1
|
Jang I, Menon S, Indra I, Basith R, Beningo KA. Calpain Small Subunit Mediated Secretion of Galectin-3 Regulates Traction Stress. Biomedicines 2024; 12:1247. [PMID: 38927454 PMCID: PMC11200796 DOI: 10.3390/biomedicines12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The complex regulation of traction forces (TF) produced during cellular migration remains poorly understood. We have previously found that calpain 4 (Capn4), the small non-catalytic subunit of the calpain 1 and 2 proteases, regulates the production of TF independent of the proteolytic activity of the larger subunits. Capn4 was later found to facilitate tyrosine phosphorylation and secretion of the lectin-binding protein galectin-3 (Gal3). In this study, recombinant Gal3 (rGal3) was added to the media-enhanced TF generated by capn4-/- mouse embryonic fibroblasts (MEFs). Extracellular Gal3 also rescued defects in the distribution, morphology, and adhesive strength of focal adhesions present in capn4-/- MEF cells. Surprisingly, extracellular Gal3 does not influence mechanosensing. c-Abl kinase was found to affect Gal3 secretion and the production of TF through phosphorylation of Y107 on Gal3. Our study also suggests that Gal3-mediated regulation of TF occurs through signaling pathways triggered by β1 integrin but not by focal adhesion kinase (FAK) Y397 autophosphorylation. Our findings provide insights into the signaling mechanism by which Capn4 and secreted Gal3 regulate cell migration through the modulation of TF distinctly independent from a mechanosensing mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Karen A. Beningo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA; (I.J.)
| |
Collapse
|
2
|
Mukhamadiarov RI, Ciarchi M, Olmeda F, Rulands S. Clonal dynamics of surface-driven growing tissues. Phys Rev E 2024; 109:064407. [PMID: 39021023 DOI: 10.1103/physreve.109.064407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
The self-organization of cells into complex tissues relies on a tight coordination of cell behavior. Identifying the cellular processes driving tissue growth is key to understanding the emergence of tissue forms and devising targeted therapies for aberrant growth, such as in cancer. Inferring the mode of tissue growth, whether it is driven by cells on the surface or by cells in the bulk, is possible in cell culture experiments but difficult in most tissues in living organisms (in vivo). Genetic tracing experiments, where a subset of cells is labeled with inheritable markers, have become important experimental tools to study cell fate in vivo. Here we show that the mode of tissue growth is reflected in the size distribution of the progeny of marked cells. To this end, we derive the clone size distributions using analytical calculations in the limit of negligible cell migration and cell death, and we test our predictions with an agent-based stochastic sampling technique. We show that for surface-driven growth the clone size distribution takes a characteristic power-law form with an exponent determined by fluctuations of the tissue surface. Our results propose a possible way of determining the mode of tissue growth from genetic tracing experiments.
Collapse
|
3
|
Rothschild LJ, Averesch NJH, Strychalski EA, Moser F, Glass JI, Cruz Perez R, Yekinni IO, Rothschild-Mancinelli B, Roberts Kingman GA, Wu F, Waeterschoot J, Ioannou IA, Jewett MC, Liu AP, Noireaux V, Sorenson C, Adamala KP. Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities. ACS Synth Biol 2024; 13:974-997. [PMID: 38530077 PMCID: PMC11037263 DOI: 10.1021/acssynbio.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 03/27/2024]
Abstract
The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.
Collapse
Affiliation(s)
- Lynn J. Rothschild
- Space Science
& Astrobiology Division, NASA Ames Research
Center, Moffett
Field, California 94035-1000, United States
- Department
of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nils J. H. Averesch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Felix Moser
- Synlife, One Kendall Square, Cambridge, Massachusetts 02139-1661, United States
| | - John I. Glass
- J.
Craig
Venter Institute, La Jolla, California 92037, United States
| | - Rolando Cruz Perez
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Blue
Marble
Space Institute of Science at NASA Ames Research Center, Moffett Field, California 94035-1000, United
States
| | - Ibrahim O. Yekinni
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brooke Rothschild-Mancinelli
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0150, United States
| | | | - Feilun Wu
- J. Craig
Venter Institute, Rockville, Maryland 20850, United States
| | - Jorik Waeterschoot
- Mechatronics,
Biostatistics and Sensors (MeBioS), KU Leuven, 3000 Leuven Belgium
| | - Ion A. Ioannou
- Department
of Chemistry, MSRH, Imperial College London, London W12 0BZ, U.K.
| | - Michael C. Jewett
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Allen P. Liu
- Mechanical
Engineering & Biomedical Engineering, Cellular and Molecular Biology,
Biophysics, Applied Physics, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vincent Noireaux
- Physics
and Nanotechnology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carlise Sorenson
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katarzyna P. Adamala
- Department
of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Kołodziej T, Mielnicka A, Dziob D, Chojnacka AK, Rawski M, Mazurkiewicz J, Rajfur Z. Morphomigrational description as a new approach connecting cell's migration with its morphology. Sci Rep 2023; 13:11006. [PMID: 37419901 PMCID: PMC10328925 DOI: 10.1038/s41598-023-35827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
The examination of morphology and migration of cells plays substantial role in understanding the cellular behaviour, being described by plethora of quantitative parameters and models. These descriptions, however, treat cell migration and morphology as independent properties of temporal cell state, while not taking into account their strong interdependence in adherent cells. Here we present the new and simple mathematical parameter called signed morphomigrational angle (sMM angle) that links cell geometry with translocation of cell centroid, considering them as one morphomigrational behaviour. The sMM angle combined with pre-existing quantitative parameters enabled us to build a new tool called morphomigrational description, used to assign the numerical values to several cellular behaviours. Thus, the cellular activities that until now were characterized using verbal description or by complex mathematical models, are described here by a set of numbers. Our tool can be further used in automatic analysis of cell populations as well as in studies focused on cellular response to environmental directional signals.
Collapse
Affiliation(s)
- Tomasz Kołodziej
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland.
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
| | - Aleksandra Mielnicka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, ul. Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Daniel Dziob
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland
| | - Anna Katarzyna Chojnacka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Jan Mazurkiewicz
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland.
| |
Collapse
|
5
|
Legátová A, Pelantová M, Rösel D, Brábek J, Škarková A. The emerging role of microtubules in invasion plasticity. Front Oncol 2023; 13:1118171. [PMID: 36860323 PMCID: PMC9969133 DOI: 10.3389/fonc.2023.1118171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The ability of cells to switch between different invasive modes during metastasis, also known as invasion plasticity, is an important characteristic of tumor cells that makes them able to resist treatment targeted to a particular invasion mode. Due to the rapid changes in cell morphology during the transition between mesenchymal and amoeboid invasion, it is evident that this process requires remodeling of the cytoskeleton. Although the role of the actin cytoskeleton in cell invasion and plasticity is already quite well described, the contribution of microtubules is not yet fully clarified. It is not easy to infer whether destabilization of microtubules leads to higher invasiveness or the opposite since the complex microtubular network acts differently in diverse invasive modes. While mesenchymal migration typically requires microtubules at the leading edge of migrating cells to stabilize protrusions and form adhesive structures, amoeboid invasion is possible even in the absence of long, stable microtubules, albeit there are also cases of amoeboid cells where microtubules contribute to effective migration. Moreover, complex crosstalk of microtubules with other cytoskeletal networks participates in invasion regulation. Altogether, microtubules play an important role in tumor cell plasticity and can be therefore targeted to affect not only cell proliferation but also invasive properties of migrating cells.
Collapse
Affiliation(s)
- Anna Legátová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Markéta Pelantová
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Jan Brábek
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia
| | - Aneta Škarková
- Department of Cell Biology, Charles University, Prague, Czechia,Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czechia,*Correspondence: Aneta Škarková,
| |
Collapse
|
6
|
Rickel AP, Sanyour HJ, Kinser C, Khatiwada N, Vogel H, Hong Z. Exploring the difference in the mechanics of vascular smooth muscle cells from wild-type and apolipoprotein-E knockout mice. Am J Physiol Cell Physiol 2022; 323:C1393-C1401. [PMID: 36121132 PMCID: PMC9602701 DOI: 10.1152/ajpcell.00046.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
Atherosclerosis-related cardiovascular diseases are a leading cause of mortality worldwide. Vascular smooth muscle cells (VSMCs) comprise the medial layer of the arterial wall and undergo phenotypic switching during atherosclerosis to a synthetic phenotype capable of proliferation and migration. The surrounding environment undergoes alterations in extracellular matrix (ECM) stiffness and composition and an increase in cholesterol content. Using an atherosclerotic murine model, we analyzed how the mechanics of VSMCs isolated from Western diet-fed apolipoprotein-E knockout (ApoE-/-) and wild-type (WT) mice were altered during atherosclerosis. Increased stiffness of ApoE-/- VSMCs correlated with a greater degree of stress fiber alignment, as evidenced by atomic force microscopy (AFM)-generated force maps and stress fiber topography images. On type-1 collagen (COL1)-coated polyacrylamide (PA) gels (referred to as substrate) of varying stiffness, ApoE-/- VSMCs had lower adhesion forces to COL1 and N-cadherin (N-Cad) compared with WT cells. ApoE-/- VSMC stiffness was significantly greater than that of WT cells. Cell stiffness increased with increasing substrate stiffness for both ApoE-/- and WT VSMCs. In addition, ApoE-/- VSMCs showed an enhanced migration capability on COL1-coated substrates and a general decreasing trend in migration capacity with increasing substrate stiffness, correlating with lowered adhesion forces as compared with WT VSMCs. Altogether, these results demonstrate the potential contribution of the alteration in VSMC mechanics in the development of atherosclerosis.
Collapse
Affiliation(s)
- Alex P Rickel
- Biomedical Engineering Department, University of South Dakota, Sioux Falls, South Dakota
| | - Hanna J Sanyour
- Biomedical Engineering Department, University of South Dakota, Sioux Falls, South Dakota
| | - Courtney Kinser
- Biomedical Engineering Department, University of South Dakota, Sioux Falls, South Dakota
| | - Nisha Khatiwada
- Biomedical Engineering Department, University of South Dakota, Sioux Falls, South Dakota
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas
| | - Hayley Vogel
- Biomedical Engineering Department, University of South Dakota, Sioux Falls, South Dakota
| | - Zhongkui Hong
- Biomedical Engineering Department, University of South Dakota, Sioux Falls, South Dakota
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas
| |
Collapse
|
7
|
TNS1: Emerging Insights into Its Domain Function, Biological Roles, and Tumors. BIOLOGY 2022; 11:biology11111571. [PMID: 36358270 PMCID: PMC9687257 DOI: 10.3390/biology11111571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 01/25/2023]
Abstract
Tensins are a family of cellular-adhesion constituents that have been extensively studied. They have instrumental roles in the pathogenesis of numerous diseases. The mammalian tensin family comprises four members: tensin1 (TNS1), tensin2, tensin3, and tensin4. Among them, TNS1 has recently received attention from researchers because of its structural properties. TNS1 engages in various biological processes, such as cell adhesion, polarization, migration, invasion, proliferation, apoptosis, and mechano-transduction, by interacting with various partner proteins. Moreover, the abnormal expression of TNS1 in vivo is associated with the development of various diseases, especially tumors. Interestingly, the role of TNS1 in different tumors is still controversial. Here, we systematically summarize three aspects of TNS1: the gene structure, the biological processes underlying its action, and the dual regulatory role of TNS1 in different tumors through different mechanisms, of which we provide the first overview.
Collapse
|
8
|
Miranda AL, Kourdova LT, Racca AC, Cruz Del Puerto M, Rojas ML, Marques ALX, Silva ECO, Fonseca EJS, Gazzoni Y, Gruppi A, Borbely AU, Genti‐Raimondi S, Panzetta‐Dutari GM. Krüppel‐like factor 6 participates in extravillous trophoblast cell differentiation and its expression is reduced in abnormally invasive placenta. FEBS Lett 2022; 596:1700-1719. [DOI: 10.1002/1873-3468.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea L. Miranda
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Lucille T. Kourdova
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Ana C. Racca
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Maria L. Rojas
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aldilane L. X. Marques
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Elaine C. O. Silva
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Eduardo J. S. Fonseca
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Yamila Gazzoni
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Adriana Gruppi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Alexandre U. Borbely
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Susana Genti‐Raimondi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Graciela M. Panzetta‐Dutari
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
9
|
Migrasomes: From Biogenesis, Release, Uptake, Rupture to Homeostasis and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4525778. [PMID: 35464764 PMCID: PMC9023195 DOI: 10.1155/2022/4525778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/27/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as “migracytosis”. After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.
Collapse
|
10
|
Jiang CF, Sun YM. Label-free monitoring of spatiotemporal changes in the stem cell cytoskeletons in time-lapse phase-contrast microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2323-2333. [PMID: 35519244 PMCID: PMC9045902 DOI: 10.1364/boe.452822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Investigation of the dynamic structural changes in the actin cytoskeleton during cell migration provides crucial information about the physiological conditions of a stem cell during in-vitro culture. Here we proposed a quantitative analytical model associated with texture extraction with cell tracking techniques for in situ monitoring of the cytoskeletal density change of stem cells in phase-contrast microscopy without fluorescence staining. The reliability of the model in quantifying the texture density with different orientation was first validated using a series of simulated textural images. The capability of the method to reflect the spatiotemporal regulation of the cytoskeletal structure of a living stem cell was further proved by applying it to a set of 72 h phase-contrast microscopic video of the growth dynamics of mesenchymal stem cells in vitro culture.
Collapse
Affiliation(s)
- Ching-Fen Jiang
- Graduate Degree Program of Smart Healthcare & Bioinformatics, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Man Sun
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Arora S, Khan S, Zaki A, Tabassum G, Mohsin M, Bhutto HN, Ahmad T, Fatma T, Syed MA. Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Semin Cancer Biol 2022; 86:720-736. [DOI: 10.1016/j.semcancer.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
12
|
Choi D, Gonzalez Z, Ho SY, Bermudez A, Lin NY. Cell-cell adhesion impacts epithelia response to substrate stiffness: Morphology and gene expression. Biophys J 2022; 121:336-346. [PMID: 34864047 PMCID: PMC8790207 DOI: 10.1016/j.bpj.2021.11.2887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/04/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Monolayer epithelial cells interact constantly with the substrate they reside on and their surrounding neighbors. As such, the properties of epithelial cells are profoundly governed by the mechanical and molecular cues that arise from both the substrate and contiguous cell neighbors. Although both cell-substrate and cell-cell interactions have been studied individually, these results are difficult to apply to native confluent epithelia, in which both jointly regulate the cell phenotype. Specifically, it remains poorly understood about the intertwined contributions from intercellular adhesion and substrate stiffness on cell morphology and gene expression, two essential microenvironment properties. Here, by adjusting the substrate modulus and altering the intercellular adhesion within confluent kidney epithelia, we found that cell-substrate and cell-cell interactions can mask each other's influence. For example, we found that epithelial cells exhibit an elongated morphological phenotype only when the substrate modulus and intercellular adhesions are both reduced, whereas their motility can be upregulated by either reduction. These results illustrate that combinatorial changes of the physical microenvironment are required to alter cell morphology and gene expression.
Collapse
Affiliation(s)
- David Choi
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Corresponding author
| | - Zachary Gonzalez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Physics and Astronomy, University of California, Los Angeles, California
| | - Sum Yat Ho
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Chemistry and Biochemistry, University of California, Los Angeles, California
| | - Alexandra Bermudez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Bioengineering, University of California, Los Angeles, California
| | - Neil Y.C. Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California,Department of Bioengineering, University of California, Los Angeles, California,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles
| |
Collapse
|
13
|
Zhang L, Chen L, Li C, Shi H, Wang Q, Yang W, Fang L, Leng Y, Sun W, Li M, Xue Y, Gao X, Wang H. Oroxylin a Attenuates Limb Ischemia by Promoting Angiogenesis via Modulation of Endothelial Cell Migration. Front Pharmacol 2021; 12:705617. [PMID: 34413777 PMCID: PMC8370028 DOI: 10.3389/fphar.2021.705617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Oroxylin A (OA) has been shown to simultaneously increase coronary flow and provide a strong anti-inflammatory effect. In this study, we described the angiogenic properties of OA. OA treatment accelerated perfusion recovery, reduced tissue injury, and promoted angiogenesis after hindlimb ischemia (HLI). In addition, OA regulated the secretion of multiple cytokines, including vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANG-2), fibroblast growth factor-basic (FGF-2), and platelet derived growth factor BB (PDGF-BB). Specifically, those multiple cytokines were involved in cell migration, cell population proliferation, and angiogenesis. These effects were observed at 3, 7, and 14 days after HLI. In skeletal muscle cells, OA promoted the release of VEGFA and ANG-2. After OA treatment, the conditioned medium derived from skeletal muscle cells was found to significantly induce endothelial cell (EC) proliferation. OA also induced EC migration by activating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil kinase 2 (ROCK-II) signaling pathway and the T-box20 (TBX20)/prokineticin 2 (PROK2) signaling pathway. In addition, OA was able to downregulate the number of macrophages and neutrophils, along with the secretion of interleukin-1β, at 3 days after HLI. These results expanded current knowledge about the beneficial effects of OA in angiogenesis and blood flow recovery. This research could open new directions for the development of novel therapeutic intervention for patients with peripheral artery disease (PAD).
Collapse
Affiliation(s)
- Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China.,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Caña-Bozada V, Chapa-López M, Díaz-Martín RD, García-Gasca A, Huerta-Ocampo JÁ, de Anda-Jáuregui G, Morales-Serna FN. In silico identification of excretory/secretory proteins and drug targets in monogenean parasites. INFECTION GENETICS AND EVOLUTION 2021; 93:104931. [PMID: 34023509 DOI: 10.1016/j.meegid.2021.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The Excretory/Secretory (ES) proteins of parasites are involved in invasion and colonization of their hosts. In addition, since ES proteins circulate in the extracellular space, they can be more accessible to drugs than other proteins, which makes ES proteins optimal targets for the development of new and better pharmacological strategies. Monogeneans are a group of parasitic Platyhelminthes that includes some pathogenic species problematic for finfish aquaculture. In the present study, 8297 putative ES proteins from four monogenean species which genomic resources are publicly available were identified and functionally annotated by bioinformatic tools. Additionally, for comparative purposes, ES proteins in other parasitic and free-living platyhelminths were identified. Based on data from the monogenean Gyrodactylus salaris, 15 ES proteins are considered potential drug targets. One of them showed homology to 10 cathepsins with known 3D structure. A docking molecular analysis uncovered that the anthelmintic emodepside shows good affinity to these cathepsins suggesting that emodepside can be experimentally tested as a monogenean's cathepsin inhibitor.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Martha Chapa-López
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | | | - José Ángel Huerta-Ocampo
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - F Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico.
| |
Collapse
|
15
|
Luo J, Zhang Y, Zhou Q, Betancor MB, Tocher DR, Lu J, Yuan Y, Zhu T, Jiao L, Wang X, Zhao M, Hu X, Jin M. Dietary soybean oil aggravates the adverse effects of low salinity on intestinal health in juvenile mud crab Scylla paramamosain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112004. [PMID: 33581488 DOI: 10.1016/j.ecoenv.2021.112004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Salinity is one of the important factors affecting the physiological state of crustaceans in marine environments. Lipid plays major roles in energy supply and is main sources of essential fatty acids for membrane integrity, which is critical in adaptations to changes in salinity. Here we evaluated the effects of salinity (medium, 23 ppt and low, 4 ppt) and dietary lipid source (fish oil, FO and soybean oil, SO) on intestinal health of the marine crustacean mud crab Scylla paramamosain. The results indicated that low salinity and dietary SO (LSO group) significantly affected intestinal histomorphology, with a significant decrease of intestinal fold height and width as well as down-regulation of intestinal mRNA levels of tight junction genes compared to crab reared at medium salinity and fed FO diets (MFO group). Crabs reared at low salinity and fed SO showed an increased inflammatory response in intestine, which stimulated a physiological detoxification response together with apoptosis compared to crab in the MFO group. Low salinity and SO diets also could be responsible for multiply the pathogenic bacteria of Photobacterium and inhibit the beneficial bacteria of Firmicutes and Rhodobacteraceae in intestine, and act on a crucial impact on the development of intestinal microbial barrier disorders. The results of microbial function predictive analysis also support these inferences. The findings of the present study demonstrated that soybean oil as the main dietary lipid source could exacerbate the adverse effects of low salinity on intestinal health of mud crab, and provided evidence suggesting that dietary lipid source and fatty acid composition may play vital roles in intestinal health and the process of adaptation to environmental salinity in marine crustaceans.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yingying Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mingming Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaoying Hu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
16
|
Wuputra K, Tsai MH, Kato K, Yang YH, Pan JB, Ku CC, Noguchi M, Kishikawa S, Nakade K, Chen HL, Liu CJ, Nakamura Y, Kuo KK, Lin YC, Chan TF, Wu DC, Hou MF, Huang SK, Lin CS, Yokoyama KK. Dimethyl sulfoxide stimulates the AhR-Jdp2 axis to control ROS accumulation in mouse embryonic fibroblasts. Cell Biol Toxicol 2021; 38:203-222. [PMID: 33723743 PMCID: PMC8986748 DOI: 10.1007/s10565-021-09592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 11/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-binding protein that responds to environmental aromatic hydrocarbons and stimulates the transcription of downstream phase I enzyme–related genes by binding the cis element of dioxin-responsive elements (DREs)/xenobiotic-responsive elements. Dimethyl sulfoxide (DMSO) is a well-known organic solvent that is often used to dissolve phase I reagents in toxicology and oxidative stress research experiments. In the current study, we discovered that 0.1% DMSO significantly induced the activation of the AhR promoter via DREs and produced reactive oxygen species, which induced apoptosis in mouse embryonic fibroblasts (MEFs). Moreover, Jun dimerization protein 2 (Jdp2) was found to be required for activation of the AhR promoter in response to DMSO. Coimmunoprecipitation and chromatin immunoprecipitation studies demonstrated that the phase I–dependent transcription factors, AhR and the AhR nuclear translocator, and phase II–dependent transcription factors such as nuclear factor (erythroid-derived 2)–like 2 (Nrf2) integrated into DRE sites together with Jdp2 to form an activation complex to increase AhR promoter activity in response to DMSO in MEFs. Our findings provide evidence for the functional role of Jdp2 in controlling the AhR gene via Nrf2 and provide insights into how Jdp2 contributes to the regulation of ROS production and the cell spreading and apoptosis produced by the ligand DMSO in MEFs.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Ho Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ya-Han Yang
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Koji Nakade
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hua-Ling Chen
- National Institute of Environmental Health, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kung-Kai Kuo
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health, National Health Research Institutes, Zhunan, Taiwan.
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. .,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Zuniga K, Gadde M, Scheftel J, Senecal K, Cressman E, Van Dyke M, Rylander MN. Collagen/kerateine multi-protein hydrogels as a thermally stable extracellular matrix for 3D in vitro models. Int J Hyperthermia 2021; 38:830-845. [PMID: 34058945 PMCID: PMC10523628 DOI: 10.1080/02656736.2021.1930202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: To determine whether the addition of kerateine (reduced keratin) in rat tail collagen type I hydrogels increases thermal stability and changes material properties and supports cell growth for use in cellular hyperthermia studies for tumor treatment.Methods: Collagen type I extracted from rat tail tendon was combined with kerateine extracted from human hair fibers. Thermal, mechanical, and biocompatibility properties and cell behavior was assessed and compared to 100% collagen type I hydrogels to demonstrate their utility as a tissue model for 3D in vitro testing.Results: A combination (i.e., containing both collagen 'C/KNT') hydrogel was more thermally stable than pure collagen hydrogels and resisted thermal degradation when incubated at a hyperthermic temperature of 47°C for heating durations up to 60 min with a higher melting temperature measured by DSC. An increase in the storage modulus was only observed with an increased collagen concentration rather than an increased KTN concentration; however, a change in ECM structure was observed with greater fiber alignment and width with an increase in KTN concentration. The C/KTN hydrogels, specifically 50/50 C/KTN hydrogels, also supported the growth and of fibroblasts and MDA-MB-231 breast cancer cells similar to those seeded in 100% collagen hydrogels.Conclusion: This multi-protein C/KTN hydrogel shows promise for future studies involving thermal stress studies without compromising the 3D ECM environment or cell growth.
Collapse
Affiliation(s)
- Kameel Zuniga
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Manasa Gadde
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jacob Scheftel
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kris Senecal
- Natick Soldier Center, U.S. Army Soldier and Biological Chemical Command, Natick, MA, USA
| | - Erik Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Van Dyke
- College of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Migration of the 3T3 Cell with a Lamellipodium on Various Stiffness Substrates—Tensegrity Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Changes in mechanical stimuli and the physiological environment are sensed by the cell. Thesechanges influence the cell’s motility patterns. The cell’s directional migration is dependent on the substrate stiffness. To describe such behavior of a cell, a tensegrity model was used. Cells with an extended lamellipodium were modeled. The internal elastic strain energy of a cell attached to the substrates with different stiffnesses was evaluated. The obtained results show that on the stiffer substrate, the elastic strain energy of the cell adherent to this substrate decreases. Therefore, the substrate stiffness is one of the parameters that govern the cell’s directional movement.
Collapse
|
19
|
Zonderland J, Rezzola S, Wieringa P, Moroni L. Fiber diameter, porosity and functional group gradients in electrospun scaffolds. Biomed Mater 2020; 15:045020. [DOI: 10.1088/1748-605x/ab7b3c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 2020; 19:2061-2079. [PMID: 32356071 DOI: 10.1007/s10237-020-01324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023]
Abstract
A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.
Collapse
|
21
|
Abstract
Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| |
Collapse
|
22
|
Tatkiewicz WI, Seras-Franzoso J, García-Fruitós E, Vazquez E, Kyvik AR, Ventosa N, Guasch J, Villaverde A, Veciana J, Ratera I. High-Throughput Cell Motility Studies on Surface-Bound Protein Nanoparticles with Diverse Structural and Compositional Characteristics. ACS Biomater Sci Eng 2019; 5:5470-5480. [PMID: 33464066 DOI: 10.1021/acsbiomaterials.9b01085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eighty areas with different structural and compositional characteristics made of bacterial inclusion bodies formed by the fibroblast growth factor (FGF-IBs) were simultaneously patterned on a glass surface with an evaporation-assisted method that relies on the coffee-drop effect. The resulting surface patterned with these protein nanoparticles enabled to perform a high-throughput study of the motility of NIH-3T3 fibroblasts under different conditions including the gradient steepness, particle concentrations, and area widths of patterned FGF-IBs, using for the data analysis a methodology that includes "heat maps". From this analysis, we observed that gradients of concentrations of surface-bound FGF-IBs stimulate the total cell movement but do not affect the total net distances traveled by cells. Moreover, cells tend to move toward an optimal intermediate FGF-IB concentration (i.e., cells seeded on areas with high IB concentrations moved toward areas with lower concentrations and vice versa, reaching the optimal concentration). Additionally, a higher motility was obtained when cells were deposited on narrow and highly concentrated areas with IBs. FGF-IBs can be therefore used to enhance and guide cell migration, confirming that the decoration of surfaces with such IB-like protein nanoparticles is a promising platform for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Elena García-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Adriana R Kyvik
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Nora Ventosa
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain.,Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| |
Collapse
|
23
|
Gering C, Koivisto JT, Parraga J, Leppiniemi J, Vuornos K, Hytönen VP, Miettinen S, Kellomäki M. Design of modular gellan gum hydrogel functionalized with avidin and biotinylated adhesive ligands for cell culture applications. PLoS One 2019; 14:e0221931. [PMID: 31469884 PMCID: PMC6716642 DOI: 10.1371/journal.pone.0221931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
This article proposes the coupling of the recombinant protein avidin to the polysaccharide gellan gum to create a modular hydrogel substrate for 3D cell culture and tissue engineering. Avidin is capable of binding biotin, and thus biotinylated compounds can be tethered to the polymer network to improve cell response. The avidin is successfully conjugated to gellan gum and remains functional as shown with fluorescence titration and electrophoresis (SDS-PAGE). Self-standing hydrogels were formed using bioamines and calcium chloride, yielding long-term stability and adequate stiffness for 3D cell culture, as confirmed with compression testing. Human fibroblasts were successfully cultured within the hydrogel treated with biotinylated RGD or biotinylated fibronectin. Moreover, human bone marrow stromal cells were cultured with hydrogel treated with biotinylated RGD over 3 weeks. We demonstrate a modular and inexpensive hydrogel scaffold for cell encapsulation that can be equipped with any desired biotinylated cell ligand to accommodate a wide range of cell types.
Collapse
Affiliation(s)
- Christine Gering
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Janne T. Koivisto
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Jenny Parraga
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Jenni Leppiniemi
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| | - Kaisa Vuornos
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Minna Kellomäki
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland
| |
Collapse
|
24
|
Stiffness of MDCK II Cells Depends on Confluency and Cell Size. Biophys J 2019; 116:2204-2211. [PMID: 31126583 DOI: 10.1016/j.bpj.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/25/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
Abstract
Mechanical phenotyping of adherent cells has become a serious tool in cell biology to understand how cells respond to their environment and eventually to identify disease patterns such as the malignancy of cancer cells. In the steady state, homeostasis is of pivotal importance, and cells strive to maintain their internal stresses even in challenging environments and in response to external chemical and mechanical stimuli. However, a major problem exists in determining mechanical properties because many techniques, such as atomic force microscopy, that assess these properties of adherent cells locally can only address a limited number of cells and provide elastic moduli that vary substantially from cell to cell. The origin of this spread in stiffness values is largely unknown and might limit the significance of measurements. Possible reasons for the disparity are variations in cell shape and size, as well as biological reasons such as the cell cycle or polarization state of the cell. Here, we show that stiffness of adherent epithelial cells rises with increasing projected apical cell area in a nonlinear fashion. This size stiffening not only occurs as a consequence of varying cell-seeding densities, it can also be observed within a small area of a particular cell culture. Experiments with single adherent cells attached to defined areas via microcontact printing show that size stiffening is limited to cells of a confluent monolayer. This leads to the conclusion that cells possibly regulate their size distribution through cortical stress, which is enhanced in larger cells and reduced in smaller cells.
Collapse
|
25
|
Serrano R, Aung A, Yeh YT, Varghese S, Lasheras JC, Del Álamo JC. Three-Dimensional Monolayer Stress Microscopy. Biophys J 2019; 117:111-128. [PMID: 31103228 DOI: 10.1016/j.bpj.2019.03.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023] Open
Abstract
Many biological processes involve the collective generation and transmission of mechanical stresses across cell monolayers. In these processes, the monolayer undergoes lateral deformation and bending because of the tangential and normal components of the cell-generated stresses. Monolayer stress microscopy (MSM) methods have been developed to measure the intracellular stress distribution in cell monolayers. However, current methods assume plane monolayer geometry and neglect the contribution of bending to the intracellular stresses. This work introduces a three-dimensional (3D) MSM method that calculates monolayer stress from measurements of the 3D traction stresses exerted by the cells on a flexible substrate. The calculation is carried out by imposing equilibrium of forces and moments in the monolayer, subject to external loads given by the 3D traction stresses. The equilibrium equations are solved numerically, and the algorithm is validated for synthetic loads with known analytical solutions. We present 3D-MSM measurements of monolayer stress in micropatterned islands of endothelial cells of different sizes and shapes. These data indicate that intracellular stresses caused by lateral deformation emerge collectively over long distances; they increase with the distance from the island edge until they reach a constant value that is independent of island size. On the other hand, bending-induced intracellular stresses are more concentrated spatially and remain confined to within one to two cell lengths of bending sites. The magnitude of these bending stresses is highest at the edges of the cell islands, where they can exceed the intracellular stresses caused by lateral deformations. Our data from nonpatterned monolayers suggests that biomechanical perturbations far away from monolayer edges also cause significant localized alterations in bending tension. The localized effect of bending-induced stresses may be important in processes like cellular extravasation, which are accompanied by significant normal deflections of a cell monolayer (i.e., the endothelium) and require localized changes in monolayer permeability.
Collapse
Affiliation(s)
- Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California.
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California; Department of Bioengineering, San Diego, San Diego, California; Institute of Engineering in Medicine, University of California, San Diego, San Diego, California
| | - Shyni Varghese
- Department of Biomedical Engineering, Durham, North Carolina; Department of Mechanical Engineering and Material Sciences, Durham, North Carolina; Department of Orthopaedic Surgery, Duke University, Durham, North Carolina
| | - Juan C Lasheras
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California; Department of Bioengineering, San Diego, San Diego, California; Institute of Engineering in Medicine, University of California, San Diego, San Diego, California
| | - Juan C Del Álamo
- Department of Mechanical and Aerospace Engineering, San Diego, San Diego, California.
| |
Collapse
|
26
|
Tormanen K, Ton C, Waring BM, Wang K, Sütterlin C. Function of Golgi-centrosome proximity in RPE-1 cells. PLoS One 2019; 14:e0215215. [PMID: 30986258 PMCID: PMC6464164 DOI: 10.1371/journal.pone.0215215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/28/2019] [Indexed: 11/23/2022] Open
Abstract
The close physical proximity between the Golgi and the centrosome is a unique feature of mammalian cells that has baffled scientists for years. Several knockdown and overexpression studies have linked the spatial relationship between these two organelles to the control of directional protein transport, directional migration, ciliogenesis and mitotic entry. However, most of these conditions have not only separated these two organelles, but also caused extensive fragmentation of the Golgi, making it difficult to dissect the specific contribution of Golgi-centrosome proximity. In this study, we present our results with stable retinal pigment epithelial (RPE-1) cell lines in which GM130 was knocked out using a CRISPR/Cas9 approach. While Golgi and centrosome organization appeared mostly intact in cells lacking GM130, there was a clear separation of these organelles from each other. We show that GM130 may control Golgi-centrosome proximity by anchoring AKAP450 to the Golgi. We also provide evidence that the physical proximity between these two organelles is dispensable for protein transport, cell migration, and ciliogenesis. These results suggest that Golgi-centrosome proximity per se is not necessary for the normal function of RPE-1 cells.
Collapse
Affiliation(s)
- Kati Tormanen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Celine Ton
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Barbara M. Waring
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Kevin Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Pieuchot L, Marteau J, Guignandon A, Dos Santos T, Brigaud I, Chauvy PF, Cloatre T, Ponche A, Petithory T, Rougerie P, Vassaux M, Milan JL, Tusamda Wakhloo N, Spangenberg A, Bigerelle M, Anselme K. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nat Commun 2018; 9:3995. [PMID: 30266986 PMCID: PMC6162274 DOI: 10.1038/s41467-018-06494-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 11/27/2022] Open
Abstract
Cells have evolved multiple mechanisms to apprehend and adapt finely to their environment. Here we report a new cellular ability, which we term “curvotaxis” that enables the cells to respond to cell-scale curvature variations, a ubiquitous trait of cellular biotopes. We develop ultra-smooth sinusoidal surfaces presenting modulations of curvature in all directions, and monitor cell behavior on these topographic landscapes. We show that adherent cells avoid convex regions during their migration and position themselves in concave valleys. Live imaging combined with functional analysis shows that curvotaxis relies on a dynamic interplay between the nucleus and the cytoskeleton—the nucleus acting as a mechanical sensor that leads the migrating cell toward concave curvatures. Further analyses show that substratum curvature affects focal adhesions organization and dynamics, nuclear shape, and gene expression. Altogether, this work identifies curvotaxis as a new cellular guiding mechanism and promotes cell-scale curvature as an essential physical cue. The effect that microscale surface curvature has on cell migration has not been evaluated. Here the authors fabricate sinusoidal 3D surfaces and show that the cell nucleus and cytoskeleton cooperate to guide cells to concave valleys in a process they coin curvotaxis.
Collapse
Affiliation(s)
- Laurent Pieuchot
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France. .,Université de Strasbourg, Strasbourg, F-67081, France.
| | - Julie Marteau
- Université de Valenciennes et du Hainaut Cambrésis, LAMIH, UMR-CNRS 8201, Le Mont Houy, Valenciennes, F-59313, France
| | - Alain Guignandon
- Univ Lyon, UJM-Saint-Etienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Etienne, France
| | - Thomas Dos Santos
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Isabelle Brigaud
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | | | - Thomas Cloatre
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Arnaud Ponche
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Tatiana Petithory
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Pablo Rougerie
- Laboratório de Biomineralização, Centro de Ciênça da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Maxime Vassaux
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, F-13288, France
| | - Jean-Louis Milan
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, F-13288, France
| | - Nayana Tusamda Wakhloo
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Arnaud Spangenberg
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| | - Maxence Bigerelle
- Université de Valenciennes et du Hainaut Cambrésis, LAMIH, UMR-CNRS 8201, Le Mont Houy, Valenciennes, F-59313, France
| | - Karine Anselme
- Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, Strasbourg, F-67081, France
| |
Collapse
|
28
|
Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 2018; 10:1323-1335. [PMID: 30027463 DOI: 10.1007/s12551-018-0445-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.
Collapse
Affiliation(s)
- Joelle V F Coumans
- School of Rural Medicine, University of New England, Armidale, Australia
| | - Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
29
|
Wang L, Xiong L, Wu Z, Miao X, Liu Z, Li D, Zou Q, Yang Z. Expression of UGP2 and CFL1 expression levels in benign and malignant pancreatic lesions and their clinicopathological significance. World J Surg Oncol 2018; 16:11. [PMID: 29347944 PMCID: PMC5774110 DOI: 10.1186/s12957-018-1316-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study investigated UGP2 (uridine diphosphate-glucose pyrophosphorylase-2) and CFL1 (cofilin-1) expression in pancreatic ductal carcinoma (PDC), paracancerous tissue (PT), benign lesions (BL), and normal tissue (NT) and their clinicopathological significance. METHODS Surgical specimens, which were collected from 106 cases of pancreatic ductal carcinoma, 35 cases of paracancerous tissues, 55 cases of benign lesions and 13 cases of normal pancreatic tissues, were fixed with 4% formaldehyde to prepare conventional paraffin-embedded sections. EnVision immunohistochemical was used to stain for UGP2 and CFL1. Kaplan-Meier survival analysis was performed to assess the correlation of expression pattern with survival. RESULTS We found that positive UGP2 and CFL1 expression in PDC were significantly higher than those in PT, BL, and NT. In PT and BL with positive UGP2 and CFL1 expression, mild to severe atypical hyperplasia or intraepithelial neoplasia of grades II-III was observed in ductal epithelium. Positive UGP2 and CFL1 expression in cases with high differentiation, no lymph node metastasis, no surrounding invasion, and TNM (tumor-node-metastasis) staging I or/and II were significantly lower than those in cases with poor differentiation, lymph node metastasis, surrounding invasion, and TNM stage III and/or IV. Positive UGP2 expression in male patients was significantly lower than that in female patients. UGP2 and CFL1 expression in PDC were positively correlated. Kaplan-Meier survival analysis showed the degree of differentiation, tumor maximal diameter, TNM stage, lymph node metastasis, and surrounding invasion, and UGP2 and CFL1 expression were closely related to the average survival time of patients with PDC. The survival time of patients with positive UGP2 and CFL1 expression was significantly shorter than that of patients with negative expression. Cox multivariate analysis showed that poor differentiation, tumor maximal diameter ≥ 3 cm, TNM stage III or IV, lymph node metastasis, surrounding invasion, and positive UGP2 and CFL1 expression was negatively correlated with the postoperative survival rate and positively correlated with the mortality of patients with PDC. CONCLUSION Positive expression of UGP2 and CFL1 can serve a valuable prognostic factor in pancreatic cancer.
Collapse
Affiliation(s)
- Lingxiang Wang
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Li Xiong
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Zhengchun Wu
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xiongying Miao
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Ziru Liu
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.,Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Zhulin Yang
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China. .,Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
30
|
Jing SH, Gao X, Yu B, Qiao H. Raf Kinase Inhibitor Protein (RKIP) Inhibits Tumor Necrosis Factor-α (TNF-α) Induced Adhesion Molecules Expression in Vascular Smooth Muscle Bells by Suppressing (Nuclear Transcription Factor-κB (NF-kappaB) Pathway. Med Sci Monit 2017; 23:4789-4797. [PMID: 28983072 PMCID: PMC5642645 DOI: 10.12659/msm.903661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Raf kinase inhibitor protein (RKIP) regulates growth and differentiation and plays a role in key signal transduction cascades in mammalian cells. Nevertheless, the underlying mechanism for which RKIP regulates cell-cell adhesion remains unknown. Our study investigated the function of the RKIP overexpression on adhesion molecules expression induced by tumor necrosis factor (TNF)-α in cultured mouse vascular smooth muscle cells (MOVACs). Material/Methods The expression levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were detected by ELISA kit, reverse transcription-PCR, and western blot assays. The protein expression of RKIP, p65, and inhibitor of nuclear factor (NF)-κBα (IκBα) were detected by western blot analysis. The activity of NF-kappaB was determined using a Dual-Luciferase Reporter assay. Results The results showed that MOVACs transfected with pCMV5-HA-RKIP significantly inhibited TNF-α induced mRNA and protein expression of ICAM-1 and VCAM-1. The adhesion of THP-1 cells was also detected and inhibited by pCMV5-HA-RKIP in TNF-α-treated MOVACs. RKIP also suppressed the TNF-α-induced activation of NF-kappaB and the protein expression of phosphorylated IκB-α, and promoted the protein expression of IκB-α and nuclear translocation of p65 NF-kappaB. Furthermore, RKIP and the inhibitor of NF-kappaB (BAY11-7082) reduced the upregulation of ICAM-1 and VACM-1 induced by TNF-α. Conclusions Taken together, these results suggested that RKIP may inhibit the TNF-α-induced expression of adhesion molecules in MOVACs through inactivation of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Shen-Hong Jing
- Department of Cardiovascular, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Xuan Gao
- Department of Gynecology and Obstetrics, The Firts Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Bo Yu
- Department of Cardiovascular, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
31
|
Mandracchia B, Gennari O, Marchesano V, Paturzo M, Ferraro P. Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy. JOURNAL OF BIOPHOTONICS 2017; 10:1163-1170. [PMID: 27804236 DOI: 10.1002/jbio.201600177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/31/2016] [Accepted: 10/04/2016] [Indexed: 05/25/2023]
Abstract
The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion.
Collapse
Affiliation(s)
- Biagio Mandracchia
- CNR - ISASI Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale - DICMAPI, University of Naples Federico II, Piazzale Tecchio 80, 80100, Napoli, Italy
| | - Oriella Gennari
- CNR - ISASI Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Valentina Marchesano
- CNR - ISASI Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Melania Paturzo
- CNR - ISASI Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Pietro Ferraro
- CNR - ISASI Institute of Applied Sciences and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| |
Collapse
|
32
|
Joo EE, Yamada KM. Post-polymerization crosstalk between the actin cytoskeleton and microtubule network. BIOARCHITECTURE 2017; 6:53-9. [PMID: 27058810 DOI: 10.1080/19490992.2016.1171428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular cytoskeletal systems play many pivotal roles in living organisms by controlling cell shape, division, and migration, which ultimately govern morphology, physiology, and functions of animals. Although the cytoskeletal systems are distinct and play different roles, there is growing evidence that these diverse cytoskeletal systems coordinate their functions with each other. This coordination between cytoskeletal systems, often termed cytoskeletal crosstalk, has been identified when the dynamic state of one individual system affects the other system. In this review, we briefly describe some well-established examples of crosstalk between cytoskeletal systems and then introduce a newly discovered form of crosstalk between the actin cytoskeleton and microtubule network that does not appear to directly alter polymerization or depolymerization of either system. The biological impact and possible significance of this post-polymerization crosstalk between actin and microtubules will be discussed in detail.
Collapse
Affiliation(s)
- E Emily Joo
- a Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda , MD , USA
| | - Kenneth M Yamada
- a Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
33
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
34
|
Kung ML, Hsieh CW, Tai MH, Weng CH, Wu DC, Wu WJ, Yeh BW, Hsieh SL, Kuo CH, Hung HS, Hsieh S. Nanoscale characterization illustrates the cisplatin-mediated biomechanical changes of B16-F10 melanoma cells. Phys Chem Chem Phys 2016; 18:7124-31. [PMID: 26886764 DOI: 10.1039/c5cp07971c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cells reorganize their membrane biomechanical dynamics in response to environmental stimuli or inhibitors associated with their physiological/pathological processes, and disease therapeutics. To validate the biophysical dynamics during cell exposure to anti-cancer drugs, we investigate the nanoscale biological characterization in melanoma cells undergoing cisplatin treatment. Using atomic force microscopy, we demonstrate that the cellular morphology and membrane ultrastructure are altered after exposure to cisplatin. In contrast to their normal spindle-like shape, cisplatin causes cell deformation rendering cells flat and enlarged, which increases the cell area by 3-4 fold. Additionally, cisplatin decreases the topography height values for both the cytoplasmic and nuclear regions (by 40-80% and 60%, respectively). Furthermore, cisplatin increases the cytoplasmic root mean square roughness by 110-240% in correlation with the drug concentration and attenuates the nuclear RMS by 60%. Moreover, the cellular adhesion force was enhanced, while the Young's modulus elasticity was attenuated by ∼2 and ∼2.3 fold, respectively. F-actin phalloidin staining revealed that cisplatin enlarges the cell size through enhanced stress fiber formation and promotes cytoskeletal reorganization. Immunoblot analyses further revealed that the activities of focal adhesion proteins, such as FAK and c-Src, are upregulated by cisplatin through phosphorylation at tyrosine 397 and 530, respectively. Collectively, these results show that cisplatin-treated melanoma cells not only exhibit the upregulation of FAK-mediated signaling to enhance the cytoskeleton mechanical stretch, but also promote the cytoskeletal rearrangement resulting in 43% decrease in the cell modulus. These mechanisms thus promote the malignancy and invasiveness of the melanoma cells.
Collapse
Affiliation(s)
- Mei-Lang Kung
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Chiung-Wen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan.
| | - Ming-Hong Tai
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan and Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Hui Weng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80708, Taiwan
| | - Wen-Jeng Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Bi-Wen Yeh
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung 80811, Taiwan
| | - Chao-Hung Kuo
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan and Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan and Center for Neuropsychiatry, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, 70 Lien-hai Rd., Kaohsiung 80424, Taiwan. and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan and School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
35
|
Jana S, Lan Levengood SK, Zhang M. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10588-10612. [PMID: 27865007 PMCID: PMC5253134 DOI: 10.1002/adma.201600240] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/27/2016] [Indexed: 05/19/2023]
Abstract
Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Sheeny K. Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
36
|
Lv P, Zhang F, Yin YJ, Wang YC, Gao M, Xie XL, Zhao LL, Dong LH, Lin YL, Shu YN, Zhang DD, Liu GX, Han M. SM22α inhibits lamellipodium formation and migration via Ras-Arp2/3 signaling in synthetic VSMCs. Am J Physiol Cell Physiol 2016; 311:C758-C767. [PMID: 27629412 DOI: 10.1152/ajpcell.00033.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/07/2016] [Indexed: 02/03/2023]
Abstract
We previously demonstrated that smooth muscle (SM) 22α promotes the migration activity in contractile vascular smooth muscle cells (VSMCs). Based on the varied functions exhibited by SM22α in different VSMC phenotypes, we investigated the effect of SM22α on VSMC migration under pathological conditions. The results demonstrated that SM22α overexpression in synthetic VSMCs inhibited platelet-derived growth factor (PDGF)-BB-induced cell lamellipodium formation and migration, which was different from its action in contractile cells. The results indicated two distinct mechanisms underlying inhibition of lamellipodium formation by SM22α, increased actin dynamic stability and decreased Ras activity via interference with interactions between Ras and guanine nucleotide exchange factor. The former inhibited actin cytoskeleton rearrangement in the cell cortex, while the latter significantly disrupted actin nucleation activation of the Arp2/3 complex. Baicalin, a herb-derived flavonoid compound, inhibited VSMC migration via upregulation of SM22α expression in vitro and in vivo. These data suggest that SM22α regulates lamellipodium formation and cell migration in a phenotype-dependent manner in VSMCs, which may be a new therapeutic target for vascular lesion formation.
Collapse
Affiliation(s)
- Pin Lv
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ya-Juan Yin
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu-Can Wang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Min Gao
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Li Xie
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Li Zhao
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Hua Dong
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yan-Ling Lin
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ya-Nan Shu
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Gui-Xia Liu
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Krishnan V, Vogler EA, Mastro AM. Three-Dimensional in Vitro Model to Study Osteobiology and Osteopathology. J Cell Biochem 2016; 116:2715-23. [PMID: 26039562 DOI: 10.1002/jcb.25250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023]
Abstract
The bone is an amazing organ that grows and remodels itself over a lifetime. It is generally accepted that bone sculpting in response to stress and force is carried out by groups of cells contained within bone multicellular units that are coordinated to degrade existing bone and form new bone. Because of the nature of bone and the extensiveness of the skeleton, it is difficult to study bone remodeling in vivo. On the other hand, because the bone contains a complex environment of many cell types, is it possible to study bone remodeling in vitro? We propose that one can at minimum study the interaction between osteoblasts (bone formation) and osteoclasts (bone degradation) in a three dimensional (3D) "bioreactor". Furthermore, one can add bone degrading metastatic cancer cells, and study how they contribute to and take part in the bone degradation process. We have primarily cultured and differentiated MC3T3-E1 osteoblasts for long periods (2-10 months) before addition of bone marrow osteoclasts and/or metastatic (MDA-MB-231), metastasis suppressed (MDA-MB-231BRMS1) or non-metastatic (MCF-7) breast cancer cells. In the co-culture of osteoblasts and osteoclasts there was clear evidence of matrix degradation. Loss of matrix was also evident after co-culture with metastatic breast cancer cells. Tri-culture permitted an evaluation of the interaction of the three cell types. The 3D system holds promise for further studies of cancer dormancy, hormone, and cytokine effects and matrix manipulation.
Collapse
Affiliation(s)
- Venkatesh Krishnan
- The Huck Institute of Life Sciences, Penn State University, University Park, Pennsylvania
| | - Erwin A Vogler
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania
| | - Andrea M Mastro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, Pennsylvania
| |
Collapse
|
38
|
Bizzarro V, Belvedere R, Milone MR, Pucci B, Lombardi R, Bruzzese F, Popolo A, Parente L, Budillon A, Petrella A. Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget 2016; 6:25076-92. [PMID: 26312765 PMCID: PMC4694816 DOI: 10.18632/oncotarget.4725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression.
Collapse
Affiliation(s)
| | | | - Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Luca Parente
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.,Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | | |
Collapse
|
39
|
Zeitz M, Kierfeld J. Feedback mechanism for microtubule length regulation by stathmin gradients. Biophys J 2016; 107:2860-2871. [PMID: 25517152 DOI: 10.1016/j.bpj.2014.10.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/22/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switchlike regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT-length distribution for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast-growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe-promoting stathmin, we do not find bistability.
Collapse
Affiliation(s)
- Maria Zeitz
- Physics Department, TU Dortmund University, Dortmund, Germany
| | - Jan Kierfeld
- Physics Department, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
40
|
Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater 2015; 55:87-103. [PMID: 26569044 DOI: 10.1016/j.jmbbm.2015.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.
Collapse
Affiliation(s)
- Daniel B Deegan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Cynthia Zimmerman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas D Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
41
|
Menon NV, Chuah YJ, Phey S, Zhang Y, Wu Y, Chan V, Kang Y. Microfluidic Assay To Study the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17095-17103. [PMID: 26186177 DOI: 10.1021/acsami.5b03753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As an alternative to complex and costly in vivo models, microfluidic in vitro models are being widely used to study various physiological phenomena. It is of particular interest to study cell migration in a controlled microenvironment because of its vital role in a large number of physiological processes, such as wound healing, disease progression, and tissue regeneration. Cell migration has been shown to be affected by variations in the biochemical and physical properties of the extracellular matrix (ECM). To study the combinatorial impact of the ECM physical properties on cell migration, we have developed a microfluidic assay to induce migration of human bone marrow derived mesenchymal stem cells (hBMSCs) on polydimethylsiloxane (PDMS) substrates with varying combinatorial properties (hydrophobicity, stiffness, and roughness). The results show that although the initial cell adhesion and viability appear similar on all PDMS samples, the cell spreading and migration are enhanced on PDMS samples exhibiting intermediate levels of hydrophobicity, stiffness, and roughness. This study suggests that there is a particular range of substrate properties for optimal cell spreading and migration. The influence of substrate properties on hBMSC migration can help understand the physical cues that affect cell migration, which may facilitate the development of optimized engineered scaffolds with desired properties for tissue regeneration applications.
Collapse
Affiliation(s)
- Nishanth V Menon
- †School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Yon Jin Chuah
- †School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Samantha Phey
- ‡Hwa Chong Institution, 661 Bukit Timah Road, Singapore 269734
| | - Ying Zhang
- †School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Yingnan Wu
- †School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Vincent Chan
- †School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| | - Yuejun Kang
- †School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
| |
Collapse
|
42
|
Reginensi D, Carulla P, Nocentini S, Seira O, Serra-Picamal X, Torres-Espín A, Matamoros-Angles A, Gavín R, Moreno-Flores MT, Wandosell F, Samitier J, Trepat X, Navarro X, del Río JA. Increased migration of olfactory ensheathing cells secreting the Nogo receptor ectodomain over inhibitory substrates and lesioned spinal cord. Cell Mol Life Sci 2015; 72:2719-37. [PMID: 25708702 PMCID: PMC11113838 DOI: 10.1007/s00018-015-1869-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 11/29/2022]
Abstract
Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.
Collapse
Affiliation(s)
- Diego Reginensi
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Sara Nocentini
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Oscar Seira
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Blusson Spinal Cord Centre and Department of Zoology, Faculty of Science, International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Xavier Serra-Picamal
- Integrative cell and tissue dynamics, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Abel Torres-Espín
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Andreu Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), CBM-UAM, Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Laboratory, . Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
- Department of Electronics, University of Barcelona, Centro de Investigaciòn Médica en Red, Biomecánica, Biomateriales y Nanotecnologìa (CIBERBBN), Barcelona, Spain
| | - Xavier Trepat
- University of Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Edif. M, Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
- Grupo de Neurobiología, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Biosanitarias, Universidad Francisco de Vitoria, Pozuelo de Alarcón 28223, Madrid, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-12, 08028 Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| |
Collapse
|
43
|
Huang C, Ozdemir T, Xu LC, Butler PJ, Siedlecki CA, Brown JL, Zhang S. The role of substrate topography on the cellular uptake of nanoparticles. J Biomed Mater Res B Appl Biomater 2015; 104:488-95. [PMID: 25939598 DOI: 10.1002/jbm.b.33397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/15/2015] [Accepted: 02/08/2015] [Indexed: 12/12/2022]
Abstract
Improving targeting efficacy has been a central focus of the studies on nanoparticle (NP)-based drug delivery nanocarriers over the past decades. As cells actively sense and respond to the local physical environments, not only the NP design (e.g., size, shape, ligand density, etc.) but also the cell mechanics (e.g., stiffness, spreading, expressed receptors, etc.) affect the cellular uptake efficiency. While much work has been done to elucidate the roles of NP design for cells seeded on a flat tissue culture surface, how the local physical environments of cells mediate uptake of NPs remains unexplored, despite the widely known effect of local physical environments on cellular responses in vitro and disease states in vivo. Here, we report the active responses of human osteosarcoma cells to fibrous substrate topographies and the subsequent changes in the cellular uptake of NPs. Our experiments demonstrate that surface topography modulates cellular uptake efficacy by mediating cell spreading and membrane mechanics. The findings provide a concrete example of the regulative role of the physical environments of cells on cellular uptake of NPs, therefore advancing the rational design of NPs for enhanced drug delivery in targeted cancer therapy.
Collapse
Affiliation(s)
- Changjin Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Tugba Ozdemir
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, 17033
| | - Peter J Butler
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Christopher A Siedlecki
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania, 17033
| | - Justin L Brown
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
44
|
Catacuzzeno L, Caramia M, Sforna L, Belia S, Guglielmi L, D'Adamo MC, Pessia M, Franciolini F. Reconciling the discrepancies on the involvement of large-conductance Ca(2+)-activated K channels in glioblastoma cell migration. Front Cell Neurosci 2015; 9:152. [PMID: 25941475 PMCID: PMC4403502 DOI: 10.3389/fncel.2015.00152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor, and is notable for spreading so effectively through the brain parenchyma to make complete surgical resection virtually impossible, and prospect of life dismal. Several ion channels have been involved in GBM migration and invasion, due to their critical role in supporting volume changes and Ca(2+) influx occuring during the process. The large-conductance, Ca(2+)-activated K (BK) channels, markedly overexpressed in biopsies of patients with GBMs and in GBM cell lines, have attracted much interest and have been suggested to play a central role in cell migration and invasion as candidate channels for providing the ion efflux and consequent water extrusion that allow cell shrinkage during migration. Available experimental data on the role of BK channel in migration and invasion are not consistent though. While BK channels block typically resulted in inhibition of cell migration or in no effect, their activation would either enhance or inhibit the process. This short review reexamines the relevant available data on the topic, and presents a unifying paradigm capable of reconciling present discrepancies. According to this paradigm, BK channels would not contribute to migration under conditions where the [Ca(2+)] i is too low for their activation. They will instead positively contribute to migration for intermediate [Ca(2+)] i , insufficient as such to activate BK channels, but capable of predisposing them to cyclic activation following oscillatory [Ca(2+)] i increases. Finally, steadily active BK channels because of prolonged high [Ca(2+)] i would inhibit migration as their steady activity would be unsuitable to match the cyclic cell volume changes needed for proper cell migration.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Dipartimento di Chimica, Biologia e Biotecnologie, Universita' di Perugia Perugia, Italy
| | - Martino Caramia
- Dipartimento di Chimica, Biologia e Biotecnologie, Universita' di Perugia Perugia, Italy
| | - Luigi Sforna
- Dipartimento di Chimica, Biologia e Biotecnologie, Universita' di Perugia Perugia, Italy
| | - Silvia Belia
- Dipartimento di Chimica, Biologia e Biotecnologie, Universita' di Perugia Perugia, Italy
| | - Luca Guglielmi
- Dipartimento di Medicina Sperimentale, Scuola di Medicina e Chirurgia, Universita' di Perugia Perugia, Italy
| | - Maria Cristina D'Adamo
- Dipartimento di Medicina Sperimentale, Scuola di Medicina e Chirurgia, Universita' di Perugia Perugia, Italy
| | - Mauro Pessia
- Dipartimento di Medicina Sperimentale, Scuola di Medicina e Chirurgia, Universita' di Perugia Perugia, Italy
| | - Fabio Franciolini
- Dipartimento di Chimica, Biologia e Biotecnologie, Universita' di Perugia Perugia, Italy
| |
Collapse
|
45
|
Jiang CF, Hsu SH, Tsai KP, Tsai MH. Segmentation and tracking of stem cells in time lapse microscopy to quantify dynamic behavioral changes during spheroid formation. Cytometry A 2015; 87:491-502. [PMID: 25676894 DOI: 10.1002/cyto.a.22642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/12/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023]
Abstract
Dynamic behavior of stem cells during in vitro development is diverse. Previous cell tracking studies have focused more on cell proliferation than on cell aggregation. However, the enhancement of cell proliferation in association with cell aggregation has been reported. In a previous study, we also demonstrated that the aggregation of adult human mesenchymal stem cells to form three-dimensional (3D) cellular spheroids helped maintain the expression of stemness marker genes in the cells. However, the dynamic behavioral changes triggered by spheroid formation remain to be investigated. A scheme of image processing techniques is proposed to meet this need. A hybrid-thresholding technique was first developed for efficient segmentation of cell clusters, after which a cell tracking method based on pair-matching with topological constraints was designed. Two morphological indices were derived to track the timing of 3D spheroid formation during the cellular aggregation process. Five cell motility indices measured from single cells and 3D spheroids were then compared. After confirmation of more than 90% correspondence between the results obtained by manual tracking and the proposed methods, an analysis of cellular behavior reveals a significant increase in motility in association with spheroid formation, consistent with a previous report that used a gene expression approach. This study proposed a systematic image analysis method to quantify the dynamic behavior of stem cells for stemness evaluation during cell culturing in vitro. Results demonstrated the validity of the developed platform in investigation of the dynamic behavior of cell aggregation in stem cell cultures in vitro.
Collapse
Affiliation(s)
- Ching-Fen Jiang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ka-Pei Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Hong Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
46
|
D’Acunto M, Danti S, Salvetti O. Adhesion and Friction Contributions to Cell Motility. FUNDAMENTALS OF FRICTION AND WEAR ON THE NANOSCALE 2015. [DOI: 10.1007/978-3-319-10560-4_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
47
|
Vasquez PA, Forest MG. Complex Fluids and Soft Structures in the Human Body. COMPLEX FLUIDS IN BIOLOGICAL SYSTEMS 2015. [DOI: 10.1007/978-1-4939-2065-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
48
|
Belvedere R, Bizzarro V, Popolo A, Dal Piaz F, Vasaturo M, Picardi P, Parente L, Petrella A. Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells. BMC Cancer 2014; 14:961. [PMID: 25510623 PMCID: PMC4301448 DOI: 10.1186/1471-2407-14-961] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Annexin A1 (ANXA1), a 37 kDa multifunctional protein, is over-expressed in tissues from patients of pancreatic carcinoma (PC) where the protein seems to be associated with malignant transformation and poor prognosis. METHODS The expression and localization of ANXA1 in MIA PaCa-2, PANC-1, BxPC-3 and CAPAN-2 cells were detected by Western Blotting and Immunofluorescence assay. Expression and activation of Formyl Peptide Receptors (FPRs) were shown through flow cytometry/PCR and FURA assay, respectively. To investigate the role of ANXA1 in PC cell migration and invasion, we performed in vitro wound-healing and matrigel invasion assays. RESULTS In all the analyzed PC cell lines, a huge expression and a variable localization of ANXA1 in sub-cellular compartments were observed. We confirmed the less aggressive phenotype of BxPC-3 and CAPAN-2 compared with PANC-1 and MIA PaCa-2 cells, through the evaluation of Epithelial-Mesenchymal Transition (EMT) markers. Then, we tested MIA PaCa-2 and PANC-1 cell migration and invasiveness rate which was inhibited by specific ANXA1 siRNAs. Both the cell lines expressed FPR-1 and -2. Ac2-26, an ANXA1 mimetic peptide, induced intracellular calcium release, consistent with FPR activation, and significantly increased cell migration/invasion rate. Interestingly, in MIA PaCa-2 cells we found a cleaved form of ANXA1 (33 kDa) that localizes at cellular membranes and is secreted outside the cells, as confirmed by MS analysis. The importance of the secreted form of ANXA1 in cellular motility was confirmed by the administration of ANXA1 blocking antibody that inhibited migration and invasion rate in MIA PaCa-2 but not in PANC-1 cells that lack the 33 kDa ANXA1 form and show a lower degree of invasiveness. Finally, the treatment of PANC-1 cells with MIA PaCa-2 supernatants significantly increased the migration rate of these cells. CONCLUSION This study provides new insights on the role of ANXA1 protein in PC progression. Our findings suggest that ANXA1 protein could regulate metastasis by favouring cell migration/invasion intracellularly, as cytoskeleton remodelling factor, and extracellularly like FPR ligand.
Collapse
Affiliation(s)
- Raffaella Belvedere
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Valentina Bizzarro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Michele Vasaturo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Paola Picardi
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Luca Parente
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| |
Collapse
|
49
|
Tissue-specific mechanical and geometrical control of cell viability and actin cytoskeleton alignment. Sci Rep 2014; 4:6160. [PMID: 25146956 PMCID: PMC4141254 DOI: 10.1038/srep06160] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023] Open
Abstract
Different tissues have specific mechanical properties and cells of different geometries, such as elongated muscle cells and polygonal endothelial cells, which are precisely regulated during embryo development. However, the mechanisms that underlie these processes are not clear. Here, we built an in vitro model to mimic the cellular microenvironment of muscle by combining both mechanical stretch and geometrical control. We found that mechanical stretch was a key factor that determined the optimal geometry of myoblast C2C12 cells under stretch, whereas vascular endothelial cells and fibroblasts had no such dependency. We presented the first experimental evidence that can explain why myoblasts are destined to take the elongated geometry so as to survive and maintain parallel actin filaments along the stretching direction. The study is not only meaningful for the research on myogenesis but also has potential application in regenerative medicine.
Collapse
|
50
|
Kim MS, Lee MH, Kwon BJ, Seo HJ, Koo MA, You KE, Kim D, Park JC. Effects of direct current electric-field using ITO plate on breast cancer cell migration. Biomater Res 2014; 18:10. [PMID: 26331061 PMCID: PMC4549139 DOI: 10.1186/2055-7124-18-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/09/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. RESULTS Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. CONCLUSIONS In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.
Collapse
Affiliation(s)
- Min Sung Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Byeong-Ju Kwon
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Hyok Jin Seo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Kyung Eun You
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea ; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-752 Korea
| |
Collapse
|