1
|
Obiol DJ, Vietri A, Munafó JP, Costabel MD, Antollini SS. In silico exploration of cholinergic activity and neuroprotection of novel caffeine analogues. Biochem Biophys Res Commun 2025; 750:151374. [PMID: 39884004 DOI: 10.1016/j.bbrc.2025.151374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is characterized by a cholinergic deficit, prompting conventional therapies to elevate acetylcholine levels as a compensatory measure. Two main strategies involve the inhibition of acetylcholinesterase (AChE) and/or the stimulation of acetylcholine receptors (AChR). Caffeine (CFF), known as a partial agonist of nAChR and an AChE inhibitor, acts as a cholinergic enhancer. Additionally, it is suggested that CFF may exhibit neuroprotective capabilities through the inhibition of the human adenosine receptor type 2A (hA2AR) in the brain's striatum, potentially preventing cellular apoptosis. This study explores on the design and prediction of the bioactivity of CFF analogues with the aim of enhancing cholinergic signaling and providing neuroprotection to improve their therapeutic potential. We employed tools to predict pharmacokinetic and bioactivity properties, molecular docking, molecular dynamics, and target prediction to identify potential candidates among the designed CFF analogues capable of enhancing neurotransmission and providing cellular protection. In a novel approach, a normalized index is proposed for the combined analysis of the pharmacokinetic parameters and molecular docking binding affinities, which facilitates the systematic evaluation and comparison of the synthesized analogues and minimizes subjectivity in the selection of promising candidates. Results indicated that some analogues show promise in improving cholinergic activity and providing neuroprotection. These findings instill optimism, encouraging further research to corroborate their effects, while also representing a significant step towards the development of new therapeutic agents for AD.
Collapse
Affiliation(s)
- D J Obiol
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - A Vietri
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - J P Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - M D Costabel
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Avenida Leandro N. Alem 1253, B8000CPB, Bahía Blanca, Argentina.
| | - S S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Moon M, Pyeon M, Yang J, Yun J, Yeom HD, Lee MH, Lee G, Lee JH. Subtype-selective effect and molecular regulation of celastrol and triptolide at human nicotinic acetylcholine receptors. Chem Biol Interact 2025; 408:111412. [PMID: 39914504 DOI: 10.1016/j.cbi.2025.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/12/2025]
Abstract
Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system. The results of this study indicate that celastrol and triptolide inhibit nAChR subtypes in a subtype-specific manner. This inhibitory effect was shown to be reversible, concentration-dependent, and noncompetitive. Mutation experiments were then performed to identify mutations in the binding site of nAChR determined by molecular docking studies and prioritize them based on binding energy, and it was found that triptolide had no inhibitory effect in double mutants of nAChR. These findings confirm that celastrol and triptolide selectively and effectively inhibit α3β2 and α3β4 nAChRs among various nAChR subtypes, and that celastrol and triptolide interact with a specific region of α3β4 nAChRs, which play a key role in the autonomic nervous system, without inhibiting the activity of α7 and α4β2, which act in neurodegenerative diseases.
Collapse
Affiliation(s)
- Myungmi Moon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Minsu Pyeon
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Jaehui Yang
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | - Jeongyeon Yun
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea
| | | | - Mee-Hyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea
| | - Gihyun Lee
- Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, 58245, South Korea.
| | - Junho H Lee
- Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
3
|
Fritz M, Rosa PB, Wilhelms D, Jaarola M, Ruud J, Engblom D, Klawonn AM. Nicotinic α7 receptors on cholinergic neurons in the striatum mediate cocaine-reinforcement, but not food reward. Front Mol Neurosci 2025; 17:1418686. [PMID: 39906479 PMCID: PMC11790553 DOI: 10.3389/fnmol.2024.1418686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
The neurotransmitter acetylcholine has since long been implicated in reward learning and drug addiction. However, the role of specific cholinergic receptor subtypes on different neuronal populations remain elusive. Here, we studied the function of nicotinic acetylcholinergic alpha 7 receptors (α7 nAChRs) in cocaine and food-enforced behaviors. We found that global deletion of α7 nAChRs in mice attenuates cocaine seeking in a Pavlovian conditioned place preference paradigm and decreases operant responding to cocaine in a runway task and in self-administration, without influencing responding to palatable food. This effect can be attributed to alpha 7 receptor signaling in the striatum, as selective deletion of striatal α7 nAChRs using a viral vector approach resulted in a similar decrease in cocaine-preference as that of global deletion. To investigate which type of striatal neurons are responsible for this effect, we selectively targeted Cholinergic (ChAT-expressing) neurons and dopamine D1-receptor (D1R) expressing neurons. Mice with conditional deletion of α7 nAChRs in ChAT-neurons (α7 nAChR-ChATCre) exhibited decreased cocaine place preference and intact place preference for food, while α7 nAChR-D1RCre mice had no changes in reward learning to neither food nor cocaine. Cocaine induction of striatal immediate early gene expression of cFos, FosB, Arc and EGR2 was blocked in α7 nAChR-ChATCre mice, demonstrating the importance of α7 nAChRs on cholinergic neurons for striatal neuronal activity changes. Collectively, our findings show that α7 nAChRs on cholinergic interneurons in the striatum are pivotal for learning processes related to cocaine, but not food reward.
Collapse
Affiliation(s)
- Michael Fritz
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- School of Health and Social Sciences, AKAD University of Applied Sciences, Stuttgart, Germany
- Department for Forensic Psychiatry and Psychotherapy, Ulm University, Ulm, Germany
| | - Priscila Batista Rosa
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Wilhelms
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Emergency Medicine, Linköping University Hospital, Linköping, Sweden
| | - Maarit Jaarola
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Engblom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna M. Klawonn
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Danish Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Huang Z, Pan Y, Ma K, Luo H, Zong Q, Wu Z, Zhu Z, Guan Y. Nicotine Ameliorates α-Synuclein Preformed Fibril-Induced Behavioral Deficits and Pathological Features in Mice. Appl Biochem Biotechnol 2025:10.1007/s12010-024-05086-z. [PMID: 39815141 DOI: 10.1007/s12010-024-05086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/18/2025]
Abstract
Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL). After 1 month, the motor ability, mood, spatial learning, and memory ability of the PD phenotype-like model mice were detected using open field, rotarod, Y maze, and O maze tests. The expression of pathological α-syn and apoptotic proteins, as well as the number of glial and neural stem cells in the hippocampus of mice, was detected using western blot and immunofluorescence. The results demonstrated that nicotine significantly reduced pathological α-syn accumulation, α-syn serine 129 phosphorylation, and apoptosis induced by α-syn-PFF injection in the hippocampus of mice. Nicotine also inhibited the increase in the number of glia, microglia, and neuronal apoptotic cells, and it decreased the expression of PI3K and Akt while also exhibiting significant memory impairment, motor deficits, and anxiety-like behavior. In conclusion, our findings suggest that nicotine ameliorates behavioral deficits and pathological changes in mice by inhibiting human α-syn-PFF-induced neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Haiyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 935, Jiaoling Road, Kunming, 650118, China
| | - Zhouhai Zhu
- The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
| | - Ying Guan
- The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
| |
Collapse
|
5
|
Jalaiei A, Asadi MR, Daneshmandpour Y, Rezazadeh M, Ghafouri-Fard S. Clinical, molecular, physiologic, and therapeutic feature of patients with CHRNA4 and CHRNB2 deficiency: A systematic review. J Neurochem 2025; 169:e16200. [PMID: 39193833 DOI: 10.1111/jnc.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The α4β2 nAChRs are crucial ion channels that control neurotransmitter release and play a role in various physiologic and pathologic processes. CHRNA4 encodes the α4-nAChRs, while CHRNB2 encodes the β2-nAChRs. Recent studies have found different variants of α4β2-nAChRs in individuals with conditions such as AD, ADHD, ALS, PD, and brain abnormalities. We conducted a scoping review following a six-stage methodology structure and adhering to PRISMA guidelines. We systematically reviewed articles using relevant keywords up to October 2, 2023. In this summary, we cover the clinical symptoms reported, the genes and protein structure of CHRNA4 and CHRNB2, mutations in these genes, inheritance patterns, the functional impact of mutations and polymorphisms in CHRNA4 and CHRNB2, and the epidemiology of these diseases. Recent research indicates that nAChRs may play a significant role in neurodegenerative disorders, possibly impacting neuronal function through yet undiscovered regulatory pathways. Studying how nAChRs interact with disease-related aggregates in neurodegenerative conditions may lead to new treatment options for these disorders.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tae HS, Hung A, Clark RJ, Adams DJ. Molecular determinants of the selectivity and potency of α-conotoxin Vc1.1 for human nicotinic acetylcholine receptors. J Biol Chem 2025; 301:108017. [PMID: 39608712 PMCID: PMC11732461 DOI: 10.1016/j.jbc.2024.108017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
The α-conotoxins (α-Ctxs) are short, disulfide-rich peptides derived from the venom of the Conus marine snails, primarily acting as antagonists of nicotinic acetylcholine receptors (nAChRs). Specifically, α-Ctx Vc1.1, a 16-amino acid peptide from Conus victoriae, competitively antagonizes non-muscle nAChRs, inhibits nicotine-induced currents in bovine chromaffin cells, and alleviates neuropathic pain in rat models. Although Vc1.1 selectively inhibits rat α9α10 nAChRs, its potency and selectivity across human nAChR subtypes remain unresolved. In this study, we assessed the activity of Vc1.1 on human (h) nAChRs heterologously expressed in Xenopus laevis oocytes using the two-electrode voltage clamp technique and simulated interactions using computational modeling. Vc1.1 selectively antagonized homomeric α9 and heteromeric α3β2 nAChRs, with half-maximal inhibitory concentrations (IC50) of 160 nM and 232 nM, respectively. At hα9[N179A]α10, Vc1.1 exhibited a 20-fold decrease in potency compared to hα9α10, due to the loss of hydrogen bonding with Vc1.1-D11. Conversely, Vc1.1 was four-fold more potent at hα3β2[E86A] compared to hα3β2, possibly influenced by the proximal residue β2-K104, as suggested by molecular dynamics (MD) simulations. Additionally, Vc1.1's potency doubled at hα9[N213K]α10, whereas it remained unchanged at hα9[N213R]α10 nAChRs. MD simulations indicate that altered interactions between the mutant hα9 N179A, N213K, and N213R side chains and Vc1.1-D5 may partly explain these changes in potency. The inhibitory action of Vc1.1 at α9-containing nAChRs is particularly relevant given their role in neuroinflammation, presenting a potential therapeutic pathway for alleviating neuropathic and inflammatory pain. This study provides valuable insights into the rational design of Vc1.1-derived α-Ctxs with enhanced nAChR subtype selectivity.
Collapse
Affiliation(s)
- Han-Shen Tae
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Australia.
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - David J Adams
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
7
|
Ren J, Peng Y, She L, Yan L, Li J, Gao C, Wang C, Wang Y, Nie X, Zhang X. A tiered toxicity testing strategy for assessing early life stage toxicity in estuarine fish (Mugilogobius chulae): A case study on tris (1-chloro-2-propyl) phosphate ester. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136108. [PMID: 39405700 DOI: 10.1016/j.jhazmat.2024.136108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
The estuarine ecological environment faces significant threats from contaminants of emerging concern (CECs); yet, the risk posed by CECs to resident organisms remains poorly understood. Here, we employed tiered toxicity testing to investigate the adverse effects and potential mechanisms of tris (1-chloro-2-propyl) phosphate (TCPP) on the early life stages of an estuarine fish, Mugilogobius chulae. TCPP affected the development of M. chulae embryos, including survival, morphology, hatching, and behavior. A concentration-dependent transcriptomic analysis showed that TCPP disrupted 12 neurodevelopment-related KEGG pathways in M. chulae embryos, with five of the 30 % top-ranked pathways related to neurotransmitter signaling. Besides the cholinergic synapse signaling pathway, the glutamatergic signaling pathway (including NMDAR and AMPAR subtypes) may also mediate TCPP-induced neurodevelopmental toxicity. The NMDAR subtype GRIN2B was downregulated at high concentrations. Molecular dynamics simulations revealed a strong interaction between TCPP and GRIN2B, with TCPP binding to the residues Ile153 and Ile188. The results suggest that NMDARs play a crucial role in TCPP-induced neurodevelopmental toxicity toward M. chulae. AOP network analysis predicted that TCPP may impact cognitive functions and memory. Our study provides a novel testing strategy for identifying the mechanisms of toxicity of CECs, a crucial component of ecological risk assessment.
Collapse
Affiliation(s)
- Jinzhi Ren
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guang-dong Higher Education Institutes, Beijing Normal University, Zhuhai 519087, China.
| | - Luhang She
- Research and Development Center for Watershed Environmental Eco-Engineering, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guang-dong Higher Education Institutes, Beijing Normal University, Zhuhai 519087, China
| | - Lu Yan
- School of Water Resources and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jianjun Li
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China
| | - Caixia Gao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China
| | - Chao Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Li T, Tae HS, Chen S, Li X, Liang J, Pan T, Zhang Z, Jiang T, Adams DJ, Yu R. Development of an Intravenously Stable Disulfide-Rich Peptide for the Treatment of Chemotherapy-Induced Neuropathic Pain. J Med Chem 2024; 67:18741-18752. [PMID: 39448068 DOI: 10.1021/acs.jmedchem.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
α-conotoxins (α-Ctxs), a class of disulfide-rich conopetides, are excellent drug leads due to their small size, high selectivity, and potency for specific membrane receptors and ion channels involved in pain transmission. However, their high susceptibility to proteolytic degradation limits their therapeutic potential. In this study, we designed and synthesized a series of conformationally stable analogues of α-Ctx Mr1.1[S4Dap] using various structural optimization strategies. The Mr1.1[S4Dap, C16Pen] analogue maintained potency at human α9α10 nicotinic acetylcholine receptors, with a half-maximal inhibitory concentration (IC50) of 4 nM. It exhibited over a 5-fold increase in serum stability compared to Mr1.1[S4Dap], without disrupting its overall conformation. Furthermore, intravenous application of Mr1.1[S4Dap, C16Pen] showed potent analgesic activity in oxaliplatin-induced cold allodynia, indicating a high potential for drug development. Overall, the results from this study provide valuable insights for optimizing the serum stability of disulfide-rich peptides in future therapeutic applications.
Collapse
Affiliation(s)
- Tianmiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Han-Shen Tae
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Teng Pan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zixuan Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - David J Adams
- Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
9
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
10
|
Orrù G, Baroni M, Conversano C, Gemignani A. Exploring the therapeutic potential of tDCS, TMS and DBS in overcoming tobacco use disorder: an umbrella review. AIMS Neurosci 2024; 11:449-467. [PMID: 39801797 PMCID: PMC11712234 DOI: 10.3934/neuroscience.2024027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025] Open
Abstract
The purpose of the present study was to investigate the effects of neuromodulation techniques, including transcranial direct current stimulation, transcranial magnetic stimulation, and deep brain stimulation, on the treatments of nicotine dependence. Specifically, our objective was to assess the existing evidence by conducting an umbrella review of systematic reviews. The quality of the included studies was evaluated using the standardized tools designed to evaluate systematic reviews. The PubMed/MEDLINE database was queried for systematic reviews, and yielded 7 systematic reviews with a substantial sample size (N = 4,252), some of which included meta-analyses. A significant finding across these studies was the effectiveness of neuromodulation techniques to reduce nicotine cravings and consumption, through the evidence remains not yet conclusive. A significant efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation that targeted the dorsolateral prefrontal cortex was found, as well as the lateral prefrontal cortex and insula bilaterally, on smoking frequency and craving. Moreover, smoking behaviors may also be positively affected by the use of deep brain stimulation (DBS) targeting the nucleus accumbens. In conclusion, neuromodulation approaches hold promise as effective treatments for tobacco use disorder. Nonetheless, further research is required to comprehensively understand their effectiveness and to determine if combining them with other treatments can aid individuals to successfully quit smoking.
Collapse
Affiliation(s)
- Graziella Orrù
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | | | | | | |
Collapse
|
11
|
AlSharari SD, Alameen AA, Aldafiri FS, Ali YS, Alshammari MA, Sari Y, Damaj MI. Activation of α7 nicotinic receptors attenuated hyperalgesia and anxiety induced by palatable obesogenic diet withdrawal. J Pharmacol Sci 2024; 156:86-101. [PMID: 39179339 DOI: 10.1016/j.jphs.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/26/2024] Open
Abstract
Consumption of palatable food (PF) can alleviate anxiety, and pain in humans. Contrary, spontaneous withdrawal of long-term PF intake produces anxiogenic-like behavior and abnormal pain sensation, causing challenges to weight-loss diet and anti-obesity agents. Thus, we examined α7-nicotinic acetylcholine receptors (α7nAChR) involvement since it plays essential role in nociception and psychological behaviors. METHODS Adult male C57BL/6 mice were placed on a Standard Chow (SC) alone or with PF on intermittent or continuous regimen for 6 weeks. Then, mice were replaced with normal SC (spontaneous withdrawal). Body weight, food intake, and calories intake with and without the obesogenic diet were measured throughout the study. During PF withdrawal, anxiety-like behaviors and pain sensitivity were measured with PNU-282987 (α7nAChR agonist) administration. RESULTS Six weeks of SC + PF-intermittent and continuous paradigms produced a significant weight gain. PF withdrawal displayed hyperalgesia and anxiety-like behaviors. During withdrawal, PNU-282987 significantly attenuated hyperalgesia and anxiety-like behaviors. CONCLUSION The present study shows that a PF can increase food intake and body weight. Also, enhanced pain sensitivity and anxiety-like behavior were observed during PF withdrawal. α7nAChR activation attenuated anxiolytic-like behavior and hyperalgesia in PF abstinent mice. These data suggest potential therapeutic effects of targeting α7 nAChRs for obesity-withdrawal symptoms in obese subjects.
Collapse
Affiliation(s)
- Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Fawzeyah S Aldafiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Yousif S Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
12
|
Körtési T, Nagy-Grócz G, Vécsei L. The role of kynurenines in migraine-related neuroimmune pathways. J Headache Pain 2024; 25:129. [PMID: 39107712 PMCID: PMC11304619 DOI: 10.1186/s10194-024-01833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Migraine, a primary headache disorder whose mechanism remains incompletely understood, appears to involve the activation of the trigeminovascular system (TS) during attacks. Research suggests that inflammatory processes mediated by the immune system may play a role in migraine pathophysiology. Neuroinflammation is often associated with migraine attacks, with cytokines serving as crucial mediators in the process. Elevated levels of pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), have been observed in the blood and cerebrospinal fluid of individuals experiencing migraine attacks. These cytokines have the capacity to sensitize pain pathways in the brain, thereby increasing sensitivity to pain stimuli. This phenomenon, known as central sensitization, is believed to contribute to the intensity and persistence of migraine pain. Kynurenines, endogenous mediators of glutamatergic mechanisms, can significantly influence the pathophysiology of primary headache disorders. The kynurenine system is collectively known as the kynurenine pathway (KP), which can act on multiple receptors, such as glutamate receptors, aryl hydrocarbon receptors (AhRs), G protein-coupled receptors 35 (GPR35), and α-7 nicotinic acetylcholine (α7 nACh) receptors. These receptors are also found on various cells of the immune system, so the role of the KP in the pathomechanism of primary headaches may also be mediated through them. In this review, our goal is to show a possible link between the receptors of the KP and immune system in the context of inflammation and migraine. Migraine research in recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as potential pathogenic factors and possible therapeutic approaches. These peptides share many similarities in their characteristics and roles. For instance, they exhibit potent vasodilation, occur in both the peripheral and central nervous systems, and play a role in transmitting nociception and neurogenic inflammation. The investigation of potential connections between the aforementioned neuropeptides and the kynurenine pathway could play a significant role in uncovering the pathomechanism of migraine and identifying new drug candidates.
Collapse
Affiliation(s)
- Tamás Körtési
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, Szeged, H- 6725, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, H-6720, Hungary
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, Szeged, H-6720, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, Szeged, H- 6725, Hungary.
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
| |
Collapse
|
13
|
Azarfarin M, Ghadiri T, Dadkhah M, Sahab-Negah S. The interaction between cannabinoids and long-term synaptic plasticity: A survey on memory formation and underlying mechanisms. Cell Biochem Funct 2024; 42:e4100. [PMID: 39090824 DOI: 10.1002/cbf.4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), is an essential phenomenon in memory formation as well as maintenance along with many other cognitive functions, such as those needed for coping with external stimuli. Synaptic plasticity consists of gradual changes in the biochemistry and morphology of pre- and postsynaptic neurons, particularly in the hippocampus. Consuming marijuana as a primary source of exocannabinoids immediately impairs attention and working memory-related tasks. Evidence regarding the effects of cannabinoids on LTP and memory is contradictory. While cannabinoids can affect a variety of specific cannabinoid receptors (CBRs) and nonspecific receptors throughout the body and brain, they exert miscellaneous systemic and local cerebral effects. Given the increasing use of cannabis, mainly among the young population, plus its potential adverse long-term effects on learning and memory processes, it could be a future global health challenge. Indeed, the impact of cannabinoids on memory is multifactorial and depends on the dosage, timing, formula, and route of consumption, plus the background complex interaction of the endocannabinoids system with other cerebral networks. Herein, we review how exogenously administrated organic cannabinoids, CBRs agonists or antagonists, and endocannabinoids can affect LTP and synaptic plasticity through various receptors in interaction with other cerebral pathways and primary neurotransmitters.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Dadkhah
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Sahab-Negah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Mazzaferro S, Kang G, Natarajan K, Hibbs RE, Sine SM. Structural bases for stoichiometry-selective calcium potentiation of a neuronal nicotinic receptor. Br J Pharmacol 2024; 181:1973-1992. [PMID: 38454578 DOI: 10.1111/bph.16321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND AND PURPOSE α4β2 nicotinic acetylcholine (nACh) receptors assemble in two stoichiometric forms, one of which is potentiated by calcium. The sites of calcium binding that underpin potentiation are not known. EXPERIMENTAL APPROACH To identify calcium binding sites, we applied cryo-electron microscopy (cryo-EM) and molecular dynamics (MD) simulations to each stoichiometric form of the α4β2 nACh receptor in the presence of calcium ions. To test whether the identified calcium sites are linked to potentiation, we generated mutants of anionic residues at the sites, expressed wild type and mutant receptors in clonal mammalian fibroblasts, and recorded ACh-elicited single-channel currents with or without calcium. KEY RESULTS Both cryo-EM and MD simulations show calcium bound to a site between the extracellular and transmembrane domains of each α4 subunit (ECD-TMD site). Substituting alanine for anionic residues at the ECD-TMD site abolishes stoichiometry-selective calcium potentiation, as monitored by single-channel patch clamp electrophysiology. Additionally, MD simulation reveals calcium association at subunit interfaces within the extracellular domain. Substituting alanine for anionic residues at the ECD sites reduces or abolishes stoichiometry-selective calcium potentiation. CONCLUSIONS AND IMPLICATIONS Stoichiometry-selective calcium potentiation of the α4β2 nACh receptor is achieved by calcium association with topographically distinct sites framed by anionic residues within the α4 subunit and between the α4 and β2 subunits. Stoichiometry-selective calcium potentiation could result from the greater number of calcium sites in the stoichiometric form with three rather than two α4 subunits. The results are relevant to modulation of signalling via α4β2 nACh receptors in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Wellcome Trust - Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Guipeun Kang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kathiresan Natarajan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurobiology, University of California San Diego, La Jolla, California, USA
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Tsuzuki A, Yamasaki M, Konno K, Miyazaki T, Takei N, Tomita S, Yuzaki M, Watanabe M. Abundant extrasynaptic expression of α3β4-containing nicotinic acetylcholine receptors in the medial habenula-interpeduncular nucleus pathway in mice. Sci Rep 2024; 14:14193. [PMID: 38902419 PMCID: PMC11189931 DOI: 10.1038/s41598-024-65076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the medial habenula (MHb)-interpeduncular nucleus (IPN) pathway play critical roles in nicotine-related behaviors. This pathway is particularly enriched in nAChR α3 and β4 subunits, both of which are genetically linked to nicotine dependence. However, the cellular and subcellular expression of endogenous α3β4-containing nAChRs remains largely unknown because specific antibodies and appropriate detection methods were unavailable. Here, we successfully uncovered the expression of endogenous nAChRs containing α3 and β4 subunits in the MHb-IPN pathway using novel specific antibodies and a fixative glyoxal that enables simultaneous detection of synaptic and extrasynaptic molecules. Immunofluorescence and immunoelectron microscopy revealed that both subunits were predominantly localized to the extrasynaptic cell surface of somatodendritic and axonal compartments of MHb neurons but not at their synaptic junctions. Immunolabeling for α3 and β4 subunits disappeared in α5β4-knockout brains, which we used as negative controls. The enriched and diffuse extrasynaptic expression along the MHb-IPN pathway suggests that α3β4-containing nAChRs may enhance the excitability of MHb neurons and neurotransmitter release from their presynaptic terminals in the IPN. The revealed distribution pattern provides a molecular and anatomical basis for understanding the functional role of α3β4-containing nAChRs in the crucial pathway of nicotine dependence.
Collapse
Grants
- 17KK0160 Ministry of Education, Culture, Sports, Science and Technology
- 21K06746 Ministry of Education, Culture, Sports, Science and Technology
- 22K06784 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
- 20H05628 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Asuka Tsuzuki
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan.
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo, 060-8638, Japan
| | - Norio Takei
- Institute for Animal Experimentation, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| |
Collapse
|
16
|
Yang Y, Tuo J, Zhang J, Xu Z, Luo Z. Pathogenic genes implicated in sleep-related hypermotor epilepsy: a research progress update. Front Neurol 2024; 15:1416648. [PMID: 38966089 PMCID: PMC11222571 DOI: 10.3389/fneur.2024.1416648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by a variable age of onset and heterogeneous etiology. Current literature suggests a prevalence rate of approximately 1.8 per 100,000 persons. The discovery of additional pathogenic genes associated with SHE in recent years has significantly expanded the knowledge and understanding of its pathophysiological mechanisms. Identified SHE pathogenic genes include those related to neuronal ligand- and ion-gated channels (CHRNA4, CHRNB2, CHRNA2, GABRG2, and KCNT1), genes upstream of the mammalian target of rapamycin complex 1 signal transduction pathway (DEPDC5, NPRL2, NPRL3, TSC1, and TSC2), and other genes (CRH, CaBP4, STX1B, and PRIMA1). These genes encode proteins associated with ion channels, neurotransmitter receptors, cell signal transduction, and synaptic transmission. Mutations in these genes can result in the dysregulation of encoded cellular functional proteins and downstream neuronal dysfunction, ultimately leading to epileptic seizures. However, the associations between most genes and the SHE phenotype remain unclear. This article presents a literature review on the research progress of SHE-related pathogenic genes to contribute evidence to genotype-phenotype correlations in SHE and establish the necessary theoretical basis for future SHE treatments.
Collapse
Affiliation(s)
- Yufang Yang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhong Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Andleeb H, Papke RL, Stokes C, Richter K, Herz SM, Chiang K, Kanumuri SRR, Sharma A, Damaj MI, Grau V, Horenstein NA, Thakur GA. Explorations of Agonist Selectivity for the α9* nAChR with Novel Substituted Carbamoyl/Amido/Heteroaryl Dialkylpiperazinium Salts and Their Therapeutic Implications in Pain and Inflammation. J Med Chem 2024; 67:8642-8666. [PMID: 38748608 PMCID: PMC11181317 DOI: 10.1021/acs.jmedchem.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
There is an urgent need for nonopioid treatments for chronic and neuropathic pain to provide effective alternatives amid the escalating opioid crisis. This study introduces novel compounds targeting the α9 nicotinic acetylcholine receptor (nAChR) subunit, which is crucial for pain regulation, inflammation, and inner ear functions. Specifically, it identifies novel substituted carbamoyl/amido/heteroaryl dialkylpiperazinium iodides as potent agonists selective for human α9 and α9α10 over α7 nAChRs, particularly compounds 3f, 3h, and 3j. Compound 3h (GAT2711) demonstrated a 230 nM potency as a full agonist at α9 nAChRs, being 340-fold selective over α7. Compound 3c was 10-fold selective for α9α10 over α9 nAChR. Compounds 2, 3f, and 3h inhibited ATP-induced interleukin-1β release in THP-1 cells. The analgesic activity of 3h was fully retained in α7 knockout mice, suggesting that analgesic effects were potentially mediated through α9* nAChRs. Our findings provide a blueprint for developing α9*-specific therapeutics for pain.
Collapse
Affiliation(s)
- Hina Andleeb
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Roger L. Papke
- Department
of Pharmacology and Therapeutics, University
of Florida, P.O. Box 100267, Gainesville, Florida 32610, United States
| | - Clare Stokes
- Department
of Pharmacology and Therapeutics, University
of Florida, P.O. Box 100267, Gainesville, Florida 32610, United States
| | - Katrin Richter
- Department
of General and Thoracic Surgery, Laboratory of Experimental Surgery,
Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35385, Germany
| | - Sara M. Herz
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Ka Chiang
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Siva R. Raju Kanumuri
- Department
of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
| | - Abhisheak Sharma
- Department
of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
| | - M. Imad Damaj
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Veronika Grau
- Department
of General and Thoracic Surgery, Laboratory of Experimental Surgery,
Justus-Liebig-University, German Center for Lung Research [DZL], Cardio-Pulmonary Institute [CPI], Giessen 35385, Germany
| | - Nicole A. Horenstein
- Department
of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Ganesh A. Thakur
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
18
|
Caban KM, Seßenhausen P, Stöckl JB, Popper B, Mayerhofer A, Fröhlich T. Proteome profile of the cerebellum from α7 nicotinic acetylcholine receptor deficient mice. Proteomics 2024; 24:e2300384. [PMID: 38185761 DOI: 10.1002/pmic.202300384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
The alpha7 nicotinic acetylcholine receptor (α7 nAChR; CHRNA7) is expressed in the nervous system and in non-neuronal tissues. Within the central nervous system, it is involved in various cognitive and sensory processes such as learning, attention, and memory. It is also expressed in the cerebellum, where its roles are; however, not as well understood as in the other brain regions. To investigate the consequences of absence of CHRNA7 on the cerebellum proteome, we performed a quantitative nano-LC-MS/MS analysis of samples from CHRNA7 knockout (KO) mice and corresponding wild type (WT) controls. Liver, an organ which does not express this receptor, was analyzed, in comparison. While the liver proteome remained relatively unaltered (three proteins more abundant in KOs), 90 more and 20 less abundant proteins were detected in the cerebellum proteome of the KO mice. The gene ontology analysis of the differentially abundant proteins indicates that the absence of CHRNA7 leads to alterations in the glutamatergic system and myelin sheath in the cerebellum. In conclusion, our dataset provides new insights in the role of CHRNA7 in the cerebellum, which may serve as a basis for future in depth-investigations.
Collapse
Affiliation(s)
| | - Pia Seßenhausen
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Jan Bernard Stöckl
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany
| | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU München, München, Germany
| |
Collapse
|
19
|
Hayes AMR, Lauer LT, Kao AE, Sun S, Klug ME, Tsan L, Rea JJ, Subramanian KS, Gu C, Tanios N, Ahuja A, Donohue KN, Décarie-Spain L, Fodor AA, Kanoski SE. Western diet consumption impairs memory function via dysregulated hippocampus acetylcholine signaling. Brain Behav Immun 2024; 118:408-422. [PMID: 38461956 PMCID: PMC11033683 DOI: 10.1016/j.bbi.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Western diet (WD) consumption during early life developmental periods is associated with impaired memory function, particularly for hippocampus (HPC)-dependent processes. We developed an early life WD rodent model associated with long-lasting HPC dysfunction to investigate the neurobiological mechanisms mediating these effects. Rats received either a cafeteria-style WD (ad libitum access to various high-fat/high-sugar foods; CAF) or standard healthy chow (CTL) during the juvenile and adolescent stages (postnatal days 26-56). Behavioral and metabolic assessments were performed both before and after a healthy diet intervention period beginning at early adulthood. Results revealed HPC-dependent contextual episodic memory impairments in CAF rats that persisted despite the healthy diet intervention. Given that dysregulated HPC acetylcholine (ACh) signaling is associated with memory impairments in humans and animal models, we examined protein markers of ACh tone in the dorsal HPC (HPCd) in CAF and CTL rats. Results revealed significantly lower protein levels of vesicular ACh transporter in the HPCd of CAF vs. CTL rats, indicating chronically reduced ACh tone. Using intensity-based ACh sensing fluorescent reporter (iAChSnFr) in vivo fiber photometry targeting the HPCd, we next revealed that ACh release during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Neuropharmacological results showed that alpha 7 nicotinic ACh receptor agonist infusion in the HPCd during training rescued memory deficits in CAF rats. Overall, these findings reveal a functional connection linking early life WD intake with long-lasting dysregulation of HPC ACh signaling, thereby identifying an underlying mechanism for WD-associated memory impairments.
Collapse
Affiliation(s)
- Anna M R Hayes
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Logan Tierno Lauer
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alicia E Kao
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Molly E Klug
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica J Rea
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Keshav S Subramanian
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Cindy Gu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Natalie Tanios
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Arun Ahuja
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kristen N Donohue
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Léa Décarie-Spain
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Akinola LS, Gonzales J, Buzzi B, Mathews HL, Papke RL, Stitzel JA, Damaj MI. Investigating the role of nicotinic acetylcholine receptors in menthol's effects in mice. Drug Alcohol Depend 2024; 257:111262. [PMID: 38492255 PMCID: PMC11031278 DOI: 10.1016/j.drugalcdep.2024.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as β2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of β2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jada Gonzales
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Hunter L Mathews
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Jerry A Stitzel
- Department of Psychology and Neuroscience, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA; Department of Integrative Physiology, The University of Colorado Boulder, Institute for Behavioral Genetics, Boulder, CO, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Delavar A, Anbarkeh FR, Baradaran R, Arab Z, Moghaddam SHR, Hosseini M, Nikravesh MR, Nejat SS, Jalali M. The protective effect of methanolic extract of Verbascum cheiranthifolium and Biebersteinia multifida DC on hippocampus damage induced by diazinon in male Wistar rats: An experimental study. J Chem Neuroanat 2024; 137:102398. [PMID: 38342332 DOI: 10.1016/j.jchemneu.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Diazinon (DZN) an organophosphate (OP), with the most important mechanism of action of DZN being induction of oxidative stress (OS) and inhibition of the enzyme acetylcholinesterase (AChE). Verbascum cheiranthifolium (VER) and Biebersteinia multifida (BM) belong to the Scrophulariaceae and Biebersteiniaceae family respectively. These plants are widely used in Iranian traditional medicine due to their beneficial effects. Thus, this research aimed to appraise the protective effects of the methanolic extract of the VER and BM on changes in the level of expression of α7 and α4 subunits of nicotinic acetylcholine receptors (nAChRs) in hippocampus (HPC) of DZN-treated rats. In this research, 36 male Wistar rats were used and randomly divided into six groups: Control, DZN (40 mg/kg), VER (1 g/kg), DZN+VER (40 mg/kg+1 g/kg), BM (150 mg/kg), and DZN+BM (40 mg/kg+150 mg/kg). At the end of treatment periods, the animals of all groups underwent the Morris water maze (MWM) test. The rats were anesthetized, and blood sampling was performed. Eventually, the brain was removed for histological study and evaluation of OS parameters. The results indicated that DZN increased the extent of expression of nAChRs in the HPC and significantly inhibited cholinesterase (ChEs) activity plus OS parameters. Also, in MWM, the time to find the platform was significantly longer in the DZN group, while the time and the distance in the probe test were lower than in the control groups. VER and BM extract in the treatment groups simultaneously improved the extent of expression of nAChRs, ChEs activity, as well as the parameters of OS and spatial memory significantly. In conclusion, our results support the neuroprotective properties of VER and BM extract versus DZN in rats. Accordingly, the extracts of VER and BM may be useful as an approach for the treatment of learning disorders and memory enhancement.
Collapse
Affiliation(s)
- Amir Delavar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahimi Anbarkeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Raheleh Baradaran
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zohreh Arab
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahin Saeidi Nejat
- School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Magnussen JH, Ettrup A, Lehel S, Peters D, Dyssegaard A, Thomsen MS, Mikkelsen JD, Knudsen GM. Characterizing the binding of TC-5619 and encenicline on the alpha7 nicotinic acetylcholine receptor using PET imaging in the pig. FRONTIERS IN NEUROIMAGING 2024; 3:1358221. [PMID: 38601007 PMCID: PMC11004359 DOI: 10.3389/fnimg.2024.1358221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The alpha7 nicotinic acetylcholine receptor (α7-nAChR) has has long been considered a promising therapeutic target for addressing cognitive impairments associated with a spectrum of neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, despite this potential, clinical trials employing α7-nAChR (partial) agonists such as TC-5619 and encenicline (EVP-6124) have fallen short in demonstrating sufficient efficacy. We here investigate the target engagement of TC-5619 and encenicline in the pig brain by use of the α7-nAChR radioligand 11C-NS14492 to characterize binding both with in vitro autoradiography and in vivo occupancy using positron emission tomography (PET). In vitro autoradiography demonstrates significant concentration-dependent binding of 11C-NS14492, and both TC-5619 and encenicline can block this binding. Of particular significance, our in vivo investigations demonstrate that TC-5619 achieves substantial α7-nAChR occupancy, effectively blocking approximately 40% of α7-nAChR binding, whereas encenicline exhibits more limited α7-nAChR occupancy. This study underscores the importance of preclinical PET imaging and target engagement analysis in informing clinical trial strategies, including dosing decisions.
Collapse
Affiliation(s)
- Janus H. Magnussen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Ettrup
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
| | - Szabolcs Lehel
- PET and Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Morten S. Thomsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Henry J, Bai Y, Kreuder F, Mawdsley D, Kaslin J, Wlodkowic D. Methods: A bioinformatic protocol for rapid analysis of zebrafish embryo photo-motory responses (PMR) in neurotoxicity testing. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109833. [PMID: 38218564 DOI: 10.1016/j.cbpc.2024.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Chemobehavioural phenotyping presents unique opportunities for analyzing neurotoxicants and discovering behavior-modifying neuroceuticals in small aquatic model organisms such as zebrafish (Danio rerio). A recently popularized approach in this field involves the utilization of zebrafish embryos for a photo-motor response (PMR) bioassay. The PMR bioassay entails stimulating zebrafish embryos between 24 and 36 h post fertilization (hpf) with a high-intensity light stimulus, inducing a transient increase in the frequency of photo-induced embryo body flexions. These flexions can be computationally analyzed to derive behavioral signatures, enabling the categorization of neuromodulating chemicals. Despite the significant advantages of the PMR bioassay, its widespread implementation is hindered by lack of well described and straightforward high-throughput bioinformatic analysis of behavioral data. In this methods article, we present an easily implementable bioinformatics protocol specifically designed for rapid behavioral analysis of large cohorts of zebrafish specimens in PMR bioassays. We also address common pitfalls encountered during PMR analysis, discuss its limitations, and propose future directions for developing next-generation biometric analysis techniques in chemobehavioural assays utilizing zebrafish embryos.
Collapse
Affiliation(s)
- Jason Henry
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Yutao Bai
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - David Mawdsley
- Defence Science and Technology Group, Fishermans Bend, VIC 3207, Australia
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- The Neurotoxicology Laboratory, School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| |
Collapse
|
24
|
Pradhyumnan H, Patel SH, Furones-Alonso O, Zhao W, Bramlett HM, Raval AP. Electronic Cigarette Vape Exposure Exacerbates Post-Ischemic Outcomes in Female but Not in Male Rats. Stroke 2024; 55:735-746. [PMID: 38323450 PMCID: PMC10940219 DOI: 10.1161/strokeaha.123.046101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Nicotine-containing electronic cigarette (EC) vaping has become popular worldwide, and our understanding of the effects of vaping on stroke outcomes is elusive. Using a rat model of transient middle cerebral artery occlusion, the current exploratory study aims to evaluate the sex-dependent effects of EC exposure on brain energy metabolism and stroke outcomes. METHODS Adult Sprague-Dawley rats of both sexes were randomly assigned to air/EC vapor (5% nicotine Juul pods) exposure for 16 nights, followed by randomization into 3 cohorts. The first cohort underwent exposure to air/EC preceding randomization to transient middle cerebral artery occlusion (90 minutes) or sham surgery, followed by survival for 21 days. During the survival period, rats underwent sensorimotor and Morris water maze testing. Subsequently, brains were collected for histopathology. A second cohort was exposed to air/EC after which brains were collected for unbiased metabolomics analysis. The third cohort of animals was exposed to air/EC and received transient middle cerebral artery occlusion/sham surgery, and brain tissue was collected 24 hours later for biochemical analysis. RESULTS In females, EC significantly increased (P<0.05) infarct volumes by 94% as compared with air-exposed rats, 165±50 mm3 in EC-exposed rats, and 85±29 mm3 in air-exposed rats, respectively, while in males such a difference was not apparent. Morris water maze data showed significant deficits in spatial learning and working memory in the EC sham or transient middle cerebral artery occlusion groups compared with the respective air groups in rats of both sexes (P<0.05). Thirty-two metabolites of carbohydrate, glycolysis, tricarboxylic acid cycle, and lipid metabolism were significantly altered (P≤0.05) due to EC, 23 of which were specific for females. Steady-state protein levels of hexokinase significantly decreased (P<0.05) in EC-exposed females; however, these changes were not seen in males. CONCLUSIONS Even brief EC exposure over 2 weeks impacts brain energy metabolism, exacerbates infarction, and worsens poststroke cognitive deficits in working memory more in female than male rats.
Collapse
Affiliation(s)
- Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Shahil H. Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ofelia Furones-Alonso
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Weizhao Zhao
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Helen M. Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Neuroscience Program, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| |
Collapse
|
25
|
Yang Y, Arai T, Sasaki D, Kuramochi M, Inagaki H, Ohashi S, Sekiguchi H, Mio K, Kubo T, Sasaki YC. Real-time tilting and twisting motions of ligand-bound states of α7 nicotinic acetylcholine receptor. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:15-25. [PMID: 38233601 PMCID: PMC10853312 DOI: 10.1007/s00249-023-01693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
The α7 nicotinic acetylcholine receptor is a member of the nicotinic acetylcholine receptor family and is composed of five α7 subunits arranged symmetrically around a central pore. It is localized in the central nervous system and immune cells and could be a target for treating Alzheimer's disease and schizophrenia. Acetylcholine is a ligand that opens the channel, although prolonged application rapidly decreases the response. Ivermectin was reported as one of the positive allosteric modulators, since the binding of Ivermectin to the channel enhances acetylcholine-evoked α7 currents. One research has suggested that tilting motions of the nicotinic acetylcholine receptor are responsible for channel opening and activation. To verify this hypothesis applies to α7 nicotinic acetylcholine receptor, we utilized a diffracted X-ray tracking method to monitor the stable twisting and tilting motion of nAChR α7 without a ligand, with acetylcholine, with Ivermectin, and with both of them. The results show that the α7 nicotinic acetylcholine receptor twists counterclockwise with the channel transiently opening, transitioning to a desensitized state in the presence of acetylcholine and clockwise without the channel opening in the presence of Ivermectin. We propose that the conformational transition of ACh-bound nAChR α7 may be due to the collective twisting of the five α7 subunits, resulting in the compression and movement, either downward or upward, of one or more subunits, thus manifesting tilting motions. These tilting motions possibly represent the transition from the resting state to channel opening and potentially to the desensitized state.
Collapse
Affiliation(s)
- Yue Yang
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Daisuke Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Masahiro Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan
| | - Hidetoshi Inagaki
- Biomedical Research Insitute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Sumiko Ohashi
- Biomedical Research Insitute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Tai Kubo
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Yuji C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan.
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan.
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| |
Collapse
|
26
|
Almahasneh F, Gerges RH, Abu-El-Rub E, Khasawneh RR. Nicotine Abuse and Neurodegeneration: Novel Pharmacogenetic Targets to Aid Quitting and Reduce the Risk of Dementia. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:2-8. [PMID: 36803746 DOI: 10.2174/1871527322666230220121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023]
Abstract
Nicotine dependence has deleterious neurological impacts. Previous studies found an association between cigarette smoking and accelerating age-related thinning of the brain's cortex and subsequent cognitive decline. Smoking is considered the third most common risk factor for dementia, which prompted the inclusion of smoking cessation in dementia prevention strategies. Traditional pharmacologic options for smoking cessation include nicotine transdermal patches, bupropion and varenicline. However, based on smokers' genetic makeup, pharmacogenetics can be used to develop novel therapies to replace these traditional approaches. Genetic variability of cytochrome P450 2A6 has a major impact on smokers' behavior and their response to quitting therapies. Gene polymorphism in nicotinic acetylcholine receptor subunits also has a great influence on the ability to quit smoking. In addition, polymorphism of certain nicotinic acetylcholine receptors was found to affect the risk of dementia and the impact of tobacco smoking on the development of Alzheimer's disease. Nicotine dependence involves the activation of pleasure response through the stimulation of dopamine release. Central dopamine receptors, catechol-o-methyltransferase and the dopamine transporter protein, regulate synaptic dopamine levels. The genes of these molecules are potential targets for novel smoking cessation drugs. Pharmacogenetic studies of smoking cessation also investigated other molecules, such as ANKK1 and dopamine-beta-hydroxylase (DBH). In this perspective article, we aim to highlight the promising role of pharmacogenetics in the development of effective drugs for smoking cessation, which can increase the success rate of smoking quitting plans and ultimately reduce the incidence of neurodegeneration and dementia.
Collapse
Affiliation(s)
- Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Romany H Gerges
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ramada R Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| |
Collapse
|
27
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
28
|
AlHarthi A, Alasmari F, AlSharari SD, Alrasheed NM, Alshammari MA, Alshammari TK. Investigating Behavioral and Neuronal Changes in Adolescent Mice Following Prenatal Exposure to Electronic Cigarette (E-Cigarette) Vapor Containing Nicotine. Brain Sci 2023; 13:1417. [PMID: 37891786 PMCID: PMC10605868 DOI: 10.3390/brainsci13101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
A substantial percentage of pregnant smokers stop using traditional cigarettes and switch to alternative nicotine-related products such as e-cigarettes. Prenatal exposure to tobacco increases the risk of psychiatric disorders in children. Adolescence is a complex phase in which higher cognitive and emotional processes undergo maturation and refinement. In this study, we examined the behavioral and molecular effects of first-trimester prenatal exposure to e-cigarettes. Adult female mice were divided into normal air, vehicle, and 2.5%-nicotine-exposed groups. Our analyses indicated that the adolescents in the 2.5%-nicotine-exposed group exhibited a significant lack of normal digging behavior, elevated initial sucrose intake, and reduced recognition memory. Importantly, we identified a substantial level of nicotine self-administration in the 2.5%-nicotine-exposed group. At a molecular level, the mRNAs of metabotropic glutamate receptors and transporters in the nucleus accumbens were not altered. This previously undescribed work indicates that prenatal exposure to e-cigarettes might increase the risk of nicotine addiction during adolescence, reduce cognitive capacity, and alter normal adolescent behavior. The outcome will aid in translating research and assist healthcare practitioners in tackling addiction and mental issues caused by toxicological exposure. Further, it will inform relevant policymaking, such as recommended taxation, labeling e-cigarette devices with more detailed neurotoxic effects, and preventing their sale to pregnant women and adolescents.
Collapse
Affiliation(s)
- Alaa AlHarthi
- Pharmacology & Toxicology Graduate Program, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Shakir D. AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Nouf M. Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Tahani K. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| |
Collapse
|
29
|
Thasweer AM, Renuka Devi P, Thirunavukkarasu V. Molecular docking and dynamic simulation studies of α4β2 and α7 nicotinic acetylcholine receptors with tobacco smoke constituents nicotine, NNK and NNN. J Biomol Struct Dyn 2023; 41:8462-8471. [PMID: 36270967 DOI: 10.1080/07391102.2022.2135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2022]
Abstract
Smoking constitutes a major global health problem. As it triggers various health hazards including cancers, cardiac and pulmonary illness, it is imperative to understand the mechanism of action of various smoke constituents on our cellular processes. Various in vitro studies have compiled the affinity of cigarette smoke constituents on various nicotinic acetylcholine receptors (nAChRs). But the nature of the intermolecular interactions contributing to this affinity and the key amino acids in the receptor active sites involved in this are not investigated so far. Here, we are examining the interaction of α7nAChR and α4β2nAChR on nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosornicotine (NNN), the physiologically significant constituents in smoke, through molecular docking and dynamics simulations study. The docking of α4β2nAChR structure with the ligands nicotine, NNK and NNN yielded docking scores of -41.45 kcal/mol, -59.28 kcal/mol and -54.60 kcal/mol, respectively, and that of α7nAChR receptor molecule with the ligands yielded docking scores of -59.54 kcal/mol, -71.06 kcal/mol and -70.86 kcal/mol, respectively. The study showed that NNK exhibited the highest affinity with the ligands which was confirmed by dynamics simulation. But higher stability of interactions as surmised from Molecular dynamics simulations was found for nicotine with α4β2nAChR and NNN with α7nAChR. The findings validate the in vitro studies comparing the affinities of these compounds. The study will be useful in formulating effective nAChR agonists to treat neurological disorders and antagonists for smoke deaddiction and improve health standards.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A M Thasweer
- Department of Biotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, India
| | - P Renuka Devi
- Department of Biotechnology, Anna University Regional Campus, Coimbatore, Tamil Nadu, India
| | - Velusamy Thirunavukkarasu
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
30
|
Fang Y, Zhang T, Li L, Chen S, Wang L, Tang J, Liao Y. Nicotine Decreases Nerve Regeneration and Pain Behaviors via PTEN and Downstream Inflammation-Related Pathway in Two Rat Nerve Injury Models. eNeuro 2023; 10:ENEURO.0185-23.2023. [PMID: 37620149 PMCID: PMC10484360 DOI: 10.1523/eneuro.0185-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Neuropathic pain is stubborn and associated with the peripheral nerve regeneration process. Nicotine has been found to reduce pain, but whether it is involved in the regulation of nerve regeneration and the underlying mechanism are unknown. In this study, we examined the mechanical allodynia thermal hyperalgesia together with the peripheral nerve regeneration after nicotine exposure in two rat neuropathic pain models. In the spinal nerve ligation model, in which anatomic nerve regeneration can be easily observed, nicotine reduced anatomic measures of regeneration as well as expression of regeneration marker growth-associated protein 43 (GAP43). In the tibial nerve crush model, nicotine treatment significantly suppressed GAP43 expression and functional reinnervation as measured by myelinated action potential and electromyography of gastrocnemius. In both models, nicotine treatment reduced macrophage density in the sensory ganglia and peripheral nerve. These effects of nicotine were reversed by the selective α7 nicotinic acetylcholine receptor (nAChR) blocker methyllycaconitine. In addition, nicotine significantly elevated expression of PTEN (the phosphatase and tensin homolog deleted on chromosome 10), a key player in both regeneration and pain. Pharmacological interference of PTEN could regulate GAP43 expression, pain-related behaviors, and macrophage infiltration in a nicotine-treated nerve crush model. Our results reveal that nicotine and its α7-nAChR regulate both peripheral nerve regeneration process and pain though PTEN and the downstream inflammation-related pathway.
Collapse
Affiliation(s)
- Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Tingkai Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Shanshan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Liangliang Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
31
|
Yang K, McLaughlin I, Shaw JK, Quijano-Cardé N, Dani JA, De Biasi M. CHRNA5 gene variation affects the response of VTA dopaminergic neurons during chronic nicotine exposure and withdrawal. Neuropharmacology 2023; 235:109547. [PMID: 37116611 PMCID: PMC10249248 DOI: 10.1016/j.neuropharm.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Nicotine is the principal psychoactive component in tobacco that drives addiction through its action on neuronal nicotinic acetylcholine receptors (nAChR). The nicotinic receptor gene CHRNA5, which encodes the α5 subunit, is associated with nicotine use and dependence. In humans, the CHRNA5 missense variant rs16969968 (G > A) is associated with increased risk for nicotine dependence and other smoking-related phenotypes. In rodents, α5-containing nAChRs in dopamine (DA) neurons within the ventral tegmental area (VTA) powerfully modulate nicotine reward and reinforcement. Although the neuroadaptations caused by long-term nicotine exposure are being actively delineated at both the synaptic and behavioral levels, the contribution of α5-containing nAChRs to the cellular adaptations associated with long-term nicotine exposure remain largely unknown. To gain insight into the mechanisms behind the influence of α5-containing nAChRs and the rs16969968 polymorphism on nicotine use and dependence, we used electrophysiological approaches to examine changes in nAChR function arising in VTA neurons during chronic nicotine exposure and multiple stages of nicotine withdrawal. Our results demonstrate that CHRNA5 mutation leads to profound changes in VTA nAChR function at baseline, during chronic nicotine exposure, and during short-term and prolonged withdrawal. Whereas nAChR function was suppressed in DA neurons from WT mice undergoing withdrawal relative to drug-naïve or nicotine-drinking mice, α5-null mice exhibited an increase in nAChR function during nicotine exposure that persisted throughout 5-10 weeks of withdrawal. Re-expressing the hypofunctional rs16969968 CHRNA5 variant in α5-null VTA DA neurons did not rescue the phenotype, with α5-SNP neurons displaying a similar increased response to ACh during nicotine exposure and early stages of withdrawal. These results demonstrate the importance of VTA α5-nAChRs in the response to nicotine and implicate them in the time course of withdrawal.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica K Shaw
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalia Quijano-Cardé
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
DeSerisy M, Cohen JW, Dworkin JD, Stingone JA, Ramphal B, Herbstman JB, Pagliaccio D, Margolis AE. Early life stress, prenatal secondhand smoke exposure, and the development of internalizing symptoms across childhood. Environ Health 2023; 22:58. [PMID: 37620883 PMCID: PMC10463722 DOI: 10.1186/s12940-023-01012-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Prior findings relating secondhand tobacco smoke (SHS) exposure and internalizing problems, characterized by heightened anxiety and depression symptoms, have been equivocal; effects of SHS on neurodevelopment may depend on the presence of other neurotoxicants. Early life stress (ELS) is a known risk factor for internalizing symptoms and is also often concurrent with SHS exposure. To date the interactive effects of ELS and SHS on children's internalizing symptoms are unknown. We hypothesize that children with higher exposure to both prenatal SHS and ELS will have the most internalizing symptoms during the preschool period and the slowest reductions in symptoms over time. METHODS The present study leveraged a prospective, longitudinal birth cohort of 564 Black and Latinx mothers and their children, recruited between 1998 and 2006. Cotinine extracted from cord and maternal blood at birth served as a biomarker of prenatal SHS exposure. Parent-reported Child Behavior Checklist (CBCL) scores were examined at four timepoints between preschool and eleven years-old. ELS exposure was measured as a composite of six domains of maternal stress reported at child age five. Latent growth models examined associations between SHS, ELS, and their interaction term with trajectories of children's internalizing symptoms. In follow-up analyses, weighted quintile sum regression examined contributions of components of the ELS mixture to children's internalizing symptoms at each time point. RESULTS ELS interacted with SHS exposure such that higher levels of ELS and SHS exposure were associated with more internalizing symptoms during the preschool period (β = 0.14, p = 0.03). The interaction between ELS and SHS was also associated with a less negative rate of change in internalizing symptoms over time (β=-0.02, p = 0.01). Weighted quintile sum regression revealed significant contributions of maternal demoralization and other components of the stress mixture to children's internalizing problems at each age point (e.g., age 11 WQS β = 0.26, p < 0.01). CONCLUSIONS Our results suggest that prior inconsistencies in studies of SHS on behavior may derive from unmeasured factors that also influence behavior and co-occur with exposure, specifically maternal stress during children's early life. Findings point to modifiable targets for personalized prevention.
Collapse
Affiliation(s)
- Mariah DeSerisy
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA.
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Jacob W Cohen
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Jordan D Dworkin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Jeanette A Stingone
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
| | - Bruce Ramphal
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, 10032, USA
| | - David Pagliaccio
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Amy E Margolis
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| |
Collapse
|
33
|
Rose JJ, Krishnan-Sarin S, Exil VJ, Hamburg NM, Fetterman JL, Ichinose F, Perez-Pinzon MA, Rezk-Hanna M, Williamson E. Cardiopulmonary Impact of Electronic Cigarettes and Vaping Products: A Scientific Statement From the American Heart Association. Circulation 2023; 148:703-728. [PMID: 37458106 DOI: 10.1161/cir.0000000000001160] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Vaping and electronic cigarette (e-cigarette) use have grown exponentially in the past decade, particularly among youth and young adults. Cigarette smoking is a risk factor for both cardiovascular and pulmonary disease. Because of their more limited ingredients and the absence of combustion, e-cigarettes and vaping products are often touted as safer alternative and potential tobacco-cessation products. The outbreak of e-cigarette or vaping product use-associated lung injury in the United States in 2019, which led to >2800 hospitalizations, highlighted the risks of e-cigarettes and vaping products. Currently, all e-cigarettes are regulated as tobacco products and thus do not undergo the premarket animal and human safety studies required of a drug product or medical device. Because youth prevalence of e-cigarette and vaping product use was as high as 27.5% in high school students in 2019 in the United States, it is critical to assess the short-term and long-term health effects of these products, as well as the development of interventional and public health efforts to reduce youth use. The objectives of this scientific statement are (1) to describe and discuss e-cigarettes and vaping products use patterns among youth and adults; (2) to identify harmful and potentially harmful constituents in vaping aerosols; (3) to critically assess the molecular, animal, and clinical evidence on the acute and chronic cardiovascular and pulmonary risks of e-cigarette and vaping products use; (4) to describe the current evidence of e-cigarettes and vaping products as potential tobacco-cessation products; and (5) to summarize current public health and regulatory efforts of e-cigarettes and vaping products. It is timely, therefore, to review the short-term and especially the long-term implications of e-cigarettes and vaping products on cardiopulmonary health. Early molecular and clinical evidence suggests various acute physiological effects from electronic nicotine delivery systems, particularly those containing nicotine. Additional clinical and animal-exposure model research is critically needed as the use of these products continues to grow.
Collapse
|
34
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
35
|
Gomez-Sequeda N, Mendivil-Perez M, Jimenez-Del-Rio M, Lopera F, Velez-Pardo C. Cholinergic-like neurons and cerebral spheroids bearing the PSEN1 p.Ile416Thr variant mirror Alzheimer's disease neuropathology. Sci Rep 2023; 13:12833. [PMID: 37553376 PMCID: PMC10409854 DOI: 10.1038/s41598-023-39630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Familial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.Ile416Thr (I416T) PSEN 1 mutation has been reported in large kindred in Colombia. However, cell and molecular information from I416T mutation is scarce. Here, we demonstrate that menstrual stromal cells (MenSCs)-derived planar (2D) PSEN 1 I416T cholinergic-like cells (ChLNS) and (3D) cerebral spheroids (CSs) reproduce the typical neuropathological markers of FAD in 4 post-transdifferentiating or 11 days of transdifferentiating, respectively. The models produce intracellular aggregation of APPβ fragments (at day 4 and 11) and phosphorylated protein TAU at residue Ser202/Thr205 (at day 11) suggesting that iAPPβ fragments precede p-TAU. Mutant ChLNs and CSs displayed DJ-1 Cys106-SO3 (sulfonic acid), failure of mitochondria membrane potential (ΔΨm), and activation of transcription factor c-JUN and p53, expression of pro-apoptotic protein PUMA, and activation of executer protein caspase 3 (CASP3), all markers of cell death by apoptosis. Moreover, we found that both mutant ChLNs and CSs produced high amounts of extracellular eAβ42. The I416T ChLNs and CSs were irresponsive to acetylcholine induced Ca2+ influx compared to WT. The I416T PSEN 1 mutation might work as dominant-negative PSEN1 mutation. These findings might help to understanding the recurring failures of clinical trials of anti-eAβ42, and support the view that FAD is triggered by the accumulation of other intracellular AβPP metabolites, rather than eAβ42.
Collapse
Affiliation(s)
- Nicolas Gomez-Sequeda
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Miguel Mendivil-Perez
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Marlene Jimenez-Del-Rio
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia
| | - Carlos Velez-Pardo
- Grupo de Neurociencias de Antioquia, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Torre 1, Laboratorio 412, Medellín, Colombia.
| |
Collapse
|
36
|
Potgurski DS, Ribeiro GE, da Silva DPC. Occurrence of changes in the auditory evoked potentials of smokers: systematic review of the literature. Codas 2023; 35:e20210273. [PMID: 37556701 PMCID: PMC10446745 DOI: 10.1590/2317-1782/20232021273pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/20/2022] [Indexed: 08/11/2023] Open
Abstract
PURPOSE To verify the occurrence of abnormal auditory evoked potentials (AEP) tests in adult smokers. RESEARCH STRATEGIES Systematic review of the literature according to the PRISMA guidelines, to answer the question: "Are there any changes in the AEP results in adult smokers?", PECOS strategy. Research carried out on PubMed, Embase, CINAHL, LIVIVO, Scopus, Web of Science, LILACS and Scielo databases. Additional search of gray literature: Google Scholar and ProQuest hand searching of reference lists of the included studies. SELECTION CRITERIA Cross-sectional studies were selected, without restriction on the year of publication and language. DATA ANALYSIS First, the titles and abstracts of all the studies were analyzed, followed by the full reading of the eligible studies. RESULTS 898 articles were collected, after the duplicate studies were removed and after blind analysis by three researchers, 8 studies of the observational type were selected. Most studies have found an association between active smoking and changes in electrophysiological tests. CONCLUSION Normal hearing adult smokers present alterations in short and long AEP. In the auditory brainstem response, the main altered components were the increase in waves latencies of I and III and in the interpeaks I - III and III - V, as well as a decrease in the amplitude of the waves. In Mismatch Negativity, there was a significant increase in wave amplitude and latency. In the long latency potential, P300, there was an increase in latencies and decreased amplitudes in the components N1 (in Fz) and P3.
Collapse
Affiliation(s)
- Dayane Stephanie Potgurski
- Departamento de Fonoaudiologia, Universidade Federal de Santa Catarina - UFSC - Florianópolis (SC), Brasil.
| | - Georgea Espindola Ribeiro
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - HCFMUSP - São Paulo (SP), Brasil.
| | | |
Collapse
|
37
|
Ahad MA, Chear NJY, Keat LG, Has ATC, Murugaiyah V, Hassan Z. Bio-enhanced fraction from Clitoria ternatea root extract ameliorates cognitive functions and in vivo hippocampal neuroplasticity in chronic cerebral hypoperfusion rat model. Ageing Res Rev 2023; 89:101990. [PMID: 37343678 DOI: 10.1016/j.arr.2023.101990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography. A validated HPLC-UV method was employed for the standardization of CTRF. CCH rats were given orally either vehicle or fraction (10, 20 and 40 mg/kg). Behavioural and hippocampal neuroplasticity studies were conducted following 4 weeks post-surgery. The brain hippocampus was extracted for proteins and neurotransmitters analyses. HPLC analysis showed that CTRF contained 25% (w/w) of CLA. All tested doses of CTRF and CLA (10 mg/kg) significantly restored cognitive deficits and reversed the inhibition of neuroplasticity by CCH. However, only CTRF (40 mg/kg) and CLA (10 mg/kg) significantly reversed the elevation of amyloid-beta plaque. Subsequently, treatment with CTRF (40 mg/kg) and CLA (10 mg/kg) alleviated the downregulation of molecular synaptic signalling proteins levels caused by CCH. The neurotransmitters level was restored following treatment of CTRF and CLA. Our finding suggested that CTRF improves memory and neuroplasticity in CCH rats which was mainly contributed by CLA.
Collapse
Affiliation(s)
| | | | - Lim Gin Keat
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, USM Health Campus Kota Bharu, Kelantan, Malaysia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
38
|
Chen Z, Liu XA, Kenny PJ. Central and peripheral actions of nicotine that influence blood glucose homeostasis and the development of diabetes. Pharmacol Res 2023; 194:106860. [PMID: 37482325 DOI: 10.1016/j.phrs.2023.106860] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cigarette smoking has long been recognized as a risk factor for type 2 diabetes (T2D), although the precise causal mechanisms underlying this relationship remain poorly understood. Recent evidence suggests that nicotine, the primary reinforcing component in tobacco, may play a pivotal role in connecting cigarette smoking and T2D. Extensive research conducted in both humans and animals has demonstrated that nicotine can elevate blood glucose levels, disrupt glucose homeostasis, and induce insulin resistance. The review aims to elucidate the genetic variants of nicotinic acetylcholine receptors associated with diabetes risk and provide a comprehensive overview of the available data on the mechanisms through which nicotine influences blood glucose homeostasis and the development of diabetes. Here we emphasize the central and peripheral actions of nicotine on the release of glucoregulatory hormones, as well as its effects on glucose tolerance and insulin sensitivity. Notably, the central actions of nicotine within the brain, which encompass both insulin-dependent and independent mechanisms, are highlighted as potential targets for intervention strategies in diabetes management.
Collapse
Affiliation(s)
- Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
39
|
Souf YM, Lokaj G, Kuruva V, Saed Y, Raviglione D, Brik A, Nicke A, Inguimbert N, Dutertre S. Synthesis and Biological Activity of Novel α-Conotoxins Derived from Endemic Polynesian Cone Snails. Mar Drugs 2023; 21:356. [PMID: 37367681 DOI: 10.3390/md21060356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
α-Conotoxins are well-known probes for the characterization of the various subtypes of nicotinic acetylcholine receptors (nAChRs). Identifying new α-conotoxins with different pharmacological profiles can provide further insights into the physiological or pathological roles of the numerous nAChR isoforms found at the neuromuscular junction, the central and peripheral nervous systems, and other cells such as immune cells. This study focuses on the synthesis and characterization of two novel α-conotoxins obtained from two species endemic to the Marquesas Islands, namely Conus gauguini and Conus adamsonii. Both species prey on fish, and their venom is considered a rich source of bioactive peptides that can target a wide range of pharmacological receptors in vertebrates. Here, we demonstrate the versatile use of a one-pot disulfide bond synthesis to achieve the α-conotoxin fold [Cys 1-3; 2-4] for GaIA and AdIA, using the 2-nitrobenzyl (NBzl) protecting group of cysteines for effective regioselective oxidation. The potency and selectivity of GaIA and AdIA against rat nicotinic acetylcholine receptors were investigated electrophysiologically and revealed potent inhibitory activities. GaIA was most active at the muscle nAChR (IC50 = 38 nM), whereas AdIA was most potent at the neuronal α6/3 β2β3 subtype (IC50 = 177 nM). Overall, this study contributes to a better understanding of the structure-activity relationships of α-conotoxins, which may help in the design of more selective tools.
Collapse
Affiliation(s)
- Yazid Mohamed Souf
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Gonxhe Lokaj
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Nußbaumstraße 26, 80336 Munich, Germany
| | - Veeresh Kuruva
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Yakop Saed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Delphine Raviglione
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Annette Nicke
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Nußbaumstraße 26, 80336 Munich, Germany
| | - Nicolas Inguimbert
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | | |
Collapse
|
40
|
Nicotine's effect on cognition, a friend or foe? Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110723. [PMID: 36736944 DOI: 10.1016/j.pnpbp.2023.110723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.
Collapse
|
41
|
Shimizu N, Shimizu T, Higashi Y, Zou S, Fukuhara H, Karashima T, Inoue K, Saito M. Possible involvement of brain hydrogen sulphide in the inhibition of the rat micturition reflex induced by activation of brain alpha7 nicotinic acetylcholine receptors. Eur J Pharmacol 2023:175839. [PMID: 37301318 DOI: 10.1016/j.ejphar.2023.175839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
We previously reported that brain α7 nicotinic acetylcholine receptors inhibited the rat micturition reflex. To elucidate the mechanisms underlying this inhibition, we focused on the relationship between α7 nicotinic acetylcholine receptors and hydrogen sulphide (H2S) because we found that H2S also inhibits the rat micturition reflex in the brain. Therefore, we investigated whether H2S is involved in the inhibition of the micturition reflex induced by the activation of α7 nicotinic acetylcholine receptors in the brain. Cystometry was performed in male Wistar rats under urethane anesthesia (0.8 g/kg, ip) to examine the effects of icv pre-treated GYY4137 (H2S donor, 1 or 3 nmol/rat) or aminooxyacetic acid (AOAA; non-selective H2S synthesis inhibitor, 3 or 10 μg/rat) on PHA568487 (α7 nicotinic acetylcholine receptor agonist, icv)-induced prolongation of intercontraction intervals. PHA568487 administration at a lower dose (0.3 nmol/rat, icv) had no significant effect on intercontraction intervals, while under pre-treatment with GYY4137 (3 nmol/rat icv), PHA568487 (0.3 nmol/rat, icv) significantly prolonged intercontraction intervals. PHA568487 at a higher dose (1 nmol/rat, icv) induced intercontraction interval prolongation, and the PHA568487-induced prolongation was significantly suppressed by AOAA (10 μg/rat, icv). The AOAA-induced suppression of the PHA568487-induced intercontraction interval prolongation was negated by supplementing H2S via GYY4137 at a lower dose (1 nmol/rat, icv) in the brain. GYY4137 or AOAA alone showed no significant effect on intercontraction intervals at each dose used in this study. These findings suggest a possible involvement of brain H2S in inhibiting the rat micturition reflex induced by activation of brain alpha7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Nobutaka Shimizu
- Pelvic Floor Center, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Suo Zou
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Hideo Fukuhara
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Takashi Karashima
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| |
Collapse
|
42
|
Zhang K, Han Y, Zhang P, Zheng Y, Cheng A. Comparison of fluorescence biosensors and whole-cell patch clamp recording in detecting ACh, NE, and 5-HT. Front Cell Neurosci 2023; 17:1166480. [PMID: 37333890 PMCID: PMC10272411 DOI: 10.3389/fncel.2023.1166480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
The communication between neurons and, in some cases, between neurons and non-neuronal cells, through neurotransmission plays a crucial role in various physiological and pathological processes. Despite its importance, the neuromodulatory transmission in most tissues and organs remains poorly understood due to the limitations of current tools for direct measurement of neuromodulatory transmitters. In order to study the functional roles of neuromodulatory transmitters in animal behaviors and brain disorders, new fluorescent sensors based on bacterial periplasmic binding proteins (PBPs) and G-protein coupled receptors have been developed, but their results have not been compared to or multiplexed with traditional methods such as electrophysiological recordings. In this study, a multiplexed method was developed to measure acetylcholine (ACh), norepinephrine (NE), and serotonin (5-HT) in cultured rat hippocampal slices using simultaneous whole-cell patch clamp recordings and genetically encoded fluorescence sensor imaging. The strengths and weaknesses of each technique were compared, and the results showed that both techniques did not interfere with each other. In general, genetically encoded sensors GRABNE and GRAB5HT1.0 showed better stability compared to electrophysiological recordings in detecting NE and 5-HT, while electrophysiological recordings had faster temporal kinetics in reporting ACh. Moreover, genetically encoded sensors mainly report the presynaptic neurotransmitter release while electrophysiological recordings provide more information of the activation of downstream receptors. In sum, this study demonstrates the use of combined techniques to measure neurotransmitter dynamics and highlights the potential for future multianalyte monitoring.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Han
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqiong Zheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aobing Cheng
- Department of Anesthesiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
44
|
Nakayama M, Nishimura O, Nishimura Y, Kitaichi M, Kuraku S, Sone M, Hama C. Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig. J Neurosci 2023; 43:3989-4004. [PMID: 37117011 PMCID: PMC10255049 DOI: 10.1523/jneurosci.2243-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
The presentation of nicotinic acetylcholine receptors (nAChRs) on synaptic membranes is crucial for generating cholinergic circuits, some of which are associated with memory function and neurodegenerative disorders. Although the physiology and structure of nAChR, a cation channel comprising five subunits, have been extensively studied, little is known about how the receptor levels in interneuronal synapses are determined and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices and intracellular proteins. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts in the brain. Only the loss of function of Dα5 among the 10 nAChR subunits suppressed hig mutant phenotypes in both male and female flies. Dα5 behaved as a lethal factor when Hig was defective; loss of Dα5 in hig mutants rescued lethality, upregulating Dα6 synaptic levels. By contrast, levels of Dα5, Dα6, and Dα7 subunits were all reduced in hig mutants. These three subunits have distinct properties for interaction with Hig or trafficking, as confirmed by chimeric subunit experiments. Notably, the chimeric Dα5 protein, which has the extracellular sequences that display no positive interaction with Hig, exhibited abnormal distribution and lethality even in the presence of Hig. We propose that the sequestering subunit Dα5 functions by reducing synaptic levels of nAChR through internalization, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.SIGNIFICANCE STATEMENT Because the cholinergic synapse is one of the major synapses that generate various brain functions, numerous studies have sought to reveal the physiology and structure of the nicotinic acetylcholine receptor (nAChR). However, little is known about how synaptic levels of nAChR are controlled and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts. Our data indicate that Dα5 functions in reducing synaptic levels of nAChR, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.
Collapse
Affiliation(s)
- Minoru Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Yuhi Nishimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Miwa Kitaichi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Masaki Sone
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Chihiro Hama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
45
|
O'Brien BCV, Weber L, Hueffer K, Weltzin MM. SARS-CoV-2 spike ectodomain targets α7 nicotinic acetylcholine receptors. J Biol Chem 2023; 299:104707. [PMID: 37061001 PMCID: PMC10101490 DOI: 10.1016/j.jbc.2023.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Virus entry into animal cells is initiated by attachment to target macromolecules located on host cells. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trimeric spike glycoprotein targets host angiotensin converting enzyme 2 to gain cellular access. The SARS-CoV-2 glycoprotein contains a neurotoxin-like region that has sequence similarities to the rabies virus and the HIV glycoproteins, as well as to snake neurotoxins, which interact with nicotinic acetylcholine receptor (nAChR) subtypes via this region. Using a peptide of the neurotoxin-like region of SARS-CoV-2 (SARS-CoV-2 glycoprotein peptide [SCoV2P]), we identified that this area moderately inhibits α3β2, α3β4, and α4β2 subtypes, while potentiating and inhibiting α7 nAChRs. These nAChR subtypes are found in target tissues including the nose, lung, central nervous system, and immune cells. Importantly, SCoV2P potentiates and inhibits ACh-induced α7 nAChR responses by an allosteric mechanism, with nicotine enhancing these effects. Live-cell confocal microscopy was used to confirm that SCoV2P interacts with α7 nAChRs in transfected neuronal-like N2a and human embryonic kidney 293 cells. The SARS-CoV-2 ectodomain functionally potentiates and inhibits the α7 subtype with nanomolar potency. Our functional findings identify that the α7 nAChR is a target for the SARS-CoV-2 glycoprotein, providing a new aspect to our understanding of SARS-CoV-2 and host cell interactions, in addition to disease pathogenesis.
Collapse
Affiliation(s)
- Brittany C V O'Brien
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Lahra Weber
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
| |
Collapse
|
46
|
Pross B, Münz S, Nitsche MA, Padberg F, Strube W, Papazova I, Falkai P, Hasan A. Smoking status ameliorates cholinergic impairments in cortical inhibition in patients with schizophrenia. Brain Res 2023; 1812:148380. [PMID: 37121425 DOI: 10.1016/j.brainres.2023.148380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Rationale Modulation of cortical excitability, in particular inhibition, is impaired in patients with schizophrenia. Chronic nicotine consumption, which is prevalent in this group, has been shown to alter cortical excitability in healthy individuals and to increase inhibitory activity. Thus, beneficial effects of smoking on impaired cortical excitability in patients with schizophrenia have been proposed, though direct experimental evidence is still lacking. OBJECTIVES We aimed to explore the effect of chronic smoking on cortical excitability by comparing smoking and non-smoking patients with schizophrenia. METHOD Twenty-six smoking and 19 non-smoking patients diagnosed with schizophrenia were included. Transcranial magnetic stimulation (TMS) applied to the primary motor cortex served as experimental paradigm for measuring corticospinal and intracortical excitability as follows: Resting motor threshold (RMT) and the input/output curve (I/O curve) were obtained to assess corticospinal excitability. Intracortical excitability was explored using paired-pulse TMS techniques (intracortical facilitation (ICF), short-latency intracortical inhibition (SICI) and short-latency afferent inhibition (SAI)). RESULTS A significantly stronger inhibition in the cholinergically driven SAI protocol was observed in smokers compared to non-smokers. All other measures did not show significant differences between groups. CONCLUSION Our results suggest an increased inhibition within cholinergic circuits due to chronic nicotine consumption in schizophrenia. This increase may compensate impaired cholinergic neurotransmission and could explain the high rate of smokers in schizophrenia.
Collapse
Affiliation(s)
- Benjamin Pross
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany.
| | - Susanne Münz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dept. Psychology and Neurosciences, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Strube
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| |
Collapse
|
47
|
Hammad AM, Alhusban AA, Alzaghari LF, Alasmari F, Sari Y. Effect of Cigarette Smoke Exposure and Aspirin Treatment on Neurotransmitters’ Tissue Content in Rats’ Hippocampus and Amygdala. Metabolites 2023; 13:metabo13040515. [PMID: 37110173 PMCID: PMC10145483 DOI: 10.3390/metabo13040515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Cigarette smoke withdrawal can cause anxiety-like behavior and modulate neurotransmitter-related proteins in the brain. We examined the effects of cigarette smoke with and without aspirin treatment on the concentrations of neurotransmitters, including dopamine, serotonin, glutamate, glutamine, and GABA in the amygdala and hippocampus. Sprague-Dawley rats were randomly assigned to four different groups: (1) control group exposed only to standard room air, (2) cigarette smoke exposed group treated with saline vehicle, (3) cigarette smoke exposed group treated with aspirin (30 mg/kg), and (4) control group treated only with aspirin (30 mg/kg). Cigarette smoke exposure was performed for 2 h/day, 5 days/week, for 31 days. Behavioral testing was carried out weekly, 24 h after cigarette smoke exposure, during acute withdrawal. At the end of week 4, rats were given either distilled water (1 mL) or aspirin 45 min before cigarette exposure for 11 days. Dopamine, serotonin, glutamate, glutamine, and GABA were extracted from both the amygdala and hippocampus and were separated and quantified using a developed and validated HPLC-MS/MS method. Cigarette smoke withdrawal induced anxiety behaviors, and aspirin treatment reduced this effect. Cigarette smoke exposure increased tissue content of dopamine, serotonin, glutamate, glutamine, and GABA, and aspirin treatment reversed this effect. Cigarette smoke caused an increase in tissue content of several neurotransmitters as well as anxiety-like behavior, and these effects were normalized by aspirin treatment.
Collapse
Affiliation(s)
- Alaa M. Hammad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ala A. Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Lujain F. Alzaghari
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
48
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
49
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
50
|
Hampsey E, Perkins A, Young AH. BNC210: an investigational α7-nicotinic acetylcholine receptor modulator for the treatment of anxiety disorders. Expert Opin Investig Drugs 2023; 32:277-282. [PMID: 36927202 DOI: 10.1080/13543784.2023.2192922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
INTRODUCTION Anxiety disorders are common, disabling psychiatric conditions associated with excessive worry, irritability, and physiological symptoms of stress. Following insufficient response to psychological therapies, first-line pharmacological treatments for anxiety disorders suffer from inconsistent efficacy, addiction, and intolerable side-effect profiles (e.g. sedation), especially when used inappropriately or contrary to evidence-based guidelines. Developing anxiolytics acting via cholinergic modulation may provide novel options for the treatment of anxiety disorders, without the drawbacks of existing anxiolytics. AREAS COVERED We review pharmacological treatment of anxiety disorders and proposed mechanisms of action in relation to the associated neural circuitry. We then consider the mechanism of action, pharmacodynamics, and pharmacokinetics of the negative-allosteric modulator of the alpha7 nicotinic receptor BNC210, an investigational anxiolytic so far employed in studies of those with social anxiety disorder, post-traumatic stress disorder, and agitation in hospitalized elderly. Lastly, we consider the environment of competitor compounds for this indication, and BNC210's place within it, in both the present and near-future. EXPERT OPINION : There is a relative paucity of data regarding BNC210, albeit the small amount of mostly non-peer reviewed data indicate it is a well-tolerated, effective anxiolytic. Phase III trials are required for proper appraisal of its utility.
Collapse
Affiliation(s)
- Elliot Hampsey
- Centre for Affective Disorders, King's College London, London, UK
| | - Adam Perkins
- Centre for Affective Disorders, King's College London, London, UK
| | - Allan H Young
- Centre for Affective Disorders, King's College London, London, UK.,South London & Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|