1
|
Josselyn SA. On role models and Joe LeDoux. Cereb Cortex 2024:bhae417. [PMID: 39417617 DOI: 10.1093/cercor/bhae417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Joseph LeDoux is a pioneering neuroscientist who has made profound discoveries that continue to impact our understanding of the neural basis of emotion and memory, particularly the role of the amygdala in threat conditioning. LeDoux's trailblazing and elegant studies were some of the first to examine the circuit basis of behavior. His work combined techniques to trace pathways into and out of the amygdala important for threat conditioning and related behaviors. Since that time, these types of circuit tracing studies have exploded in popularity across neuroscience, and I would argue, we all owe a debt to LeDoux for this. LeDoux has made numerous additional contributions to neuroscience and, by bringing emotion back to neuroscience, has helped unite neuroscience with psychology. A gifted writer with a knack for communicating complicated scientific ideas in an accessible manner, LeDoux has become an ambassador of science who uses his love of music to help educate and inspire. Perhaps more important than these laudable scientific achievements, LeDoux is also a true "gentleman" of science, showing that science need not be a contact sport. Here, I give a personal account on why Joseph LeDoux is one of my scientific role models.
Collapse
Affiliation(s)
- Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON M5S 3G3, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
2
|
Fang L, Song Y, Jin H, Liu Y, Gou S. An Approach to Apply BDNF Targeting Fe 3O 4-Based Nanoparticles as Multifunctional Anti-Alzheimer Agents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403625. [PMID: 39240076 DOI: 10.1002/smll.202403625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/31/2024] [Indexed: 09/07/2024]
Abstract
To search for novel anti-Alzheimer agents, multifunctional Fe3O4-based nanoparticles (FSSIO) is designed and prepared which contain ferulic acid (FA) and Simvastatin linked to the surface of Fe3O4 particles. In vitro tests confirmed that FSSIO possessed favorable biocompatibility and a pronounced ability to penetrate blood brain barrier. The FA moiety endowed the particles with remarkable antioxidant and anti-inflammatory properties, and effectively protected neuron cells from the toxicity induced by Aβ. Moreover, the Simvastatin pharmacophore assists the particles up-regulate the expression level of BDNF and significantly promotes the expression levels of p-TrkB, p-ERK, p-PI3K and Akt, which consequently leads to the neurite outgrowth via regulating PI3K/ATK and TrkB-mediated signaling pathway. More importantly, in the Morris water maze test, FSSIO shows excellent activity to enhance the learning and memory retention of AD model rats.
Collapse
Affiliation(s)
- Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yunxia Song
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Haifeng Jin
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yinyin Liu
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
3
|
Abe K. Dynamic activity changes in transcription factors: Unlocking the mechanisms regulating physiological changes in the brain. Neurosci Res 2024:S0168-0102(24)00101-9. [PMID: 39134224 DOI: 10.1016/j.neures.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Transcription factors (TFs) regulate the establishment and modulation of the transcriptome within cells, thereby playing a crucial role in various aspects of cellular physiology throughout the body. Quantitative measurement of TF activity during the development, function, and dysfunction of the brain is essential for gaining a deeper understanding of the regulatory mechanisms governing gene expression during these processes. Due to their role as regulators of gene expression, assessing and modulating detailed TF activity contributes to the development of practical methods to intervene in these processes, potentially offering more efficient treatments for diseases. Recent methodologies have revealed that TF activity is dynamically regulated within cells and organisms, including the adult brain. This review summarizes the regulatory mechanisms of TF activities and the methodologies used to assess them, emphasizing their importance in both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Kentaro Abe
- Lab of Brain Development, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
4
|
Shi R, Tian X, Ji A, Zhang T, Xu H, Qi Z, Zhou L, Zhao C, Li D. A Mixture of Soybean Oil and Lard Alleviates Postpartum Cognitive Impairment via Regulating the Brain Fatty Acid Composition and SCFA/ERK(1/2)/CREB/BDNF Pathway. Nutrients 2024; 16:2641. [PMID: 39203778 PMCID: PMC11357458 DOI: 10.3390/nu16162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Lard is highly appreciated for its flavor. However, it has not been elucidated how to consume lard while at the same time eliminating its adverse effects on postpartum cognitive function. Female mice were divided into three groups (n = 10): soybean oil (SO), lard oil (LO), and a mixture of soybean oil and lard at a ratio of 1:1 (LS). No significant difference was observed between the SO and LS groups in behavioral testing of the maternal mice, but the LO group was significantly worse compared with these two groups. Moreover, the SO and LS supplementation increased docosahexaenoic acid (DHA) and total n-3 polyunsaturated fatty acid (PUFA) levels in the brain and short-chain fatty acid (SCFA)-producing bacteria in feces, thereby mitigating neuroinflammation and lowering the p-ERK(1/2)/ERK(1/2), p-CREB/CREB, and BDNF levels in the brain compared to the LO group. Collectively, the LS group inhibited postpartum cognitive impairment by regulating the brain fatty acid composition, neuroinflammation, gut microbiota, and the SCFA/ERK(1/2)/CREB/BDNF signaling pathway compared to lard.
Collapse
Affiliation(s)
- Runjia Shi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoying Tian
- Qingdao Medical College, Qingdao University, Qingdao 266071, China;
| | - Andong Ji
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Huina Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhongshi Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Liying Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chunhui Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Gardner RS, Ambalavanar MT, Gold PE, Korol DL. Enhancement of response learning in male rats with intrastriatal infusions of a BDNF - TrkB agonist, 7,8-dihydroxyflavone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606692. [PMID: 39211174 PMCID: PMC11360987 DOI: 10.1101/2024.08.08.606692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enhancement of learning and memory by cognitive and physical exercise may be mediated by brain-derived neurotrophic factor (BDNF) acting at tropomyosin receptor kinase B (TrkB). Upregulation of BDNF and systemic administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), enhance learning of several hippocampus-sensitive tasks in rodents. Although BDNF and 7,8-DHF enhance functions of other brain areas too, these effects have mainly targeted non-cognitive functions. One goal of the present study was to determine whether 7,8-DHF would act beyond the hippocampus to enhance cognitive functions sensitive to manipulations of the striatum. Here, we examined the effects of intrastriatal infusions of 7,8-DHF on learning a striatum-sensitive response maze and on phosphorylation of TrkB receptors in 3-month-old male Sprague Dawley rats. Most prior studies of BDNF and 7,8-DHF effects on learning and memory have administered the drugs for days to months before assessing effects on cognition. A second goal of the present study was to determine whether a single drug treatment near the time of training would effectively enhance learning. Moreover, 7,8-DHF is often tested for its ability to reverse impairments in learning and memory rather than to enhance these functions in the absence of impairments. Thus, a third goal of this experiment was to evaluate the efficacy of 7,8-DHF in enhancing learning in unimpaired rats. In untrained rats, intrastriatal infusions of 7,8-DHF resulted in phosphorylation of TrkB receptors, suggesting that 7,8-DHF acted as a TrkB agonist and BDNF mimic. The findings that a single, intra-striatal infusion of 7,8-DHF 20 min before training enhanced response learning in rats suggest that, in addition to its trophic effects, BDNF modulates learning and memory through receptor mediated cell signaling events.
Collapse
|
6
|
Ma P, Zhang Y, Yin Y, Wang S, Chen S, Liang X, Li Z, Deng H. Gut microbiota metabolite tyramine ameliorates high-fat diet-induced insulin resistance via increased Ca 2+ signaling. EMBO J 2024; 43:3466-3493. [PMID: 38965418 PMCID: PMC11329785 DOI: 10.1038/s44318-024-00162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.
Collapse
Affiliation(s)
- Peng Ma
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Yao Zhang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Youjie Yin
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Saifei Wang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Shuxin Chen
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Xueping Liang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Zhifang Li
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Hansong Deng
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China.
| |
Collapse
|
7
|
Pandarangga P, Doan PTK, Tearle R, Low WY, Ren Y, Nguyen HTH, Dharmayanti NI, Hemmatzadeh F. mRNA Profiling and Transcriptomics Analysis of Chickens Received Newcastle Disease Virus Genotype II and Genotype VII Vaccines. Pathogens 2024; 13:638. [PMID: 39204239 PMCID: PMC11357267 DOI: 10.3390/pathogens13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Newcastle Disease Virus (NDV) genotype VII (GVII) is becoming the predominant strain of NDV in the poultry industry. It causes high mortality even in vaccinated chickens with a common NDV genotype II vaccine (GII-vacc). To overcome this, the killed GVII vaccine has been used to prevent NDV outbreaks. However, the debate about vaccine differences remains ongoing. Hence, this study investigated the difference in chickens' responses to the two vaccines at the molecular level. The spleen transcriptomes from vaccinated chickens reveal that GVII-vacc affected the immune response by downregulating neuroinflammation. It also enhanced a synaptogenesis pathway that operates typically in the nervous system, suggesting a mechanism for the neurotrophic effect of this strain. We speculated that the down-regulated immune system regulation correlated with protecting the nervous system from excess leukocytes and cytokine activity. In contrast, GII-vacc inhibited apoptosis by downregulating PERK/ATF4/CHOP as part of the unfolded protein response pathway but did not affect the expression of the same synaptogenesis pathway. Thus, the application of GVII-vacc needs to be considered in countries where GVII is the leading cause of NDV outbreaks. The predicted molecular signatures may also be used in developing new vaccines that trigger specific genes in the immune system in combating NDV outbreaks.
Collapse
Affiliation(s)
- Putri Pandarangga
- Departemen Klinik, Reproduksi, dan Patologi, Fakultas Kedokteran dan Kedokteran Hewan, Universitas Nusa Cendana, Kupang 85001, Indonesia;
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| | - Phuong Thi Kim Doan
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
- Department of Veterinary Medicine, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| | - Rick Tearle
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Wai Yee Low
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Yan Ren
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (R.T.); (W.Y.L.); (Y.R.)
| | - Hanh Thi Hong Nguyen
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| | | | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide 5371, Australia; (P.T.K.D.); (H.T.H.N.)
| |
Collapse
|
8
|
ElGrawani W, Sun G, Kliem FP, Sennhauser S, Pierre-Ferrer S, Rosi-Andersen A, Boccalaro I, Bethge P, Heo WD, Helmchen F, Adamantidis AR, Forger DB, Robles MS, Brown SA. BDNF-TrkB signaling orchestrates the buildup process of local sleep. Cell Rep 2024; 43:114500. [PMID: 39046880 DOI: 10.1016/j.celrep.2024.114500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sleep debt accumulates during wakefulness, leading to increased slow wave activity (SWA) during sleep, an encephalographic marker for sleep need. The use-dependent demands of prior wakefulness increase sleep SWA locally. However, the circuitry and molecular identity of this "local sleep" remain unclear. Using pharmacology and optogenetic perturbations together with transcriptomics, we find that cortical brain-derived neurotrophic factor (BDNF) regulates SWA via the activation of tyrosine kinase B (TrkB) receptor and cAMP-response element-binding protein (CREB). We map BDNF/TrkB-induced sleep SWA to layer 5 (L5) pyramidal neurons of the cortex, independent of neuronal firing per se. Using mathematical modeling, we here propose a model of how BDNF's effects on synaptic strength can increase SWA in ways not achieved through increased firing alone. Proteomic analysis further reveals that TrkB activation enriches ubiquitin and proteasome subunits. Together, our study reveals that local SWA control is mediated by BDNF-TrkB-CREB signaling in L5 excitatory cortical neurons.
Collapse
Affiliation(s)
- Waleed ElGrawani
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Guanhua Sun
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Fabian P Kliem
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany
| | - Simon Sennhauser
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Sara Pierre-Ferrer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Alex Rosi-Andersen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Ida Boccalaro
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Philipp Bethge
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Won Do Heo
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Fritjof Helmchen
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland; Brain Research Institute, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Antoine R Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Maria S Robles
- Institute of Medical Psychology and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Filomena E, Picardi E, Tullo A, Pesole G, D’Erchia AM. Identification of deregulated lncRNAs in Alzheimer's disease: an integrated gene co-expression network analysis of hippocampus and fusiform gyrus RNA-seq datasets. Front Aging Neurosci 2024; 16:1437278. [PMID: 39086756 PMCID: PMC11288953 DOI: 10.3389/fnagi.2024.1437278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The deregulation of lncRNAs expression has been associated with neuronal damage in Alzheimer's disease (AD), but how or whether they can influence its onset is still unknown. We investigated 2 RNA-seq datasets consisting, respectively, of the hippocampal and fusiform gyrus transcriptomic profile of AD patients, matched with non-demented controls. Methods We performed a differential expression analysis, a gene correlation network analysis (WGCNA) and a pathway enrichment analysis of two RNA-seq datasets. Results We found deregulated lncRNAs in common between hippocampus and fusiform gyrus and deregulated gene groups associated to functional pathways related to neurotransmission and memory consolidation. lncRNAs, co-expressed with known AD-related coding genes, were identified from the prioritized modules of both brain regions. Discussion We found common deregulated lncRNAs in the AD hippocampus and fusiform gyrus, that could be considered common signatures of AD pathogenesis, providing an important source of information for understanding the molecular changes of AD.
Collapse
Affiliation(s)
- Ermes Filomena
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
10
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603393. [PMID: 39071414 PMCID: PMC11275899 DOI: 10.1101/2024.07.13.603393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator, forskolin, induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 hours later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and indications of reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, and protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. An interesting possibility is that these mechanisms can also be reactivated by re-exposure to inflammatory mediators such as serotonin during subsequent challenges to bodily integrity, "reconsolidating" the cellular memory and thereby extending the duration of persistent nociceptor hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas, USA 77030
| |
Collapse
|
11
|
Hori H, Fukushima H, Nagayoshi T, Ishikawa R, Zhuo M, Yoshida F, Kunugi H, Okamoto K, Kim Y, Kida S. Fear memory regulation by the cAMP signaling pathway as an index of reexperiencing symptoms in posttraumatic stress disorder. Mol Psychiatry 2024; 29:2105-2116. [PMID: 38409596 PMCID: PMC11408251 DOI: 10.1038/s41380-024-02453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder associated with traumatic memory, yet its etiology remains unclear. Reexperiencing symptoms are specific to PTSD compared to other anxiety-related disorders. Importantly, reexperiencing can be mimicked by retrieval-related events of fear memory in animal models of traumatic memory. Recent studies revealed candidate PTSD-associated genes that were related to the cyclic adenosine monophosphate (cAMP) signaling pathway. Here, we demonstrate the tight linkage between facilitated cAMP signaling and PTSD by analyzing loss- and gain-of-cAMP signaling effects on fear memory in mice and the transcriptomes of fear memory-activated mice and female PTSD patients with reexperiencing symptoms. Pharmacological and optogenetic upregulation or downregulation of cAMP signaling transduction enhanced or impaired, respectively, the retrieval and subsequent maintenance of fear memory in mice. In line with these observations, integrative mouse and human transcriptome analysis revealed the reduced mRNA expression of phosphodiesterase 4B (PDE4B), an enzyme that degrades cAMP, in the peripheral blood of PTSD patients showing more severe reexperiencing symptoms and the mouse hippocampus after fear memory retrieval. Importantly, more severe reexperiencing symptoms and lower PDE4B mRNA levels were correlated with decreased DNA methylation of a locus within PDE4B, suggesting the involvement of methylation in the mechanism of PTSD. These findings raise the possibility that the facilitation of cAMP signaling mediating the downregulation of PDE4B expression enhances traumatic memory, thereby playing a key role in the reexperiencing symptoms of PTSD patients as a functional index of these symptoms.
Collapse
Affiliation(s)
- Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
| | - Hotaka Fukushima
- Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Taikai Nagayoshi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rie Ishikawa
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
| | - Satoshi Kida
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
12
|
Xiang Y, Naik S, Zhao L, Shi J, Ke H. Emerging phosphodiesterase inhibitors for treatment of neurodegenerative diseases. Med Res Rev 2024; 44:1404-1445. [PMID: 38279990 DOI: 10.1002/med.22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neuron structure and ultimately lead to neuronal cell death. Since the available drugs show only limited symptomatic relief, NDs are currently considered as incurable. This review will illustrate the principal roles of the signaling systems of cyclic adenosine and guanosine 3',5'-monophosphates (cAMP and cGMP) in the neuronal functions, and summarize expression/activity changes of the associated enzymes in the ND patients, including cyclases, protein kinases, and phosphodiesterases (PDEs). As the sole enzymes hydrolyzing cAMP and cGMP, PDEs are logical targets for modification of neurodegeneration. We will focus on PDE inhibitors and their potentials as disease-modifying therapeutics for the treatment of Alzheimer's disease, Parkinson's disease, and Huntington's disease. For the overlapped but distinct contributions of cAMP and cGMP to NDs, we hypothesize that dual PDE inhibitors, which simultaneously regulate both cAMP and cGMP signaling pathways, may have complementary and synergistic effects on modifying neurodegeneration and thus represent a new direction on the discovery of ND drugs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Swapna Naik
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
| | - Liyun Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Bavencoffe A, Zhu MY, Neerukonda SV, Johnson KN, Dessauer CW, Walters ET. Induction of long-term hyperexcitability by memory-related cAMP signaling in isolated nociceptor cell bodies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100166. [PMID: 39399224 PMCID: PMC11470187 DOI: 10.1016/j.ynpai.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
Persistent hyperactivity of nociceptors is known to contribute significantly to long-lasting sensitization and ongoing pain in many clinical conditions. It is often assumed that nociceptor hyperactivity is mainly driven by continuing stimulation from inflammatory mediators. We have tested an additional possibility: that persistent increases in excitability promoting hyperactivity can be induced by a prototypical cellular signaling pathway long known to induce late-phase long-term potentiation (LTP) of synapses in brain regions involved in memory formation. This cAMP-PKA-CREB-gene transcription-protein synthesis pathway was tested using whole-cell current clamp methods on small dissociated sensory neurons (primarily nociceptors) from dorsal root ganglia (DRGs) excised from previously uninjured ("naïve") male rats. Six-hour treatment with the specific Gαs-coupled 5-HT4 receptor agonist, prucalopride, or with the adenylyl cyclase activator forskolin induced long-term hyperexcitability (LTH) in DRG neurons that manifested 12-24 h later as action potential (AP) discharge (ongoing activity, OA) during artificial depolarization to -45 mV, a membrane potential that is normally subthreshold for AP generation. Prucalopride treatment also induced significant long-lasting depolarization of resting membrane potential (from -69 to -66 mV), enhanced depolarizing spontaneous fluctuations (DSFs) of membrane potential, and produced trends for reduced AP threshold and rheobase. LTH was prevented by co-treatment of prucalopride with inhibitors of PKA, CREB, gene transcription, or protein synthesis. As in the induction of synaptic memory, many other cellular signals are likely to be involved. However, the discovery that this prototypical memory induction pathway can induce nociceptor LTH, along with reports that cAMP signaling and CREB activity in DRGs can induce hyperalgesic priming, suggest that early, temporary, cAMP-induced transcriptional and translational mechanisms can induce nociceptor LTH that might last for long periods. The present results also raise the question of whether reactivation of primed signaling mechanisms by re-exposure to inflammatory mediators linked to cAMP synthesis during subsequent challenges to bodily integrity can "reconsolidate" nociceptor memory, extending the duration of persistent hyperexcitability.
Collapse
Affiliation(s)
- Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Michael Y. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Sanjay V. Neerukonda
- Medical Scientist Training Program, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Malheiros J, Amaral C, da Silva LS, Guinsburg R, Covolan L. Neonatal nociceptive stimulation results in pain sensitization, reduction of hippocampal 5-HT 1A receptor, and p-CREB expression in adult female rats. Behav Brain Res 2024; 466:114975. [PMID: 38552745 DOI: 10.1016/j.bbr.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Painful invasive procedures are often performed on newborns admitted to intensive care units (ICU). The acute and long-term effects caused by these stimuli can be investigated in animal models, such as newborn rats. Previous studies have shown that animals subjected to nociceptive stimuli in the neonatal period show sex-specific behavioral changes such as signs of anxiety or depression. Under the same conditions, neonatal stimuli also provoke an increase in the rate of neurogenesis and cell activation in the hippocampal dentate gyrus. So, this study aims to identify the possible roles of central monoamines, receptor expression (5-HT1A), and signaling factors (p-CREB) underlying the long-term effects of neonatal nociceptive stimulation. For this, noxious stimulation was induced by intra-plantar injection of Complete Freund´s adjuvant (CFA) on the postnatal day 1 (P1) or 8 (P8). Control animals were not stimulated. On P75 the behavioral tests were conducted (hotplate and elevated plus maze), followed by sacrifice and molecular studies. Our results showed that neonatal nociceptive stimulation alters pain sensitization specially in females, while stimulation on P1 increases pain threshold, P8-stimulated animals respond with reduced pain threshold (P < 0.001). Hippocampal expression of 5-HT1A receptor and p-CREB were reduced in P8 F group (P < 0.001) in opposition to the increased utilization rate of dopamine and serotonin in this group (P < 0.05). This study shows sex- and age-specific responses of signaling pathways within the hippocampus accompanied by altered behavioral repertoire, at long-term after neonatal painful stimulation.
Collapse
Affiliation(s)
- Jackeline Malheiros
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Cristiane Amaral
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Luiz Severino da Silva
- Departamento de Micro Imuno Parasitologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Ruth Guinsburg
- Disciplina de Pediatria Neonatal, Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil
| | - Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
15
|
Hu Y, Liu J, Pan Q, Shi X, Wu X. Effects of Artificial Sugar Supplementation on the Composition and Nutritional Potency of Honey from Apis cerana. INSECTS 2024; 15:344. [PMID: 38786900 PMCID: PMC11121883 DOI: 10.3390/insects15050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
In the global apiculture industry, reward feeding and supplementary feeding are essential for maintaining bee colonies. Beekeepers provide artificial supplements to their colonies, typically in the form of either a honey-water solution or sugar syrup. Owing to cost considerations associated with beekeeping, most beekeepers opt for sugar syrup. However, the effects of different types of artificial sugar supplements on bee colonies and their subsequent impact on honey composition remain unclear. To address this gap, this study compared the chemical composition, antioxidant capacity, and nutritional potency of three types of honey: honey derived from colonies fed sugar syrup (sugar-based product, SP) or a honey-water solution (honey-sourced honey, HH) and naturally sourced honey (flower-sourced honey, FH), which served as the control. The results revealed that FH outperformed HH and SP in terms of total acidity, sugar content, total protein content, and antioxidant capacity, and HH outperformed SP. Regarding nutritional efficacy, including the lifespan and learning and memory capabilities of worker bees, FH exhibited the best outcomes, with no significant differences observed between HH and SP. This study underscores the importance of sugar source selection in influencing honey quality and emphasizes the potential consequences of substituting honey with sugar syrup in traditional apiculture practices.
Collapse
Affiliation(s)
- Yueyang Hu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.H.); (J.L.); (X.S.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
- Jiangxi Anyuan Honeybee Science and Technology Backyard, Anyuan 342100, China;
| | - Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.H.); (J.L.); (X.S.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Qizhong Pan
- Jiangxi Anyuan Honeybee Science and Technology Backyard, Anyuan 342100, China;
- Jiangxi Ganzhou Agricultural College, Ganzhou 341199, China
| | - Xinxin Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.H.); (J.L.); (X.S.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (Y.H.); (J.L.); (X.S.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
- Jiangxi Anyuan Honeybee Science and Technology Backyard, Anyuan 342100, China;
| |
Collapse
|
16
|
Conoscenti MA, Weatherill DB, Huang Y, Tordjman R, Fanselow MS. Isolation of the differential effects of chronic and acute stress in a manner that is not confounded by stress severity. Neurobiol Stress 2024; 30:100616. [PMID: 38384783 PMCID: PMC10879813 DOI: 10.1016/j.ynstr.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Firm conclusions regarding the differential effects of the maladaptive consequences of acute versus chronic stress on the etiology and symptomatology of stress disorders await a model that isolates chronicity as a variable for studying the differential effects of acute versus chronic stress. This is because most previous studies have confounded chronicity with the total amount of stress. Here, we have modified the stress-enhanced fear learning (SEFL) protocol, which models some aspects of posttraumatic stress disorder (PTSD) following an acute stressor, to create a chronic variant that does not have this confound. Comparing results from this new protocol to the acute protocol, we found that chronic stress further potentiates enhanced fear-learning beyond the nonassociative enhancement induced by acute stress. This additional component is not observed when the unconditional stimulus (US) used during subsequent fear learning is distinct from the US used as the stressor, and is enhanced when glucose is administered following stressor exposure, suggesting that it is associative in nature. Furthermore, extinction of stressor-context fear blocks this additional associative component of SEFL as well as reinstatement of generalized fear, suggesting reinstatement of generalized fear may underlie this additional SEFL component.
Collapse
Affiliation(s)
- Michael A. Conoscenti
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Daniel B. Weatherill
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Yuqing Huang
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Raphael Tordjman
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
| | - Michael S. Fanselow
- Department of Psychology, University of California, Los Angeles, CA, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Azargoonjahromi A, Abutalebian F. Unraveling the therapeutic efficacy of resveratrol in Alzheimer's disease: an umbrella review of systematic evidence. Nutr Metab (Lond) 2024; 21:15. [PMID: 38504306 PMCID: PMC10953289 DOI: 10.1186/s12986-024-00792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
CONTEXT Resveratrol (RV), a natural compound found in grapes, berries, and peanuts, has been extensively studied for its potential in treating Alzheimer's disease (AD). RV has shown promise in inhibiting the formation of beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs), protecting against neuronal damage and oxidative stress, reducing inflammation, promoting neuroprotection, and improving the function of the blood-brain barrier (BBB). However, conflicting results have been reported, necessitating a comprehensive umbrella review of systematic reviews to provide an unbiased conclusion on the therapeutic effectiveness of RV in AD. OBJECTIVE The objective of this study was to systematically synthesize and evaluate systematic and meta-analysis reviews investigating the role of RV in AD using data from both human and animal studies. DATA SOURCES AND EXTRACTION Of the 34 systematic and meta-analysis reviews examining the association between RV and AD that were collected, six were included in this study based on specific selection criteria. To identify pertinent studies, a comprehensive search was conducted in English-language peer-reviewed journals without any restrictions on the publication date until October 15, 2023. The search was carried out across multiple databases, including Embase, MEDLINE (PubMed), Cochrane Library, Web of Science, and Google Scholar, utilizing appropriate terms relevant to the specific research field. The AMSTAR-2 and ROBIS tools were also used to evaluate the quality and risk of bias of the included systematic reviews, respectively. Two researchers independently extracted and analyzed the data, resolving any discrepancies through consensus. Of note, the study adhered to the PRIOR checklist. DATA ANALYSIS This umbrella review presented robust evidence supporting the positive impacts of RV in AD, irrespective of the specific mechanisms involved. It indeed indicated that all six systematic and meta-analysis reviews unanimously concluded that the consumption of RV can be effective in the treatment of AD. CONCLUSION RV exhibits promising potential for benefiting individuals with AD through various mechanisms. It has been observed to enhance cognitive function, reduce Aβ accumulation, provide neuroprotection, protect the BBB, support mitochondrial function, facilitate synaptic plasticity, stabilize tau proteins, mitigate oxidative stress, and reduce neuroinflammation commonly associated with AD.
Collapse
Affiliation(s)
| | - Fatemeh Abutalebian
- Department of Biotechnology and Medicine, Islamic Azad University of Tehran Central Branch, Tehran, Iran
| |
Collapse
|
20
|
Glebov-McCloud AGP, Saide WS, Gaine ME, Strack S. Protein Kinase A in neurological disorders. J Neurodev Disord 2024; 16:9. [PMID: 38481146 PMCID: PMC10936040 DOI: 10.1186/s11689-024-09525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Cyclic adenosine 3', 5' monophosphate (cAMP)-dependent Protein Kinase A (PKA) is a multi-functional serine/threonine kinase that regulates a wide variety of physiological processes including gene transcription, metabolism, and synaptic plasticity. Genomic sequencing studies have identified both germline and somatic variants of the catalytic and regulatory subunits of PKA in patients with metabolic and neurodevelopmental disorders. In this review we discuss the classical cAMP/PKA signaling pathway and the disease phenotypes that result from PKA variants. This review highlights distinct isoform-specific cognitive deficits that occur in both PKA catalytic and regulatory subunits, and how tissue-specific distribution of these isoforms may contribute to neurodevelopmental disorders in comparison to more generalized endocrine dysfunction.
Collapse
Affiliation(s)
- Alexander G P Glebov-McCloud
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Walter S Saide
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy Building, College of Pharmacy, University of Iowa, 180 S. Grand Ave, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, Iowa City, IA, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, Bowen Science Building, University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, Intellectual and Developmental Disabilities Research Center, Iowa City, IA, USA.
| |
Collapse
|
21
|
Park K, Kong CH, Kang WC, Jeon M, Lee WH, Lee J, Kim SC, Jung SY, Ryu JH. LPC20K modified from krill oil ameliorates the scopolamine-induced cognitive impairment. Behav Brain Res 2024; 461:114836. [PMID: 38145873 DOI: 10.1016/j.bbr.2023.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment. It is common in the elderly. Etiologically, dysfunction of cholinergic neurotransmitter system is prominent in AD. However, disease modifying drug for AD is still unavailable. We hypothesized that krill oil and modified krill oil containing 20 % lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA, LPC20K) could play a crucial role in AD by improving cognitive functions measured by several behavioral tests. We found that LPC20K could ameliorate short-term, long-term, spatial, and object recognition memory under cholinergic hypofunction states. To find the underlying mechanism involved in the effect of LPC20K on cognitive function, we investigated changes of signaling molecules using Western blotting. Expression levels of protein kinase C zeta (PKCζ) and postsynaptic density protein 95 (PSD-95), and phosphorylation levels of extracellular signal-regulated kinase (ERK), Ca2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ), and cAMP response element-binding protein (CREB) were significantly increased in LPC20K-administered group compared to those in the memory impairment group. Moreover, the expression levels of BDNF were temporally increased especially 6 or 9 h after administration of LPC20K compared with the control group. These results suggest that LPC20K could ameliorate memory impairment caused by hypocholinergic state by enhancing the expression levels of PKCζ and PSD-95, and phosphorylation levels of ERK, CaMKⅡ and CREB and increasing BDNF expression levels. Therefore, LPC20K could be used as a dietary supplement against cognitive impairment observed in diseases such as AD with a hypocholinergic state.
Collapse
Affiliation(s)
- Keontae Park
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Juyeon Lee
- Croda Korea Ltd., Seongnam-si, Gyeonggi-do 13636, the Republic of Korea
| | - Sang Chul Kim
- Croda Korea Ltd., Seongnam-si, Gyeonggi-do 13636, the Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
22
|
Jiang SZ, Shahoha M, Zhang HY, Brancaleone W, Elkahloun A, Tejeda HA, Ashery U, Eiden LE. The guanine nucleotide exchange factor RapGEF2 is required for ERK-dependent immediate-early gene (Egr1) activation during fear memory formation. Cell Mol Life Sci 2024; 81:48. [PMID: 38236296 PMCID: PMC11071968 DOI: 10.1007/s00018-023-04999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.
Collapse
Affiliation(s)
- Sunny Zhihong Jiang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - Meishar Shahoha
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Hai-Ying Zhang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - William Brancaleone
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | | | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, NIMH-IRP, Bethesda, MD, USA
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel.
| | - Lee E Eiden
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA.
| |
Collapse
|
23
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Madar P, Nagalapur P, Chaudhari S, Sharma D, Koparde A, Buchade R, Kshirsagar S, Uttekar P, Jadhav S, Chaudhari P. The Unveiling of Therapeutic Targets for Alzheimer's Disease: An Integrative Review. Curr Top Med Chem 2024; 24:850-868. [PMID: 38424435 DOI: 10.2174/0115680266282492240220101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors. The primary feature is the accumulation of amyloid-- beta and tau proteins, leading to neuroinflammation, synaptic dysfunction, oxidative stress, and neuronal loss. Conventional single-target therapies have shown limited effectiveness, prompting a shift toward simultaneously addressing multiple disease-related processes. Recent advancements in AD research underscore the potential of multifaceted therapies. This review explores strategies targeting both tau aggregation and amyloid-beta, along with interventions to alleviate neuroinflammation, enhance synaptic function, and reduce oxidative stress. In conclusion, the review emphasizes the growing importance of addressing various pathways in AD treatment. A holistic approach that targets different aspects of the disease holds promise for developing effective treatments and improving the quality of life for Alzheimer's patients and their caregivers.
Collapse
Affiliation(s)
- Pratiksha Madar
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Pooja Nagalapur
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Somdatta Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Devesh Sharma
- Department of Biotechnology, National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Akshada Koparde
- Department of Pharmaceutical Chemistry, Krishna Foundation's Jaywant Institute of Pharmacy, Malkapur, Karad, India
| | - Rahul Buchade
- Department of Pharmaceutical Chemistry, Indira College of Pharmacy, Tathwade, Pune, India
| | - Sandip Kshirsagar
- Department of Pharmaceutical Chemistry, Dr. D Y Patil College of Pharmacy, Pune, India
| | - Pravin Uttekar
- Department of Pharmacuetics, Savitribai Phule Pune University, Pune, India
| | - Shailaja Jadhav
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | - Praveen Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
25
|
Watanabe K, Maruyama Y, Iwashita H, Kato H, Hirayama J, Hattori A. N1-Acetyl-5-methoxykynuramine, which decreases in the hippocampus with aging, improves long-term memory via CaMKII/CREB phosphorylation. J Pineal Res 2024; 76:e12934. [PMID: 38241676 DOI: 10.1111/jpi.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024]
Abstract
Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
| | - Yusuke Maruyama
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Hikaru Iwashita
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Haruyasu Kato
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
- Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Ishikawa, Japan
| | - Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Niiza, Saitama, Japan
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba, Japan
| |
Collapse
|
26
|
Ripoli C, Dagliyan O, Renna P, Pastore F, Paciello F, Sollazzo R, Rinaudo M, Battistoni M, Martini S, Tramutola A, Sattin A, Barone E, Saneyoshi T, Fellin T, Hayashi Y, Grassi C. Engineering memory with an extrinsically disordered kinase. SCIENCE ADVANCES 2023; 9:eadh1110. [PMID: 37967196 PMCID: PMC10651130 DOI: 10.1126/sciadv.adh1110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
Synaptic plasticity plays a crucial role in memory formation by regulating the communication between neurons. Although actin polymerization has been linked to synaptic plasticity and dendritic spine stability, the causal link between actin polymerization and memory encoding has not been identified yet. It is not clear whether actin polymerization and structural changes in dendritic spines are a driver or a consequence of learning and memory. Using an extrinsically disordered form of the protein kinase LIMK1, which rapidly and precisely acts on ADF/cofilin, a direct modifier of actin, we induced long-term enlargement of dendritic spines and enhancement of synaptic transmission in the hippocampus on command. The activation of extrinsically disordered LIMK1 in vivo improved memory encoding and slowed cognitive decline in aged mice exhibiting reduced cofilin phosphorylation. The engineered memory by an extrinsically disordered LIMK1 supports a direct causal link between actin-mediated synaptic transmission and memory.
Collapse
Affiliation(s)
- Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Onur Dagliyan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Pietro Renna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Battistoni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Martini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Takeo Saneyoshi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
27
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
28
|
Chang SH, Chang YM, Chen HY, Shaw FZ, Shyu BC. Time-course analysis of frontal gene expression profiles in the rat model of posttraumatic stress disorder and a comparison with the conditioned fear model. Neurobiol Stress 2023; 27:100569. [PMID: 37771408 PMCID: PMC10522909 DOI: 10.1016/j.ynstr.2023.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex disorder that involves physiological, emotional, and cognitive dysregulation that may occur after exposure to a life-threatening event. In contrast with the condition of learned fear with resilience to extinction, abnormal fear with impaired fear extinction and exaggeration are considered crucial factors for the pathological development of PTSD. The prefrontal cortex (mPFC) is considered a critical region of top-down control in fear regulation, which involves the modulation of fear expression and extinction. The pathological course of PTSD is usually chronic and persistent; a number of studies have indicated temporal progression in gene expression and phenotypes may be involved in PTSD pathology. In the current study, we use a well-established modified single-prolonged stress (SPS&FS) rat model to feature PTSD-like phenotypes and compared it with a footshock fear conditioning model (FS model); we collected the frontal tissue after extreme stress exposure or fear conditioning and extracted RNA for transcriptome-level gene sequencing. We compared the genetic profiling of the mPFC at early (<2 h after solely FS or SPS&FS exposure) and late (7 days after solely FS or SPS&FS exposure) stages in these two models. First, we identified temporal differences in the expressional patterns between these two models and found pathways such as protein synthesis factor eukaryotic initiation factor 2 (EIF2), transcription factor NF-E2-related factor 2 (NRF2)-mediated oxidative stress response, and acute phase responding signaling enriched in the early stage in both models with significant p-values. Furthermore, in the late stage, the sirtuin signaling pathway was enriched in both models; other pathways such as STAT3, cAMP, lipid metabolism, Gα signaling, and increased fear were especially enriched in the late stage of the SPS&FS model. However, pathways such as VDR/RXR, GP6, and PPAR signaling were activated significantly in the FS model's late stage. Last, the network analysis revealed the temporal dynamics of psychological disorder, the endocrine system, and also genes related to increased fear in the two models. This study could help elucidate the genetic temporal alteration and stage-specific pathways in these two models, as well as a better understanding of the transcriptome-level differences between them.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
29
|
Li M, Jiang H, Wang Y, Xu Z, Xu H, Chen Y, Zhu J, Lin Z, Zhang M. Effect of arctigenin on neurological diseases: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116642. [PMID: 37236381 DOI: 10.1016/j.jep.2023.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/25/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L. is a common specie of Asteraceae. Its main active ingredient, Arctigenin (AG), in mature seeds exerts pharmacological effects on the Central Nervous System (CNS). AIM OF THE STUDY To review studies on the specific effects of the AG mechanism on various CNS diseases and elucidate signal transduction mechanisms and their pharmacological actions. MATERIALS AND METHODS This investigation reviewed the essential role of AG in treating neurological disorders. Basic information on Arctium lappa L. was retrieved from the Pharmacopoeia of the People's Republic of China. The related articles from 1981 to 2022 on the network database (including CNKI, PubMed, and Wan Fang and so on) were reviewed using AG and CNS diseases-related terms such as Arctigenin and Epilepsy. RESULTS It was confirmed that AG has a therapeutic effect on Alzheimer's disease, Glioma, infectious CNS diseases (such as Toxoplasma and Japanese Encephalitis Virus), Parkinson's disease, Epilepsy, etc. In these diseases, related experiments such as a Western blot analysis revealed that AG could alter the content of some key factors (such as the reduction of Aβ in Alzheimer's disease). However, in-vivo AG's metabolic process and possible metabolites are still undetermined. CONCLUSION Based on this review, the existing pharmacological research has indeed made objective progress to elucidate how AG prevents and treats CNS diseases, especially senile degenerative disease such as Alzheimer's diseases. It was revealed that AG could be used as a potential nervous system drug as it has a wide range of effects in theory with markedly high application value, especially in the elder group. However, the existing studies are limited to in-vitro experiments; therefore, little is known about how AG metabolizes and functions in-vivo, limiting its clinical application and requiring further research.
Collapse
Affiliation(s)
- Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
30
|
Arihara Y, Fukuyama Y, Kida S. Consolidation, reconsolidation, and extinction of contextual fear memory depend on de novo protein synthesis in the locus coeruleus. Brain Res Bull 2023; 202:110746. [PMID: 37604301 DOI: 10.1016/j.brainresbull.2023.110746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Memory consolidation is the process underlying the stabilization of labile short-term memory and the generation of long-term memory for persistent memory storage. The retrieval of contextual fear memory induces two distinct and opposite memory processes: reconsolidation and extinction. Reconsolidation re-stabilizes retrieved memory for re-storage, whereas memory extinction weakens fear memory and generates a new inhibitory memory. Importantly, the requirement for new gene expression is a critical biochemical feature of the consolidation, reconsolidation, and long-term extinction of memory. The locus coeruleus (LC) is a small nucleus in the brain stem that is composed predominantly of noradrenergic neurons that project to many brain regions. Recent studies have shown that the LC plays modulatory roles in the consolidation and extinction of auditory fear memory through its projections to brain regions contributing to memory storage. Here, we show that the LC is required for the consolidation, reconsolidation, and long-term extinction of contextual fear memory. We first observed that c-fos expression was induced in the LC following contextual fear conditioning to induce consolidation and following short and long re-exposure to the conditioning context to induce reconsolidation and long-term extinction, respectively. More importantly, inhibition of protein synthesis in the LC by a micro-infusion of anisomycin blocked the consolidation, reconsolidation, and long-term extinction of contextual fear memory. Our findings suggest that consolidation, reconsolidation, and long-term extinction occur in the LC and that the LC plays an essential role in memory storage and maintenance.
Collapse
Affiliation(s)
- Yu Arihara
- :Department of Applied Biological Chemistry, Graduate school of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yudai Fukuyama
- :Department of Applied Biological Chemistry, Graduate school of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoshi Kida
- :Department of Applied Biological Chemistry, Graduate school of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan; Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
31
|
Chyb A, Włodarczyk R, Drzewińska‐Chańko J, Jedlikowski J, Walden KKO, Minias P. Urbanization is associated with non-coding polymorphisms in candidate behavioural genes in the Eurasian coot. Ecol Evol 2023; 13:e10572. [PMID: 37791294 PMCID: PMC10542476 DOI: 10.1002/ece3.10572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
Extensive transformation of natural land cover into urbanized areas enhances accumulation of phenotypic differences between animals from urban and nonurban populations, but there is little information on whether these changes, especially in terms of animal behaviour and circadian rhythm, have a genetic basis. The aim of this study was to investigate genetic background of behavioural differences between four pairs of urban and nonurban populations of a common waterbird, the Eurasian coot Fulica atra. For this purpose, we quantified polymorphisms in personality-related candidate genes, previously reported to be associated with avian circadian rhythms and behavioural traits that may be crucial for urban life. We found general associations between landscape urbanization level and polymorphisms in 3'UTR region of CREB1 gene encoding transcriptional factor, which participates in development of cognitive functions and regulation of circadian rhythm. We also found significant differentiation between urban and nonurban populations in the intronic region of CKIɛ gene responsible for regulation of circadian clock. Although we lacked evidence for linkage of this intronic variation with coding polymorphisms, genetic differentiation between urban populations was significantly stronger at CKIɛ intron compared with neutral microsatellite markers, suggesting possible local adaptations of CKIɛ expression regulation to specific urban sites. Our results indicate that behavioural differentiation between urban and nonurban coot populations may be the effect of habitat-specific selective pressure resulting in genetic adaptations to urban environment and supporting the microevolutionary scenario. These adaptations, however, prevailed in non-coding regulatory rather than coding gene regions and showed either general or local patterns, revealing high complexity of associations between behaviour and landscape urbanization in birds.
Collapse
Affiliation(s)
- Amelia Chyb
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Radosław Włodarczyk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Joanna Drzewińska‐Chańko
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| | - Jan Jedlikowski
- Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Kimberly K. O. Walden
- Roy J. Carver Biotechnology CenterUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental ProtectionUniversity of ŁódźŁódźPoland
| |
Collapse
|
32
|
Stevenson ME, Bieri G, Kaletsky R, St Ange J, Remesal L, Pratt KJB, Zhou S, Weng Y, Murphy CT, Villeda SA. Neuronal activation of G αq EGL-30/GNAQ late in life rejuvenates cognition across species. Cell Rep 2023; 42:113151. [PMID: 37713310 PMCID: PMC10627507 DOI: 10.1016/j.celrep.2023.113151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.
Collapse
Affiliation(s)
- Morgan E Stevenson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregor Bieri
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Rachel Kaletsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan St Ange
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - L Remesal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Karishma J B Pratt
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Shiyi Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Wang L, Chang G, Yang M, Xu Z, Wang J, Xu H, He M, Dai L, Zhao Y, Ji Z, Zhang L. The Noninvasive Sonothermogenetics Used for Neuromodulation in M1 Region of Mice Brain by Overexpression of TRPV1. Neuroscience 2023; 527:22-36. [PMID: 37482284 DOI: 10.1016/j.neuroscience.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Sonogenetics is preferred for neuroregulation and the treatment of brain diseases due to its noninvasive properties. Ultrasonic stimulation produces thermal and mechanical effects, among others. Since transient receptor potential vanilloid 1 (TRPV1) could be activated at 42 °C, it is overexpressed in the M1 region of the mouse motor cortex to sense the change of temperature upon being stimulated by focused ultrasound. Whether the heat generated by ultrasonic stimulation could activate TRPV1 in the M1 region and induce changes in electromyography (EMG) signals collected from the mice's triceps was carefully verified. The position of the focused ultrasound and the temperature of the tissue at the location of the focused position were simulated using COMSOL software and verified via experiments. For Neuro-2a cells with TRPV1 overexpression, 42 °C could activate the TRPV1 and induce calcium influx. For mice with TRPV1 overexpression in the M1 region, tissue temperature of >42 °C in the M1 region induces an increased number of cfos, suggesting that neurons with overexpressed TRPV1 in the M1 region can be activated using focused ultrasound. Furthermore, when the temperature is >42 °C, the peak-to-peak value of the EMG signal for mice with TRPV1 overexpression in the M1 region was higher than that for mice without TRPV1 overexpression. The immunohistochemical results showed that ultrasound was not harmful to the stimulation site. The noninvasive ultrasound stimulation combined with thermosensitive protein TRPV1 overexpressed in neurocytes as sonothermogenetics technology has great potential to be used for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lulu Wang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Guanglei Chang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Miaomiao Yang
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Zhaobin Xu
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Jianye Wang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Hongliang Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Province, China
| | - Meixia He
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Liping Dai
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Yang Zhao
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Zhenyu Ji
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China.
| | - Liguo Zhang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China.
| |
Collapse
|
34
|
Tsang CK, Mi Q, Su G, Hwa Lee G, Xie X, D'Arcangelo G, Huang L, Steven Zheng XF. Maf1 is an intrinsic suppressor against spontaneous neural repair and functional recovery after ischemic stroke. J Adv Res 2023; 51:73-90. [PMID: 36402285 PMCID: PMC10491990 DOI: 10.1016/j.jare.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Spontaneous recovery after CNS injury is often very limited and incomplete, leaving most stroke patients with permanent disability. Maf1 is known as a key growth suppressor in proliferating cells. However, its role in neuronal cells after stroke remains unclear. OBJECTIVE We aimed to investigate the mechanistic role of Maf1 in spontaneous neural repair and evaluated the therapeutic effect of targeting Maf1 on stroke recovery. METHODS We used mouse primary neurons to determine the signaling mechanism of Maf1, and the cleavage-under-targets-and-tagmentation-sequencing to map the whole-genome promoter binding sites of Maf1 in isolated mature cortical neurons. Photothrombotic stroke model was used to determine the therapeutic effect on neural repair and functional recovery by AAV-mediated Maf1 knockdown. RESULTS We found that Maf1 mediates mTOR signaling to regulate RNA polymerase III (Pol III)-dependent rRNA and tRNA transcription in mouse cortical neurons. mTOR regulates neuronal Maf1 phosphorylation and subcellular localization. Maf1 knockdown significantly increases Pol III transcription, neurite outgrowth and dendritic spine formation in neurons. Conversely, Maf1 overexpression suppresses such activities. In response to photothrombotic stroke in mice, Maf1 expression is increased and accumulates in the nucleus of neurons in the peripheral region of infarcted cortex, which is the key region for neural remodeling and repair during spontaneous recovery. Intriguingly, Maf1 knockdown in the peri-infarct cortex significantly enhances neural plasticity and functional recovery. Mechanistically, Maf1 not only interacts with the promoters and represses Pol III-transcribed genes, but also those of CREB-associated genes that are critical for promoting plasticity during neurodevelopment and neural repair. CONCLUSION These findings indicate Maf1 as an intrinsic neural repair suppressor against regenerative capability of mature CNS neurons, and suggest that Maf1 is a potential therapeutic target for enhancing functional recovery after ischemic stroke and other CNS injuries.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Qiongjie Mi
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Guangpu Su
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gum Hwa Lee
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xuemin Xie
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Li'an Huang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China; Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University Guangzhou, Guangdong, China.
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
35
|
Guskjolen A, Cembrowski MS. Engram neurons: Encoding, consolidation, retrieval, and forgetting of memory. Mol Psychiatry 2023; 28:3207-3219. [PMID: 37369721 PMCID: PMC10618102 DOI: 10.1038/s41380-023-02137-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Tremendous strides have been made in our understanding of the neurobiological substrates of memory - the so-called memory "engram". Here, we integrate recent progress in the engram field to illustrate how engram neurons transform across the "lifespan" of a memory - from initial memory encoding, to consolidation and retrieval, and ultimately to forgetting. To do so, we first describe how cell-intrinsic properties shape the initial emergence of the engram at memory encoding. Second, we highlight how these encoding neurons preferentially participate in synaptic- and systems-level consolidation of memory. Third, we describe how these changes during encoding and consolidation guide neural reactivation during retrieval, and facilitate memory recall. Fourth, we describe neurobiological mechanisms of forgetting, and how these mechanisms can counteract engram properties established during memory encoding, consolidation, and retrieval. Motivated by recent experimental results across these four sections, we conclude by proposing some conceptual extensions to the traditional view of the engram, including broadening the view of cell-type participation within engrams and across memory stages. In collection, our review synthesizes general principles of the engram across memory stages, and describes future avenues to further understand the dynamic engram.
Collapse
Affiliation(s)
- Axel Guskjolen
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Mark S Cembrowski
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
36
|
Spies J, Covarrubias-Pinto A, Carcamo C, Arancibia Y, Salazar F, Paredes-Martinez C, Otth C, Castro M, Zambrano A. Modulation of Synaptic Plasticity Genes Associated to DNA Damage in a Model of Huntington's Disease. Neurochem Res 2023; 48:2093-2103. [PMID: 36790580 DOI: 10.1007/s11064-023-03889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Huntington's disease (HD) is a disease characterized by the progressive degeneration of nerve cells in the brain. DNA damage has been implicated in many neurological disorders; however, the association between this damage and the impaired signaling related to neurodegeneration is still unclear. The transcription factor c-AMP-responsive element binding protein (CREB) has a relevant role in the neuronal plasticity process regulating the expression of several genes, including brain-derived neurotrophic factor (BDNF). Here we analyzed the direct link between DNA damage and the expression of genes involved in neuronal plasticity. The study was performed in model cell lines STHdhQ7 (wild type) and STHdhQ111 (HD model). Treatment with Etoposide (Eto) was used to induce double-strand breaks (DSBs) to evaluate the DNA damage response (DDR) and the expression of synaptic plasticity genes. Eto treatment induced phosphorylation of ATM (p-ATM) and H2AX (γH2AX), markers of DDR, in both cell lines. Interestingly, upon DNA damage, STHdhQ7 cells showed increased expression of activity-regulated cytoskeleton associated protein (Arc) and BDNF when compared to the HD cell line model. Additionally, Eto induced CREB activation with a differential localization of its co-activators in the cell types analyzed. These results suggest that DSBs impact differentially the gene expression patterns of plasticity genes in the normal cell line versus the HD model. This effect is mediated by the impaired localization of CREB-binding protein (CBP) and histone acetylation in the HD model. Our results highlight the role of epigenetics and DNA repair on HD and therefore we suggest that future studies should explore in depth the epigenetic landscape on neuronal pathologies with the goal to further understand molecular mechanisms and pinpoint therapeutic targets.
Collapse
Affiliation(s)
- Johana Spies
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Adriana Covarrubias-Pinto
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Constanza Carcamo
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Yennyfer Arancibia
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Fernanda Salazar
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
| | - Carolina Paredes-Martinez
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carola Otth
- Facultad de Medicina, Instituto de Microbiología Clínica, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Maite Castro
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Valparaíso, Chile
| | - Angara Zambrano
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Casilla (P. O. Box) 567, Valdivia, Chile.
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
37
|
Gasparyan A, Maldonado Sanchez D, Navarrete F, Sion A, Navarro D, García-Gutiérrez MS, Rubio Valladolid G, Jurado Barba R, Manzanares J. Cognitive Alterations in Addictive Disorders: A Translational Approach. Biomedicines 2023; 11:1796. [PMID: 37509436 PMCID: PMC10376598 DOI: 10.3390/biomedicines11071796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
The cognitive decline in people with substance use disorders is well known and can be found during both the dependence and drug abstinence phases. At the clinical level, cognitive decline impairs the response to addiction treatment and increases dropout rates. It can be irreversible, even after the end of drug abuse consumption. Improving our understanding of the molecular and cellular alterations associated with cognitive decline could be essential to developing specific therapeutic strategies for its treatment. Developing animal models to simulate drug abuse-induced learning and memory alterations is critical to continue exploring this clinical situation. The main aim of this review is to summarize the most recent evidence on cognitive impairment and the associated biological markers in patients addicted to some of the most consumed drugs of abuse and in animal models simulating this clinical situation. The available information suggests the need to develop more studies to further explore the molecular alterations associated with cognitive impairment, with the ultimate goal of developing new potential therapeutic strategies.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | | | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Ana Sion
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Faculty of Psychology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Gabriel Rubio Valladolid
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Department of Psychiatry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rosa Jurado Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Faculty of Health, Universidad Camilo José Cela, 28001 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
38
|
Chandra R, Farah F, Muñoz-Lobato F, Bokka A, Benedetti KL, Brueggemann C, Saifuddin MFA, Miller JM, Li J, Chang E, Varshney A, Jimenez V, Baradwaj A, Nassif C, Alladin S, Andersen K, Garcia AJ, Bi V, Nordquist SK, Dunn RL, Garcia V, Tokalenko K, Soohoo E, Briseno F, Kaur S, Harris M, Guillen H, Byrd D, Fung B, Bykov AE, Odisho E, Tsujimoto B, Tran A, Duong A, Daigle KC, Paisner R, Zuazo CE, Lin C, Asundi A, Churgin MA, Fang-Yen C, Bremer M, Kato S, VanHoven MK, L'Étoile ND. Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell 2023; 186:2911-2928.e20. [PMID: 37269832 PMCID: PMC10354834 DOI: 10.1016/j.cell.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fatima Farah
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fernando Muñoz-Lobato
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anirudh Bokka
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mashel Fatema A Saifuddin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia M Miller
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joy Li
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Eric Chang
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Aruna Varshney
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Vanessa Jimenez
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Anjana Baradwaj
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Cibelle Nassif
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sara Alladin
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kristine Andersen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Angel J Garcia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Bi
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sarah K Nordquist
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raymond L Dunn
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vanessa Garcia
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kateryna Tokalenko
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emily Soohoo
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fabiola Briseno
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sukhdeep Kaur
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Malcolm Harris
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Hazel Guillen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Decklin Byrd
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Brandon Fung
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Andrew E Bykov
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emma Odisho
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Bryan Tsujimoto
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alan Tran
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alex Duong
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kevin C Daigle
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebekka Paisner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos E Zuazo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christine Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Bremer
- Department of Mathematics and Statistics, San José State University, San José, CA 95192, USA
| | - Saul Kato
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miri K VanHoven
- Department of Biological Sciences, San José State University, San José, CA 95192, USA.
| | - Noëlle D L'Étoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
39
|
Geva N, Deitch D, Rubin A, Ziv Y. Time and experience differentially affect distinct aspects of hippocampal representational drift. Neuron 2023:S0896-6273(23)00378-1. [PMID: 37315556 DOI: 10.1016/j.neuron.2023.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/22/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Hippocampal activity is critical for spatial memory. Within a fixed, familiar environment, hippocampal codes gradually change over timescales of days to weeks-a phenomenon known as representational drift. The passage of time and the amount of experience are two factors that profoundly affect memory. However, thus far, it has remained unclear to what extent these factors drive hippocampal representational drift. Here, we longitudinally recorded large populations of hippocampal neurons in mice while they repeatedly explored two different familiar environments that they visited at different time intervals over weeks. We found that time and experience differentially affected distinct aspects of representational drift: the passage of time drove changes in neuronal activity rates, whereas experience drove changes in the cells' spatial tuning. Changes in spatial tuning were context specific and largely independent of changes in activity rates. Thus, our results suggest that representational drift is a multi-faceted process governed by distinct neuronal mechanisms.
Collapse
Affiliation(s)
- Nitzan Geva
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Deitch
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Rubin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Yaniv Ziv
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Kouhnavardi S, Cabatic M, Mañas-Padilla MC, Malabanan MA, Smani T, Cicvaric A, Muñoz Aranzalez EA, Koenig X, Urban E, Lubec G, Castilla-Ortega E, Monje FJ. miRNA-132/212 Deficiency Disrupts Selective Corticosterone Modulation of Dorsal vs. Ventral Hippocampal Metaplasticity. Int J Mol Sci 2023; 24:9565. [PMID: 37298523 PMCID: PMC10253409 DOI: 10.3390/ijms24119565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Cortisol is a potent human steroid hormone that plays key roles in the central nervous system, influencing processes such as brain neuronal synaptic plasticity and regulating the expression of emotional and behavioral responses. The relevance of cortisol stands out in the disease, as its dysregulation is associated with debilitating conditions such as Alzheimer's Disease, chronic stress, anxiety and depression. Among other brain regions, cortisol importantly influences the function of the hippocampus, a structure central for memory and emotional information processing. The mechanisms fine-tuning the different synaptic responses of the hippocampus to steroid hormone signaling remain, however, poorly understood. Using ex vivo electrophysiology and wild type (WT) and miR-132/miR-212 microRNAs knockout (miRNA-132/212-/-) mice, we examined the effects of corticosterone (the rodent's equivalent to cortisol in humans) on the synaptic properties of the dorsal and ventral hippocampus. In WT mice, corticosterone predominantly inhibited metaplasticity in the dorsal WT hippocampi, whereas it significantly dysregulated both synaptic transmission and metaplasticity at dorsal and ventral regions of miR-132/212-/- hippocampi. Western blotting further revealed significantly augmented levels of endogenous CREB and a significant CREB reduction in response to corticosterone only in miR-132/212-/- hippocampi. Sirt1 levels were also endogenously enhanced in the miR-132/212-/- hippocampi but unaltered by corticosterone, whereas the levels of phospo-MSK1 were only reduced by corticosterone in WT, not in miR-132/212-/- hippocampi. In behavioral studies using the elevated plus maze, miRNA-132/212-/- mice further showed reduced anxiety-like behavior. These observations propose miRNA-132/212 as potential region-selective regulators of the effects of steroid hormones on hippocampal functions, thus likely fine-tuning hippocampus-dependent memory and emotional processing.
Collapse
Affiliation(s)
- Shima Kouhnavardi
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maureen Cabatic
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Marife-Astrid Malabanan
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41013 Seville, Spain
| | - Ana Cicvaric
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Edison Alejandro Muñoz Aranzalez
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ernst Urban
- Department for Pharmaceutical Sciences, Josef-Holaubek-Platz 2, 2D 303, 1090 Vienna, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
41
|
Malakasis N, Chavlis S, Poirazi P. Synaptic turnover promotes efficient learning in bio-realistic spiking neural networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541722. [PMID: 37292929 PMCID: PMC10245885 DOI: 10.1101/2023.05.22.541722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While artificial machine learning systems achieve superhuman performance in specific tasks such as language processing, image and video recognition, they do so use extremely large datasets and huge amounts of power. On the other hand, the brain remains superior in several cognitively challenging tasks while operating with the energy of a small lightbulb. We use a biologically constrained spiking neural network model to explore how the neural tissue achieves such high efficiency and assess its learning capacity on discrimination tasks. We found that synaptic turnover, a form of structural plasticity, which is the ability of the brain to form and eliminate synapses continuously, increases both the speed and the performance of our network on all tasks tested. Moreover, it allows accurate learning using a smaller number of examples. Importantly, these improvements are most significant under conditions of resource scarcity, such as when the number of trainable parameters is halved and when the task difficulty is increased. Our findings provide new insights into the mechanisms that underlie efficient learning in the brain and can inspire the development of more efficient and flexible machine learning algorithms.
Collapse
Affiliation(s)
- Nikos Malakasis
- School of Medicine, University of Crete, Heraklion 70013, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| |
Collapse
|
42
|
Barrio-Alonso E, Lituma PJ, Notaras MJ, Albero R, Bouchekioua Y, Wayland N, Stankovic IN, Jain T, Gao S, Calderon DP, Castillo PE, Colak D. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep 2023; 42:112375. [PMID: 37043347 PMCID: PMC10564971 DOI: 10.1016/j.celrep.2023.112375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus. We identify TIMELESS as a chromatin-bound protein that targets synaptic-plasticity-related genes such as phosphodiesterase 4B (Pde4b). By promoting Pde4b transcription, TIMELESS negatively regulates cAMP signaling to modulate AMPA receptor GluA1 function and influence synaptic plasticity. Conditional deletion of Timeless in the adult forebrain impairs working and contextual fear memory in mice. These cognitive phenotypes were accompanied by attenuation of hippocampal Schaffer-collateral synapse long-term potentiation. Together, these data establish a neuron-specific function of mammalian TIMELESS by defining a mechanism that regulates synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Robert Albero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Youcef Bouchekioua
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Natalie Wayland
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Isidora N Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Tanya Jain
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA; Gale & Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
43
|
Li YD, Luo YJ, Xie L, Tart DS, Sheehy RN, Zhang L, Coleman LG, Chen X, Song J. Activation of hypothalamic-enhanced adult-born neurons restores cognitive and affective function in Alzheimer's disease. Cell Stem Cell 2023; 30:415-432.e6. [PMID: 37028406 PMCID: PMC10150940 DOI: 10.1016/j.stem.2023.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/29/2022] [Accepted: 02/14/2023] [Indexed: 04/09/2023]
Abstract
Patients with Alzheimer's disease (AD) exhibit progressive memory loss, depression, and anxiety, accompanied by impaired adult hippocampal neurogenesis (AHN). Whether AHN can be enhanced in impaired AD brain to restore cognitive and affective function remains elusive. Here, we report that patterned optogenetic stimulation of the hypothalamic supramammillary nucleus (SuM) enhances AHN in two distinct AD mouse models, 5×FAD and 3×Tg-AD. Strikingly, the chemogenetic activation of SuM-enhanced adult-born neurons (ABNs) rescues memory and emotion deficits in these AD mice. By contrast, SuM stimulation alone or activation of ABNs without SuM modification fails to restore behavioral deficits. Furthermore, quantitative phosphoproteomics analyses reveal activation of the canonical pathways related to synaptic plasticity and microglia phagocytosis of plaques following acute chemogenetic activation of SuM-enhanced (vs. control) ABNs. Our study establishes the activity-dependent contribution of SuM-enhanced ABNs in modulating AD-related deficits and informs signaling mechanisms mediated by the activation of SuM-enhanced ABNs.
Collapse
Affiliation(s)
- Ya-Dong Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dalton S Tart
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan N Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Libo Zhang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon G Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Kida S. Interaction between reconsolidation and extinction of fear memory. Brain Res Bull 2023; 195:141-144. [PMID: 36801360 DOI: 10.1016/j.brainresbull.2023.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Memory retrieval is not a passive process. When a memory is retrieved, it returns to a labile state and undergoes reconsolidation to be re-stored. The discovery of this memory reconsolidation has had a major impact on memory consolidation theory. In other words, it suggested that memory is more dynamic than expected and can be modified through reconsolidation. Conversely, a conditioned fear memory undergoes memory extinction after retrieval, and it is thought that extinction does not reflect its erasure, but rather new inhibitory learning of the original conditioned memory. We have investigated the relationship between memory reconsolidation and extinction by comparing their behavioral, cellular, and molecular mechanisms. Memory reconsolidation and extinction have opposite functions on contextual fear and inhibitory avoidance memories; reconsolidation maintains or strengthens fear memory, whereas extinction weakens it. Importantly, reconsolidation and extinction are contrasting memory processes not only at the behavioral level but also at cellular and molecular levels. Furthermore, our analysis revealed that reconsolidation and extinction are not independent processes, but interact with each other. Interestingly, we also found a "memory transition process" that switches the fear memory process from reconsolidation to extinction after retrieval. Investigating the mechanisms of reconsolidation and extinction will contribute to our understanding of the dynamic nature of memory.
Collapse
Affiliation(s)
- Satoshi Kida
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
45
|
de Andrade CV, Soliani AG, Cerutti SM. Standardized extract of Ginkgo biloba treatment and novelty on the weak encoding of spatial recognition memory in rats. Learn Mem 2023; 30:85-95. [PMID: 37072140 PMCID: PMC10165992 DOI: 10.1101/lm.053755.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
Long-term memory (LTM) formation is dependent on neurochemical changes that guarantee that a recently formed memory (short-term memory [STM]) remains in the specific neural circuitry via the consolidation process. The persistence of recognition memory has been evidenced by using behavioral tagging in young adult rats, but it has not been effective on aging. Here, we investigated the effects of treatment with a standardized extract of Ginkgo biloba (EGb) associated with novelty on the consolidation of object location memory (OLM) and its persistence after weak training of spatial object preference in young adult and aged rats. The object location task used in this study included two habituation sessions, training sessions associated or not associated with EGb treatment and contextual novelty, and short-term or long-term retention testing sessions. Altogether, our data showed that treatment with EGb associated with novelty close to the time of encoding resulted in STM that lasted for 1 h and persisted for 24 h for both young adult and aged rats. In aged rats, the cooperative mechanisms induced robust long-term OLM. Our findings support and extend our knowledge about recognition memory in aged rats and the modulating effects of EGb treatment and contextual novelty on the persistence of memory.
Collapse
Affiliation(s)
- Carla Vitor de Andrade
- The Graduate Program in Structural and Functional Biology, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
| | - Andressa Gabriela Soliani
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
- the Graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
| | - Suzete Maria Cerutti
- The Graduate Program in Structural and Functional Biology, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
- the Graduate Program in Chemical Biology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo 09972-270, Brazil
| |
Collapse
|
46
|
Bentley EP, Scholl D, Wright PE, Deniz AA. Coupling of binding and differential subdomain folding of the intrinsically disordered transcription factor CREB. FEBS Lett 2023; 597:917-932. [PMID: 36480418 PMCID: PMC10089947 DOI: 10.1002/1873-3468.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.
Collapse
Affiliation(s)
- Emily P. Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
47
|
Shekarian M, Salehi I, Raoufi S, Asadbegi M, Kourosh-Arami M, Komaki A. Neuroprotective effects of vinpocetine, as a phosphodiesterase 1 inhibitor, on long-term potentiation in a rat model of Alzheimer's disease. BMC Neurosci 2023; 24:20. [PMID: 36927298 PMCID: PMC10018848 DOI: 10.1186/s12868-023-00790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Vinpocetine (Vin) is known as a phosphodiesterase 1 inhibitor (PDE1-I) drug with multilateral effects, including antioxidant and anti-inflammatory activity. In this research, we investigated the neuroprotective and therapeutic effects of Vin through hippocampal synaptic plasticity on a rat's model of Alzheimer's disease (AD) induced by an intracerebroventricular (ICV) injection of beta-amyloid (Aβ). METHODS Sixty adult male Wistar rats were randomly divided into six groups: 1. control, 2. sham, 3. Aβ, 4. pretreatment (Vin + Aβ): Vin (4 mg/kg, gavage) for 30 days and then, inducing an AD model by an ICV injection of Aβ(1-42), 5. treatment (Aβ + Vin): inducing an AD model and then receiving Vin for 30 days by gavage, and 7. pretreatment + treatment (Vin + Aβ + Vin): receiving Vin by gavage for 30 days before and 30 days after the induction of an AD model. After these procedures, via stereotaxic surgery, the stimulating electrodes were placed at the perforant pathway (PP) and the recording electrodes were implanted in the dentate gyrus. RESULTS Excitatory postsynaptic potential (EPSP) slope and population spike (PS) amplitude in the Aβ group meaningfully diminished compared to the control group after the induction of long-term potentiation (LTP). CONCLUSIONS Vin could significantly prevent the Aβ effects on LTP. It can be concluded that pretreatment and treatment with Vin can be neuroprotective against harmful consequences of Aβ on hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Meysam Shekarian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Iraj Salehi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
| | - Masoumeh Asadbegi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, 65178/518, Iran.
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
48
|
Pramio DT, Vieceli FM, Varella-Branco E, Goes CP, Kobayashi GS, da Silva Pelegrina DV, de Moraes BC, El Allam A, De Kumar B, Jara G, Farfel JM, Bennett DA, Kundu S, Viapiano MS, Reis EM, de Oliveira PSL, Dos Santos E Passos-Bueno MR, Rothlin CV, Ghosh S, Schechtman D. DNA methylation of the promoter region at the CREB1 binding site is a mechanism for the epigenetic regulation of brain-specific PKMζ. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194909. [PMID: 36682583 PMCID: PMC10037092 DOI: 10.1016/j.bbagrm.2023.194909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Carolina Purcell Goes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil; Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | | | | | | | - Aicha El Allam
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Gabriel Jara
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian National Biosciences Laboratory (LNBio) Campinas, SP, Brazil
| | - José Marcelo Farfel
- Traumatology and Orthopedy Department, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Health Sciences Program, Instituto de Assistência Medica ao Servidor Público do Estado (IAMSPE), SP, Brazil
| | - David Alan Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Somanath Kundu
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian National Biosciences Laboratory (LNBio) Campinas, SP, Brazil
| | | | - Carla V Rothlin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
49
|
Inactivation of the dorsal CA1 hippocampus impairs the consolidation of discriminative avoidance memory by modulating the intrinsic and extrinsic hippocampal circuitry. J Chem Neuroanat 2023; 128:102209. [PMID: 36496001 DOI: 10.1016/j.jchemneu.2022.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Despite progress in understanding the role of the dorsal hippocampus in the acquisition, consolidation and retrieval of episodic-like memory, plastic changes within the intra- and extrahippocampal circuits for aversive memory formation and anxiety-like behaviours must still be identified since both processes contribute to multiple aspects of flexible decision-making. Here, we investigated the effect of reversible inactivation induced by a muscimol microinfusion into the dorsal CA1 subfield (dCA1) either prior to acquisition or to retrieval testing of a discriminative avoidance task performed in a plus-maze apparatus (PM-DAT). Differential cAMP-response-element-binding protein 1 (CREB-1) expression in the dorsal and ventral CA1 and CA3 of the hippocampus (dCA1, dCA3, vCA1, and vCA3), dorsal dentate gyrus (dDG), and infralimbic (IL) and prelimbic (PrL) regions of the medial prefrontal cortex was also assessed to investigate the molecular changes associated with the consolidation or retrieval of episodic-like memory and anxiety. Adult male Wistar rats were assigned to two control groups, learning (no surgery/no microinfusion, n = 7) and sham-operated (sham surgery/no microinfusion, n = 6) groups, or four experimental groups, in which the vehicle (0.5 µl per side, n = 8/per group) or a GABAA receptor agonist (0.5 µg/0.5 µl muscimol/per side) was bilaterally microinfused in the dCA1 30 min prior to training (n = 9) or prior to testing sessions (n = 6) with a 24 h intertrial interval. Memory was evaluated using the percentage of time spent in the nonaversive enclosed arms, whereas anxiety was measured by calculating the percentages of time spent and entries into open arms and the percentage of time spent self-grooming. Our findings corroborated previous data showing that the dCA1 is required for discriminative avoidance consolidation. Furthermore, additional information indicated that impaired long-term memory was associated with downregulated CREB-1 expression in the dDG and vCA3. Moreover, memory retrieval was not impaired by dCA1 inactivation prior to the testing session, which was associated with the upregulation of CREB-1 in the dCA3 and vCA1 and downregulation in the dCA1 and vCA3. Differential expression of CREB was not identified in the IL or PrL areas. These results improve our understanding of how the hippocampal circuitry mediates the acquisition and retrieval of aversive memory and anxiety.
Collapse
|
50
|
Brozzetti L, Scambi I, Bertoldi L, Zanini A, Malacrida G, Sacchetto L, Baldassa L, Benvenuto G, Mariotti R, Zanusso G, Cecchini MP. RNAseq analysis of olfactory neuroepithelium cytological samples in individuals with Down syndrome compared to euploid controls: a pilot study. Neurol Sci 2023; 44:919-930. [PMID: 36394661 PMCID: PMC9925603 DOI: 10.1007/s10072-022-06500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
Abstract
Down syndrome is a common genetic disorder caused by partial or complete triplication of chromosome 21. This syndrome shows an overall and progressive impairment of olfactory function, detected early in adulthood. The olfactory neuronal cells are located in the nasal olfactory mucosa and represent the first sensory neurons of the olfactory pathway. Herein, we applied the olfactory swabbing procedure to allow a gentle collection of olfactory epithelial cells in seven individuals with Down syndrome and in ten euploid controls. The aim of this research was to investigate the peripheral gene expression pattern in olfactory epithelial cells through RNAseq analysis. Validated tests (Sniffin' Sticks Extended test) were used to assess olfactory function. Olfactory scores were correlated with RNAseq results and cognitive scores (Vineland II and Leiter scales). All Down syndrome individuals showed both olfactory deficit and intellectual disability. Down syndrome individuals and euploid controls exhibited clear expression differences in genes located in and outside the chromosome 21. In addition, a significant correlation was found between olfactory test scores and gene expression, while a non-significant correlation emerged between olfactory and cognitive scores. This first preliminary step gives new insights into the Down syndrome olfactory system research, starting from the olfactory neuroepithelium, the first cellular step on the olfactory way.
Collapse
Affiliation(s)
- Lorenzo Brozzetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | - Alice Zanini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | - Luca Sacchetto
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Otolaryngology Section, University of Verona, Verona, Italy
| | - Lucia Baldassa
- AGBD, Associazione Sindrome di Down, Onlus, Verona, Italy
| | | | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Unit, University of Verona, Verona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|