1
|
Huseynli Y, Kale İ, Dizdar M, Muhcu M. Investigation of Serum Cardiotrophin-1 Concentrations in Pregnant Women with Gestational Diabetes Mellitus. Z Geburtshilfe Neonatol 2024; 228:355-362. [PMID: 38122806 DOI: 10.1055/a-2210-4215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE We aimed to investigate cardiotrophin-1 (CT-1) concentrations in the serum of pregnant women with gestational diabetes mellitus (GDM). MATERIALS AND METHODS This prospective non-interventional cohort study was conducted with 160 pregnant women who applied to the Umraniye Training and Research Hospital, Department of Obstetrics and Gynecology between October 2022 and May 2023. The GDM group was formed from 80 pregnant women who were diagnosed with GDM according to the 75-g OGTT. The control group consisted of 80 healthy pregnant women who were matched with the GDM group in terms of age and body mass index and had a normal 75-g OGTT result. Two groups were compared in terms of maternal serum CT-1 concentrations. RESULTS Both groups were similar in terms of demographic features and the gestational week at blood sampling for CT-1 (p>0.05 for each). The mean maternal serum CT-1 concentration was found to be 1420.9 pg/ml in the GDM group, while it was determined as 1455 pg/ml in the control group (p=0.738). When the GDM and control groups were divided into two subgroups, normal weight and overweight according to the participants' BMI, serum CT-1 concentrations were found to be similar in these four groups (p=0.084). When the GDM group was divided into two groups of diet-only and the insulin-using group for blood glucose regulation and compared with the control group, the three groups were also similar in terms of serum CT-1 concentrations (p=0.189). CONCLUSION CT-1 is an adipokine involved in the regulation of glucose metabolism and has been suggested to be associated with the pathophysiology of diabetes mellitus. In this study, serum CT-1 concentrations were found to be similar in the group with GDM and the group with normal glucose tolerance. Whether CT-1 contributes to the development of GDM is currently unclear and requires further investigation.
Collapse
Affiliation(s)
- Yegana Huseynli
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Kale
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Merve Dizdar
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Obstetrics and Gynecology, Maternal Fetal Unit, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Kale İ, Dizdar M. Investigation of maternal serum cardiotrophin-1 concentrations in pregnant women with preeclampsia; a prospective case-control study. J Matern Fetal Neonatal Med 2023; 36:2229931. [PMID: 37369375 DOI: 10.1080/14767058.2023.2229931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE We aimed to investigate the cardiotrophin-1 (CT-1) concentrations in the serum of pregnant women with preeclampsia. METHODS This cross-sectional study was conducted with 88 pregnant women who applied to the Umraniye Training and Research Hospital Gynecology and Obstetrics Clinic between May 2022 and September 2022. The preeclampsia group consisted of 44 pregnant women diagnosed with preeclampsia, and the control group consisted of 44 healthy pregnant women matched with the preeclampsia group in terms of age and body mass index. Demographic characteristics, ultrasound and laboratory findings, perinatal outcomes, and maternal serum CT-1 concentrations were recorded. RESULTS Both groups were similar in terms of demographic features and the gestational week at blood sampling for CT-1. Preeclampsia and control groups were compared in terms of maternal serum CT-1 concentrations and no significant difference was found between the two groups (2061.4 pg/ml, 2168.5 pg/ml, respectively, p = .516). The preeclampsia group was divided into subgroups as mild and severe preeclampsia according to the severity of the disease and early-onset and late-onset preeclampsia according to the time of onset and compared with the control group in terms of maternal serum CT-1 concentration, no significant difference was found between the groups (p > .005, for all). CONCLUSION The serum CT-1 concentration of women whose pregnancy was complicated with preeclampsia was found to be similar to that of healthy controls. Although it has been shown in the literature that high serum CT-1 concentrations are associated with hypertensive heart diseases, its role in the pathophysiology of preeclampsia remains unclear.
Collapse
Affiliation(s)
- İbrahim Kale
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Ümraniye/İstanbul, Türkiye
| | - Merve Dizdar
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Ümraniye/İstanbul, Türkiye
| |
Collapse
|
3
|
Chandrasekar B, Mummidi S, DeMarco VG, Higashi Y. Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediators Inflamm 2023; 2023:6112301. [PMID: 37830075 PMCID: PMC10567511 DOI: 10.1155/2023/6112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Empagliflozin is an SGLT2 inhibitor and exerts pleiotropic cardiovascular protective effects, including antioxidant and anti-inflammatory effects. Here, we investigated (i) whether OxLDL regulates RECK expression, (ii) whether ectopic expression of RECK reverses OxLDL-induced SMC migration and proliferation, and (iii) whether pretreatment with empagliflozin reverses OxLDL-induced RECK suppression, MMP activation, and SMC migration, proliferation, and differentiation. Indeed, results show that OxLDL at pathophysiological concentration promotes SMC migration and proliferation via NF-κB/miR-30b-dependent RECK suppression. Moreover, OxLDL changed the SMC phenotype to a more pro-inflammatory type, and this effect is blunted by RECK overexpression. Further, treatment with empagliflozin reversed OxLDL-induced miR-30b induction, RECK suppression, MMP activation, SMC migration, proliferation, and proinflammatory phenotype changes. OxLDL-induced cardiotrophin (CT)-1 expression and CT-1 stimulated SMC proliferation and migration in part via leukemia inhibitory factor receptor (LIFR) and glycoprotein 130 (gp130). Ectopic expression of RECK inhibited these effects by physically associating with LIFR and gp130, as evidenced by immunoprecipitation/immunoblotting and double immunofluorescence. Importantly, empagliflozin inhibited CT-1-induced mitogenic and migratory effects. Together, these results suggest the therapeutic potential of sustaining RECK expression or empagliflozin in vascular diseases characterized by SMC proliferation and migration.
Collapse
Affiliation(s)
- Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Center, University of Missouri, Columbia, MO, USA
| | - Srinivas Mummidi
- Life Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Vincent G. DeMarco
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Medicine, University of Missouri School of Medicine, Columbia, MO, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Yusuke Higashi
- Medicine/Cardiology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
4
|
Liao YC, Wu JS, Chou HW, Kuo HY, Lee CT, Wu HT, Li CH, Ou HY. Serum Cardiotrophin-1 Concentration Is Negatively Associated with Controlled Attenuation Parameters in Subjects with Non-Alcoholic Fatty Liver Disease. J Clin Med 2023; 12:jcm12072741. [PMID: 37048824 PMCID: PMC10095180 DOI: 10.3390/jcm12072741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Background: Since non-alcoholic fatty liver disease (NAFLD) is highly associated with obesity, cardiovascular disease, and diabetes, biomarkers for the diagnosis of NAFLD have become an important issue. Although cardiotrophin-1 (CT-1) has a protective effect on the liver in NAFLD animal models, the serum levels of CT-1 in human subjects with NAFLD were still unknown. Objective: The present study aimed to investigate the relationship between the circulating concentration of CT-1 and the severity of hepatic steatosis graded by the value of the controlled attenuation parameter (CAP) in humans. Design and Methods: The study was designed as a cross-sectional study, and a total of 182 subjects were enrolled. Hepatic steatosis measurement was carried out with a Firoscan® device and recorded by CAP. The enrolled study subjects were categorized into CAP < 238 dB/m, 238 ≤ CAP ≤ 259 dB/m, 260 ≤ CAP ≤ 290 dB/m, and CAP > 290 dB/m. Serum CT-1 concentrations were determined by enzyme-linked immunosorbent assay. The association between the serum CT-1 concentration and NAFLD was examined by multivariate linear regression analysis. Results: Body mass index, percentage of body fat, systolic and diastolic blood pressure, alanine aminotransferase (ALT), cholesterol, triglyceride, hemoglobin A1c and homeostatic model assessment for insulin resistance (HOMA-IR) were significantly increased in groups with higher CAP value, whereas high-density lipoprotein cholesterol was significantly decreased. In addition, serum CT-1 concentrations were significantly decreased in subjects with higher CAP values. In multivariate linear regression models, including age, sex, body fat percentage, CAP, high sensitivity- C reactive protein, uric acid, creatinine, ALT, total cholesterol, and HOMA-IR, only age, CAP and uric acid independently associated with CT-1 levels. Moreover, having NAFLD was independently associated with CT-1 after adjustment for sex, obesity and type 2 diabetes. Conclusions: Serum CT-1 concentrations are decreased in subjects with NAFLD and negatively associated with CAP.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Juei-Seng Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Hsuan-Wen Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Hsin-Yu Kuo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Chun-Te Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan 709, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| |
Collapse
|
5
|
Increased Expression of Cardiotrophin-1 in Cardiomyopathy Patients. Balkan J Med Genet 2021; 24:21-26. [PMID: 34447655 PMCID: PMC8366478 DOI: 10.2478/bjmg-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cardiomyopathy (CM) is a condition of cardiac dysfunction. It is one of the leading causes of mortality in which both genetic and environmental factors are involved. Cardiotrophin-1 (CT-1) level in plasma is associated with CM. It affects the cardiomyocyte differentiation. To evaluate the expression of CT-1 in cardiomyopathy, this study was done on CM subjects attending the Fatima Memorial Hospital, Lahore, Pakistan, between January and June, 2016. A total of 40 subjects were enrolled who were divided into two groups; CM group (n = 20) and a control group (n = 20). A self-designed questionnaire was filled in by each subject to collect data regarding age, body mass index (BMI) and CM history. RNA was isolated from blood after its quantification, cDNA was prepared and reverse-transcriptase-polymerase chain reaction (RT-PCR) was performed for expression of CT-1. The mean age in CM subjects was 40.1±6.03 years, while it was 35.0±3.7 years in the control group. The mean expression of CT-1 in the CM subjects was 5.2±0.66, while it was 1.00±0.001 in the control group. A highly significant difference was observed in CT-1 expression in the CM group, and expression was significantly correlated with age and BMI in CM subjects.
Collapse
|
6
|
Carneros D, Medina-Gómez G, Giralt M, León-Camacho M, Campbell M, Moreno-Aliaga MJ, Villarroya F, Bustos M. Cardiotrophin-1 contributes to metabolic adaptations through the regulation of lipid metabolism and to the fasting-induced fatty acid mobilization. FASEB J 2020; 34:15875-15887. [PMID: 33047392 DOI: 10.1096/fj.202000109r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
It is becoming clear that several human pathologies are caused by altered metabolic adaptations. During liver development, there are physiological changes, from the predominant utilization of glucose (fetal life) to the use of lipids (postnatal life). Fasting is another physiological stress that elicits well-known metabolic adjustments. We have reported the metabolic properties of cardiotrophin-1 (CT-1), a member of the interleukin-6 family of cytokines. Here, we aimed at analyzing the role of CT-1 in response to these metabolic changes. We used different in vivo models. Furthermore, a differential study was carried out with wild-type and CT-1 null mice in fed (ad libitum) and food-restricted conditions. We demonstrated that Ct-1 is a metabolic gene induced in the liver via PPARα in response to lipids in mice (neonates- and food-restricted adults). We found that Ct-1 mRNA expression in white adipose tissue directly involved PPARα and PPARγ. Finally, the physiological role of CT-1 in fasting is confirmed by the impaired food restriction-induced adipose tissue lipid mobilization in CT-1 null mice. Our findings support a previously unrecognized physiological role of CT-1 in metabolic adaptations, through the regulation of lipid metabolism and contributes to fasting-induced free fatty acid mobilization.
Collapse
Affiliation(s)
- David Carneros
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Virgen del Rocio University Hospital, Seville, Spain
| | - Gema Medina-Gómez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Rey Juan Carlos University, Madrid, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine, Barcelona University, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Manuel León-Camacho
- Department of Lipid Characterization and Quality, Instituto de la Grasa (CSIC), Seville, Spain
| | - Mark Campbell
- MRC MDU, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Maria J Moreno-Aliaga
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain.,Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology School of Pharmacy and Nutrition, University of Navarra, Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Barcelona University, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Matilde Bustos
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Virgen del Rocio University Hospital, Seville, Spain
| |
Collapse
|
7
|
Berezin AE, Berezin AA. Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification-A Narrative Review. Diabetes Ther 2020; 11:1271-1291. [PMID: 32430864 PMCID: PMC7261294 DOI: 10.1007/s13300-020-00835-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this narrative review is to update the current knowledge on the differential choice of circulating cardiac biomarkers in patients with prediabetes and established type 2 diabetes mellitus (T2DM). There are numerous circulating biomarkers with unconfirmed abilities to predict clinical outcomes in pre-DM and DM individuals; the prognostication ability of the cardiac biomarkers reported here has been established, and they are still being studied. The conventional cardiac biomarkers, such as natriuretic peptides (NPs), soluble suppressor tumorigenisity-2, high-sensitivity circulating cardiac troponins and galectin-3, were useful to ascertain cardiovascular (CV) risk. Each cardiac biomarker has its strengths and weaknesses that affect the price of usage, specificity, sensitivity, predictive value and superiority in face-to-face comparisons. Additionally, there have been confusing reports regarding their abilities to be predictably relevant among patients without known CV disease. The large spectrum of promising cardiac biomarkers (growth/differential factor-15, heart-type fatty acid-binding protein, cardiotrophin-1, carboxy-terminal telopeptide of collagen type 1, apelin and non-coding RNAs) is discussed in the context of predicting CV diseases and events in patients with known prediabetes and T2DM. Various reasons have been critically discussed related to the variable findings regarding biomarker-based prediction of CV risk among patients with metabolic disease. It was found that NPs and hs-cTnT are still the most important tools that have an affordable price as well as high sensitivity and specificity to predict clinical outcomes among patients with pre-DM and DM in routine clinical practice, but other circulating biomarkers need to be carefully investigated in large trials in the future.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, Ministry of Health of Ukraine, State Medical University, Zaporozhye, 69035, Ukraine.
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, 69096, Ukraine
| |
Collapse
|
8
|
Sabouri M, Norouzi J, Zarei Y, Sangani MH, Hooshmand Moghadam B. Comparing High-Intensity Interval Training (HIIT) and Continuous Training on Apelin, APJ, NO, and Cardiotrophin-1 in Cardiac Tissue of Diabetic Rats. J Diabetes Res 2020; 2020:1472514. [PMID: 32908933 PMCID: PMC7474749 DOI: 10.1155/2020/1472514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Exercise activity is an important method for managing type 2 diabetes. This investigation examined the HIIT and continuous training on apelin, APJ receptor, NO, and cardiotrophin-1 in the cardiac tissue of diabetic rats. METHODS The animals were categorized into 3 groups of HIIT, continuous (CO), and control (C) (all animals were sacrificed immediately and 2 days after exercise training period). Rats underwent the treadmill exercise program either HIIT (12 bouts at 90-95% of VO2 max with 60 s rest at 50% of VO2 max) or CO (60-65% VO2 max for 40 min). Protocols performed 5 days per week for 8 weeks. Apelin, APJ receptor, NO, and cardiotrophin-1 protein expressions were measured using the Western blotting method in the left ventricle. RESULTS Immediately after HIIT and CO exercise protocols, apelin and CT-1 protein showed a significant difference in contrast by the C-0 group (p < 0.01). However, NO values were substantially higher in HIIT-0 compared to C-0 and CO-0 groups rats (p < 0.01). After two days of exercise protocols, apelin and NO protein showed a significant increase in HIIT and CO groups in contrast to the C animals (p < 0.01). Moreover, APJ and CT-1 protein significantly upregulated in CO-2 and HIIT-2 compared to the other groups (p < 0.01). CONCLUSIONS This study indicates that exercise training, despite the type, is an efficient method to modify apelin, APJ receptor, NO, and cardiotrophin-1 values in animals with type 2 diabetes.
Collapse
Affiliation(s)
- Mostafa Sabouri
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
- Oxygen Sports Medical Center, Tehran, Iran
| | - Javad Norouzi
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
- Oxygen Sports Medical Center, Tehran, Iran
| | - Yashar Zarei
- Department of Exercise Physiology & Health Science, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
9
|
Ma D, Wang Y, Zhou G, Wang Y, Li X. Review: the Roles and Mechanisms of Glycoprotein 130 Cytokines in the Regulation of Adipocyte Biological Function. Inflammation 2019; 42:790-798. [PMID: 30661143 DOI: 10.1007/s10753-019-00959-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic low-grade inflammation is now widely accepted as one of the most important contributors to metabolic disorders. Glycoprotein 130 (gp130) cytokines are involved in the regulation of metabolic activity. Studies have shown that several gp130 cytokines, such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), have divergent effects on adipogenesis, lipolysis, and insulin sensitivity as well as food intake. In this review, we will summarize the present knowledge about gp130 cytokines, including IL-6, LIF, CNTF, CT-1, and OSM, in adipocyte biology and metabolic activities in conditions such as obesity, cachexia, and type 2 diabetes. It is valuable to explore the diverse actions of these gp130 cytokines on the regulation of the biological functions of adipocytes, which will provide potential therapeutic targets for the treatment of obesity and cachexia.
Collapse
Affiliation(s)
- Dufang Ma
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guofeng Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongcheng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Li
- Cardiology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
10
|
Stephens J, Ravussin E, White U. The Expression of Adipose Tissue-Derived Cardiotrophin-1 in Humans with Obesity. BIOLOGY 2019; 8:biology8020024. [PMID: 31013924 PMCID: PMC6627495 DOI: 10.3390/biology8020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 01/23/2023]
Abstract
Cardiotrophin-1 (CT-1) is a gp130 cytokine that was previously characterized for its effects on cardiomyocytes and identified as a marker of heart failure. More recent studies reported elevated circulating levels of CT-1 in humans with obesity and metabolic syndrome (MetS). However, a subsequent rodent study implicated CT-1 as a potential therapeutic target for obesity and MetS. Adipose tissue (AT) is broadly acknowledged as an endocrine organ and is a substantial source of CT-1. However, no study has examined the expression of adipose-derived CT-1 in humans. We present the first analysis of CT-1 mRNA expression in subcutaneous AT and its association with clinical variables in 22 women with obesity and 15 men who were 40% overfed for 8-weeks. We observed that CT-1 expression was higher in the subcutaneous abdominal (scABD) than the femoral (scFEM) depot. Importantly, we reveal that scFEM but not scABD, CT-1 expression was negatively associated with visceral adiposity and intrahepatic lipid, while positively correlated with insulin sensitivity in obese women. Also, men with higher CT-1 levels at baseline had less of a decline in insulin sensitivity in response to overfeeding. Our data provide new knowledge on the regulation of adipose-derived CT-1 in obesity and during weight gain in response to overfeeding in humans and suggest that CT-1 may play a protective role in obesity and related disorders.
Collapse
Affiliation(s)
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Ursula White
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
11
|
Cardiotrophin-1 and leptin as cardiovascular risk markers in male patients with obstructive sleep apnea syndrome. ACTA ACUST UNITED AC 2019; 3:e123-e128. [PMID: 30775602 PMCID: PMC6374564 DOI: 10.5114/amsad.2018.79407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/01/2018] [Indexed: 11/19/2022]
Abstract
Introduction Elevated cardiotrophin-1 (CT-1) and leptin levels are important risk factors for cardiovascular diseases (CVDs). Obstructive sleep apnea syndrome (OSAS) has also been reported to increase this risk. The aim of this study is to evaluate serum concentrations of CT-1 and leptin in patients with OSAS and whether there is a possible association between CT-1, leptin and OSAS severity. Material and methods Fifty newly diagnosed OSAS patients and thirty nonapneic snoring subjects participated in this study. Fasting serum lipid profile markers were evaluated. The measurements of serum CT-1 and leptin levels were carried out using human ELISA kits. Results Significant differences were found in the serum CT-1 and leptin levels between the two groups. Serum median CT-1 levels in patient and control groups, respectively, were 19.47; 8.23 pg/ml and leptin levels were 2.07; 1.29 ng/ml (p < 0.001). In the severe patient group, serum median CT-1 level was statistically significantly higher than the median level in the mild/moderate group. There was no correlation between patients’ leptin and lipid profile parameters and CT-1 concentrations were not associated with triglyceride, cholesterol or LDL cholesterol levels except HDL cholesterol: CT-1 levels were positively correlated with HDL levels (p = 0.02). Conclusions Both CT-1 and leptin were significantly elevated in the patient group. Furthermore, CT-1 and leptin were associated with OSAS and CT-1 was associated with the disease severity.
Collapse
|
12
|
Anik Ilhan G, Kanlioglu C, Arslan G, Yildizhan B, Pekin T. Cardiotrophin-1 as a new metabolic biomarker in women with PCOS. Gynecol Endocrinol 2018; 34:781-783. [PMID: 29600728 DOI: 10.1080/09513590.2018.1457637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to investigate cardiotrophin-1 (CT-1) levels as a new metabolic biomarker in women with polycystic ovary syndrome (PCOS). One hundred consecutive women with PCOS were divided into two groups according to presence of metabolic syndrome as MetS+ and MetS-. Clinical, hormonal and metabolic parameters in addition to CT-1 levels were compared between the groups. Correlation analyses were performed between CT-1 and clinical and metabolic parameters in women with PCOS. One hundred PCOS subjects were enrolled in the study, of which 29 subjects were diagnosed with metabolic syndrome. WHR, systolic and diastolic blood pressures, triglyceride, total cholesterol, HOMA-IR, FAI, FGS and CT-1 levels were significantly higher in the MetS+ group compared with the MetS- group. HDL cholesterol was significantly higher in the MetS- group than the MetS+ one. CT-1 levels were found to be positively correlated with diastolic blood pressure, TG levels and FGS. Cardiotrophin-1 may be a promising new metabolic biomarker in women with PCOS. CT-1 may be beneficial for estimating the risk of long-term adverse health consequences and establishing early intervention and preventation strategies.
Collapse
Affiliation(s)
- Gokce Anik Ilhan
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Cansu Kanlioglu
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Gaye Arslan
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Begum Yildizhan
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Tanju Pekin
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| |
Collapse
|
13
|
Escoté X, Gómez-Zorita S, López-Yoldi M, Milton-Laskibar I, Fernández-Quintela A, Martínez JA, Moreno-Aliaga MJ, Portillo MP. Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. Int J Mol Sci 2017; 18:ijms18081770. [PMID: 28809783 PMCID: PMC5578159 DOI: 10.3390/ijms18081770] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023] Open
Abstract
Adipose tissue releases bioactive mediators called adipokines. This review focuses on the effects of omentin, vaspin, cardiotrophin-1, Tumor necrosis factor-like Weak Inducer of Apoptosis (TWEAK) and nephroblastoma overexpressed (NOV/CCN3) on obesity and diabetes. Omentin is produced by the stromal-vascular fraction of visceral adipose tissue. Obesity reduces omentin serum concentrations and adipose tissue secretion in adults and adolescents. This adipokine regulates insulin sensitivity, but its clinical relevance has to be confirmed. Vaspin is produced by visceral and subcutaneous adipose tissues. Vaspin levels are higher in obese subjects, as well as in subjects showing insulin resistance or type 2 diabetes. Cardiotrophin-1 is an adipokine with a similar structure as cytokines from interleukin-6 family. There is some controversy regarding the regulation of cardiotrophin-1 levels in obese -subjects, but gene expression levels of cardiotrophin-1 are down-regulated in white adipose tissue from diet-induced obese mice. It also shows anti-obesity and hypoglycemic properties. TWEAK is a potential regulator of the low-grade chronic inflammation characteristic of obesity. TWEAK levels seem not to be directly related to adiposity, and metabolic factors play a critical role in its regulation. Finally, a strong correlation has been found between plasma NOV/CCN3 concentration and fat mass. This adipokine improves insulin actions.
Collapse
Affiliation(s)
- Xavier Escoté
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Miguel López-Yoldi
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| |
Collapse
|
14
|
López-Yoldi M, Marcos-Gomez B, Romero-Lozano MA, Sáinz N, Prieto J, Martínez JA, Bustos M, Moreno-Aliaga MJ. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice. J Cell Physiol 2017; 232:2469-2477. [PMID: 27608275 DOI: 10.1002/jcp.25590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/06/2016] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) belongs to the IL-6 family of cytokines. Previous studies of our group revealed that CT-1 is a key regulator of glucose and lipid metabolism. The aim of the present study was to analyze the in vitro and in vivo effects of CT-1 on the production of several adipokines involved in body weight regulation, nutrient metabolism, and inflammation. For this purpose, 3T3-L1 adipocytes were incubated with recombinant protein CT-1 (rCT-1) (1-40 ng/ml) for 1 and 18 h. Moreover, the acute effects of rCT-1 administration (0.2 mg/kg, i.v.) for 30 min and 3 h on adipokines levels were also evaluated in high-fat fed obese mice. In 3T3-L1 adipocytes, rCT-1 treatment downregulated the expression and secretion of leptin, resistin, and visfatin. However, rCT-1 significantly stimulated apelin mRNA and secretion. rCT-1 (18 h) also promoted the activation by phosphorylation of AKT, ERK 1/2, and STAT3. Interestingly, pre-treatment with the PI3K inhibitor LY294002 reversed the stimulatory effects of rCT-1 on apelin expression, suggesting that this pathway could be mediating the effects of rCT-1 on apelin production. In contrast, acute administration of rCT-1 (30 min and 3 h) to diet-induced obese mice downregulated leptin and resistin, without significantly modifying apelin or visfatin mRNA in adipose tissue. Furthermore, CT-1 null mice exhibited altered expression of adipokines in adipose tissue. The present study demonstrates that rCT-1 modulates the production of adipokines in vitro and in vivo, suggesting that the regulation of the secretory function of adipocytes could be involved in the metabolic actions of this cytokine. J. Cell. Physiol. 232: 2469-2477, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Beatriz Marcos-Gomez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain
| | | | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Jesús Prieto
- Department of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Navarra, Spain.,CIBERehd, Institute of Health Carlos III, Madrid, Spain
| | - Jose Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain.,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
| | - Matilde Bustos
- Department of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Navarra, Spain
| | - Maria J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain.,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
| |
Collapse
|
15
|
López-Yoldi M, Stanhope KL, Garaulet M, Chen XG, Marcos-Gómez B, Carrasco-Benso MP, Santa Maria EM, Escoté X, Lee V, Nunez MV, Medici V, Martínez-Ansó E, Sáinz N, Huerta AE, Laiglesia LM, Prieto J, Martínez JA, Bustos M, Havel PJ, Moreno-Aliaga MJ. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects. FASEB J 2017; 31:1639-1649. [PMID: 28096235 DOI: 10.1096/fj.201600396rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022]
Abstract
Cardiotrophin (CT)-1 is a regulator of glucose and lipid homeostasis. In the present study, we analyzed whether CT-1 also acts to peripherally regulate metabolic rhythms and adipose tissue core clock genes in mice. Moreover, the circadian pattern of plasma CT-1 levels was evaluated in normal-weight and overweight subjects. The circadian rhythmicity of oxygen consumption rate (Vo2) was disrupted in aged obese CT-1-deficient (CT-1-/-) mice (12 mo). Although circadian rhythms of Vo2 were conserved in young lean CT-1-/- mice (2 mo), CT-1 deficiency caused a phase shift of the acrophase. Most of the clock genes studied (Clock, Bmal1, and Per2) displayed a circadian rhythm in adipose tissue of both wild-type (WT) and CT-1-/- mice. However, the pattern was altered in CT-1-/- mice toward a lower percentage of the rhythm or lower amplitude, especially for Bmal1 and Clock. Moreover, CT-1 mRNA levels in adipose tissue showed significant circadian fluctuations in young WT mice. In humans, CT-1 plasma profile exhibited a 24-h circadian rhythm in normal-weight but not in overweight subjects. The 24-h pattern of CT-1 was characterized by a pronounced increase during the night (from 02:00 to 08:00). These observations suggest a potential role for CT-1 in the regulation of metabolic circadian rhythms.-López-Yoldi, M., Stanhope, K. L., Garaulet, M., Chen, X. G., Marcos-Gómez, B., Carrasco-Benso, M. P., Santa Maria, E. M., Escoté, X., Lee, V., Nunez, M. V., Medici, V., Martínez-Ansó, E., Sáinz, N., Huerta, A. E., Laiglesia, L. M., Prieto, J., Martínez, J. A., Bustos, M., Havel, P. J., Moreno-Aliaga, M. J. Role of cardiotrophin-1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24-h circulating CT-1 profiles in normal-weight and overweight/obese subjects.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Marta Garaulet
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - X Guoxia Chen
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Beatriz Marcos-Gómez
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
| | | | - Eva M Santa Maria
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd) and Institute of Health Carlos III, Madrid, Spain
| | - Xavier Escoté
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Vivien Lee
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Marinelle V Nunez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Valentina Medici
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Eduardo Martínez-Ansó
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Ana E Huerta
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Jesús Prieto
- Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd) and Institute of Health Carlos III, Madrid, Spain.,Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain; and.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Matilde Bustos
- Department of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Maria J Moreno-Aliaga
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain; .,Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain; and.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
16
|
Cardiotrophin-1 is inversely associated with obesity in non-diabetic individuals. Sci Rep 2015; 5:17438. [PMID: 26621340 PMCID: PMC4664929 DOI: 10.1038/srep17438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Cardiotrophin-1 is known to be a key regulator of energy homeostasis, as well as glucose and lipid metabolism in vivo. However, there are inconsistent results of the association between cardiotrophin-1 and obesity in humans, possibly confounded by hyperglycemia. Therefore, the aim of this study was to investigate the relationships among cardiotrophin-1 levels, overweight and obese individuals without diabetes in a Chinese population. The median (inter-quarter range) serum cardiotrophin-1 levels were 447.9 (230.9, 913.9), 350.6 (201.1, 666.5), and 288.1 (162.3, 572.4) pg/ml in non-diabetic subjects who were of normal weight (n = 522), overweight (n = 203), and obese (n = 93), respectively (trend test p < 0.001). Subjects who were overweight and obese had significantly lower cardiotrophin-1 levels than those with normal weight. The multivariate linear regression analyses showed that overweight (beta = −338.718, 95% CI = −552.786 ~ −124.651, p < 0.01), obese (beta = −530.275, 95% CI = −832.967 ~ −227.583, p < 0.01), and smoking (beta = −377.375, 95% CI = −654.353 ~ −100.397, p < 0.01) were negatively related to cardiotrophin-1 after adjusting for age, gender, HOMA-IR, hypertension, total cholesterol, HDL, triglyceride, eGFR, ALT, and alcohol drinking. The results of this study provided epidemiological evidence that non-diabetic subjects who were overweight or obesity had significantly lower cardiotrophin-1 concentrations than those with normal weight, and both obesity and being overweight were inversely associated with cardiotrophin-1 levels.
Collapse
|
17
|
Rodríguez A, Ezquerro S, Méndez-Giménez L, Becerril S, Frühbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. Am J Physiol Endocrinol Metab 2015; 309:E691-714. [PMID: 26330344 DOI: 10.1152/ajpendo.00297.2015] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
Adipose tissue constitutes an extremely active endocrine organ with a network of signaling pathways enabling the organism to adapt to a wide range of different metabolic challenges, such as starvation, stress, infection, and short periods of gross energy excess. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a huge variety of hormones, cytokines, complement and growth factors, extracellular matrix proteins, and vasoactive factors, collectively termed adipokines. Obesity is associated with adipose tissue dysfunction leading to the onset of several pathologies including type 2 diabetes, dyslipidemia, nonalcoholic fatty liver, or hypertension, among others. The mechanisms underlying the development of obesity and its associated comorbidities include the hypertrophy and/or hyperplasia of adipocytes, adipose tissue inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. Recently, the potential role of brown and beige adipose tissue in the protection against obesity has been also recognized. In contrast to white adipocytes, which store energy in the form of fat, brown and beige fat cells display energy-dissipating capacity through the promotion of triacylglycerol clearance, glucose disposal, and generation of heat for thermogenesis. Identification of the morphological and molecular changes in white, beige, and brown adipose tissue during weight gain is of utmost relevance for the identification of pharmacological targets for the treatment of obesity and its associated metabolic diseases.
Collapse
Affiliation(s)
- Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Silvia Ezquerro
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; and Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
18
|
López-Yoldi M, Moreno-Aliaga MJ, Bustos M. Cardiotrophin-1: A multifaceted cytokine. Cytokine Growth Factor Rev 2015; 26:523-32. [PMID: 26188636 DOI: 10.1016/j.cytogfr.2015.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines that have pleiotropic functions on different tissues and cell types. Although many effects of CT-1 have been described on the heart, there is an extensive research showing important protective effects in other organs such as liver, kidney or nervous system. Recently, several studies have pointed out that CT-1 might also play a key role in the regulation of body weight and intermediate metabolism. This paper will review many aspects of CT-1 physiological role in several organs and discuss data for consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Centre for Nutrition Research, University of Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Matilde Bustos
- Area of Hepatology and Gene Therapy, CIMA (Center for Applied Medical Research) University of Navarra, Pamplona, Spain.
| |
Collapse
|
19
|
Gamella-Pozuelo L, Fuentes-Calvo I, Gómez-Marcos MA, Recio-Rodriguez JI, Agudo-Conde C, Fernández-Martín JL, Cannata-Andía JB, López-Novoa JM, García-Ortiz L, Martínez-Salgado C. Plasma Cardiotrophin-1 as a Marker of Hypertension and Diabetes-Induced Target Organ Damage and Cardiovascular Risk. Medicine (Baltimore) 2015; 94:e1218. [PMID: 26222851 PMCID: PMC4554114 DOI: 10.1097/md.0000000000001218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The search for biomarkers of hypertension and diabetes-induced damage to multiple target organs is a priority. We analyzed the correlation between plasma cardiotrophin-1 (CT-1), a chemokine that participates in cardiovascular remodeling and organ fibrosis, and a wide range of parameters currently used to diagnose morphological and functional progressive injury in left ventricle, arteries, and kidneys of diabetic and hypertensive patients, in order to validate plasma levels of CT-1 as clinical biomarker.This is an observational study with 93 type 2-diabetic patients, 209 hypertensive patients, and 82 healthy controls in which we assessed the following parameters: plasma CT-1, basal glycaemia, systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), left ventricular hypertrophy (LVH by electrocardiographic indexes), peripheral vascular disease (by pulse wave velocity-PWV, carotid intima-media thickness-C-IMT, and ankle-brachial index-ABI), and renal impairment (by microalbuminuria, albumin/creatinine urinary ratio, plasma creatinine concentrations, and glomerular filtration rate).Hypertensive or diabetic patients have higher plasma CT-1 than control patients. CT-1 positively correlates with basal glycaemia, SBP, DBP, PP, LVH, arterial damage (increased IMT, decreased ABI), and early renal damage (microalbuminuria, elevated albumin/creatinine ratio). CT-1 also correlates with increased 10-year cardiovascular risk. Multiple linear regression analysis confirmed that CT-1 was associated with arterial injury assessed by PWV, IMT, ABI, and cardiac damage evaluated by Cornell voltage duration product.Increases in plasma CT-1 are strongly related to the intensity of several parameters associated to target organ damage supporting further investigation of its diagnostic capacity as single biomarker of cardiovascular injury and risk and, possibly, of subclinical renal damage.
Collapse
Affiliation(s)
- Luis Gamella-Pozuelo
- From the Unidad de Fisiopatología Renal y Cardiovascular (LG-P, IF-C, JML-N, CM-S), Departamento de Fisiología y Farmacología, Instituto Reina Sofía de Investigación Nefrológica, Universidad de Salamanca, Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (IF-C, MAG-M, JIR-R, CA-C, JML-N, LG-O, CM-S), Salamanca; Unidad de Investigación (MAG-M, JIR-R, CA-C, LG-O), Centro de Salud La Alamedilla, SACYL, Salamanca; Servicio de Metabolismo Óseo y Mineral (JLF-M, JBC-A), Instituto Reina Sofía de Investigación Nefrológica, Hospital Universitario Central de Asturias, Oviedo; and Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL) (CM-S), Unidad de Investigación, Hospital Universitario de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hua X, Shan Y, Li D, Xu D, Zhang J, Yang T, Han L, Shen C, Xia Y, Chen Q, Ma X, Zhang J, Xia Q. A Potential Profibrogenic Role of Biliary Epithelium-Derived Cardiotrophin-1 in Pediatric Cholestatic Liver Disease. J Interferon Cytokine Res 2015; 35:606-12. [PMID: 25919795 DOI: 10.1089/jir.2014.0128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a cytokine of the interleukin-6 family, cardiotrophin-1 (CT-1) has been shown to be an important endogenous protector in liver injury. Our study aimed to investigate the role of CT-1 in liver fibrosis in pediatric cholestatic liver disease (PCLD). CT-1 mRNA and protein expression levels were upregulated in PCLD liver biopsy tissues compared with controls. Immunohistochemistry and confocal microscopy of liver sections showed that CT-1 was predominantly expressed by biliary epithelium cells. Serum CT-1 was elevated significantly in the children with PCLD compared with controls. Serum CT-1 levels exhibited a moderate positive correlation with the Scheuer stage of hepatic fibrosis and serum TB levels and a weak correlation with serum ALP levels. In vitro analysis indicated that LX-2 cells preconditioned with CT-1 exhibited significant increments in proliferation and accumulation of extracellular matrix components, while also positively regulating the STAT3 and p38MAPK pathways. In conclusion, biliary epithelium-derived CT-1 may exert a profibrogenic potential in PCLD.
Collapse
Affiliation(s)
- Xiangwei Hua
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Yuhua Shan
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Dawei Li
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Dongwei Xu
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Jiang Zhang
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Taihua Yang
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Longzhi Han
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Conghuan Shen
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Yun Xia
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Qimin Chen
- 2 Department of Urology, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China
| | - Xiong Ma
- 3 Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai Institute of Digestive Disease, Shanghai, People's Republic of China .,4 Key Laboratory of Gastroenterology & Hepatology, Ministry of Health (Shanghai Jiao-Tong University) , Shanghai, People's Republic of China
| | - Jianjun Zhang
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| | - Qiang Xia
- 1 Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, People's Republic of China
| |
Collapse
|
21
|
Elks CM, Stephens JM. Oncostatin m modulation of lipid storage. BIOLOGY 2015; 4:151-60. [PMID: 25689119 PMCID: PMC4381222 DOI: 10.3390/biology4010151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 02/02/2023]
Abstract
Oncostatin M (OSM) is a cytokine belonging to the gp130 family, whose members serve pleiotropic functions. However, several actions of OSM are unique from those of other gp130 cytokines, and these actions may have critical roles in inflammatory mechanisms influencing several metabolic and biological functions of insulin-sensitive tissues. In this review, the actions of OSM in adipose tissue and liver are discussed, with an emphasis on lipid metabolism.
Collapse
Affiliation(s)
- Carrie M Elks
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA.
| |
Collapse
|
22
|
Cardiotrophin-1 (CT-1) Improves High Fat Diet-Induced Cognitive Deficits in Mice. Neurochem Res 2015; 40:843-53. [DOI: 10.1007/s11064-015-1535-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
|
23
|
López-Yoldi M, Fernández-Galilea M, Laiglesia LM, Larequi E, Prieto J, Martínez JA, Bustos M, Moreno-Aliaga MJ. Cardiotrophin-1 stimulates lipolysis through the regulation of main adipose tissue lipases. J Lipid Res 2014; 55:2634-43. [PMID: 25351614 DOI: 10.1194/jlr.m055335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the regulation of lipolysis were evaluated in 3T3-L1 adipocytes and in mice. rCT-1 treatment stimulated basal glycerol release in a concentration- and time-dependent manner in 3T3-L1 adipocytes. rCT-1 (20 ng/ml for 24 h) raised cAMP levels, and in parallel increased protein kinase (PK)A-mediated phosphorylation of perilipin and hormone sensitive lipase (HSL) at Ser660. siRNA knock-down of HSL or PKA, as well as pretreatment with the PKA inhibitor H89, blunted the CT-1-induced lipolysis, suggesting that the lipolytic action of CT-1 in adipocytes is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased adipose triglyceride lipase (desnutrin) content in adipose tissue. These results showed that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Marta Fernández-Galilea
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain
| | - Laura M Laiglesia
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Eduardo Larequi
- Gene Therapy and Hepatology, CIMA, University of Navarra, Pamplona, Navarra, Spain
| | - Jesús Prieto
- Gene Therapy and Hepatology, CIMA, University of Navarra, Pamplona, Navarra, Spain CIBERehd Institute of Health Carlos III, Madrid, Spain
| | - J Alfredo Martínez
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Matilde Bustos
- Gene Therapy and Hepatology, CIMA, University of Navarra, Pamplona, Navarra, Spain
| | - Maria J Moreno-Aliaga
- Departments of Nutrition, Food Science, and Physiology University of Navarra, Pamplona, Navarra, Spain Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Lutz SZ, Franck O, Böhm A, Machann J, Schick F, Machicao F, Fritsche A, Häring HU, Staiger H. Common genetic variation in the human CTF1 locus, encoding cardiotrophin-1, determines insulin sensitivity. PLoS One 2014; 9:e100391. [PMID: 25025664 PMCID: PMC4099130 DOI: 10.1371/journal.pone.0100391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/23/2014] [Indexed: 12/02/2022] Open
Abstract
Aims/Hypothesis Recently, cardiotrophin-1, a member of the interleukin-6 family of cytokines was described to protect beta-cells from apoptosis, to improve glucose-stimulated insulin secretion and insulin resistance, and to prevent streptozotocin-induced diabetes in mice. Here, we studied whether common single nucleotide polymorphisms (SNPs) in the CTF1 locus, encoding cardiotrophin-1, influence insulin secretion and insulin sensitivity in humans. Methods We genotyped 1,771 German subjects for three CTF1 tagging SNPs (rs1046276, rs1458201, and rs8046707). The subjects were metabolically characterized by an oral glucose tolerance test. Subgroups underwent magnetic resonance (MR) imaging/spectroscopy and hyperinsulinaemic-euglycaemic clamps. Results After appropriate adjustment, the minor allele of CTF1 SNP rs8046707 was significantly associated with decreased in vivo measures of insulin sensitivity. The other tested SNPs were not associated with OGTT-derived sensitivity parameters, nor did the three tested SNPs show any association with OGTT-derived parameters of insulin release. In the MR subgroup, SNP rs8046707 was nominally associated with lower visceral adipose tissue. Furthermore, the SNP rs1458201 showed a nominal association with increased VLDL levels. Conclusions In conclusion, this study, even though preliminary and awaiting further confirmation by independent replication, provides first evidence that common genetic variation in CTF1 could contribute to insulin sensitivity in humans. Our SNP data indicate an insulin-desensitizing effect of cardiotrophin-1 and underline that cardiotrophin-1 represents an interesting target to influence insulin sensitivity.
Collapse
Affiliation(s)
- Stefan Z. Lutz
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Olga Franck
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
| | - Anja Böhm
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fausto Machicao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Nutritional and Preventive Medicine, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
- * E-mail:
| | - Harald Staiger
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Germany
| |
Collapse
|
25
|
Zhao P, Stephens JM. Identification of STAT target genes in adipocytes. JAKSTAT 2014; 2:e23092. [PMID: 24058802 PMCID: PMC3710315 DOI: 10.4161/jkst.23092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 02/08/2023] Open
Abstract
Adipocytes play important roles in lipid storage, energy homeostasis and whole body insulin sensitivity. Studies in the last two decades have identified the hormones and cytokines that activate specific STATs in adipocytes in vitro and in vivo. Five of the seven STAT family members are expressed in adipocyte (STATs 1, 3, 5A, 5B and 6). Many transcription factors, including STATs, have been shown to play an important role in adipose tissue development and function. This review will summarize the importance of adipocytes, indicate the cytokines and hormones that utilize the JAK-STAT signaling pathway in fat cells and focus on the identification of STAT target genes in mature adipocytes. To date, specific target genes have been identified for STATs, 1, 5A and 5B, but not for STATs 3 and 6.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA ; Adipocyte Biology Lab; Pennington Biomedical Research Center; Baton Rouge, LA USA
| | | |
Collapse
|
26
|
Sanchez-Infantes D, White UA, Elks CM, Morrison RF, Gimble JM, Considine RV, Ferrante AW, Ravussin E, Stephens JM. Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes. J Clin Endocrinol Metab 2014; 99:E217-25. [PMID: 24297795 PMCID: PMC3913819 DOI: 10.1210/jc.2013-3555] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Adipose tissue is a highly active endocrine organ that secretes many factors that affect other tissues and whole-body metabolism. Adipocytes are responsive to several glycoprotein 130 (gp130) cytokines, some of which have been targeted as potential antiobesity therapeutics. OBJECTIVE Oncostatin M (OSM) is a gp130 family member known to inhibit adipocyte differentiation in vitro, but its effects on other adipocyte properties are not characterized. The expression of OSM in white adipose tissue (WAT) has not been evaluated in the context of obesity. Thus, our objective was to examine the expression of adipose tissue OSM in obese animals and humans. DESIGN OSM expression was examined in adipose tissues from mice with diet-induced and genetic obesity and in obese humans as well as in fractionated adipose tissue from mice. Murine adipocytes were used to examine OSM receptor expression and the effects of OSM on adipocytes, including the secretion of factors such as plasminogen activator inhibitor 1 and IL-6, which are implicated in metabolic diseases. RESULTS OSM expression is increased in rodent and human obesity/type 2 diabetes mellitus. In humans, OSM levels correlate with body weight and insulin and are inversely correlated with glucose disposal rate as measured by hyperinsulinemic-euglycemic clamp. OSM is not produced from the adipocytes in WAT but derives from cells in the stromovascular fraction, including F4/80(+) macrophages. The specific receptor of OSM, OSM receptor-β, is expressed in adipocytes and adipose tissue and increased in both rodent models of obesity examined. OSM acts on adipocytes to induce the expression and secretion of plasminogen activator inhibitor 1 and IL-6. CONCLUSIONS These data indicate that WAT macrophages are a source of OSM and that OSM levels are significantly induced in murine and human obesity/type 2 diabetes mellitus. These studies suggest that OSM produced from immune cells in WAT acts in a paracrine manner on adipocytes to promote a proinflammatory phenotype in adipose tissue.
Collapse
Affiliation(s)
- David Sanchez-Infantes
- Pennington Biomedical Research Center (D.S.-I., U.A.W., C.M.E., J.M.G., E.R., J.M.S.) and Department of Biological Sciences (J.M.S.), Louisiana State University, Baton Rouge, Louisiana 70808; Department of Nutrition (R.F.M.), UNC-Greensboro, Greensboro, North Carolina 24702; Indiana University School of Medicine (R.V.C.), Indianapolis, Indiana 46202; Department of Medicine (A.W.F.), Columbia University, New York, New York 10032; and Endocrinology Department (D.S.-I.), St Joan de Deu, 08950 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Konii H, Sato K, Kikuchi S, Okiyama H, Watanabe R, Hasegawa A, Yamamoto K, Itoh F, Hirano T, Watanabe T. Stimulatory Effects of Cardiotrophin 1 on Atherosclerosis. Hypertension 2013; 62:942-50. [DOI: 10.1161/hypertensionaha.113.01653] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiotrophin 1 (CT-1), an interleukin-6 family cytokine, was recently shown to be expressed in the intima of early atherosclerotic lesions in the human carotid artery. CT-1 stimulates proatherogenic molecule expression in human vascular endothelial cells and monocyte migration. However, it has not been reported whether CT-1 accelerates atherosclerosis. This study was performed to examine the stimulatory effects of CT-1 on human macrophage foam cell formation and vascular smooth muscle cell migration and proliferation in vitro, and on the development of atherosclerotic lesions in apolipoprotein E–deficient (ApoE
−/−
) mice in vivo. CT-1 was expressed at high levels in endothelial cells and macrophages in both humans and ApoE
−/−
mice. CT-1 significantly enhanced oxidized low-density lipoprotein–induced foam cell formation associated with increased levels of CD36 and acyl-CoA:cholesterol acyltransferase-1 expression in human monocyte–derived macrophages. CT-1 significantly stimulated the migration, proliferation, and collagen-1 expression in human aortic vascular smooth muscle cells. Four-week infusion of CT-1 into ApoE
−/−
mice significantly accelerated the development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration, vascular smooth muscle cell proliferation, and collagen-1 content in the aortic wall. Activation of inflammasome, such as apoptosis-associated speck-like protein containing a caspase recruitment domain, nuclear factor κB, and cyclooxygenase-2, was observed in exudate peritoneal macrophages from ApoE
−/−
mice infused with CT-1. Infusion of anti–CT-1–neutralizing antibody alone into ApoE
−/−
mice significantly suppressed monocyte/macrophage infiltration in atherosclerotic lesions. These results indicate that CT-1 accelerates the development of atherosclerotic lesions by stimulating the inflammasome, foam cell formation associated with CD36 and acyl-CoA:cholesterol acyltransferase-1 upregulation in macrophages, and migration, proliferation, and collagen-1 production in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Hanae Konii
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Kengo Sato
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Sayaka Kikuchi
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Hazuki Okiyama
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Rena Watanabe
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Akinori Hasegawa
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Keigo Yamamoto
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Fumiko Itoh
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Tsutomu Hirano
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| | - Takuya Watanabe
- From the Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Japan (H.K., K.S., S.K., H.O., R.W., A.H., K.Y., F.I., T.W.); and Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan (T.H.)
| |
Collapse
|
28
|
Rendo-Urteaga T, García-Calzón S, Martínez-Ansó E, Chueca M, Oyarzabal M, Azcona-Sanjulián MC, Bustos M, Moreno-Aliaga MJ, Martínez JA, Marti A. Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism 2013; 62:1429-36. [PMID: 23856329 DOI: 10.1016/j.metabol.2013.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/15/2013] [Accepted: 05/17/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Cardiotrophin-1 (CT-1) shares some similarities with other cytokines, and participates in the control of energy metabolism. Higher circulating levels are observed in obese humans, but little information is gathered in weight loss (WL) programs. Therefore, we aimed to investigate the association of serum CT-1 levels with metabolic variables and the risk of developing metabolic syndrome (MetS) after a WL program in overweight/obese children. SUBJECTS AND METHODS Forty-four overweight/obese children (mean age 11.5 y; 50% males) undergoing a 10-week WL program were enrolled. Subjects were dichotomized at the median of Body Mass Index-Standard Deviation Score (BMI-SDS) change, as high and low responders after intervention. RESULTS CT-1 levels were significantly reduced (-48 fmol/mL, p=0.043) in the high responder group after the WL program. They had significantly lower body weight (-3.7 kg, p<0.001), body fat mass (-8%, p<0.001), BMI-SDS (-0.78, p<0.001) and waist circumference (-5.4 cm, p<0.001), and a significant improvement in lipid and glucose profiles (p<0.05). Interestingly, decreased CT-1 levels significantly predicted changes in total cholesterol (41%) and LDL-cholesterol (28%). Moreover, in our participants the lower the CT-1 levels, the higher the reduction in MetS risk components, after the 10-week intervention, (p-ANCOVA=0.040, p-trend=0.024). CONCLUSION We showed, for the first time, a reduction in serum CT-1 levels after a WL program and this decrease in CT-1 was strongly associated with a reduction in cholesterol levels and in MetS risk factors in overweight/obese children. Our findings may suggest that CT-1 could be an indirect marker for the diagnosis of MetS in this population.
Collapse
Affiliation(s)
- Tara Rendo-Urteaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Association of cardiotrophin-1 with left ventricular systolic properties in asymptomatic hypertensive patients. J Hypertens 2013; 31:587-94. [PMID: 23429662 DOI: 10.1097/hjh.0b013e32835ca903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Cardiotrophin-1 (CT-1) induces hypertrophic growth and contractile dysfunction in cardiomyocytes. This cross-sectional study was aimed to analyze CT-1 associations with echocardiographically assessed left ventricular systolic properties taking into account the influence of left ventricular growth [i.e. left ventricular hypertrophy (LVH) and inappropriate left ventricular mass (iLVM)] in asymptomatic hypertensive patients. METHODS Serum CT-1 was measured by ELISA in 278 asymptomatic hypertensive patients with a left ventricular ejection fraction more than 50% and in 25 age and sex-matched normotensive patients. RESULTS Serum CT-1 was increased in hypertensive patients as compared to normotensive patients. CT-1 was directly correlated with parameters of left ventricular mass (LVM) and inversely correlated with parameters assessing myocardial systolic function and left ventricular chamber contractility in hypertensive patients, these associations being independent of a number of potential confounding factors. Interestingly, the associations of CT-1 with myocardial systolic function were independent of LVM even in patients with LVH or iLVM. In addition, there was a significant increment of serum CT-1 in hypertensive patients with LVH or iLVM, especially in those in whom LVH or iLVM were accompanied by impaired myocardial systolic function, as compared to the remaining hypertensive patients and normotensive patients. Plasma amino-terminal pro-brain natriuretic peptide was not correlated with any of the assessed left ventricular systolic parameters in either group of patients. CONCLUSION These findings suggest that serum CT-1 is associated with myocardial systolic dysfunction in asymptomatic hypertensive patients, independently of LVM, even in those patients with pathologic left ventricular growth.
Collapse
|
30
|
Hung HC, Lu FH, Ou HY, Wu HT, Wu JS, Yang YC, Chang CJ. Increased cardiotrophin-1 in subjects with impaired glucose tolerance and newly diagnosed diabetes. Int J Cardiol 2013; 169:e33-4. [PMID: 24054317 DOI: 10.1016/j.ijcard.2013.08.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/29/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Vespasiani-Gentilucci U, De Vincentis A, Argemi J, Galati G, Ansò E, Patti G, Picardi A. Cardiotrophin-1 is not associated with carotid or coronary disease and is inversely associated with obesity in patients undergoing coronary angiography. Arch Med Sci 2013; 9:635-9. [PMID: 24049522 PMCID: PMC3776189 DOI: 10.5114/aoms.2013.37272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/20/2012] [Accepted: 01/27/2013] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Cardiotrophin-1 (CT-1) is a member of the interleukin-6 superfamily with known hypertrophic and protective actions upon cardiac myocytes. Although its effects on myocardial tissue and its role in hypertensive heart disease are well documented, there are no studies on CT-1 blood levels in patients with coronary artery disease. In this study we aimed to verify the relationships of serum CT-1 with vascular disease and metabolic parameters in a population of patients undergoing coronary angiography due to clinical indications. MATERIAL AND METHODS Serum levels of CT-1 were investigated in a cohort of 81 consecutive patients (median age 68 years (95% CI: 64-71), 59 males) undergoing coronary angiography and carotid Doppler ultrasound. Exclusion criteria were: acute coronary syndrome, already-established ischemic cardiopathy, chronic inflammatory diseases and presence or past history of cancer. RESULTS Levels of CT-1 were inversely correlated with body mass index (BMI) and waist circumference (WC) (ρ = -0.261, p = 0.02; ρ = -0.224, p = 0.05, respectively). Moreover, obese patients showed significantly lower CT-1 concentrations than non-obese ones (1.18 (0.64-1.64) ng/ml vs. 1.56 (1.37-2.04) ng/ml, p = 0.013), and serum CT-1 was significantly reduced in patients with elevated compared to those with normal WC (1.43 (0.94-1.60) ng/ml vs. 1.64 (1.39-2.49) ng/ml, p = 0.047). Concentrations of CT-1 did not correlate either with the other parameters of metabolic syndrome or with markers of cardiovascular disease (carotid intima-media thickness, presence of carotid or coronary artery plaques). CONCLUSIONS Our results failed to demonstrate any association between CT-1 and carotid or coronary disease. The inverse association with BMI and WC fits with the latest experimental data on the role of CT-1 in dysmetabolic conditions and could help to further clarify the role of CT-1 in obesity and diabetes.
Collapse
Affiliation(s)
| | | | | | - Giovanni Galati
- Campus Bio-Medico of University, Clinical Medicine – Hepatology, Rome, Italy
| | | | | | - Antonio Picardi
- Campus Bio-Medico of University, Clinical Medicine – Hepatology, Rome, Italy
| |
Collapse
|
32
|
Serum cardiotrophin-1 and IL-6 levels in patients with obstructive sleep apnea syndrome. Inflammation 2013; 36:1344-7. [PMID: 23783568 DOI: 10.1007/s10753-013-9673-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) is associated with increased rates of cardiovascular diseases (CVD). Basic mechanisms involved in the increased cardiovascular risk of OSAS remain unclear. Inflammation has been shown to potentially play a critical role in this association. The aim of the present study was to investigate the level of cardiotrophin-1 (CT-1) in patients with OSAS. Forty-eight newly diagnosed OSAS patients and 37 nonapneic controls were enrolled in this study. Demographic data, cigarette smoking status, previous history of chronic diseases including CVD and metabolic diseases and drugs, and habits were obtained by a standardized questionnaire. All patients underwent polysomnographic evaluation. The mean age was 48.3 ± 12.3 (24-74) years in OSAS group. Median apnea-hypopnea index was 23.6 (6-91.8) and median body mass index was 30.4 (24.2-49.4) in the OSAS group. Plasma CT-1 levels in OSAS and control groups, respectively, were 12.03 ± 1.08 and 11.85 ± 1.18 pg/ml. There was no significant difference in the plasma levels of CT-1 and IL-6 between the OSAS group and the controls.
Collapse
|
33
|
Rende D, Baysal N, Kirdar B. Complex disease interventions from a network model for type 2 diabetes. PLoS One 2013; 8:e65854. [PMID: 23776558 PMCID: PMC3679160 DOI: 10.1371/journal.pone.0065854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/02/2013] [Indexed: 12/20/2022] Open
Abstract
There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a disease related functional linkage network are informative to reveal significant metabolic processes and disease's associations with other complex disorders. In the current study, Type 2 diabetes associated functional linkage network (T2DFN) containing 2770 proteins and 15041 linkages was constructed. The functional modules in this network were scored and evaluated in terms of shared pathways, co-localization, co-expression and associations with similar diseases. The assembly of top scoring overlapping members in the functional modules revealed that, along with the well known biological pathways, circadian rhythm, diverse actions of nuclear receptors in steroid and retinoic acid metabolisms have significant occurrence in the pathophysiology of the disease. The disease's association with other metabolic and neuromuscular disorders was established through shared proteins. Nuclear receptor NRIP1 has a pivotal role in lipid and carbohydrate metabolism, indicating the need to investigate subsequent effects of NRIP1 on Type 2 diabetes. Our study also revealed that CREB binding protein (CREBBP) and cardiotrophin-1 (CTF1) have suggestive roles in linking Type 2 diabetes and neuromuscular diseases.
Collapse
Affiliation(s)
- Deniz Rende
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America.
| | | | | |
Collapse
|
34
|
Update on the pathophysiological activities of the cardiac molecule cardiotrophin-1 in obesity. Mediators Inflamm 2013; 2013:370715. [PMID: 23690661 PMCID: PMC3649684 DOI: 10.1155/2013/370715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiotrophin-1 (CT-1) is a heart-targeting cytokine that has been reported to exert a variety of activities also in other organs such as the liver, adipose tissue, and atherosclerotic arteries. CT-1 has been shown to induce these effects via binding to a transmembrane receptor, comprising the leukaemia inhibitory factor receptor (LIFRβ) subunit and the glycoprotein 130 (gp130, a common signal transducer). Both local and systemic concentrations of CT-1 have been shown to potentially play a critical role in obesity. For instance, CT-1 plasma concentrations have been shown to be increased in metabolic syndrome (a cluster disease including obesity) probably due to adipose tissue overexpression. Interestingly, treatment with exogenous CT-1 has been shown to improve lipid and glucose metabolism in animal models of obesity. These benefits might suggest a potential therapeutic role for CT-1. However, beyond its beneficial properties, CT-1 has been also shown to induce some adverse effects, such as cardiac hypertrophy and adipose tissue inflammation. Although scientific evidence is still needed, CT-1 might be considered as a potential example of damage/danger-associated molecular pattern (DAMP) in obesity-related cardiovascular diseases. In this narrative review, we aimed at discussing and updating evidence from basic research on the pathophysiological and potential therapeutic roles of CT-1 in obesity.
Collapse
|
35
|
Jiménez-González M, Jaques F, Rodríguez S, Porciuncula A, Principe RM, Abizanda G, Iñiguez M, Escalada J, Salvador J, Prósper F, Halban PA, Barajas M. Cardiotrophin 1 protects beta cells from apoptosis and prevents streptozotocin-induced diabetes in a mouse model. Diabetologia 2013; 56:838-46. [PMID: 23358882 DOI: 10.1007/s00125-012-2822-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Cardiotrophin 1 (CT-1) is a recently described cytokine originally isolated from the heart where it has been shown to play an important role in apoptotic protection of cardiomyocytes and heart hypertrophy. Its beneficial properties have also been described in other organs such as liver and neuromuscular tissue. In the present study, we investigated whether CT-1 can confer protection against pro-apoptotic stimuli in pancreatic beta cells, and its role in insulin secretion and diabetes development. METHODS The effects of CT-1 on apoptosis and function were studied using MIN6B1 cells and freshly isolated murine pancreatic islets. The impact on the development of diabetes was evaluated in Ct1-null (Ct1 (-/-)) mice (the gene Ct1 is also known as Ctf1) using two streptozotocin (STZ)-induced models of diabetes. RESULTS CT-1 has a protective effect in MIN6B1 cells and murine islets under the pro-apoptotic stimulus of serum deprivation, which correlates with the expression of B cell lymphoma-extra large, or following exposure to a mixture of cytokines. In addition, CT-1 enhances glucose-stimulated insulin secretion in MIN6B1 cells and this was repressed by inhibitors of phospholipase C. Furthermore, Ct1 (-/-) mice were more prone to develop diabetes, and their glucose tolerance test showed impaired plasma glucose clearance which correlated with decreased pancreatic insulin secretion. CONCLUSIONS/INTERPRETATION The results obtained from both in vitro and in vivo experiments show that CT-1 improves beta cell function and survival, and protects mice against STZ-induced diabetes.
Collapse
Affiliation(s)
- M Jiménez-González
- Division of Oncology, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang D, Li X, Gao K, Lu D, Zhang X, Ma C, Ye F, Zhang L. Cardiotrophin-1 (CTF1) ameliorates glucose-uptake defects and improves memory and learning deficits in a transgenic mouse model of Alzheimer's disease. Pharmacol Biochem Behav 2013; 107:48-57. [PMID: 23541490 DOI: 10.1016/j.pbb.2013.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 02/28/2013] [Accepted: 03/07/2013] [Indexed: 12/25/2022]
Abstract
Cardiotrophin-1 (CTF1) has been reported to act as a trophic factor for a few neurons, such as sensory, cholinergic, dopaminergic, motor and cortical neurons. Studies have indicated that CTF1 delays degenerative disease progression in motor neuron disease. However, little is known about the effects of CTF1 on degenerative disease in the brain. We have shown that expression of CTF1 is strongly down-regulated in the brain of the APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease (AD). Transgenic mice with brain tissue-specific CTF1 expression alone or in combination with APPswe/PS1dE9 transgenic mice were produced to study the effects of CTF1 on AD. CTF1 expressing APPswe/PS1dE9 transgenic mice exhibited improvements in learning and memory, less severe abnormalities in locomotor activity, reduced scattered senile plaques and ameliorated disturbances of brain energy metabolism compared to APPswe/PS1dE9 transgenic mice. Furthermore, CTF1 inhibited the activity of glycogen synthase kinase-3β (GSK-3β) in SH-SY5Y cell line and in the brain tissues of APPswe/PS1dE9 transgenic mice. The transgenic expression of CTF1 compensated for the loss of CTF1 expression and brought about a marked improvement on cognitive functioning in the APPswe/PS1dE9 transgenic mouse model of Alzheimer's disease, suggesting that the inhibition of GSK-3β activity might play an important role.
Collapse
Affiliation(s)
- Dongmei Wang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Asrih M, Gardier S, Papageorgiou I, Montessuit C. Dual effect of the heart-targeting cytokine cardiotrophin-1 on glucose transport in cardiomyocytes. J Mol Cell Cardiol 2013; 56:106-15. [DOI: 10.1016/j.yjmcc.2012.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 01/08/2023]
|
38
|
Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators Inflamm 2013; 2013:367245. [PMID: 23365487 PMCID: PMC3556856 DOI: 10.1155/2013/367245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome has been widely associated with an increased risk for acute cardiovascular events. Emerging evidence supports metabolic syndrome as a condition favoring an adverse cardiac remodeling, which might evolve towards heart dysfunction and failure. This pathological remodeling has been described to result from the cardiac adaptive response to clinical mechanical conditions (such as hypertension, dyslipidemia, and hyperglycemia), soluble inflammatory molecules (such as cytokines and chemokines), as well as hormones (such as insulin), characterizing the pathophysiology of metabolic syndrome. Moreover, these cardiac processes (resulting in cardiac hypertrophy and fibrosis) are also associated with the modulation of intracellular signalling pathways within cardiomyocytes. Amongst the different intracellular kinases, mitogen-activated protein kinases (MAPKs) were shown to be involved in heart damage in metabolic syndrome. However, their role remains controversial. In this paper, we will discuss and update evidence on MAPK-mediated mechanisms underlying cardiac adverse remodeling associated with metabolic syndrome.
Collapse
|
39
|
López-Andrés N, Calvier L, Labat C, Fay R, Díez J, Benetos A, Zannad F, Lacolley P, Rossignol P. Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice. Hypertension 2012; 61:120-9. [PMID: 23172930 DOI: 10.1161/hypertensionaha.112.201699] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiotrophin 1 (CT-1), an interleukin 6 family member, promotes fibrosis and arterial stiffness. We hypothesized that the absence of CT-1 influences arterial fibrosis and stiffness, senescence, and life span. In senescent 29-month-old mice, vascular function was analyzed by echotracking device. Arterial histomorphology, senescence, metabolic, inflammatory, and oxidative stress parameters were measured by immunohistochemistry, reverse transcription polymerase chain reaction, Western blot, and ELISA. Survival rate of wild-type and CT-1-null mice was studied. Vascular smooth muscle cells were treated with CT-1 (10(-9) mol/L) for 15 days to analyze senescence. The wall stress-incremental elastic modulus curve of old CT-1-null mice was shifted rightward as compared with wild-type mice, indicating decreased arterial stiffness. Media thickness and wall fibrosis were lower in CT-1-null mice. CT-1-null mice showed decreased levels of inflammatory, apoptotic, and senescence pathways, whereas telomere-linked proteins, DNA repair proteins, and antioxidant enzyme activities were increased. CT-1-null mice displayed a 5-month increased median longevity compared with wild-type mice. In vascular smooth muscle cells, chronic CT-1 stimulation upregulated apoptotic and senescence markers and downregulated telomere-linked proteins. The absence of CT-1 is associated with decreased arterial fibrosis, stiffness, and senescence and increased longevity in mice likely through downregulating apoptotic, senescence, and inflammatory pathways. CT-1 may be a major regulator of arterial stiffness with a major impact on the aging process.
Collapse
Affiliation(s)
- Natalia López-Andrés
- Institut National de la Santé et de la Recherche Médicale, U961, Faculty of Medicine, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Celik A, Sahin S, Koc F, Karayakali M, Sahin M, Benli I, Kadi H, Burucu T, Ceyhan K, Erkorkmaz U. Cardiotrophin-1 plasma levels are increased in patients with diastolic heart failure. Med Sci Monit 2012; 18:CR25-31. [PMID: 22207116 PMCID: PMC3560678 DOI: 10.12659/msm.882197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Cardiotrophin-1 (CT-1) is a member of the interleukin (IL-6) family of cytokines and is increased in various cardiovascular diseases, including chronic heart failure. The aim of the study was to determine if plasma CT-1 is associated with diastolic heart failure (DHF) and to investigate the relationship between CT-1 and echocardiographic parameters. Material/Methods Fifty-seven consecutive patients (mean age 57±8 years, 24 males) diagnosed with DHF in our clinic and 33 controls (mean age 55±7 years, 12 males) were included in the study. All study participants underwent echocardiographic evaluation and blood samples were obtained. Results CT-1 and NT-proBNP values were significantly higher in DHF subjects than in controls (11.30 [8.09–16.51] vs. 17.5 [8.95–28.74] fmol/mL, P=0.017 and 64 [27.5–95] vs. 82 [55.5–241] pg/mL, P=0.009, respectively). The mitral peak velocity of early diastolic filling (E), mean ratio of E to early diastolic mitral annular velocity (E/Em), and the pulmonary capillary wedge pressure (PCWP) estimated from E/Em measurements were all significantly higher in the patient group (62.27±14.69 vs. 75.67±18.85 cm/sec, 6.40±1.48 vs. 10.30±3.48, and 10 [9–11]vs. 14[12–16] mmHg, P≤0.001 for all). Lateral and septal Em were significantly lower in the patient group (10.69±1.87 vs. 8.69±2.00 cm/sec and 8.91±1.22 vs. 6.65±1.58 cm/sec, P<0.001 for both). CT-1 positively correlated with NT-proBNP (P=0.001, r=0.349), mean E/Em (P=0.003, r=0.307), and estimated mean PCWP (P=0.001, r=0.308). Conclusions CT-1 is elevated in patients with DHF and is associated with NT-proBNP and estimated left ventricular filling pressures.
Collapse
Affiliation(s)
- Atac Celik
- Department of Cardiology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Moreno-Aliaga MJ, Romero-Lozano MA, Castaño D, Prieto J, Bustos M. Role of cardiotrophin-1 in obesity and insulin resistance. Adipocyte 2012; 1:112-115. [PMID: 23700521 PMCID: PMC3609088 DOI: 10.4161/adip.19696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines. In a recent study we examined the metabolic features of ct-1 null mice and the effects on body composition, glucose and lipid metabolism of acute and chronic administration of recombinant CT-1. Our data revealed that CT-1 is a key regulator of energy metabolism with potential applications in the treatment of obesity and the metabolic syndrome. This commentary discusses the significance of these findings in the context of other key studies in the field of obesity and insulin resistance.
Collapse
|
42
|
Inappropriately high left ventricular mass in patients with type 2 diabetes mellitus and no overt cardiac disease. The DYDA study. J Hypertens 2011; 29:1994-2003. [DOI: 10.1097/hjh.0b013e32834acc6d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Moreno-Aliaga MJ, Pérez-Echarri N, Marcos-Gómez B, Larequi E, Gil-Bea FJ, Viollet B, Gimenez I, Martínez JA, Prieto J, Bustos M. Cardiotrophin-1 is a key regulator of glucose and lipid metabolism. Cell Metab 2011; 14:242-53. [PMID: 21803294 DOI: 10.1016/j.cmet.2011.05.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/23/2011] [Accepted: 05/18/2011] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) is a member of the gp130 family of cytokines. We observed that ct-1(-/-) mice develop mature-onset obesity, insulin resistance, and hypercholesterolemia despite reduced calorie intake. Decreased energy expenditure preceded and accompanied the development of obesity. Acute treatment with rCT-1 decreased blood glucose in an insulin-independent manner and increased insulin-stimulated AKT phosphorylation in muscle. These changes were associated with stimulation of fatty acid oxidation, an effect that was absent in AMPKα2(-/-) mice. Chronic rCT-1 treatment reduced food intake, enhanced energy expenditure, and induced white adipose tissue remodeling characterized by upregulation of genes implicated in the control of lipolysis, fatty acid oxidation, and mitochondrial biogenesis and genes typifying brown fat phenotype. Moreover, rCT-1 reduced body weight and corrected insulin resistance in ob/ob and in high-fat-fed obese mice. We conclude that CT-1 is a master regulator of fat and glucose metabolism with potential applications for treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- María J Moreno-Aliaga
- Department of Nutrition, Food Sciences, Physiology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Richard AJ, Stephens JM. Emerging roles of JAK-STAT signaling pathways in adipocytes. Trends Endocrinol Metab 2011; 22:325-32. [PMID: 21561789 PMCID: PMC3149764 DOI: 10.1016/j.tem.2011.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/16/2011] [Accepted: 03/30/2011] [Indexed: 01/14/2023]
Abstract
Twenty years ago, adipocytes were largely considered to be inert energy-storage depots. We now know that fat cells are highly insulin-sensitive with significant endocrine functions. Alterations in adipocyte development or function can contribute to metabolic disease, in particular type 2 diabetes. The current obesity epidemic that plagues many nations provides a strong rationale for understanding basic adipocyte biology. The JAK-STAT signaling pathway mediates the action of a variety of hormones that have profound effects on adipocyte development and function. In addition, adipocytes secrete hormones that utilize this signaling pathway. This review summarizes research on the expression and function of JAKs and STATs in adipocytes and highlights the roles of JAK-STAT-activating cytokines in adipose tissue.
Collapse
Affiliation(s)
| | - Jacqueline M. Stephens
- To whom correspondence should be addressed, Louisiana State University, Department of Biological Sciences, 202 Life Sciences Bldg., Baton Rouge, LA 70803, Phone (225)-578-1749, FAX (225)-578-2597,
| |
Collapse
|
45
|
Cioffi G, Giorda CB, Chinali M, Di Lenarda A, Faggiano P, Lucci D, Maggioni AP, Masson S, Mureddu GF, Tarantini L, Velussi M, Comaschi M. Analysis of midwall shortening reveals high prevalence of left ventricular myocardial dysfunction in patients with diabetes mellitus: the DYDA study. Eur J Prev Cardiol 2011; 19:935-43. [DOI: 10.1177/1741826711417759] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Giovanni Cioffi
- Echocardiography Laboratory, Villa Bianca Hospital, Trento, Italy
| | - Carlo B Giorda
- Diabetes and Metabolism Unit, ASL Torino 5, Chieri, Italy
| | - Marcello Chinali
- Federico II University Hospital, Department of Clinical and Experimental Medicine, Napoli, Italy
| | - Andrea Di Lenarda
- Cardiovascular Unit, Azienda Servizi Sanitari n. 1 Triestina, Trieste, Italy
| | | | | | | | - Serge Masson
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche ‘Mario Negri’, Milan, Italy
| | | | - Luigi Tarantini
- Cardiology Department, St. Martino Hospital, Azienda Sanitaria Locale n. 1, Belluno, Italy
| | - Mario Velussi
- Diabetology Department, Casa di Cura Pineta del Carso, Aurisina, Italy
| | - Marco Comaschi
- Emergency Department, University Hospital San Martino, Genoa, Italy
| |
Collapse
|
46
|
White UA, Stephens JM. The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des 2011; 17:340-6. [PMID: 21375496 DOI: 10.2174/138161211795164202] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 02/10/2011] [Indexed: 01/04/2023]
Abstract
Gp130 cytokines are involved in the regulation of numerous biological processes, including hematopoiesis, immune response, inflammation, cardiovascular action, and neuronal survival. These cytokines share glycoprotein 130 as a common signal transducer in their receptor complex and typically activate STAT3. Most gp130 cytokines have paracrine or endocrine actions, and their levels can be measured in circulation in rodents and humans. In recent years, various laboratories have conducted studies to demonstrate that gp130 cytokines can modulate adipocyte development and function. Therefore, these studies suggest that some gp130 cytokines may be viable anti-obesity therapeutics. In this review, we will summarize the reported effects of gp130 cytokines on adipocyte differentiation and adipocyte function. In addition, the modulation of gp130 cytokines in conditions of obesity, insulin resistance, and Type 2 diabetes will be presented.
Collapse
Affiliation(s)
- Ursula A White
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
47
|
White UA, Stewart WC, Stephens JM. Gp130 cytokines exert differential patterns of crosstalk in adipocytes both in vitro and in vivo. Obesity (Silver Spring) 2011; 19:903-10. [PMID: 21164505 PMCID: PMC3080457 DOI: 10.1038/oby.2010.293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycoprotein 130 (Gp130) cytokines are involved in the regulation of numerous biological processes, including hematopoiesis, immune response, inflammation, cardiovascular action, and neuronal survival. These cytokines share gp130 as a common signal transducer in their receptor complex and typically activate signal transducer and activator of transcription (STAT) 3. Studies have shown that several gp130 cytokines have differential effects on both adipogenesis and insulin-stimulated glucose uptake. Yet, the complex interactions of these cytokines in adipose tissue have not been studied. Gp130 cytokines are differentially regulated in multiple tissues due to the presence of additional receptor components that are required for signaling, including the leukemia inhibitory factor receptor (LIFR). Previous studies from our laboratory highlighted the ability of specific gp130 cytokines to crosstalk in adipocytes that correlated with LIFR degradation. Crosstalk is defined as the ability of one cytokine to modulate the signaling of another cytokine. Our novel studies reveal that white adipose tissue is highly responsive to gp130 cytokines, and we provide the first evidence that these cytokines can exert inhibitory crosstalk in adipose tissue in vivo. Moreover, several gp130 cytokines that use the LIFR, including cardiotrophin-1 (CT-1), LIF, and human oncostatin M (hOSM), can alter the subsequent signaling of other family members in adipocytes both in vitro and in vivo. Our data also show that murine OSM and neuropoietin do not crosstalk in the same manner as other gp130 cytokines, which likely results from their inability to activate the LIFR. Overall, we have observed distinctive patterns of crosstalk signaling by gp130 cytokines in adipocytes in vitro and in vivo and demonstrate the crosstalk is not dependent on new protein synthesis or extracellular-signal-regulated kinase activation.
Collapse
Affiliation(s)
- Ursula A. White
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - William C. Stewart
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Jacqueline M. Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
48
|
Abstract
Cardiotrophin (CT)-1 was discovered by coupling expression cloning with an embryonic stem cell-based model of cardiogenesis. Comparison of similarity in amino acid sequence and conformational structure indicates that CT-1 is a member of the interleukin (IL)-6 type cytokine family that shares the transmembrane signaling protein, glycoprotein (gp) 130 as a receptor. These cytokines mediate overlapping pleiotropic actions on a variety of cell types including cardiac myocytes, hepatocytes, megakaryocytes, osteoclasts, and neuronal cells. CT-lmediates its hypertrophic and cytoprotective properties through the Janus kinase/signal transducers and activators of transcription (JAK/STAT), mitogen-activated protein (MAP) kinase, phosphatidylinositol (PI) 3 kinase, and nuclear factor kappa B (NFkappaB) pathways. CT-1 gene and protein are distributed not only in the heart, but also in the pulmonary, renal, gastrointestinal, cerebral, and muscular tissues. CT-1 could also be synthesized and secreted from vascular endothelial cells and adipocytes. CT-1 has hypertrophic actions on the cardiac myocytes, skeletal muscle cells, and smooth muscle cells as well as cytoprotective actions on the cardiac myocytes, neuronal cells, and hepatocytes. CT-1 is circulating in the body, and its plasma concentration is increased in various cardiovascular and renal diseases such as hypertension, congestive heart failure, myocardial infarction, valvular heart disease, metabolic syndrome, and chronic kidney disease. Treatment with CT-1 is beneficial in experimental animal models of cardiovascular diseases. CT-1 specifically protects the cardiac myocytes from ischemic damage when CT-1 is given not only prior to the ischemia, but also given at the time of reoxygenation. Current evidence suggests that CT-1 plays an important role in the regulation of the cardiovascular system.
Collapse
Affiliation(s)
- Michihisa Jougasaki
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan.
| |
Collapse
|
49
|
Cardiotrophin-1 induces tumor necrosis factor alpha synthesis in human peripheral blood mononuclear cells. Mediators Inflamm 2010; 2009:489802. [PMID: 20224758 PMCID: PMC2836137 DOI: 10.1155/2009/489802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/21/2009] [Accepted: 11/24/2009] [Indexed: 11/24/2022] Open
Abstract
Chronic heart failure (CHF) is associated with elevated concentrations of tumor necrosis factor (TNF) α and cardiotrophin-1 (CT-1) and altered peripheral blood mononuclear cell (PBMC) function. Therefore, we tested whether CT-1 induces TNFα in PBMC of healthy volunteers.
CT-1 induced in PBMC TNFα protein in the supernatant and TNFα mRNA in a concentration- and time-dependent manner determined by ELISA and real-time PCR, respectively. Maximal TNFα protein was achieved with 100 ng/mL CT-1 after 3–6 hours and maximal TNFα mRNA induction after 1 hour. ELISA data were confirmed using immunofluorescent flow cytometry. Inhibitor studies with actinomycin D and brefeldin A showed that both protein synthesis and intracellular transport are essential for CT-1 induced TNFα expression. CT-1 caused a dose dependent nuclear factor (NF) κB translocation. Parthenolide inhibited both NFκB translocation and TNFα protein expression indicating that NFκB seems to be necessary.
We revealed a new mechanism for elevated serum TNFα concentrations and PBMC activation in CHF besides the hypothesis of PBMC activation by bacterial translocation from the gut.
Collapse
|
50
|
Liver X receptor agonist inhibits proliferation of ovarian carcinoma cells stimulated by oxidized low density lipoprotein. Gynecol Oncol 2010; 116:109-16. [DOI: 10.1016/j.ygyno.2009.09.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/17/2009] [Accepted: 09/27/2009] [Indexed: 11/30/2022]
|