysis. Open database sources, including SMPDB and MetaboAnalyst, were used to identify metabolic pathways.ResultsAmong 179 metabolites retained for annotation, 133 metabolites were finally identified, among which 50 were found to be significantly changed in SLK patients. Of these 50 metabolites, 31 metabolites significantly increased and 19 metabolites decreased in SLK patients. The altered metabolites are mainly involved in α linolenic acid and linoleic acid metabolism, ketone body metabolism, butyrate metabolism, mitochondrial electron transport chain, carnitine synthesis, and so on. The most significantly changed pathway was linoleic acid metabolism. To explore the utility of tear biomarkers, a model combining 9 metabolites (phenol, ethyl glucuronide, eicosapentaenoic acid, 12-keto-leukotriene B4, linoleic acid, hypoxanthine, triethanolamine, 1-nitrohexane, and terephthalic acid) was selected as a candidate biomarker.ConclusionThe results reveal that SLK has a specific metabolomic profile, of which some key elements can serve as potential biomarkers of SLK for diagnostic and prognostic purposes. The findings of this study are novel and provide a basis for further investigations of the mechanism of SLK.
Collapse
|
15
|
Mei Z, Chen GC, Hu J, Lin C, Sun Z, Liu C, Geng X, Yuan C, Qi Q, Zheng Y. Habitual use of fish oil supplements, genetic predisposition, and risk of fractures: a large population-based study. Am J Clin Nutr 2021; 114:945-954. [PMID: 34038933 DOI: 10.1093/ajcn/nqab157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epidemiologic studies have suggested an inverse association between circulating concentrations of long-chain ω-3 PUFAs and fracture risk. However, whether supplementation of long-chain ω-3 PUFA (i.e. fish oil) is associated with fracture risk, and whether the association is modified by genetic predisposition to fracture risk remain unclear. OBJECTIVES To evaluate the associations of habitual fish oil supplement use with fracture risk, and to explore the potential effect modification by genetic predisposition. METHODS This study included 492,713 participants from the UK Biobank who completed a questionnaire on habitual fish oil supplement use between 2006 and 2010. HRs and 95% CIs for fractures were estimated from multivariable Cox proportional hazards models. A weighted fracture-genetic risk score (GRS) was derived from 14 validated single nucleotide polymorphisms. RESULTS During a median follow-up of 8.1 y, 12,070 incident fractures occurred among participants free of fracture at baseline (n = 441,756). Compared with nonuse, habitual use of fish oil supplements was associated with a lower risk of total fractures (HR = 0.93; 95% CI: 0.89, 0.97), hip fractures (HR = 0.83; 95% CI: 0.75, 0.92), and vertebrae fractures (HR = 0.85; 95% CI: 0.72, 0.99). The inverse association for total fractures was more pronounced among participants having a higher fracture-GRS than among those with a lower fracture-GRS (P-interaction <0.001). Among participants with a history of fracture at baseline (n = 50,957), fish oil use was associated with a lower risk of total recurrent fractures (HR = 0.88; 95% CI: 0.82, 0.96) and vertebrae recurrent fractures (HR = 0.64; 95% CI: 0.46, 0.88) but not with hip fracture recurrence. CONCLUSIONS Our findings suggest that habitual fish oil supplement use is associated with lower risks of both incident and recurrent fractures. The inverse associations of fish oil use with total fractures appeared to be more pronounced among individuals at higher genetic risk of fractures than those with lower genetic risk.
Collapse
Affiliation(s)
- Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Guo-Chong Chen
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jianying Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Chenhao Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Zhonghan Sun
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Chenglin Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Geng
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Changzheng Yuan
- Department of Big Data and Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
17
|
Grasso M, Caruso G, Godos J, Bonaccorso A, Carbone C, Castellano S, Currenti W, Grosso G, Musumeci T, Caraci F. Improving Cognition with Nutraceuticals Targeting TGF-β1 Signaling. Antioxidants (Basel) 2021; 10:1075. [PMID: 34356309 PMCID: PMC8301008 DOI: 10.3390/antiox10071075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Rescue of cognitive function represents an unmet need in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Nutraceuticals deliver a concentrated form of a presumed bioactive(s) agent(s) that can improve cognitive function alone or in combination with current approved drugs for the treatment of cognitive disorders. Nutraceuticals include different natural compounds such as flavonoids and their subclasses (flavan-3-ols, catechins, anthocyanins, and flavonols), omega-3, and carnosine that can improve synaptic plasticity and rescue cognitive deficits through multiple molecular mechanisms. A deficit of transforming growth factor-β1 (TGF-β1) pathway is an early event in the pathophysiology of cognitive impairment in different neuropsychiatric disorders, from depression to AD. In the present review, we provide evidence that different nutraceuticals, such as Hypericum perforatum (hypericin and hyperforin), flavonoids such as hesperidin, omega-3, and carnosine, can target TGF-β1 signaling and increase TGF-β1 production in the central nervous system as well as cognitive function. The bioavailability of these nutraceuticals, in particular carnosine, can be significantly improved with novel formulations (nanoparticulate systems, nanoliposomes) that increase the efficacy and stability of this peptide. Overall, these studies suggest that the synergism between nutraceuticals targeting the TGF-β1 pathway and current approved drugs might represent a novel pharmacological approach for reverting cognitive deficits in AD patients.
Collapse
Affiliation(s)
- Margherita Grasso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.); (W.C.)
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (G.C.); (A.B.); (C.C.); (T.M.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| |
Collapse
|
18
|
Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal Supply of Both Arachidonic and Docosahexaenoic Acids Is Required for Optimal Neurodevelopment. Nutrients 2021; 13:2061. [PMID: 34208549 PMCID: PMC8234848 DOI: 10.3390/nu13062061] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
During the last trimester of gestation and for the first 18 months after birth, both docosahexaenoic acid,22:6n-3 (DHA) and arachidonic acid,20:4n-6 (ARA) are preferentially deposited within the cerebral cortex at a rapid rate. Although the structural and functional roles of DHA in brain development are well investigated, similar roles of ARA are not well documented. The mode of action of these two fatty acids and their derivatives at different structural-functional roles and their levels in the gene expression and signaling pathways of the brain have been continuously emanating. In addition to DHA, the importance of ARA has been much discussed in recent years for fetal and postnatal brain development and the maternal supply of ARA and DHA. These fatty acids are also involved in various brain developmental processes; however, their mechanistic cross talks are not clearly known yet. This review describes the importance of ARA, in addition to DHA, in supporting the optimal brain development and growth and functional roles in the brain.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, India;
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603 103, India; (A.B.); (S.P.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
19
|
Supplemental N-3 Polyunsaturated Fatty Acids Limit A1-Specific Astrocyte Polarization via Attenuating Mitochondrial Dysfunction in Ischemic Stroke in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5524705. [PMID: 34211624 PMCID: PMC8211499 DOI: 10.1155/2021/5524705] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability for adults, which lacks effective treatments. Dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs) exerts beneficial effects on ischemic stroke by attenuating neuron death and inflammation induced by microglial activation. However, the impact and mechanism of n-3 PUFAs on astrocyte function during stroke have not yet been well investigated. Our current study found that dietary n-3 PUFAs decreased the infarction volume and improved the neurofunction in the mice model of transient middle cerebral artery occlusion (tMCAO). Notably, n-3 PUFAs reduced the stroke-induced A1 astrocyte polarization both in vivo and in vitro. We have demonstrated that exogenous n-3 PUFAs attenuated mitochondrial oxidative stress and increased the mitophagy of astrocytes in the condition of hypoxia. Furthermore, we provided evidence that treatment with the mitochondrial-derived antioxidant, mito-TEMPO, abrogated the n-3 PUFA-mediated regulation of A1 astrocyte polarization upon hypoxia treatment. Together, this study highlighted that n-3 PUFAs prevent mitochondrial dysfunction, thereby limiting A1-specific astrocyte polarization and subsequently improving the neurological outcomes of mice with ischemic stroke.
Collapse
|
20
|
Turati M, Franchi S, Leone G, Piatti M, Zanchi N, Gandolla M, Rigamonti L, Sacerdote P, Rizzi L, Pedrocchi A, Omeljaniuk RJ, Zatti G, Torsello A, Bigoni M. Resolvin E1 and Cytokines Environment in Skeletally Immature and Adult ACL Tears. Front Med (Lausanne) 2021; 8:610866. [PMID: 34150787 PMCID: PMC8208028 DOI: 10.3389/fmed.2021.610866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/22/2021] [Indexed: 01/25/2023] Open
Abstract
The intra-articular synovial fluid environment in skeletally immature patients following an ACL tear is complex and remains undefined. Levels of inflammatory and anti-inflammatory cytokines change significantly in response to trauma and collectively define the inflammatory environment. Of these factors the resolvins, with their inherent anti-inflammatory, reparative, and analgesic properties, have become prominent. This study examined the levels of resolvins and other cytokines after ACL tears in skeletally immature and adult patients in order to determine if skeletal maturity affects the inflammatory pattern. Skeletally immature and adult patients with an anterior cruciate ligament injury and meniscal tears were prospectively enrolled over a 5-month period. Synovial fluid samples were obtained before surgery quantifying Resolvin E1, IL-1β, TNF-α, and IL-10 by ELISA. Comparisons between skeletally immature patients and adults, the influence of meniscal tear, growth plate maturity and time from trauma were analyzed. Skeletally immature patients had significantly greater levels of Resolvin E1 and IL-10 compared with adults with an isolated anterior cruciate ligament lesion. Among the injured skeletally immature patients Resolvin E1 levels were greater in the open growth plate group compared with those with closing growth plates. Moreover, levels of Resolvin E1 and IL-10 appeared to decrease with time. Our results suggest that skeletally immature patients have a stronger activation of the Resolvin pattern compared to adult patients and that synovial fluid Resolvins could play an antinflammatory role in the knee after anterior cruciate ligament lesion and that its activity may be synergistic with that of IL-10.
Collapse
Affiliation(s)
- Marco Turati
- Orthopedic Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Grenoble, France
- Department of Pediatric Orthopedic Surgery, Hopital Couple Enfants, Grenoble Alpes University, Grenoble, France
| | - Silvia Franchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giulio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Grenoble, France
| | - Massimiliano Piatti
- Orthopedic Department, San Gerardo Hospital, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Grenoble, France
| | - Nicolò Zanchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Grenoble, France
| | - Marta Gandolla
- NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Luca Rigamonti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Paola Sacerdote
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandra Pedrocchi
- NearLab, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Giovanni Zatti
- Orthopedic Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Grenoble, France
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marco Bigoni
- Orthopedic Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Grenoble, France
| |
Collapse
|
21
|
MacIntosh BA, Ramsden CE, Honvoh G, Faurot KR, Palsson OS, Johnston AD, Lynch C, Anderson P, Igudesman D, Zamora D, Horowitz M, Gaylord S, Mann JD. Methodology for altering omega-3 EPA+DHA and omega-6 linoleic acid as controlled variables in a dietary trial. Clin Nutr 2021; 40:3859-3867. [PMID: 34130033 PMCID: PMC8293619 DOI: 10.1016/j.clnu.2021.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Increasing dietary intake of n-3 EPA+DHA and lowering dietary n-6 LA is under investigation as a therapeutic diet for improving chronic pain syndromes as well as other health outcomes. Herein we describe the diet methodology used to modulate intake of n-3 and n-6 PUFA in a free living migraine headache population and report on nutrient intake, BMI and diet acceptability achieved at week 16 of the intensive diet intervention and week 22 follow-up time-point. METHODS A total of 178 participants were randomized and began one of three diet interventions: 1) a high n-3 PUFA, average n-6 PUFA (H3) diet targeting 1500 mg EPA+DHA/day and 7% of energy (en%) from n-6 linoleic acid (LA), 2) a high-n-3 PUFA, low-n-6 PUFA (H3L6) targeting 1500 mg EPA+DHA/day and <1.8 en% n-6 LA or 3) a Control diet with typical American intakes of both EPA+DHA (<150 mg/day) and 7 en% from n-6 LA. Methods used to achieve diet change to week 16 include diet education, diet counseling, supply of specially prepared foods, self-monitoring and access to online diet materials. Only study oils and website materials were provided for the follow-up week 16 to week 22 periods. Diet adherence was assessed by multiple 24 h recalls administered throughout the trial. Diet acceptability was assessed in a subset of participants at 4 time points by questionnaire. RESULTS At week 16 H3 and H3L6 diet groups significantly increased median n-3 EPA+DHA intake from 48 mg/2000 kcals at baseline to 1484 mg/2000 kcals (p < 0.0001) and from 44 mg/2000 kcals to 1341 mg/2000 kcals (p < 0.0001), respectively. In the Control group, EPA+DHA intake remained below the typical American intake with baseline median at 60 mg/2000 kcals and 80 mg/2000 kcals (p = 0.6) at week 16. As desired, LA intake was maintained in the H3 and Control group with baseline median of 6.5 en% to 7.1 en% (p = 0.4) at week 16 and from 6.5 en% to 6.8 en% (p = 1.0) at week 16, respectively. In the H3L6 group, n-6 LA decreased from 6.3 en% at baseline to 3.2 en% (p < 0.0001) at week 16. There were no significant changes in BMI or diet acceptability throughout the trial or between diet groups. CONCLUSIONS We find this diet method to be acceptable to research participants and successful in altering dietary n-3 EPA+DHA with and without concurrent decreases in n-6 LA. If n-6 LA of less than 3 en% is desired, additional techniques to limit LA may need to be employed.
Collapse
Affiliation(s)
- Beth A MacIntosh
- Metabolic and Nutrition Research Core, UNC Medical Center, 102 Mason Farm Rd., CB#7777, NC, 27599, USA.
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA; Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA; Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Gilson Honvoh
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Olafur S Palsson
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela D Johnston
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Chanee Lynch
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Paula Anderson
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - Daria Igudesman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Department of Psychiatry, UNC School of Medicine, Chapel Hill, NC, USA; Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Susan Gaylord
- Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, NC, USA
| | - John D Mann
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Aubeux D, Peters OA, Hosseinpour S, Tessier S, Geoffroy V, Pérez F, Gaudin A. Specialized pro-resolving lipid mediators in endodontics: a narrative review. BMC Oral Health 2021; 21:276. [PMID: 34030680 PMCID: PMC8142493 DOI: 10.1186/s12903-021-01619-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/09/2021] [Indexed: 02/06/2023] Open
Abstract
Endodontics is the branch of dentistry concerned with the morphology, physiology, and pathology of the human dental pulp and periradicular tissues. Human dental pulp is a highly dynamic tissue equipped with a network of resident immunocompetent cells that play major roles in the defense against pathogens and during tissue injury. However, the efficiency of these mechanisms during dental pulp inflammation (pulpitis) varies due to anatomical and physiological restrictions. Uncontrolled, excessive, or unresolved inflammation can lead to pulp tissue necrosis and subsequent bone infections called apical periodontitis. In most cases, pulpitis treatment consists of total pulp removal. Although this strategy has a good success rate, this treatment has some drawbacks (lack of defense mechanisms, loss of healing capacities, incomplete formation of the root in young patients). In a sizeable number of clinical situations, the decision to perform pulp extirpation and endodontic treatment is justifiable by the lack of therapeutic tools that could otherwise limit the immune/inflammatory process. In the past few decades, many studies have demonstrated that the resolution of acute inflammation is necessary to avoid the development of chronic inflammation and to promote repair or regeneration. This active process is orchestrated by Specialized Pro-resolving lipid Mediators (SPMs), including lipoxins, resolvins, protectins and maresins. Interestingly, SPMs do not have direct anti-inflammatory effects by inhibiting or directly blocking this process but can actively reduce neutrophil infiltration into inflamed tissues, enhance efferocytosis and bacterial phagocytosis by monocytes and macrophages and simultaneously inhibit inflammatory cytokine production. Experimental clinical application of SPMs has shown promising result in a wide range of inflammatory diseases, such as renal fibrosis, cerebral ischemia, marginal periodontitis, and cancer; the potential of SPMs in endodontic therapy has recently been explored. In this review, our objective was to analyze the involvement and potential use of SPMs in endodontic therapies with an emphasis on SPM delivery systems to effectively administer SPMs into the dental pulp space.
Collapse
Affiliation(s)
- Davy Aubeux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Ove A Peters
- School of Dentistry, The University of Queensland, Brisbane, Australia
| | | | - Solène Tessier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Valérie Geoffroy
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
| | - Fabienne Pérez
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France
- Université de Nantes, UFR Odontologie, 44042, Nantes, France
- CHU Nantes, PHU4 OTONN44093, Nantes, France
| | - Alexis Gaudin
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, 44042, Nantes, France.
- Université de Nantes, UFR Odontologie, 44042, Nantes, France.
- CHU Nantes, PHU4 OTONN44093, Nantes, France.
| |
Collapse
|
23
|
Shofler D, Rai V, Mansager S, Cramer K, Agrawal DK. Impact of resolvin mediators in the immunopathology of diabetes and wound healing. Expert Rev Clin Immunol 2021; 17:681-690. [PMID: 33793355 DOI: 10.1080/1744666x.2021.1912598] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Wound healing in diabetes may be delayed by persistent wound infection due to deficient immune and cellular response to tissue injury. Hyperglycemia due to decreased insulin availability and increased insulin resistance affects the immune response of the body. Accumulation of inflammatory immune cells and pro-inflammatory cytokines results in chronic inflammation and an altered resolution and remodeling phase of wound healing.Areas covered: Pro-resolving mediators called 'resolvins' target the resolution phase of wound healing and are becoming an area of increased interest. Resolvins stimulate self-limited innate immune responses and enhance innate microbial killing and clearance. Resolvins resolve inflammation by decreasing neutrophil infiltration and transmigration, increasing the phagocytic activity of macrophages, decreasing adipose tissue macrophages, downregulating platelet activation, suppressing nuclear factor-kappa beta activation, promoting the apoptosis of polymorphonuclear leukocytes, and improving insulin sensitivity. This review discusses the role of resolvins in diabetic wound healing and potential therapeutic strategies. The review is based on a literature search of PubMed and the Web of Science restricted to publications between January 2001 and October 2020.Expert opinion: There is increasing support for the use of resolvins in clinical applications related to diabetes and wound healing. Further research will help clarify this potential.
Collapse
Affiliation(s)
- David Shofler
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Mansager
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Kira Cramer
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
24
|
Spósito L, Fortunato GC, de Camargo BAF, Ramos MADS, Souza MPCD, Meneguin AB, Bauab TM, Chorilli M. Exploiting drug delivery systems for oral route in the peptic ulcer disease treatment. J Drug Target 2021; 29:1029-1047. [PMID: 33729081 DOI: 10.1080/1061186x.2021.1904249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptic ulcer disease (PUD) is a common condition that is induced by acid and pepsin causing lesions in the mucosa of the duodenum and stomach. The pathogenesis of PUD is a many-sided scenario, which involves an imbalance between protective factors, such as prostaglandins, blood flow, and cell renewal, and aggressive ones, like alcohol abuse, smoking, Helicobacter pylori colonisation, and the use of non-steroidal anti-inflammatory drugs. The standard oral treatment is well established; however, several problems can decrease the success of this therapy, such as drug degradation in the gastric environment, low oral bioavailability, and lack of vectorisation to the target site. In this way, the use of strategies to improve the effectiveness of these conventional drugs becomes interesting. Currently, the use of drug delivery systems is being explored as an option to improve the drug therapy limitations, such as antimicrobial resistance, low bioavailability, molecule degradation in an acid environment, and low concentration of the drug at the site of action. This article provides a review of oral drug delivery systems looking for improving the treatment of PUD.
Collapse
Affiliation(s)
- Larissa Spósito
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | | | | | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
25
|
Fan G, Li Y, Chen J, Zong Y, Yang X. DHA/AA alleviates LPS-induced Kupffer cells pyroptosis via GPR120 interaction with NLRP3 to inhibit inflammasome complexes assembly. Cell Death Dis 2021; 12:73. [PMID: 33436541 PMCID: PMC7803970 DOI: 10.1038/s41419-020-03347-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Pyroptosis is a novel type of programmed cell death associated with the pathogenesis of many inflammatory diseases. Docosahexaenoic acid (DHA) and Arachidonic acid (AA) is widely involved in inflammatory pathological processes. However, the effect and mechanism of DHA and AA on pyroptosis in Kupffer cells are poorly understood. The present study demonstrated that DHA and AA ameliorated lipopolysaccharide (LPS)-induced Kupffer cells pyroptosis by reversing the increased expression of NLRP3 inflammasome complex, GSDMD, IL-1β, IL-18, and PI-stained positive rate. Next, the study revealed that GPR120 silencing eliminated the anti-pyroptosis of DHA and AA in LPS-induced Kupffer cells, suggesting that DHA and AA exerted their effect through GPR120 signaling. Importantly, GPR120 endocytose and binds to NLRP3 under LPS stimulation. Furthermore, co-immunoprecipitation showed that DHA and AA promoted the interaction between GPR120 and NLRP3 in LPS-exposed Kupffer cells, thus inhibiting the self-assembly of NLRP3 inflammasome complex. Finally, the study verified that DHA and AA alleviated hepatic injury through inhibiting Kupffer cells pyroptosis in vivo. The findings indicated that DHA and AA alleviated LPS-induced Kupffer cells pyroptosis via GPR120 interaction with NLRP3, it might become a potential therapeutic approach hepatic injury.
Collapse
Affiliation(s)
- Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jinglong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yibo Zong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
26
|
Claessen BE, Guedeney P, Gibson CM, Angiolillo DJ, Cao D, Lepor N, Mehran R. Lipid Management in Patients Presenting With Acute Coronary Syndromes: A Review. J Am Heart Assoc 2020; 9:e018897. [PMID: 33289416 PMCID: PMC7955383 DOI: 10.1161/jaha.120.018897] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite many improvements in its prevention and management, acute coronary syndrome (ACS) remains a major cause of morbidity and mortality in the developed world. Lipid management is an important part of secondary prevention after ACS, but many patients currently remain undertreated and do not attain guideline‐recommended levels of low‐density lipoprotein cholesterol reduction. This review details the current state of evidence on lipid management in patients presenting with ACS, provides directions for identification of patients who may benefit from early escalation of lipid‐lowering therapy, and discusses novel lipid‐lowering medication that is currently under investigation in clinical trials. Moreover, a treatment algorithm aimed at attaining guideline‐recommended low‐density lipoprotein cholesterol levels is proposed. Despite important advances in the initial treatment and secondary prevention of ACS, ≈20% of ACS survivors experience a subsequent ischemic cardiovascular event within 24 months, and 5‐year mortality ranges from 19% to 22%. Knowledge of the current state of evidence‐based lipid management after ACS is of paramount importance to improve outcomes after ACS.
Collapse
Affiliation(s)
- Bimmer E Claessen
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY.,Noordwest Ziekenhuisgroep Alkmaar the Netherlands
| | - Paul Guedeney
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY.,ACTION Study Group Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche Scientifique_1166 Cardiology Institute Pitié Salpêtrière Hospital ParisSorbonne University Paris France
| | | | | | - Davide Cao
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY
| | - Norman Lepor
- Cedars-Sinai Heart InstituteGeffen School of Medicine-University of Califonia - Los Angeles Los Angeles CA
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute Icahn School of Medicine at Mount Sinai New York NY
| |
Collapse
|
27
|
Li J, Deng X, Bai T, Wang S, Jiang Q, Xu K. Resolvin D1 mitigates non-alcoholic steatohepatitis by suppressing the TLR4-MyD88-mediated NF-κB and MAPK pathways and activating the Nrf2 pathway in mice. Int Immunopharmacol 2020; 88:106961. [PMID: 33182038 DOI: 10.1016/j.intimp.2020.106961] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
AIMS Resolvin D1 (RvD1), a potent endogenous lipid mediator converted from docosahexaenoic acid (DHA), has exert anti-inflammatory and antioxidant effects in many preclinical disease models, but its potential role in non-alcoholic steatohepatitis (NASH) remains elusive. This study was performed to investigate the protective effects and mechanisms of RvD1 in NASH. MAIN METHODS In vivo, male C57BL/6 mice were fed an MCD diet for 4 weeks to induce NASH. RvD1 was added in the last 2 weeks of the feeding period. In vitro, lipopolysaccharide (LPS)-activated RAW264.7 macrophages were pretreated with increasing concentrations of RvD1. Serum liver functional markers and hepatic oxidative stress indicators were measured biochemically. Mouse liver tissue sections were stained with hematoxylin-eosin, oil red O, and Masson's trichrome to assess the severity of steatohepatitis, steatosis and fibrosis. The qRT-PCR, immunohistochemistry and Western blotting assays were applied to analyse mechanisms underlying RvD1 protection in NASH. KEY FINDINGS In vivo, RvD1 significantly attenuates steatohepatitis in MCD diet-fed mice by modulating key events, including steatosis, inflammation, oxidative stress and fibrosis in the progression of NASH. In vitro, RvD1 also represses LPS-induced inflammation in RAW264.7 cells. These effects may be mainly attributed to RvD1 markedly suppressing excessive inflammatory responses via the inhibition of the TLR4-MyD88-mediated NF-κB and MAPK signalling pathways as well as enhancing antioxidation capacity via the activation of the Nrf2 pathway. SIGNIFICANCE These results demonstrate that RvD1 is a promising hepatoprotective agent for the therapy of NASH.
Collapse
Affiliation(s)
- Jiahuan Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoling Deng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuhan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Jiang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshu Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
28
|
Lou D, Luo Y, Pang Q, Tan WQ, Ma L. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater 2020; 5:667-679. [PMID: 32420517 PMCID: PMC7217806 DOI: 10.1016/j.bioactmat.2020.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds.
Collapse
Affiliation(s)
- Dong Lou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Yu Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
29
|
Gender Difference on the Effect of Omega-3 Polyunsaturated Fatty Acids on Acetaminophen-Induced Acute Liver Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8096847. [PMID: 32908639 PMCID: PMC7474378 DOI: 10.1155/2020/8096847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 12/02/2022]
Abstract
Acetaminophen (APAP) toxicity is the leading cause of drug-induced liver failure, which is closely related to mitochondrial dysfunction and oxidative damage. Studies in clinical trials and in animal models have shown that omega-3 polyunsaturated fatty acids (n-3 PUFAs) affect the progression of various types of liver damage. Interestingly, the sex-dependent effect of n-3 PUFAs on human health has also been well documented. However, it is unknown whether supplementation of n-3 PUFAs modulates the pathogenesis of APAP-induced liver failure with sex-specificity. Our results showed that both endogenous and exogenous n-3 PUFAs significantly aggravated the APAP-induced liver injury in male mice, whereas the opposite effects were observed in females. In vivo and in vitro studies demonstrated that estrogen contributes to the gender difference in the regulation of n-3 PUFAs on APAP overdose. We found that n-3 PUFA-mediated regulation of hepatic oxidative stress response and autophagy upon APAP challenge is distinct between male and female mice. Moreover, we provided evidence that β-catenin signaling activation is responsible for the sex-dependent regulation of APAP hepatotoxicity by n-3 PUFAs. Together, these findings indicated that supplementation with n-3 PUFAs displays sex-differential effect on APAP hepatotoxicity and could have profound significance in the clinical management for drug-induced liver injury.
Collapse
|
30
|
Wang F, Huang S, Xia H, Yao S. Specialized pro-resolving mediators: It's anti-oxidant stress role in multiple disease models. Mol Immunol 2020; 126:40-45. [PMID: 32750537 DOI: 10.1016/j.molimm.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Oxidative stress-related injury is a negative state caused by the imbalance between oxidation and antioxidant effects in the internal environment of the body. Oxidative stress has been confirmed to be an important factor in aging and a variety of diseases and the inhibition of inappropriate oxidative stress responses are important for maintaining normal physiological functions. Recently, considerable attention has been focused on specialized pro-resolving mediators(SPMs). SPMs are endogenous mediators derived from polyunsaturated fatty acids, which have multiple protective effects such as anti-inflammation, pro-resolution, and promoting tissue damage repair, etc. Moreover, the role of SPMs on oxidative stress has been extensively researched and provides a possible treatment method. In the current study, we review the positive role of SPMs in oxidative stress-related disease and outline the possible involved mechanism, thus providing the theoretical support for a better understanding of the roles of SPMs in oxidative stress and the theoretical basis for finding targets for the oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
31
|
Feltham BA, Louis XL, Eskin MNA, Suh M. Docosahexaenoic Acid: Outlining the Therapeutic Nutrient Potential to Combat the Prenatal Alcohol-Induced Insults on Brain Development. Adv Nutr 2020; 11:724-735. [PMID: 31989167 PMCID: PMC7231602 DOI: 10.1093/advances/nmz135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 01/20/2023] Open
Abstract
Brain development is markedly affected by prenatal alcohol exposure, leading to cognitive and behavioral problems in the children. Protecting neuronal damage from prenatal alcohol could improve neural connections and functioning of the brain. DHA, a n-3 (ω-3) long-chain PUFA, is involved in the development of neurons. Insufficient concentrations of DHA impair neuronal development and plasticity of synaptic junctions and affect neurotransmitter concentrations in the brain. Alcohol consumption during pregnancy decreases the maternal DHA status and reduces the placental transfer of DHA to the fetus, resulting in less DHA being available for brain development. It is important to know whether DHA could induce beneficial effects on various physiological functions that promote neuronal development. This review will discuss the current evidence for the beneficial role of DHA in protecting against neuronal damage and its potential in mitigating the teratogenic effects of alcohol.
Collapse
Affiliation(s)
- Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
32
|
Desale SE, Chinnathambi S. Role of dietary fatty acids in microglial polarization in Alzheimer's disease. J Neuroinflammation 2020; 17:93. [PMID: 32209097 PMCID: PMC7093977 DOI: 10.1186/s12974-020-01742-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Microglial polarization is an utmost important phenomenon in Alzheimer’s disease that influences the brain environment. Polarization depends upon the types of responses that cells undergo, and it is characterized by receptors present on the cell surface and the secreted cytokines to the most. The expression of receptors on the surface is majorly influenced by internal and external factors such as dietary lipids. Types of fatty acids consumed through diet influence the brain environment and glial cell phenotype and types of receptors on microglia. Reports suggest that dietary habits influence microglial polarization and the switching of microglial phenotype is very important in neurodegenerative diseases. Omega-3 fatty acids have more influence on the brain, and they are found to regulate the inflammatory stage of microglia by fine-tuning the number of receptors expressed on microglia cells. In Alzheimer’s disease, one of the pathological proteins involved is Tau protein, and microtubule-associated protein upon abnormal phosphorylation detaches from the microtubule and forms insoluble aggregates. Aggregated proteins have a tendency to propagate within the neurons and also become one of the causes of neuroinflammation. We hypothesize that tuning microglia towards anti-inflammatory phenotype would reduce the propagation of Tau in Alzheimer’s disease.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
33
|
Ahmed OAA, Fahmy UA, Bakhaidar R, El-Moselhy MA, Okbazghi SZ, Ahmed ASF, Hammad ASA, Alhakamy NA. Omega-3 Self-Nanoemulsion Role in Gastroprotection against Indomethacin-Induced Gastric Injury in Rats. Pharmaceutics 2020; 12:E140. [PMID: 32045979 PMCID: PMC7076357 DOI: 10.3390/pharmaceutics12020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
Peptic ulcer disease is an injury of the alimentary tract that leads to a mucosal defect reaching the submucosa. This study aimed to formulate and optimize omega-3 oil as a self-nanoemulsifying drug delivery system (SNEDDS) to achieve oil dispersion in the nano-range in the stomach to augment omega-3 oil gastric ulcer protection efficacy. Three SNEDDS components were selected as the design factors: the concentrations of the oil omega-3 (X1, 10-30%), the surfactant tween 20 and Kolliphor mixture (X2, 20-40%), and the cosurfactant transcutol (X3, 40-60%). The mixture experimental design proposed twenty-three formulations with varying omega-3 SNEDDS formulation component percentages. The optimized omega-3 SNEDDS formula was investigated for gastric ulcer protective effects by evaluating the ulcer index and by the determination of gastric mucosa oxidative stress parameters. Results revealed that optimized omega-3-SNEDDS achieved significant improvement in the gastric ulcer index in comparison with pure omega-3 oil. Histopathological findings confirmed the protective effect of the formulated optimized omega-3 SNEDDS in comparison with omega-3 oil. These findings suggest that formulation of omega-3 in the form of a SNEDDS would be more effective in gastric ulcer protection than the administration of omega-3 as a crude oil.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Pharmacology, School of Pharmacy, Ibn Sina national college, Jeddah 22413, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Solomon Z Okbazghi
- Global Analytical and Pharmaceutical Development, Alexion Pharmaceuticals, New Haven, CT 06510, USA
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
34
|
Kuroda K, Otake H, Shinohara M, Kuroda M, Tsuda S, Toba T, Nagano Y, Toh R, Ishida T, Shinke T, Hirata KI. Effect of rosuvastatin and eicosapentaenoic acid on neoatherosclerosis: the LINK-IT Trial. EUROINTERVENTION 2019; 15:e1099-e1106. [PMID: 31334703 DOI: 10.4244/eij-d-18-01073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS We aimed to assess the effect of 10 mg/day of rosuvastatin plus eicosapentaenoic acid (EPA) versus 2.5 mg/day of rosuvastatin on the extent of neoatherosclerosis using optical coherence tomography (OCT). METHODS AND RESULTS We randomly assigned 50 patients with non-obstructive neoatherosclerotic plaques detected on OCT to receive either rosuvastatin 10 mg/day and EPA 1,800 mg/day (intensive therapy group) or rosuvastatin 2.5 mg (standard therapy group). Follow-up OCT was performed one year later to evaluate serial changes in neoatherosclerosis. The serum low-density lipoprotein cholesterol (LDL-C) level decreased significantly from baseline to 12-month follow-up in the intensive therapy group (89 mg/dL to 70 mg/dL; p<0.001), while no change occurred in the standard therapy group. Lipid index change and percent changes in macrophage grade were significantly lower in the intensive therapy group than in the standard therapy group (-53.6 vs 310.1, p=0.001; -37.0% vs 35.3%, p<0.001; respectively). Percent changes in lipid index and macrophage grade were positively correlated with the changes in serum LDL-C and C-reactive protein levels, and negatively correlated with the change in serum EPA/arachidonic acid and 18-hydroxyeicosapentaenoic acid (EPA bioactive metabolite) level. CONCLUSIONS Compared with rosuvastatin 2.5 mg/day, rosuvastatin 10 mg/day and EPA 1,800 mg/day significantly stabilised non-obstructive neoatherosclerotic plaques. CLINICAL TRIAL REGISTRATION UMIN ID: UMIN000012576. https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000014711.
Collapse
Affiliation(s)
- Koji Kuroda
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Peng Y, Ren H, Tao H, He C, Li P, Wan JB, Su H. Metabolomics study of the anti-inflammatory effects of endogenous omega-3 polyunsaturated fatty acids. RSC Adv 2019; 9:41903-41912. [PMID: 35541572 PMCID: PMC9076520 DOI: 10.1039/c9ra08356a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023] Open
Abstract
Low-grade inflammation is usually defined as the chronic production and a low-grade state of inflammatory factors, it often does not have symptoms, and has been associated with neurodegenerative disease, obesity, and diabetes. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are the precursors of many anti-inflammatory metabolites, such as resolvins and neuroprotectins. It is of interest to study the metabolic profile of endogenous n-3 PUFAs in low-grade inflammatory conditions. To evaluate the protective effects of endogenous n-3 PUFAs on low-grade inflammation with the metabolomics approach, we fed fat-1 mice with an n-6 PUFAs rich diet for a long time to induce a low-grade inflammatory condition. Multi-analysis techniques, including structural analysis using quadrupole time-of-flight mass spectrometry with MSE mode, were applied in untargeted metabolomics to search for meaningful metabolites with significant variance in fat-1 mice under low-grade inflammation. Following the untargeted metabolomics screening, several meaningful metabolites were selected which were associated with anti-inflammatory effects generated from endogenous n-3 PUFAs for further analysis. The results revealed that the purine metabolism, fatty acid metabolism and oxidative stress response pathways through insulin resistance were involved in anti-inflammatory mechanisms of n-3 PUFA in low-grade inflammatory conditions. For the first time, this study explored the highlighted pathways as contributors to the anti-inflammatory effects of endogenous n-3 PUFAs in low-grade inflammatory conditions. Low-grade inflammation is usually defined as the chronic production and a low-grade state of inflammatory factors, it often does not have symptoms, and has been associated with neurodegenerative disease, obesity, and diabetes.![]()
Collapse
Affiliation(s)
- Yu Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau China
| | - Hongxun Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau China
| |
Collapse
|
36
|
Mo Z, Tang C, Li H, Lei J, Zhu L, Kou L, Li H, Luo S, Li C, Chen W, Zhang L. Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci 2019; 242:117133. [PMID: 31830477 DOI: 10.1016/j.lfs.2019.117133] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Acute cerebral infarction (ACI) is the most common type of acute cerebrovascular diseases resulting in high rate of death and disability. Numerous evidences show that inflammation is the leading cause of ischemic brain injury, thus anti-inflammatory therapy is an attractive candidate for ischemic brain damage. Eicosapentaenoic acid (EPA) exerts anti-inflammatory activity in lots of human inflammatory diseases, whereas its effect in ACI is left to elucidate. METHOD Nlpr3-/- mice, Gpr40-/-; Gpr120-/- mice and mice with right middle cerebral artery occlusion (MCAO) were used to detect NLR family pyrin domain containing 3 (NLRP3) inflammasome activation by Western Blot and the release of proinflammatory cytokines by ELISA. To estimate the acute ischemic condition in vitro, oxygen-glucose deprivation (OGD) was induced in BV2 microglia cells. Transfection of the shRNA targeting GPR40 and GPR120 mRNA into BV2 cells was also assessed. Apoptosis in ischemic cerebral tissues and BV2 cells was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry. RESULT Here we show that EPA suppresses ACI-induced inflammatory responses through blocking NLRP3 inflammasome activation. In addition, EPA inhibits NLRP3 inflammasome activation through G protein-coupled receptor 40 (GPR40) and GPR120. Importantly, EPA ameliorates ACI-induced apoptosis. CONCLUSION EPA exerts beneficial effect on ACI-induced inflammation through blocking NLRP3 inflammasome activation by GPR40 and GPR120. Our findings suggest the potential clinical use of EPA in ACI.
Collapse
Affiliation(s)
- Zhihuai Mo
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Chaogang Tang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China; Department of Neurology, Maoming People's Hospital, 525000, Guangdong, China
| | - Huiqing Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Junjie Lei
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Lingjuan Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Li Kou
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Hao Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China; Department of Neurology, Maoming People's Hospital, 525000, Guangdong, China
| | - Shijian Luo
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Chunyi Li
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China
| | - Wenli Chen
- Department of Pharmacology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China.
| | - Lei Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Guangdong, China.
| |
Collapse
|
37
|
Rai RC. Host inflammatory responses to intracellular invaders: Review study. Life Sci 2019; 240:117084. [PMID: 31759040 DOI: 10.1016/j.lfs.2019.117084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
As soon as a pathogen invades through the physical barriers of its corresponding host, host mounts a series of protective immune response to get rid of the invading pathogen. Host's pattern recognition receptors (PRR), localized at the cellular surface, cytoplasm and also in the nucleus; recognises pathogen associated molecular patterns (PAMPs) and plays crucial role in directing the immune response to be specific. Inflammatory responses are among the earliest strategies to tackle the pathogen by the host and are tightly regulated by multiple molecular pathways. Inflammasomes are multi-subunit protein complex consisting of a receptor molecule viz. NLRP3, an adaptor molecule- Apoptosis-associated speck-like protein containing a CARD (ASC) and an executioner caspase. Upon infection and/or injury; inflammasome components assemble and oligomerizes leading to the auto cleavage of the pro-caspase-1 to its active form. The activated caspase-1 cleaves immature form of the pro-inflammatory cytokines to their mature form e.g. IL1-β and IL-18 which mount inflammatory response. Moreover, C-terminal end of the Gasdermin D molecule is also cleaved by the caspase-1. The activated N-terminal Gasdermin D molecule form pores in the infected cells leading to their pyroptosis. Hence, inflammasomes drive inflammation during infection and controls the establishment of the pathogen by mounting inflammatory response and activation of the pyroptotic cell death.
Collapse
Affiliation(s)
- Ramesh Chandra Rai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
38
|
Docosahexaenoic acid,22:6n-3: Its roles in the structure and function of the brain. Int J Dev Neurosci 2019; 79:21-31. [PMID: 31629800 DOI: 10.1016/j.ijdevneu.2019.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Docosahexaenoic acid,22:6n-3 (DHA) and its metabolites are vital for the structure and functional brain development of the fetus and infants, and also for maintenance of healthy brain function of adults. DHA is thought to be an essential nutrient required throughout the life cycle for the maintenance of overall brain health. The mode of actions of DHA and its derivatives at both cellular and molecular levels in the brain are emerging. DHA is the major prevalent fatty acid in the brain membrane. The brain maintains its fatty acid levels mainly via the uptake of plasma free fatty acids. Therefore, circulating plasma DHA is significantly related to cognitive abilities during ageing and is inversely associated with cognitive decline. The signaling pathways of DHA and its metabolites are involved in neurogenesis, antinociceptive effects, anti-apoptotic effect, synaptic plasticity, Ca2+ homeostasis in brain diseases, and the functioning of nigrostriatal activities. Mechanisms of action of DHA metabolites on various processes in the brain are not yet well known. Epidemiological studies support a link between low habitual intake of DHA and a higher risk of brain disorders. A diet characterized by higher intakes of foods containing high in n-3 fatty acids, and/or lower intake of n-6 fatty acids was strongly associated with a lower Alzheimer's Disease and other brain disorders. Supplementation of DHA improves some behaviors associated with attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior, as well as cognition. Nevertheless, the outcomes of trials with DHA supplementation have been controversial. Many intervention studies with DHA have shown an apparent benefit in brain function. However, clinical trials are needed for definitive conclusions. Dietary deficiency of n-3 fatty acids during fetal development in utero and the postnatal state has detrimental effects on cognitive abilities. Further research in humans is required to assess a variety of clinical outcomes, including quality of life and mental status, by supplementation of DHA.
Collapse
|
39
|
Abstract
Non-alcoholic fatty liver disease is the most common cause of chronic liver disease in the developed world and commonly associated with metabolic comorbidities such as diabetes mellitus, hypertension, dyslipidemia, and obesity. Non-alcoholic steatohepatitis is an aggressive form of non-alcoholic fatty liver disease, associated with an increased risk of liver and non-liver-related mortality. Currently there are no approved therapies for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and standard-of-care lifestyle advice is rarely effective. This has spurned intense drug development efforts and several agents are in clinical trials to address this major gap in non-alcoholic fatty liver disease. Drug development efforts have focused on pathogenic mechanisms including pathways involving lipid metabolism, inflammation, and fibrosis. This review presents the overview of the trials and agents in the pipeline of emerging therapies for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Samarth Siddharth Patel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, MCV Box 980342, Richmond, VA, 23298-0342, USA
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, MCV Box 980342, Richmond, VA, 23298-0342, USA.
| |
Collapse
|
40
|
Kytikova O, Novgorodtseva T, Denisenko Y, Antonyuk M, Gvozdenko T. Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. ACTA ACUST UNITED AC 2019; 55:medicina55060284. [PMID: 31216723 PMCID: PMC6631965 DOI: 10.3390/medicina55060284] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
Asthma is one of the most important medical and social problems of our time due to the prevalence and the complexity of its treatment. Chronic inflammation that is characteristic of asthma is accompanied by bronchial obstruction, which involves various lipid mediators produced from n-6 and n-3 polyunsaturated fatty acids (PUFAs). The review is devoted to modern ideas about the PUFA metabolites—eicosanoids (leukotrienes, prostaglandins, thromboxanes) and specialized pro-resolving lipid mediators (SPMs) maresins, lipoxins, resolvins, protectins. The latest advances in clinical lipidomics for identifying and disclosing the mechanism of synthesis and the biological action of SPMs have been given. The current views on the peculiarities of the inflammatory reaction in asthma and the role of highly specialized metabolites of arachidonic, eicosapentaenoic and docosahexaenoic acids in this process have been described. The possibility of using SPMs as therapeutic agents aimed at controlling the resolution of inflammation in asthma is discussed.
Collapse
Affiliation(s)
- Oxana Kytikova
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Yulia Denisenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Marina Antonyuk
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Gvozdenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| |
Collapse
|
41
|
Tatsumi Y, Kato A, Sango K, Himeno T, Kondo M, Kato Y, Kamiya H, Nakamura J, Kato K. Omega-3 polyunsaturated fatty acids exert anti-oxidant effects through the nuclear factor (erythroid-derived 2)-related factor 2 pathway in immortalized mouse Schwann cells. J Diabetes Investig 2019; 10:602-612. [PMID: 30216708 PMCID: PMC6497605 DOI: 10.1111/jdi.12931] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/09/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION Recent studies advocate that omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have direct anti-oxidative and anti-inflammatory effects in the vasculature; however, the role of ω-3 PUFAs in Schwann cells remains undetermined. MATERIALS AND METHODS Immortalized mouse Schwann (IMS32) cells were incubated with the ω-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The messenger ribonucleic acid levels of several anti-oxidant enzymes (heme oxygenase-1 [Ho-1], nicotinamide adenine dinucleotide [phosphate] H quinone oxidoreductase 1, catalase, superoxide dismutase and glutathione peroxidase) were identified using real-time reverse transcription polymerase chain reaction. Ho-1 and nicotinamide adenine dinucleotide [phosphate] H quinone oxidoreductase 1 protein levels were evaluated using Western blotting. Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) of the nuclear fraction was also quantified using western blotting. Catalase activity and glutathione content were determined by colorimetric assay kits. Nrf2 promoter-luciferase activity was evaluated by a dual luciferase assay system. RESULTS Treatment with tert-butyl hydroperoxide decreased cell viability dose-dependently. DHA or EPA pretreatment significantly alleviated tert-butyl hydroperoxide-induced cytotoxicity. DHA or EPA increased the messenger ribonucleic acid levels of Ho-1, nicotinamide adenine dinucleotide (phosphate) H quinone oxidoreductase 1 and catalase dose-dependently. Ho-1 protein level, catalase activity, Nrf2 promoter-luciferase activity and intracellular glutathione content were significantly increased by DHA and EPA. CONCLUSIONS These findings show that DHA and EPA can induce Ho-1 and catalase through Nrf2, thus protecting Schwann cells against oxidative stress. ω-3 PUFAs appear to exert their neuroprotective effect by increasing defense mechanisms against oxidative stress in diabetic neuropathies.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Laboratory of MedicineAichi Gakuin University School of PharmacyNagoyaAichiJapan
| | - Ayako Kato
- Laboratory of MedicineAichi Gakuin University School of PharmacyNagoyaAichiJapan
| | - Kazunori Sango
- Diabetic Neuropathy ProjectDepartment of Sensory and Motor SystemsTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Tatsuhito Himeno
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Masaki Kondo
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Yoshiro Kato
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Hideki Kamiya
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Jiro Nakamura
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Koichi Kato
- Laboratory of MedicineAichi Gakuin University School of PharmacyNagoyaAichiJapan
| |
Collapse
|
42
|
Freitas RDS, Campos MM. Protective Effects of Omega-3 Fatty Acids in Cancer-Related Complications. Nutrients 2019; 11:nu11050945. [PMID: 31035457 PMCID: PMC6566772 DOI: 10.3390/nu11050945] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) are considered immunonutrients and are commonly used in the nutritional therapy of cancer patients due to their ample biological effects. Omega-3 PUFAs play essential roles in cell signaling and in the cell structure and fluidity of membranes. They participate in the resolution of inflammation and have anti-inflammatory and antinociceptive effects. Additionally, they can act as agonists of G protein-coupled receptors, namely, GPR40/FFA1 and GPR120/FFA4. Cancer patients undergo complications, such as anorexia-cachexia syndrome, pain, depression, and paraneoplastic syndromes. Interestingly, the 2017 European Society for Clinical Nutrition and Metabolism (ESPEN) guidelines for cancer patients only discuss the use of omega-3 PUFAs for cancer-cachexia treatment, leaving aside other cancer-related complications that could potentially be managed by omega-3 PUFA supplementation. This critical review aimed to discuss the effects and the possible underlying mechanisms of omega-3 PUFA supplementation in cancer-related complications. Data compilation in this critical review indicates that further investigation is still required to assess the factual benefits of omega-3 PUFA supplementation in cancer-associated illnesses. Nevertheless, preclinical evidence reveals that omega-3 PUFAs and their metabolites might modulate pivotal pathways underlying complications secondary to cancer, indicating that this is a promising field of knowledge to be explored.
Collapse
Affiliation(s)
- Raquel D S Freitas
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| | - Maria M Campos
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Porto Alegre 90619-900, RS, Brazil.
- Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde, PUCRS, Porto Alegre 90619-900, RS, Brazil.
| |
Collapse
|
43
|
Li J, Li H, Li H, Guo W, An Z, Zeng X, Li W, Li H, Song J, Wu W. Amelioration of PM 2.5-induced lung toxicity in rats by nutritional supplementation with fish oil and Vitamin E. Respir Res 2019; 20:76. [PMID: 30992001 PMCID: PMC6469198 DOI: 10.1186/s12931-019-1045-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5) has been associated with respiratory morbidity and mortality. Identification of interventional measures that are efficacious against PM2.5-induced toxicity may provide public health benefits. This study examined the inhibitory effects of nutritional supplementation with fish oil as a source of omega-3 fatty acids and vitamin E (Vit E) on PM2.5-induced lung toxicity in rats. METHOD Sixty four male Sprague Dawley rats were gavaged with phosphate buffered saline (PBS), corn oil (5 ml/kg), fish oil (150 mg/kg), or Vit E (75 mg/kg), respectively, once a day for 21 consecutive days prior to intratracheal instillation of PM2.5 (10 mg/kg) every other day for a total of 3 times. Serum and bronchoalveolar lavage fluids (BALFs) were collected 24 h after the last instillation of PM2.5. Levels of total proteins (TP), lactate dehydrogenase (LDH), superoxide dismutase (SOD), 8-epi-prostaglandin F2α (8-epi-PGF2α), interleukin-1β (IL-1β), C-reactive protein (CRP), IL-6, and tumor necrosis factor-ɑ (TNF-ɑ) were analyzed for markers of cell injury and inflammation. Additionally, histological alterations of lung tissues were examined by hematoxylin-eosin staining. RESULT Exposure to PM2.5 resulted in lung toxicity, represented as increased levels of total proteins, LDH, 8-epi-PGF2α, IL-1β and TNF-α, and increased infiltration of inflammatory cells, and decreased SOD in the BALFs, and systemic inflammation, as evinced by increased levels of CRP and IL-6 in serum. Strikingly, supplementation with fish oil but not Vit E significantly ameliorated PM2.5-induced lung toxicity and systemic inflammation. CONCLUSION PM2.5 exposure induces oxidative stress, lung injury and inflammation, which is ameliorated significantly by fish oil and partially by Vit E.
Collapse
Affiliation(s)
- Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Hang Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Haibin Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Weili Guo
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Xiang Zeng
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Wen Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Huijun Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
44
|
Pichavaram P, Mani AM, Singh NK, Rao GN. Cholesterol crystals promote endothelial cell and monocyte interactions via H 2O 2-mediated PP2A inhibition, NFκB activation and ICAM1 and VCAM1 expression. Redox Biol 2019; 24:101180. [PMID: 31022672 PMCID: PMC6477634 DOI: 10.1016/j.redox.2019.101180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
In the present study, we show that cholesterol crystals induce NFκB activation, and ICAM1 and VCAM1 expression via xanthine oxidase-mediated H2O2 production and PP2A inhibition in influencing endothelial cell and monocyte interactions and all these adverse effects of cholesterol crystals could be attenuated by proresolving lipid mediator RvD1. In addition, feeding mice with cholesterol rich diet (CRD) increased xanthine oxidase expression, its activity and H2O2 production leading to PP2A inhibition, NFκB activation, and ICAM1 and VCAM1 expression and RvD1 attenuated all these effects of CRD substantially. Furthermore, peripheral blood mononuclear cells (PBMCs) from wild type mice when injected into mice that were fed with CRD or RvD1 + CRD showed increased leukocyte trafficking to arteries of CRD-fed mice as compared to RvD1 + CRD mice. These findings suggest that cholesterol crystals via promoting oxidant stress and inhibiting Ser/Thr phosphatases such as PP2A stimulate NFκB activation and ICAM1 and VCAM1 expression, and thereby enhance EC-monocyte interactions. In addition, proresolving lipid mediators such as RvD1 appear to exert their anti-inflammatory effects via countering the adverse effects of cholesterol crystals or CRD.
Collapse
Affiliation(s)
- Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
45
|
Zhuang P, Zhang Y, He W, Chen X, Chen J, He L, Mao L, Wu F, Jiao J. Dietary Fats in Relation to Total and Cause-Specific Mortality in a Prospective Cohort of 521 120 Individuals With 16 Years of Follow-Up. Circ Res 2019; 124:757-768. [DOI: 10.1161/circresaha.118.314038] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pan Zhuang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Yu Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Wei He
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (W.H.)
| | - Xiaoqian Chen
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Jingnan Chen
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Lilin He
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China (P.Z., Y.Z., X.C., J.C., L.H.)
| | - Lei Mao
- From the Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China (L.M., F.W., J.J.)
| | - Fei Wu
- From the Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China (L.M., F.W., J.J.)
| | - Jingjing Jiao
- From the Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China (L.M., F.W., J.J.)
| |
Collapse
|
46
|
Kim HG, Choi TY, Bae CH, Choi YS, Na HG, Song SY, Kim YD. Effect of Resolvin D1 and E1 on Mucin Expression in Human Airway Epithelial Cells. KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY 2019; 62:28-35. [DOI: 10.3342/kjorl-hns.2018.00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/09/2018] [Indexed: 07/25/2023]
|
47
|
Affiliation(s)
| | - Erik S G Stroes
- From the Academic Medical Center, University of Amsterdam, Amsterdam
| |
Collapse
|
48
|
Ren Z, Chen L, Wang Y, Wei X, Zeng S, Zheng Y, Gao C, Liu H. Activation of the Omega-3 Fatty Acid Receptor GPR120 Protects against Focal Cerebral Ischemic Injury by Preventing Inflammation and Apoptosis in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 202:747-759. [PMID: 30598514 DOI: 10.4049/jimmunol.1800637] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
Abstract
G protein-coupled receptor 120 (GPR120) has been shown to negatively regulate inflammation and apoptosis, but its role in cerebral ischemic injury remains unclear. Using an in vivo model of middle cerebral artery occlusion (MCAO) and an in vitro model of oxygen-glucose deprivation (OGD), we investigated the potential role and molecular mechanisms of GPR120 in focal cerebral ischemic injury. Increased GPR120 expression was observed in microglia and neurons following MCAO-induced ischemia in wild type C57BL/6 mice. Treatment with docosahexaenoic acid (DHA) inhibited OGD-induced inflammatory response in primary microglia and murine microglial BV2 cells, whereas silencing of GPR120 strongly exacerbated the inflammation induced by OGD and abolished the anti-inflammatory effects of DHA. Mechanistically, DHA inhibited OGD-induced inflammation through GPR120 interacting with β-arrestin2. In addition to its anti-inflammatory function, GPR120 also played a role in apoptosis as its knockdown impaired the antiapoptotic effect of DHA in OGD-induced rat pheochromocytoma (PC12) cells. Finally, using MCAO mouse model, we demonstrated that GPR120 activation protected against focal cerebral ischemic injury by preventing inflammation and apoptosis. Our study indicated that pharmacological targeting of GPR120 may provide a novel approach for the treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Zhiping Ren
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinbing Wei
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Shenglan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; .,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China;
| |
Collapse
|
49
|
Wilson MJ, Sen A, Bridges D, Turgeon DK, Brenner DE, Smith WL, Ruffin MT, Djuric Z. Higher baseline expression of the PTGS2 gene and greater decreases in total colonic fatty acid content predict greater decreases in colonic prostaglandin-E 2 concentrations after dietary supplementation with ω-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2018; 139:14-19. [PMID: 30471768 PMCID: PMC6343141 DOI: 10.1016/j.plefa.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/13/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
This study evaluated whether mRNA expression of major genes regulating formation of prostaglandin (PG)E2 in the colon and colonic fatty acid concentrations are associated with the reduction in colonic mucosal PGE2 after dietary supplementation with omega-3 (ω-3) fatty acids. Supplementation with ω-3 fatty acids was done for 12 weeks using personalized dosing that was expected to reduce colonic PGE2 by 50%. In stepwise linear regression models, the ω-3 fatty acid dose and baseline BMI explained 16.1% of the inter-individual variability in the fold change of colonic PGE2 post-supplementation. Increases in mRNA gene expression after supplementation were, however, modest and were not associated with changes in PGE2. When baseline expression of PTGS1, PTGS2 and HPGD genes was included in the linear regression model containing dose and BMI, only PTGS2, the gene coding for the inducible form cyclooxygenase, was a significant predictor. Higher relative expression of PTGS2 predicted greater decreases in colonic PGE2, accounting for an additional 13.6% of the inter-individual variance. In the final step of the regression model, greater decreases in total colonic fatty acid concentrations predicted greater decreases in colonic PGE2, contributing to an additional 18.7% of the variance. Overall, baseline BMI, baseline expression of PTGS2 and changes in colonic total fatty acids together accounted for 48% of the inter-individual variability in the change in colonic PGE2. This is consistent with biochemical data showing that fatty acids which are not substrates for cyclooxygenases can activate cyclooxygenase-2 allosterically. Further clinical trials are needed to elucidate the factors that regulate the fatty acid milieu of the human colon and how this interacts with key lipid metabolizing enzymes. Given the central role of PGE2 in colon carcinogenesis, these pathways may also impact on colon cancer prevention by other dietary and pharmacological approaches.
Collapse
Affiliation(s)
- Matthew J Wilson
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI
| | - Ananda Sen
- Department of Family Medicine, University of Michigan, Ann Arbor, MI; Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI
| | - D Kim Turgeon
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Dean E Brenner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI; Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - William L Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Mack T Ruffin
- Department of Family and Community Medicine, Penn State University, Hershey, PA
| | - Zora Djuric
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI; Department of Family Medicine, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
50
|
Lotfi R, Rezaiemanesh A, Mortazavi SH, Karaji AG, Salari F. Immunoresolvents in asthma and allergic diseases: Review and update. J Cell Physiol 2018; 234:8579-8596. [PMID: 30488527 DOI: 10.1002/jcp.27836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023]
Abstract
Asthma and allergic diseases are inflammatory conditions developed by excessive reaction of the immune system against normally harmless environmental substances. Although acute inflammation is necessary to eradicate the damaging agents, shifting to chronic inflammation can be potentially detrimental. Essential fatty-acids-derived immunoresolvents, namely, lipoxins, resolvins, protectins, and maresins, are anti-inflammatory compounds that are believed to have protective and beneficial effects in inflammatory disorders, including asthma and allergies. Accordingly, impaired biosynthesis and defective production of immunoresolvents could be involved in the development of chronic inflammation. In this review, recent evidence on the anti-inflam]matory effects of immunoresolvents, their enzymatic biosynthesis routes, as well as their receptors are discussed.
Collapse
Affiliation(s)
- Ramin Lotfi
- Student Research Committee, Department of immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamidreza Mortazavi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|