1
|
Yu LCH. Gastrointestinal pathophysiology in long COVID: Exploring roles of microbiota dysbiosis and serotonin dysregulation in post-infectious bowel symptoms. Life Sci 2024; 358:123153. [PMID: 39454992 DOI: 10.1016/j.lfs.2024.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered an unprecedented public health crisis known as the coronavirus disease 2019 (COVID-19) pandemic. Gastrointestinal (GI) symptoms develop in patients during acute infection and persist after recovery from airway distress in a chronic form of the disease (long COVID). A high incidence of irritable bowel syndrome (IBS) manifested by severe abdominal pain and defecation pattern changes is reported in COVID patients. Although COVID is primarily considered a respiratory disease, fecal shedding of SARS-CoV-2 antigens positively correlates with bowel symptoms. Active viral infection in the GI tract was identified by human intestinal organoid studies showing SARS-CoV-2 replication in gut epithelial cells. In this review, we highlight the key findings in post-COVID bowel symptoms and explore possible mechanisms underlying the pathophysiology of the illness. These mechanisms include mucosal inflammation, gut barrier dysfunction, and microbiota dysbiosis during viral infection. Viral shedding through the GI route may be the primary factor causing the alteration of the microbiome ecosystem, particularly the virome. Recent evidence in experimental models suggested that microbiome dysbiosis could be further aggravated by epithelial barrier damage and immune activation. Moreover, altered microbiota composition has been associated with dysregulated serotonin pathways, resulting in intestinal nerve hypersensitivity. These mechanisms may explain the development of post-infectious IBS-like symptoms in long COVID. Understanding how coronavirus infection affects gut pathophysiology, including microbiome changes, would benefit the therapeutic advancement for managing post-infectious bowel symptoms.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Pastras P, Aggeletopoulou I, Triantos C. Impact of Enteric Nervous Cells on Irritable Bowel Syndrome: Potential Treatment Options. Microorganisms 2024; 12:2036. [PMID: 39458345 PMCID: PMC11510338 DOI: 10.3390/microorganisms12102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a condition that significantly impacts the lifestyle, health, and habits of numerous individuals worldwide. Its diagnosis and classification are based on the Rome criteria, updated periodically to reflect new research findings in this field. IBS can be classified into different types based on symptoms, each with distinct treatment approaches and some differences in their pathophysiology. The exact pathological background of IBS remains unclear, with many aspects still unknown. Recent research developments suggest that disorders in the brain-gut-microbiota axis are key contributors to the symptoms and severity of IBS. The central nervous system (CNS) interacts bidirectionally with intestinal processes within the lumen and the intestinal wall, with the autonomic nervous system, particularly the vagus nerve, playing an important role. However, the enteric nervous system (ENS) is also crucial in the pathophysiological pathway of IBS. The apeline-corticotropin-releasing factor (CRF)-toll-like receptor 4 (TLR4) signaling route via enteric glia and serotonin production in enteroendocrine cells at the enteric barrier are among the most well-understood new findings that affect IBS through the ENS. Additionally, the microbiota regulates neuronal signals, modifying enteric function by altering the number of enteric bacteria and other mechanisms. Given the limited therapeutic options currently available, it is essential to identify new treatment targets, with the brain-gut axis, particularly the enteric nervous system, being a promising focus. This study aims to delineate the molecular mechanisms that induce IBS and to suggest potential targets for future research and treatment of this potentially debilitating disease.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (P.P.); (C.T.)
| | | |
Collapse
|
3
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Yan L, Li H, Qian Y, Zhang J, Cong S, Zhang X, Wu L, Wang Y, Wang M, Yu T. Transcutaneous vagus nerve stimulation: a new strategy for Alzheimer's disease intervention through the brain-gut-microbiota axis? Front Aging Neurosci 2024; 16:1334887. [PMID: 38476661 PMCID: PMC10927744 DOI: 10.3389/fnagi.2024.1334887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Transcutaneous vagus nerve stimulation (tVNS) is an emerging non-invasive technique designed to stimulate branches of the vagus nerve distributed over the body surface. Studies suggest a correlation between the brain-gut-microbiota (BGM) axis and the pathogenesis of Alzheimer's disease (AD). The BGM axis represents a complex bidirectional communication system, with the vagus nerve being a crucial component. Therefore, non-invasive electrical stimulation of the vagus nerve might have the potential to modify-most of the time probably in a non-physiological way-the signal transmission within the BGM axis, potentially influencing the progression or symptoms of AD. This review explores the interaction between percutaneous vagus nerve stimulation and the BGM axis, emphasizing its potential effects on AD. It examines various aspects, such as specific brain regions, gut microbiota composition, maintenance of intestinal environmental homeostasis, inflammatory responses, brain plasticity, and hypothalamic-pituitary-adrenal (HPA) axis regulation. The review suggests that tVNS could serve as an effective strategy to modulate the BGM axis and potentially intervene in the progression or treatment of Alzheimer's disease in the future.
Collapse
Affiliation(s)
- Long Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Li
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulin Qian
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Junfeng Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shan Cong
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemin Zhang
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Wu
- Graduate Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Meng Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| | - Tao Yu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
5
|
Keirns BH, Keirns NG, Tsotsoros CE, Layman HM, Stout ME, Medlin AR, Sciarrillo CM, Teague TK, Emerson SR, Hawkins MAW. Adverse childhood experiences and obesity linked to indicators of gut permeability and inflammation in adult women. Physiol Behav 2023; 271:114319. [PMID: 37562704 PMCID: PMC10592146 DOI: 10.1016/j.physbeh.2023.114319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Gut permeability may increase cardiovascular disease risk by allowing bacterial components (e.g., lipopolysaccharide or LPS) to enter the bloodstream, leading to low-grade inflammation. People with adverse childhood experiences (ACEs) consistently display evidence of chronic inflammation, but the source of this inflammation, and whether gut permeability may contribute, is unknown. Moreover, whether ACE status may further perturb obesity-associated gut permeability and inflammation is unknown. Women (N = 79, aged 18-84y) free of cardiometabolic diseases and inflammatory conditions and not regularly taking anti-inflammatory medications were included in a 2 × 2 factorial design with low or high ACE status (either 0 ACEs or 3+ ACEs) and body mass index (BMI) (either normal-weight [18.5-24.9 kg/m2; NW] or obesity [>30 kg/m2; OB]) as factors (n = 15-27/group). Serum LPS binding protein (LBP), soluble CD14 (sCD14), fatty-acid binding protein-2 (FABP2), LPS core IgM, and the ratio of LBP:sCD14 were used as indicators of gut permeability. Inflammatory markers C-reactive protein (CRP), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were also measured. Data were analyzed using 2-way ANCOVA (age-adjusted). LBP, LBP:sCD14 and FABP2 were higher in OB versus NW, regardless of ACE status (PBMI < 0.05). Higher ACE status was associated with increased circulating LBP:sCD14 and LPS core IgM (PACE < 0.05). sCD14 was unrelated to BMI or ACEs. CRP was elevated in OB versus NW (PBMI < 0.001) and tended to be higher with 3+ ACEs compared to 0 ACEs (PACE = 0.06). Moreover, TNF-α was greater in 3+ ACEs relative to 0 ACEs (PACE = 0.03). IL-6 was unrelated to BMI or ACE status. No interaction effects were observed for any marker of gut permeability or inflammation. In sum, ACE status and obesity were independently associated with evidence of gut permeability and systemic inflammation but did not interact in relation to indicators of gut permeability.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, United States of America.
| | - Natalie G Keirns
- Lifespan Cardiovascular Institute, The Miriam Hospital, Providence, RI, United States of America
| | - Cindy E Tsotsoros
- Department of Human Development and Family Science, University of Rhode Island, 2 Lower College Road, Kingston, RI 02881, United States of America
| | - Harley M Layman
- Department of Psychology, Oklahoma State University, 116 Psychology Building, Stillwater, OK, US 74078, United States of America
| | - Madison E Stout
- Department of Psychology, Oklahoma State University, 116 Psychology Building, Stillwater, OK, US 74078, United States of America
| | - Austin R Medlin
- Department of Health & Wellness Design, Indiana University School of Public Health, 1025 E. Seventh St., Bloomington, IN 47405, United States of America
| | - Christina M Sciarrillo
- Department of Nutritional Sciences, Oklahoma State University, 301 Nancy Randolph Davis, Stillwater, OK, US 74078, United States of America
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, United States of America; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, United States of America; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, 301 Nancy Randolph Davis, Stillwater, OK, US 74078, United States of America
| | - Misty A W Hawkins
- Department of Health & Wellness Design, Indiana University School of Public Health, 1025 E. Seventh St., Bloomington, IN 47405, United States of America
| |
Collapse
|
6
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
8
|
Uwada J, Nakazawa H, Muramatsu I, Masuoka T, Yazawa T. Role of Muscarinic Acetylcholine Receptors in Intestinal Epithelial Homeostasis: Insights for the Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:ijms24076508. [PMID: 37047478 PMCID: PMC10095461 DOI: 10.3390/ijms24076508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, is an intestinal disorder that causes prolonged inflammation of the gastrointestinal tract. Currently, the etiology of IBD is not fully understood and treatments are insufficient to completely cure the disease. In addition to absorbing essential nutrients, intestinal epithelial cells prevent the entry of foreign antigens (micro-organisms and undigested food) through mucus secretion and epithelial barrier formation. Disruption of the intestinal epithelial homeostasis exacerbates inflammation. Thus, the maintenance and reinforcement of epithelial function may have therapeutic benefits in the treatment of IBD. Muscarinic acetylcholine receptors (mAChRs) are G protein-coupled receptors for acetylcholine that are expressed in intestinal epithelial cells. Recent studies have revealed the role of mAChRs in the maintenance of intestinal epithelial homeostasis. The importance of non-neuronal acetylcholine in mAChR activation in epithelial cells has also been recognized. This review aimed to summarize recent advances in research on mAChRs for intestinal epithelial homeostasis and the involvement of non-neuronal acetylcholine systems, and highlight their potential as targets for IBD therapy.
Collapse
|
9
|
Ganji N, Alganabi M, Yamoto M, Chusilp S, Pierro A, Li B. Family care reduces the incidence of neonatal sepsis: A systematic review and meta-analysis. Front Pediatr 2023; 11:1089229. [PMID: 37124182 PMCID: PMC10130514 DOI: 10.3389/fped.2023.1089229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose Family-involved care in the neonatal intensive care unit (NICU) helps to alleviate neonatal anxiety and promotes breastmilk intake, body growth and neurological development, but its effect on reducing the incidence of neonatal sepsis is not known. We conducted a systematic review and meta-analysis of randomized controlled trials (RCT) to evaluate whether neonates receiving family care have a lower incidence of neonatal sepsis compared to neonates receiving standard NICU care. Methods MEDLINE, Embase, Web of Science, and CENTRAL were searched for RCTs that compared preterm neonates receiving family care vs. standard NICU care. From 126 articles that were identified and screened, 34 full-text articles were assessed for eligibility, and 5 RCTs were included. The primary outcome was the development of sepsis. The RevMan 5.4 software was used to conduct the Meta-analysis. Results The metanalysis, based on 5 RCTs demonstrated that neonates receiving family-involved care had significantly lower incidence of sepsis (12.0% vs. 16.3%), increased body weight, and reduced length of hospital stay compared to those receiving standard NICU care. Conclusion This study suggests that family-involved care in NICU can (i) reduce the incidence of neonatal sepsis, (ii) improve growth, and (iii) reduce the length of hospital stay. This study highlights the need for evaluating whether family-involved care improves other neonatal outcomes.
Collapse
|
10
|
Ge L, Liu S, Li S, Yang J, Hu G, Xu C, Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front Immunol 2022; 13:1016578. [PMID: 36275694 PMCID: PMC9583867 DOI: 10.3389/fimmu.2022.1016578] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized by chronic inflammation and frequent recurrence. Accumulating evidence has confirmed that chronic psychological stress is considered to trigger IBD deterioration and relapse. Moreover, studies have demonstrated that patients with IBD have a higher risk of developing symptoms of anxiety and depression than healthy individuals. However, the underlying mechanism of the link between psychological stress and IBD remains poorly understood. This review used a psychoneuroimmunology perspective to assess possible neuro-visceral integration, immune modulation, and crucial intestinal microbiome changes in IBD. Furthermore, the bidirectionality of the brain–gut axis was emphasized in the context, indicating that IBD pathophysiology increases the inflammatory response in the central nervous system and further contributes to anxiety- and depression-like behavioral comorbidities. This information will help accurately characterize the link between psychological stress and IBD disease activity. Additionally, the clinical application of functional brain imaging, microbiota-targeted treatment, psychotherapy and antidepressants should be considered during the treatment and diagnosis of IBD with behavioral comorbidities. This review elucidates the significance of more high-quality research combined with large clinical sample sizes and multiple diagnostic methods and psychotherapy, which may help to achieve personalized therapeutic strategies for IBD patients based on stress relief.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangran Hu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wengang Song,
| |
Collapse
|
11
|
Bonaz B. Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction. Neurogastroenterol Motil 2022; 34:e14456. [PMID: 36097404 PMCID: PMC9787579 DOI: 10.1111/nmo.14456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/30/2022]
Abstract
The vagus nerve (VN), the longest nerve of the organism innervating the gastrointestinal tract, is a mixed nerve with anti-inflammatory properties through its afferents, activating the hypothalamic-pituitary adrenal axis, and its efferents through the cholinergic anti-inflammatory pathway inhibiting the release of pro-inflammatory cytokines (e.g., TNFα) by splenic and gut macrophages. In addition, the VN is also able to modulate the permeability of the intestinal barrier although the VN does not innervate directly the intestinal epithelium. Targeting the VN through VN stimulation (VNS) has been developed in experimental model of intestinal inflammation and in inflammatory bowel disease (IBD) and might be of interest to decrease intestinal permeability in gastrointestinal disorders with intestinal barrier defect such as IBD, irritable bowel syndrome (IBS), and celiac disease. In this issue of neurogastroenterology and motility, Mogilevski et al. report that a brief non-invasive transcutaneous auricular VNS in healthy volunteers consistently reduces the permeability of the small intestine induced by intravenous administration of the stress peptide corticotropin releasing hormone, known to increase intestinal permeability and to inhibit the VN. In this review, we outline the mechanistic underpinning the effect of stress, of the VN and VNS on intestinal permeability. In particular, the VN can act on intestinal permeability through enteric nerves, and/or cells such as enteric glial cells. We also review the existing evidence of the effects VNS on intestinal permeability in models such as burn intestinal injury and traumatic brain injury, which pave the way for future clinical trials in IBD, IBS, and celiac disease.
Collapse
Affiliation(s)
- Bruno Bonaz
- Division of Hepato‐GastroenterologyCentre Hospitalier Universitaire Grenoble AlpesGrenobleFrance,Grenoble Institute of Neurosciences, Inserm U1216University Grenoble AlpesGrenobleFrance
| |
Collapse
|
12
|
Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab 2022; 33:247-265. [PMID: 35151560 DOI: 10.1016/j.tem.2022.01.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
The intestinal barrier protects the host against gut microbes, food antigens, and toxins present in the gastrointestinal tract. However, gut barrier integrity can be affected by intrinsic and extrinsic factors, including genetic predisposition, the Western diet, antibiotics, alcohol, circadian rhythm disruption, psychological stress, and aging. Chronic disruption of the gut barrier can lead to translocation of microbial components into the body, producing systemic, low-grade inflammation. While the association between gut barrier integrity and inflammation in intestinal diseases is well established, we review here recent studies indicating that the gut barrier and microbiota dysbiosis may contribute to the development of metabolic, autoimmune, and aging-related disorders. Emerging interventions to improve gut barrier integrity and microbiota composition are also described.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Chang Gung Biotechnology Corporation, Taipei, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan.
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| |
Collapse
|
13
|
The Effects of Synbiotics Administration on Stress-Related Parameters in Thai Subjects-A Preliminary Study. Foods 2022; 11:foods11050759. [PMID: 35267392 PMCID: PMC8909555 DOI: 10.3390/foods11050759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Urbanization influences our lifestyle, especially in fast-paced environments where we are more prone to stress. Stress management is considered advantageous in terms of longevity. The use of probiotics for psychological treatment has a small amount of diverse proven evidence to support this. However, studies on stress management in stressed subjects using synbiotics are still limited. The present study aimed to investigate the effects of synbiotics on stress in the Thai population. A total of 32 volunteers were enrolled and screened using a Thai Stress Test (TST) to determine their stress status. Participants were divided into the stressed and the non-stressed groups. Synbiotics preparation comprised a mixture of probiotics strains in a total concentration of 1 × 1010 CFU/day (5.0 × 109 CFU of Lactobacillus paracasei HII01 and 5.0 × 109 CFU of Bifidobacterium animalis subsp. lactis) and 10 g prebiotics (5 g galacto-oligosaccharides (GOS), and 5 g oligofructose (FOS)). All parameters were measured at baseline and after the 12th week of the study. In the stressed group, the administration of synbiotics significantly (p < 0.05) reduced the negative scale scores of TST, and tryptophan. In the non-stressed group, the synbiotics administration decreased tryptophan significantly (p < 0.05), whereas dehydroepiandrosterone sulfate (DHEA-S), tumor necrosis factor-α (TNF-α), 5-hydroxyindoleacetic acid (5-HIAA), and short-chain fatty acids (SCFAs), acetate and propionate were increased significantly (p < 0.05). In both groups, cortisol, and lipopolysaccharide (LPS) were reduced, whereas anti-inflammatory mediator interleukin-10 (IL-10) and immunoglobulin A (IgA) levels were increased. In conclusion, synbiotics administration attenuated the negative feelings via the negative scale scores of TST in stressed participants by modulating the HPA-axis, IL-10, IgA, and LPS. In comparison, synbiotics administration for participants without stress did not benefit stress status but showed remodeling SCFAs components, HPA-axis, and tryptophan catabolism.
Collapse
|
14
|
Supplementation with milk fat globule membrane from early life reduces maternal separation-induced visceral pain independent of enteric nervous system or intestinal permeability changes in the rat. Neuropharmacology 2022; 210:109026. [DOI: 10.1016/j.neuropharm.2022.109026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/23/2022] [Accepted: 03/06/2022] [Indexed: 12/19/2022]
|
15
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Bonaz B, Lane RD, Oshinsky ML, Kenny PJ, Sinha R, Mayer EA, Critchley HD. Diseases, Disorders, and Comorbidities of Interoception. Trends Neurosci 2021; 44:39-51. [PMID: 33378656 DOI: 10.1016/j.tins.2020.09.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Interoception, the sense of the body's internal physiological state, underpins homeostatic reflexes, motivational states, and sensations contributing to emotional experiences. The continuous nature of interoceptive processing, coupled to behavior, is implicated in the neurobiological construction of the sense of self. Aberrant integration and control of interoceptive signals, originating in the brain and/or the periphery, can perturb the whole system. Interoceptive abnormalities are implicated in the pathophysiology of psychiatric disorders and in the symptomatic expression of developmental, neurodegenerative, and neurological disorders. Moreover, interoceptive mechanisms appear central to somatic disorders of brain-body interactions, including functional digestive disorders, chronic pain, and comorbid conditions. The present article provides an overview of disorders of interoception and suggests future directions for better understanding, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences and Division of Hepato-Gastroenterology, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Richard D Lane
- Department of Psychiatry, University of Arizona, Tucson, AZ 85724-5002, USA; Department of Psychology, University of Arizona, Tucson, AZ 85724-5002, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85724-5002, USA
| | - Michael L Oshinsky
- National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20894, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajita Sinha
- Yale Stress Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
17
|
Duan H, Cai X, Luan Y, Yang S, Yang J, Dong H, Zeng H, Shao L. Regulation of the Autonomic Nervous System on Intestine. Front Physiol 2021; 12:700129. [PMID: 34335306 PMCID: PMC8317205 DOI: 10.3389/fphys.2021.700129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Intestine is composed of various types of cells including absorptive epithelial cells, goblet cells, endocrine cells, Paneth cells, immunological cells, and so on, which play digestion, absorption, neuroendocrine, immunological function. Intestine is innervated with extrinsic autonomic nerves and intrinsic enteric nerves. The neurotransmitters and counterpart receptors are widely distributed in the different intestinal cells. Intestinal autonomic nerve system includes sympathetic and parasympathetic nervous systems, which regulate cellular proliferation and function in intestine under physiological and pathophysiological conditions. Presently, distribution and functional characteristics of autonomic nervous system in intestine were reviewed. How autonomic nervous system regulates intestinal cell proliferation was discussed. Function of autonomic nervous system on intestinal diseases was extensively reviewed. It might be helpful to properly manipulate autonomic nervous system during treating different intestinal diseases.
Collapse
Affiliation(s)
- Hongyi Duan
- Medical College of Nanchang University, Nanchang, China
| | - Xueqin Cai
- Medical College of Nanchang University, Nanchang, China
| | - Yingying Luan
- Medical College of Nanchang University, Nanchang, China
| | - Shuo Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Juan Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Hui Dong
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Lijian Shao
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Ertle CM, Rommel FR, Tumala S, Moriwaki Y, Klein J, Kruse J, Gieler U, Peters EMJ. New Pathways for the Skin's Stress Response: The Cholinergic Neuropeptide SLURP-1 Can Activate Mast Cells and Alter Cytokine Production in Mice. Front Immunol 2021; 12:631881. [PMID: 33815383 PMCID: PMC8012551 DOI: 10.3389/fimmu.2021.631881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The alpha7 nicotinic acetylcholine receptor (Chrna7) plays an essential anti-inflammatory role in immune homeostasis and was recently found on mast cells (MC). Psychosocial stress can trigger MC hyperactivation and increases pro-inflammatory cytokines in target tissues such as the skin. If the cholinergic system (CS) and Chrna7 ligands play a role in these cascades is largely unknown. Objective: To elucidate the role of the CS in the response to psychosocial stress using a mouse-model for stress-triggered cutaneous inflammatory circuits. Methods: Key CS markers (ACh, Ch, SLURP-1, SLURP-2, Lynx1, Chrm3, Chrna7, Chrna9, ChAT, VAChT, Oct3, AChE, and BChE) in skin and its MC (sMC), MC activation, immune parameters (TNFα, IL1β, IL10, TGFβ, HIF1α, and STAT3) and oxidative stress were analyzed in skin from 24 h noise-stressed mice and in cultured MC (cMC) from C57BL/6 or Chrna7-Knockout mice. Results: First, Chrna7 and SLURP-1 mRNA were exclusively upregulated in stressed skin. Second, histomorphometry located Chrna7 and SLURP-1 in nerves and sMC and demonstrated upregulated contacts and increased Chrna7+ sMC in stressed skin, while 5 ng/mL SLURP-1 degranulated cMC. Third, IL1β+ sMC were high in stressed skin, and while SLURP-1 alone had no significant effect on cMC cytokines, it upregulated IL1β in cMC from Chrna7-KO and in IL1β-treated wildtype cMC. In addition, HIF1α+ sMC were high in stressed skin and Chrna7-agonist AR-R 17779 induced ROS in cMC while SLURP-1 upregulated TNFα and IL1β in cMC when HIF1α was blocked. Conclusions: These data infer that the CS plays a role in the regulation of stress-sensitive inflammatory responses but may have a surprising pro-inflammatory effect in healthy skin, driving IL1β expression if SLURP-1 is involved.
Collapse
Affiliation(s)
- Christoph M Ertle
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank R Rommel
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Jochen Klein
- Department of Pharmacology, Biocenter N260, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Kruse
- Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Clinic for Psychosomatic Medicine and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Charité Center 12 for Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Melchior M, Kuhn P, Poisbeau P. The burden of early life stress on the nociceptive system development and pain responses. Eur J Neurosci 2021; 55:2216-2241. [PMID: 33615576 DOI: 10.1111/ejn.15153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
For a long time, the capacity of the newborn infant to feel pain was denied. Today it is clear that the nociceptive system, even if still immature, is functional enough in the newborn infant to elicit pain responses. Unfortunately, pain is often present in the neonatal period, in particular in the case of premature infants which are subjected to a high number of painful procedures during care. These are accompanied by a variety of environmental stressors, which could impact the maturation of the nociceptive system. Therefore, the question of the long-term consequences of early life stress is a critical question. Early stressful experience, both painful and non-painful, can imprint the nociceptive system and induce long-term alteration in brain function and nociceptive behavior, often leading to an increase sensitivity and higher susceptibility to chronic pain. Different animal models have been developed to understand the mechanisms underlying the long-term effects of different early life stressful procedures, including pain and maternal separation. This review will focus on the clinical and preclinical data about early life stress and its consequence on the nociceptive system.
Collapse
Affiliation(s)
- Meggane Melchior
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Kuhn
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Service de Médecine et Réanimation du Nouveau-né, Hôpital de Hautepierre, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- Centre National de la Recherche Scientifique and University of Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
20
|
Peppas S, Pansieri C, Piovani D, Danese S, Peyrin-Biroulet L, Tsantes AG, Brunetta E, Tsantes AE, Bonovas S. The Brain-Gut Axis: Psychological Functioning and Inflammatory Bowel Diseases. J Clin Med 2021; 10:377. [PMID: 33498197 PMCID: PMC7863941 DOI: 10.3390/jcm10030377] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The brain-gut axis represents a complex bi-directional system comprising multiple interconnections between the neuroendocrine pathways, the autonomous nervous system and the gastrointestinal tract. Inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, is a chronic, relapsing-remitting inflammatory disorder of the gastrointestinal tract with a multifactorial etiology. Depression and anxiety are prevalent among patients with chronic disorders characterized by a strong immune component, such as diabetes mellitus, cancer, multiple sclerosis, rheumatoid arthritis and IBD. Although psychological problems are an important aspect of morbidity and of impaired quality of life in patients with IBD, depression and anxiety continue to be under-diagnosed. There is lack of evidence regarding the exact mechanisms by which depression, anxiety and cognitive dysfunction may occur in these patients, and whether psychological disorders are the result of disease activity or determinants of the IBD occurrence. In this comprehensive review, we summarize the role of the brain-gut axis in the psychological functioning of patients with IBD, and discuss current preclinical and clinical data on the topic and therapeutic strategies potentially useful for the clinical management of these patients. Personalized pathways of psychological supports are needed to improve the quality of life in patients with IBD.
Collapse
Affiliation(s)
- Spyros Peppas
- Department of Gastroenterology, Athens Naval Hospital, 11521 Athens, Greece;
| | - Claudia Pansieri
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Inserm U1256 NGERE, Nancy University Hospital, Lorraine University, 54500 Vandoeuvre-les-Nancy, France;
| | - Andreas G. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Enrico Brunetta
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Argirios E. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| |
Collapse
|
21
|
Buckley MM, O'Brien R, Brosnan E, Ross RP, Stanton C, Buckley JM, O'Malley D. Glucagon-Like Peptide-1 Secreting L-Cells Coupled to Sensory Nerves Translate Microbial Signals to the Host Rat Nervous System. Front Cell Neurosci 2020; 14:95. [PMID: 32425756 PMCID: PMC7203556 DOI: 10.3389/fncel.2020.00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
An intact gut epithelium preserves the immunological exclusion of “non-self” entities in the external environment of the gut lumen. Nonetheless, information flows continuously across this interface, with the host immune, endocrine, and neural systems all involved in monitoring the luminal environment of the gut. Both pathogenic and commensal gastrointestinal (GI) bacteria can modulate centrally-regulated behaviors and brain neurochemistry and, although the vagus nerve has been implicated in the microbiota-gut-brain signaling axis, the cellular and molecular machinery that facilitates this communication is unclear. Studies were carried out in healthy Sprague–Dawley rats to understand cross-barrier communication in the absence of disease. A novel colonic-nerve electrophysiological technique was used to examine gut-to-brain vagal signaling by bacterial products. Calcium imaging and immunofluorescent labeling were used to explore the activation of colonic submucosal neurons by bacterial products. The findings demonstrate that the neuromodulatory molecule, glucagon-like peptide-1 (GLP-1), secreted by colonic enteroendocrine L-cells in response to the bacterial metabolite, indole, stimulated colonic vagal afferent activity. At a local level indole modified the sensitivity of submucosal neurons to GLP-1. These findings elucidate a cellular mechanism by which sensory L-cells act as cross-barrier signal transducers between microbial products in the gut lumen and the host peripheral nervous system.
Collapse
Affiliation(s)
- Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Eilish Brosnan
- Department of Physiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,College of Science, Engineering and Food Science, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Cork, Ireland
| | - Julliette M Buckley
- Department of Surgery, University College Cork, Cork, Ireland.,Mater Private Hospital, Cork, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Collins SM. Interrogating the Gut-Brain Axis in the Context of Inflammatory Bowel Disease: A Translational Approach. Inflamm Bowel Dis 2020; 26:493-501. [PMID: 31970390 PMCID: PMC7054772 DOI: 10.1093/ibd/izaa004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 12/14/2022]
Abstract
This review examines preclinical and clinical studies relevant to our understanding of how the bidirectional gut-brain axis influences the natural history of inflammatory bowel disease. Preclinical studies provide proof of concept that preexisting behavioral illness, such as depression, results in increased susceptibility to inflammatory stimuli and that commonly used classes of antidepressants protect against this vulnerability. However, clinical studies suggesting behavioral illness as a risk factor for IBD and a protective role for antidepressants have relied primarily on symptom-reporting rather than objective measurements of inflammation. In terms of gut-to-brain signaling, there is emerging evidence from preclinical and clinical observation that intestinal inflammation alters brain functions, including the induction of mood disorders, alteration of circadian rhythm both centrally and peripherally, and changes in appetitive behaviors. Furthermore, preclinical studies suggest that effective treatment of intestinal inflammation improves associated behavioral impairment. Taken together, the findings of this review encourage a holistic approach to the management of patients with IBD, accommodating lifestyle issues that include the avoidance of sleep deprivation, optimized nutrition, and the monitoring and appropriate management of behavioral disorders. The review also acknowledges the need for better-designed clinical studies evaluating the impact of behavioral disorders and their treatments on the natural history of IBD, utilizing hard end points to assess changes in the inflammatory process as opposed to reliance on symptom-based assessments. The findings of the review also encourage a better understanding of changes in brain function and circadian rhythm induced by intestinal inflammation.
Collapse
Affiliation(s)
- Stephen M Collins
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Division of Gastroenterology, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada,Address correspondence to: Stephen M. Collins, MBBS, FRCPC, FRSC, Farncombe Family Digestive Health Research Institute, Faculty of Health Sciences, Room 3N8B, McMaster University Medical Centre, Hamilton, Ontario, CANADA L8N 3Z5. E-mail:
| |
Collapse
|
23
|
|
24
|
Berens S, Banzhaf P, Baumeister D, Gauss A, Eich W, Schaefert R, Tesarz J. Relationship between adverse childhood experiences and illness anxiety in irritable bowel syndrome - The impact of gender. J Psychosom Res 2020; 128:109846. [PMID: 31759196 DOI: 10.1016/j.jpsychores.2019.109846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Irritable bowel syndrome (IBS) is a functional disorder with a complex biopsychosocial etiopathogenesis. Various psychosocial factors like adverse childhood experiences (ACE) and illness anxiety appear to be relevant, but underlying mechanisms are still not fully understood. Furthermore, there are indicators of gender specific effects of ACE on IBS. Therefore, this study analyzed group differences between IBS patients and healthy controls (HCs) according to ACE and illness anxiety, and the relationship between ACE and illness anxiety by taking gender differences into consideration. METHODS A cross-sectional multi-center study was conducted comparing IBS patients with HCs. Illness anxiety was recorded using the Whiteley-Index-7, childhood adversities via the 10-item Adverse-Childhood-Experiences-score, anxiety by the Generalized Anxiety Disorder seven-item questionnaire and depressive symptoms using the nine-item depression module of the patient-health-questionnaire. Group differences between IBS patients and HCs were analyzed and correlation analyses were performed. RESULTS Overall, 127 gender and education matched participants per group were included. Compared to HCs, IBS patients were characterized by higher prevalences for adverse childhood experiences (63.8% vs. 48.0%, p = .02, OR = 1.33) and increased levels of illness anxiety (p < .001, η2 = 0.595). Taking into account gender specific effects, there was a significant correlation between adverse childhood experiences and illness anxiety in female IBS patients, but not in male (r = 0.242, p = .03 vs. r = 0.162, p = .29). However, after controlling for depression and anxiety, this correlation disappeared. CONCLUSION Our findings suggest a possible gender-specific association of ACE with illness anxiety in female IBS patients that might be linked to increased levels of depression and anxiety. TRIAL REGISTRATION DRKS00011685.
Collapse
Affiliation(s)
- Sabrina Berens
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany; Institute of Psychology, Heidelberg University, Hauptstraße 47-51, D-69117 Heidelberg, Germany.
| | - Philine Banzhaf
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - David Baumeister
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Annika Gauss
- Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Wolfgang Eich
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Rainer Schaefert
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany; Department of Psychosomatic Medicine, Division of Internal Medicine, University Hospital Basel, Hebelstrasse 2, CH-4031 Basel, Switzerland; Faculty of Medicine, University of Basel, Klingelbergstrasse 61, CH-4056 Basel, Switzerland
| | - Jonas Tesarz
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| |
Collapse
|
25
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Wang J, Ji H. Tight Junction Proteins in the Weaned Piglet Intestine: Roles and Regulation. Curr Protein Pept Sci 2019; 20:652-660. [PMID: 30678619 DOI: 10.2174/1389203720666190125095122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial barrier plays a crucial role in the health and growth of weaned piglets. Proper epithelial function mainly depends on tight junctions (TJs), which act as both ion channels and a barrier against noxious molecules. TJs are multiprotein complexes consisting of transmembrane and membrane-associated proteins. Because the intestine in piglets is immature and incomplete, its structure and function are easily impaired by various stresses, infections, and food-related factors. Certain nutrients have been demonstrated to participate in intestinal TJ regulation. Probiotics, amino acids, fibers, oligosaccharide, and certain micronutrients can enhance barrier integrity and counteract infections through elevated TJ protein expression and distribution. In this review, the distribution and classification of intestinal TJs is described, the factors influencing TJs after weaning are summarized, and the regulation of weaning piglet intestinal TJs by nutrients is discussed.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
27
|
Noorafshan A, Yousefi M, Hosseini L, Karbalay-Doust S. Can Sertraline and Nortriptyline Protect the Neurons in Submucosal and Myenteric Plexuses of Rat's Colon Against Stress? Dig Dis Sci 2019; 64:2548-2554. [PMID: 30937720 DOI: 10.1007/s10620-019-05600-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/21/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND The colon is partly controlled by myenteric and submucosal plexuses, which respond to stress and lead to some gastrointestinal disorders. These plexuses play roles in irritable bowel syndrome. Patients suffering from this syndrome can be treated with some antidepressants, including sertraline and nortriptyline. AIMS The primary aim of study was to compare the effect of a sertraline and a nortriptyline on the structural changes of the enteric neurons after stress exposure in both sexes. The secondary objectives were to evaluate the effects of stress on the submucosal and myenteric plexuses. METHODS Male and female Sprague-Dawley rats were assigned to four subgroups. The first subgroup received no stress. The other three subgroups received chronic variable stress (CVS) and were given phosphate buffer, sertraline (10 mg/kg/day), or nortriptyline (10 mg/kg/day). After 45 days, the neuron number in their colon plexuses was estimated using the stereologic method. RESULTS The number of neurons increased by 40-51% in the submucosal plexus and by 57-69% in the myenteric plexus in the CVS group compared with the control group (p < 0.002) without any sex preference. The increment was significantly higher in the myenteric plexus than in the submucosal plexus (p < 0.05). Moreover, co-treatment of stressed rats with sertraline and nortriptyline could prevent the cellular hyperplasia of the plexuses, with more effective action for sertraline (p < 0.02). CONCLUSIONS Stress exposure for 45 days induced hyperplasia of the colon's enteric plexuses in both sexes. However, these drugs could prevent the changes, with a more effective action for sertraline.
Collapse
Affiliation(s)
- Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Yousefi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Hosseini
- Department of Traditional Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Zand Ave., Shiraz, 71348-45794, Iran. .,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
29
|
Rincel M, Olier M, Minni A, Monchaux de Oliveira C, Matime Y, Gaultier E, Grit I, Helbling JC, Costa AM, Lépinay A, Moisan MP, Layé S, Ferrier L, Parnet P, Theodorou V, Darnaudéry M. Pharmacological restoration of gut barrier function in stressed neonates partially reverses long-term alterations associated with maternal separation. Psychopharmacology (Berl) 2019; 236:1583-1596. [PMID: 31147734 DOI: 10.1007/s00213-019-05252-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
RATIONALE Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.
Collapse
Affiliation(s)
- Marion Rincel
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Maïwenn Olier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Amandine Minni
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | | | - Yann Matime
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Eric Gaultier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Isabelle Grit
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | | | - Anna Maria Costa
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Amandine Lépinay
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Sophie Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Laurent Ferrier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Patricia Parnet
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | - Vassilia Theodorou
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Muriel Darnaudéry
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France.
| |
Collapse
|
30
|
Louwies T, Ligon CO, Johnson AC, Greenwood-Van Meerveld B. Targeting epigenetic mechanisms for chronic visceral pain: A valid approach for the development of novel therapeutics. Neurogastroenterol Motil 2019; 31:e13500. [PMID: 30393913 PMCID: PMC7924309 DOI: 10.1111/nmo.13500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/21/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic visceral pain is persistent pain emanating from thoracic, pelvic, or abdominal origin that is poorly localized with regard to the specific organ affected. The prevalence can range up to 25% in the adult population as chronic visceral pain is a common feature of many visceral disorders, which may or may not be accompanied by distinct structural or histological abnormalities within the visceral organs. Mounting evidence suggests that changes in epigenetic mechanisms are involved in the top-down or bottom-up sensitization of pain pathways and the development of chronic pain. Epigenetic changes can lead to long-term alterations in gene expression profiles of neurons and consequently alter functionality of peripheral neurons, dorsal root ganglia, spinal cord, and brain neurons. However, epigenetic modifications are dynamic, and thus, detrimental changes may be reversible. Hence, external factors/therapeutic interventions may be capable of modulating the epigenome and restore normal gene expression for extended periods of time. PURPOSE The goal of this review is to highlight the latest discoveries made toward understanding the epigenetic mechanisms that are involved in the development or maintenance of chronic visceral pain. Furthermore, this review will provide evidence supporting that targeting these epigenetic mechanisms may represent a novel approach to treat chronic visceral pain.
Collapse
Affiliation(s)
- Tijs Louwies
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Casey O. Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
31
|
Fornai M, van den Wijngaard RM, Antonioli L, Pellegrini C, Blandizzi C, de Jonge WJ. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil 2018; 30:e13406. [PMID: 30058092 DOI: 10.1111/nmo.13406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nerve-mucosa interactions control various elements of gastrointestinal functions, including mucosal host defense, gut barrier function, and epithelial cell growth and differentiation. In both intestinal and extra-intestinal diseases, alterations of autonomic nerve activity have been observed to be concurrent with the disease course, such as in inflammatory and functional bowel diseases, and neurodegenerative diseases. This is relevant as the extrinsic autonomic nervous system is increasingly recognized to modulate gut inflammatory responses. The molecular and cellular mechanisms through which the extrinsic and intrinsic nerve pathways may regulate digestive mucosal functions have been investigated in several pre-clinical and clinical studies. PURPOSE The present review focuses on the involvement of neural pathways in gastrointestinal disease, and addresses the current strategies to intervene with neuronal pathway as a means of treatment.
Collapse
Affiliation(s)
- M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - R M van den Wijngaard
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - W J de Jonge
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Russell JP, Mohammadi E, Ligon CO, Johnson AC, Gershon MD, Rao M, Shen Y, Chan CC, Eidam HS, DeMartino MP, Cheung M, Oliff AI, Kumar S, Greenwood-Van Meerveld B. Exploring the Potential of RET Kinase Inhibition for Irritable Bowel Syndrome: A Preclinical Investigation in Rodent Models of Colonic Hypersensitivity. J Pharmacol Exp Ther 2018; 368:299-307. [PMID: 30413627 DOI: 10.1124/jpet.118.252973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Abdominal pain represents a significant complaint in patients with irritable bowel syndrome (IBS). While the etiology of IBS is incompletely understood, prior exposure to gastrointestinal inflammation or psychologic stress is frequently associated with the development of symptoms. Inflammation or stress-induced expression of growth factors or cytokines may contribute to the pathophysiology of IBS. Here, we aimed to investigate the therapeutic potential of inhibiting the receptor of glial cell line-derived neurotrophic factor, rearranged during transfection (RET), in experimental models of inflammation and stress-induced visceral hypersensitivity resembling IBS sequelae. In RET-cyan fluorescent protein [(CFP) RetCFP/+] mice, thoracic and lumbosacral dorsal root ganglia were shown to express RET, which colocalized with calcitonin gene-related peptide. To understand the role of RET in visceral nociception, we employed GSK3179106 as a potent, selective, and gut-restricted RET kinase inhibitor. Colonic hyperalgesia, quantified as exaggerated visceromotor response to graded pressures (0-60 mm Hg) of isobaric colorectal distension (CRD), was produced in multiple rat models induced 1) by colonic irritation, 2) following acute colonic inflammation, 3) by adulthood stress, and 4) by early life stress. In all the rat models, RET inhibition with GSK3179106 attenuated the number of abdominal contractions induced by CRD. Our findings identify a role for RET in visceral nociception. Inhibition of RET kinase with a potent, selective, and gut-restricted small molecule may represent a novel therapeutic strategy for the treatment of IBS through the attenuation of post-inflammatory and stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- John P Russell
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Ehsan Mohammadi
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Casey O Ligon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Anthony C Johnson
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael D Gershon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Meenakshi Rao
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Yuhong Shen
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Chi-Chung Chan
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Hilary S Eidam
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael P DeMartino
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Mui Cheung
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Allen I Oliff
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Sanjay Kumar
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Beverley Greenwood-Van Meerveld
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| |
Collapse
|
33
|
Rationale of Probiotic Supplementation during Pregnancy and Neonatal Period. Nutrients 2018; 10:nu10111693. [PMID: 30404227 PMCID: PMC6267579 DOI: 10.3390/nu10111693] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023] Open
Abstract
Probiotics are living microorganisms that confer a health benefit when administered in adequate amounts. It has been speculated that probiotics supplementation during pregnancy and in the neonatal period might reduce some maternal and neonatal adverse outcomes. In this narrative review, we describe the rationale behind probiotic supplementation and its possible role in preventing preterm delivery, perinatal infections, functional gastrointestinal diseases, and atopic disorders during early life.
Collapse
|
34
|
Li B, Yu FZ, Minich A, Hock A, Lee C, Pierro A. Neonatal intestinal injury induced by maternal separation: pathogenesis and pharmacological targets 1. Can J Physiol Pharmacol 2018; 97:193-196. [PMID: 30383976 DOI: 10.1139/cjpp-2018-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maternal separation (MS) is a well-studied phenomenon thought to play a role in the pathogenesis of many diseases ranging from neuropsychiatric to early intestinal disorders such as necrotizing enterocolitis. The existing evidence suggests that MS initiates a variety of processes that in turn lead to early intestinal injury. Although there are many theories as to how MS alters normal physiological processes, the exact mechanism of action remains to be elucidated. This review aims to describe some of the pathological processes affecting the intestine that are caused by MS, including (i) brain-gut axis, (ii) intestinal epithelial barrier function, (iii) microbiome, (iv) oxidative stress and endoplasmic reticulum stress, and (v) gut inflammation.
Collapse
Affiliation(s)
- Bo Li
- a Division of General and Thoracic Surgery, Translation Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Fang Zhou Yu
- a Division of General and Thoracic Surgery, Translation Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,b School of Medicine, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Adam Minich
- a Division of General and Thoracic Surgery, Translation Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Alison Hock
- a Division of General and Thoracic Surgery, Translation Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carol Lee
- a Division of General and Thoracic Surgery, Translation Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Agostino Pierro
- a Division of General and Thoracic Surgery, Translation Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
35
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Altered colonic sensory and barrier functions by CRF: roles of TLR4 and IL-1. J Endocrinol 2018; 239:241-252. [PMID: 30139928 DOI: 10.1530/joe-18-0441] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Visceral allodynia and increased colonic permeability are considered to be crucial pathophysiology of irritable bowel syndrome (IBS). Corticotropin-releasing factor (CRF) and immune-mediated mechanisms have been proposed to contribute to these changes in IBS, but the precise roles have not been determined. We explored these issues in rats in vivo. The threshold of visceromotor response, i.e., abdominal muscle contractions induced by colonic balloon distention was electrophysiologically measured. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal injection of CRF increased the permeability, which was blocked by astressin, a non-selective CRF receptor antagonist, but astressin2-B, a selective CRF receptor subtype 2 (CRF2) antagonist did not modify it. Urocortin 2, a selective CRF2 agonist inhibited the increased permeability by CRF. Eritoran, a toll-like receptor 4 (TLR4) antagonist or anakinra, an interleukin-1 receptor antagonist blocked the visceral allodynia and the increased gut permeability induced by CRF. Subcutaneous injection of lipopolysaccharide (immune stress) or repeated water avoidance stress (WAS, psychological stress), 1 h daily for 3 days induced visceral allodynia and increased gut permeability (animal IBS models), which were also blocked by astressin, eritoran or anakinra. In conclusion, stress-induced visceral allodynia and increased colonic permeability were mediated via peripheral CRF receptors. CRF induced these visceral changes via TLR4 and cytokine system, which were CRF1 dependent, and activation of CRF2 inhibited these CRF1-triggered responses. CRF may modulate immune system to alter visceral changes, which are considered to be pivotal pathophysiology of IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
36
|
Abstract
The gastrointestinal tract contains its own set of intrinsic neuroglial circuits - the enteric nervous system (ENS) - which detects and responds to diverse signals from the environment. Here, we address recent advances in the understanding of ENS development, including how neural-crest-derived progenitors migrate into and colonize the bowel, the formation of ganglionated plexuses and the molecular mechanisms of enteric neuronal and glial diversification. Modern lineage tracing and transcription-profiling technologies have produced observations that simultaneously challenge and affirm long-held beliefs about ENS development. We review many genetic and environmental factors that can alter ENS development and exert long-lasting effects on gastrointestinal function, and discuss how developmental defects in the ENS might account for some of the large burden of digestive disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
Pohl CS, Lennon EM, Li Y, DeWilde MP, Moeser AJ. S. Typhimurium challenge in juvenile pigs modulates the expression and localization of enteric cholinergic proteins and correlates with mucosal injury and inflammation. Auton Neurosci 2018; 213:51-59. [PMID: 30005740 PMCID: PMC6090566 DOI: 10.1016/j.autneu.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022]
Abstract
The cholinergic system plays a central role in regulating critical gastrointestinal functions, including motility, secretion, barrier and immune function. In rodent models of acute, non-infectious gastrointestinal injury, the cholinergic system functions to inhibit inflammation; however, during inflammation local expression and regulation of the cholinergic system is not well known, particularly during infectious enteritis. The objective of this study was to determine the intrinsic expression of the enteric cholinergic system in pig ileum following an acute challenge with Salmonella enterica serovar Typhimurium DT104 (S. Typhimurium). At 2 d post-challenge, a three-fold reduction in ileal acetylcholine (ACh) levels was observed in challenged animals, compared with controls. Ileal acetylcholinesterase (AChE) activity was decreased (by four-fold) while choline acetyltransferase (ChAT) expression was increased in both the ileum and mesenteric lymph nodes. Elevated ChAT found to localize preferentially to mucosa overlying lymphoid follicles of the Peyers patch in challenged pigs, with more intense labeling for ChAT in S. Typhimurium challenged pigs compared to controls. Ileal mRNA gene expression of muscarinic receptor 1 and 3 was also increased in challenged pigs, while muscarinic receptor 2 and the nicotinic receptor alpha 7 subunit gene expression were unaffected. A positive correlation was observed between ChAT protein expression in the ileum, rectal temperature, and histopathological severity in challenged animals. These data show that inflammation from S. Typhimurium challenge alters enteric cholinergic expression by down-regulating acetylcholine concentration and acetylcholine degrading enzymes while increasing acetylcholine synthesis proteins and receptors. Given the known anti-inflammatory role of the cholinergic system, the divergent expression of cholinergic genes may represent an attempt to limit tissue damage by preserving cholinergic signaling in the face of low ligand availability.
Collapse
Affiliation(s)
- Calvin S Pohl
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Elizabeth M Lennon
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA
| | - Yihang Li
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Morgan P DeWilde
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Adam J Moeser
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
38
|
Aubert P, Oleynikova E, Rizvi H, Ndjim M, Le Berre-Scoul C, Grohard PA, Chevalier J, Segain JP, Le Drean G, Neunlist M, Boudin H. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring. FASEB J 2018; 33:770-781. [DOI: 10.1096/fj.201800079r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Philippe Aubert
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Elena Oleynikova
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Hina Rizvi
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Marième Ndjim
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Catherine Le Berre-Scoul
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Pierre Antoine Grohard
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Julien Chevalier
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Jean-Pierre Segain
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Gwenola Le Drean
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Helene Boudin
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| |
Collapse
|
39
|
Neonatal- maternal separation primes zymogenic cells in the rat gastric mucosa through glucocorticoid receptor activity. Sci Rep 2018; 8:9823. [PMID: 29959361 PMCID: PMC6026145 DOI: 10.1038/s41598-018-28223-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
Neonatal- Maternal Separation (NMS) deprives mammals from breastfeeding and maternal care, influencing growth during suckling- weaning transition. In the gastric mucosa, Mist1 (encoded by Bhlha15 gene) and moesin organize the secretory apparatus for pepsinogen C in zymogenic cells. Our current hypothesis was that NMS would change corticosterone activity through receptors (GR), which would modify molecules involved in zymogenic cell differentiation in rats. We found that NMS increased corticosterone levels from 18 days onwards, as GR decreased in the gastric mucosa. However, as nuclear GR was detected, we investigated receptor binding to responsive elements (GRE) and observed an augment in NMS groups. Next, we demonstrated that NMS increased zymogenic population (18 and and 30 days), and targeted Mist1 and moesin. Finally, we searched for evolutionarily conserved sequences that contained GRE in genes involved in pepsinogen C secretion, and found that the genomic regions of Bhlha15 and PgC contained sites highly likely to be responsive to glucocorticoids. We suggest that NMS triggers GR- GRE to enhance the expression and to prime genes that organize cellular architecture in zymogenic population for PgC function. As pepsinogen C- pepsin is essential for digestion, disturbance of parenting through NMS might alter functions of gastric mucosa in a permanent manner.
Collapse
|
40
|
Blockage of High-Affinity Choline Transporter Increases Visceral Hypersensitivity in Rats with Chronic Stress. Gastroenterol Res Pract 2018; 2018:9252984. [PMID: 29849603 PMCID: PMC5904806 DOI: 10.1155/2018/9252984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Visceral hypersensitivity is a common feature of irritable bowel syndrome. Cholinergic system involves in the development of visceral hypersensitivity, and high-affinity choline transporter (CHT1) is of crucial importance in choline uptake system. However, involvement of CHT1 in visceral hypersensitivity remains unknown. The research aimed to study the CHT1 expression in dorsal root ganglions (DRGs) and the role of CHT1 in visceral hypersensitivity. Methods Repetitive water avoidance stress (WAS) was used to induce visceral hypersensitivity in rats. Colorectal distension (CRD) was determined, and the abdominal withdrawal reflex (AWR) and threshold intensity data were recorded to measure the visceral sensitivity. After intraperitoneal injection of hemicholinium-3 (HC-3), the specific inhibitor of CHT1, CRD data were also recorded. The CHT1 expression of DRGs was investigated by Western blotting, immunohistochemistry, and quantitative RT-PCR. Acetylcholine levels in the DRGs were detected by the assay kit. Results Repetitive WAS increased the AWR score of CRD at high distension pressure and decreased the mean threshold of rats. The CHT1 expression and acetylcholine concentration of DRG were significantly increased in WAS rats. After the administration of HC-3, the AWR score in WAS group was significantly increased at higher distension pressure while the threshold intensity was significantly reduced compared to the normal saline group. Acetylcholine concentration was significantly lower than the normal saline rats. Conclusion Our research firstly reports that CHT1 is overexpressed in noninflammatory visceral hypersensitivity, and blockage of CHT1 can enhance the visceral hypersensitivity. CHT1 may play an inhibitory role in visceral hypersensitivity.
Collapse
|
41
|
Lee HF, Liu PY, Wang YP, Tsai CF, Chang FY, Lu CL. Sexual Abuse Is Associated With an Abnormal Psychological Profile and Sleep Difficulty in Patients With Irritable Bowel Syndrome in Taiwan. J Neurogastroenterol Motil 2018; 24:79-86. [PMID: 29291609 PMCID: PMC5753906 DOI: 10.5056/jnm17004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Both sexual and physical abuse history have been reported to be associated with irritable bowel syndrome (IBS) in Western countries. The impact of abuse history in IBS patients in Asia remains unclear. We aim to determine the prevalence of abuse history, its associated psychological profiles, and sleep problems among IBS patients in Taiwan. Methods In total, 194 Rome III-defined IBS patients were invited to participate. Age- and sex-matched healthy carriers of chronic hepatitis B or hepatitis C without chronic abdominal symptoms were identified as disease-controls. We administered a validated questionnaire to evaluate bowel symptoms, physical/sexual abuse history, anxiety/depression (Hospital Anxiety and Depression Scale [HADS]), and sleep quality. Results IBS patients had a significantly higher prevalence of sexual abuse history than the disease-control group both before (16.5% vs 6.7%, P < 0.05) and after (16.0% vs 6.6%, P < 0.05) adolescence. These significant differences were mainly observed in women (13.4% vs 3.4%, P < 0.05). No difference was noted in history of physical abuse between the 2 groups. IBS patients with a history of sexual abuse had significantly higher HADS scores and higher frequencies of sleep difficulty than those without. Conclusions In Taiwan, sexual abuse history was more prevalent in female IBS patients than controls. Sexual abuse history may contribute to higher anxiety/depression levels and sleep difficulties, which are commonly experienced in IBS patients. In Asia, abuse history should be obtained when approaching IBS patients to facilitate better management.
Collapse
Affiliation(s)
- Hsing-Feng Lee
- Division of Gastroenterology, Department of Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Foundation, Chia-Yi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yi Liu
- Institute of Brain Science, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yen-Po Wang
- Institute of Brain Science, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopic Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Fen Tsai
- Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Full-Young Chang
- Endoscopic Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology, Departments of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Liang Lu
- Institute of Brain Science, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Endoscopic Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology, Departments of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
42
|
Ducarouge B, Pelissier-Rota M, Powell R, Buisson A, Bonaz B, Jacquier-Sarlin M. Involvement of CRF2 signaling in enterocyte differentiation. World J Gastroenterol 2017; 23:5127-5145. [PMID: 28811708 PMCID: PMC5537180 DOI: 10.3748/wjg.v23.i28.5127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/06/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the role of corticotropin releasing factor receptor (CRF2) in epithelial permeability and enterocyte cell differentiation.
METHODS For this purpose, we used rat Sprague Dawley and various colon carcinoma cell lines (SW620, HCT8R, HT-29 and Caco-2 cell lines). Expression of CRF2 protein was analyzed by fluorescent immunolabeling in normal rat colon and then by western blot in dissociated colonic epithelial cells and in the lysates of colon carcinoma cell lines or during the early differentiation of HT-29 cells (ten first days). To assess the impact of CRF2 signaling on colonic cell differentiation, HT-29 and Caco-2 cells were exposed to Urocortin 3 recombinant proteins (Ucn3, 100 nmol/L). In some experiments, cells were pre-exposed to the astressin 2b (A2b) a CRF2 antagonist in order to inhibit the action of Ucn3. Intestinal cell differentiation was first analyzed by functional assays: the trans-cellular permeability and the para-cellular permeability were determined by Dextran-FITC intake and measure of the transepithelial electrical resistance respectively. Morphological modifications associated to epithelial dysfunction were analyzed by confocal microscopy after fluorescent labeling of actin (phaloidin-TRITC) and intercellular adhesion proteins such as E-cadherin, p120ctn, occludin and ZO-1. The establishment of mature adherens junctions (AJ) was monitored by following the distribution of AJ proteins in lipid raft fractions, after separation of cell lysates on sucrose gradients. Finally, the mRNA and the protein expression levels of characteristic markers of intestinal epithelial cell (IEC) differentiation such as the transcriptional factor krüppel-like factor 4 (KLF4) or the dipeptidyl peptidase IV (DPPIV) were performed by RT-PCR and western blot respectively. The specific activities of DPPIV and alkaline phosphatase (AP) enzymes were determined by a colorimetric method.
RESULTS CRF2 protein is preferentially expressed in undifferentiated epithelial cells from the crypts of colon and in human colon carcinoma cell lines. Furthermore, CRF2 expression is down regulated according to the kinetic of HT-29 cell differentiation. By performing functional assays, we found that Ucn3-induced CRF2 signaling alters both para- and trans-cellular permeability of differentiated HT-29 and Caco-2 cells. These effects are partly mediated by Ucn3-induced morphological changes associated with the disruption of mature AJ in HT-29 cells and tight junctions (TJ) in Caco-2 cells. Ucn3-mediated activation of CRF2 decreases mRNA and protein expression levels of KLF4 a transcription factor involved in IEC differentiation. This signaling is correlated to a down-regulation of key IEC markers such as DPPIV and AP, at both transcriptional and post-transcriptional levels.
CONCLUSION Our findings suggest that CRF2 signaling could modulate IEC differentiation. These mechanisms could be relevant to the stress induced epithelial alterations found in inflammatory bowel diseases.
Collapse
|
43
|
Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci Rep 2017; 7:46616. [PMID: 28492284 PMCID: PMC5425914 DOI: 10.1038/srep46616] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Maternal separation (MS) in neonates can lead to intestinal injury. MS in neonatal mice disrupts mucosal morphology, induces colonic inflammation and increases trans-cellular permeability. Several studies indicate that intestinal epithelial stem cells are capable of initiating gut repair in a variety of injury models but have not been reported in MS. The pathophysiology of MS-induced gut injury and subsequent repair remains unclear, but communication between the brain and gut contribute to MS-induced colonic injury. Corticotropin-releasing hormone (CRH) is one of the mediators involved in the brain–gut axis response to MS-induced damage. We investigated the roles of the CRH receptors, CRHR1 and CRHR2, in MS-induced intestinal injury and subsequent repair. To distinguish their specific roles in mucosal injury, we selectively blocked CRHR1 and CRHR2 with pharmacological antagonists. Our results show that in response to MS, CRHR1 mediates gut injury by promoting intestinal inflammation, increasing gut permeability, altering intestinal morphology, and modulating the intestinal microbiota. In contrast, CRHR2 activates intestinal stem cells and is important for gut repair. Thus, selectively blocking CRHR1 and promoting CRHR2 activity could prevent the development of intestinal injuries and enhance repair in the neonatal period when there is increased risk of intestinal injury such as necrotizing enterocolitis.
Collapse
|
44
|
Pelissier-Rota M, Chartier NT, Bonaz B, Jacquier-Sarlin MR. A crosstalk between muscarinic and CRF2 receptors regulates cellular adhesion properties of human colon cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1246-1259. [PMID: 28432022 DOI: 10.1016/j.bbamcr.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 04/04/2017] [Accepted: 04/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with inflammatory bowel disease often suffer from chronic and relapsing intestinal inflammation that favor the development of colitis associated cancer. An alteration of the epithelial intestinal barrier function observed in IBD is supposed to be a consequence of stress. It has been proposed that corticotrophin-releasing factor receptor (CRF2), one of the two receptors of CRF, the principal neuromediator of stress, acts on cholinergic nerves to induce stress-mediated epithelial barrier dysfunction. Non-neuronal acetylcholine (Ach) and muscarinic receptors (mAchR) also contribute to alterations of epithelial cell functions. In this study, we investigated the mechanisms through which stress and Ach modulate epithelial cell adhesive properties. We show that Ach-induced activation of mAchR in HT-29 cells results in cell dissociation together with changes in cell-matrix contacts, which correlates with the acquisition of invasive potential consistent with a matrix metalloproteinase (MMP) mode of invasion. These processes result from mAchR subsequent stimulation of the cascade of src/Erk and FAK activation. Ach-induced secretion of laminin 332 leads to α3β1 integrin activation and RhoA-dependent reorganization of the actin cytoskeleton. We show that Ach-mediated effects on cell adhesion are blocked by astressin 2b, a CRF2 antagonist, suggesting that Ach action depends partly on CRF2 signaling. This is reinforced by the fact that Ach-mediated activation of mAchR stimulates both the synthesis and the release of CRF2 ligands in HT-29 cells (effects blocked by atropine). In summary, our data provides evidence for a novel intracellular circuit involving mAchR acting on CRF2-signaling that could mediate colonic mucosal barrier dysfunction and exacerbate mucosal inflammation.
Collapse
Affiliation(s)
- M Pelissier-Rota
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; INSERM U1216, F-38000 Grenoble, France
| | - N T Chartier
- Biotechnology Center, Technical University Dresden, 01307 Dresden, Germany
| | - B Bonaz
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; INSERM U1216, F-38000 Grenoble, France; CHU, Grenoble, F-38000 Grenoble, France
| | - M R Jacquier-Sarlin
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France; INSERM U1216, F-38000 Grenoble, France.
| |
Collapse
|
45
|
Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312:G171-G193. [PMID: 27908847 PMCID: PMC5440615 DOI: 10.1152/ajpgi.00048.2015] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Collapse
Affiliation(s)
- Jerry M. Wells
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | - Robert J. Brummer
- 2Nutrition-Gut-Brain Interactions Research Centre, School of Medicine and Health, Örebro University, Örebro, Sweden;
| | - Muriel Derrien
- 3Centre Daniel Carasso, Danone Research, Palaiseau, France;
| | - Thomas T. MacDonald
- 4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom;
| | - Freddy Troost
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands;
| | - Patrice D. Cani
- 6Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium;
| | - Vassilia Theodorou
- 7Neuro-Gastroenterology and Nutrition Group, Institut National de la Recherche Agronomique, Toulouse, France;
| | - Jan Dekker
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | | | - Willem M. de Vos
- 9Laboratory of Microbiology, Wageningen UR, Wageningen, The Netherlands;
| | - Annick Mercenier
- 10Institute of Nutritional Science, Nestlé Research Center, Lausanne, Switzerland; and
| | - Arjen Nauta
- 11FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
46
|
Liu GX, Gan HT. Effect of enteric nervous system on intestinal epithelial barrier in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2017; 25:107-113. [DOI: 10.11569/wcjd.v25.i2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both enteric nervous system and intestinal epithelial barrier are vital components to ensure gut homeostasis. Recent studies have shown the implications of their close relationship for gut health and disease. By secreting neurotransmitters, the enteric nervous system plays an important role in regulating the epithelial barrier function. Meanwhile, communicating largely through the vagal nerve, the central nervous system could also interact with the intestinal epithelium through the enteric nervous system. Although the etiology and pathogenesis of inflammatory bowel disease remain elusive, increasing evidence has shown that the dysregulation of enteric nervous system affects both epithelial integrity and barrier function, which contributes to the occurrence and development of inflammatory bowel disease. This review will summarize the current knowledge regarding the effect of enteric nervous system on intestinal epithelial barrier and its implication in the development of inflammatory bowel disease.
Collapse
|
47
|
Yang C, Xiong Y, Zhang SS, An FM, Sun J, Zhang QL, Zhan Q. Regulating effect of TongXie-YaoFang on colonic epithelial secretion via Cl - and HCO 3- channel. World J Gastroenterol 2016; 22:10584-10591. [PMID: 28082810 PMCID: PMC5192269 DOI: 10.3748/wjg.v22.i48.10584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/10/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the pharmacological effect of TongXie-YaoFang (TXYF) formula, a Chinese herbal formula, on Diarrhea-predominant irritable bowel syndrome (D-IBS) rats.
METHODS In a neonatal maternal separation plus restraint stress (NMS + RS) model of D-IBS, male Sprague Dawley rats were randomly divided into two groups (NMS + RS group and TXYF-formula group) with no handlings were used as controls (NH group). Starting from postnatal day 60, rats in TXYF-formula group were administered TXYF-formula (4.92 g/100 g bodyweight) orally twice a day for 14 consecutive days while NH group and NMS + RS group were given distilled water. Using short-circuit current technology, we observed 5-HT-induced changes of current across ion channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel, epithelial Na+ channel (ENaC), Ca2+-dependent Cl- channel (CACC), Na+-K+-2Cl- co-transporter (NKCC), and Na+-HCO3- co-transporter (NBC), in the colonic epithelium of three groups after exposure to drugs and specific blockers with a Power Lab System (AD Instruments International).
RESULTS Under basal conditions, the changes of short-circuit current (∆Isc, µA/cm2) induced by 5-HT were similar in NH group and TXYF-formula group, and both higher than NMS + RS group (70.86 µA/cm2 ± 12.32 µA/cm2, 67.67 µA/cm2 ± 11.68 µA/cm2 vs 38.8 µA/cm2 ± 7.25 µA/cm2, P < 0.01, respectively). When CACC was blocked by 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid, 5-HT-induced ∆Isc was smaller in NMS + RS group than in NH group and TXYF-formula group, respectively (48.41 µA/cm2 ± 13.15 µA/cm2 vs 74.62 µA/cm2 ± 10.73 µA/cm2, 69.22 µA/cm2 ± 11.7 µA/cm2, P < 0.05, respectively). The similar result could be obtained when ENaC was blocked by Amiloride (44.69 µA/cm2 ± 12.58 µA/cm2 vs 62.05 µA/cm2 ± 11.26 µA/cm2, 62.11 µA/cm2 ± 12.01 µA/cm2, P < 0.05, respectively). However, when CFTR Cl- channel was blocked by 1,1-dimethyl piperidinium chloride (DPC), 5-HT-induced ∆Isc did not significantly differ in three groups (42.28 µA/cm2 ± 10.61 µA/cm2 vs 51.48 µA/cm2 ± 6.56 µA/cm2 vs 47.75 µA/cm2 ± 7.99 µA/cm2, P > 0.05, respectively). The similar results could also be obtained in three groups when NBC and NKCC were respectively blocked by their blockers.
CONCLUSION TXYF-formula can regulate the Cl- and HCO3- secretion of colonic mucosa via CFTR Cl- channel, Cl-/HCO3- exchanger, NBC and NKCC co-transporters.
Collapse
|
48
|
Abstract
There is increasing evidence that the composition of the resident bacteria within the gastrointestinal tract can influence the brain and behavior, particularly with respect to cognitive function. Cognitive function encompasses the life-long process of learning, both long- and short-term processes. Cognition was originally thought to be exclusively regulated by the central nervous system, with long-term potentiation and neurogenesis contributing to the creation and storage of memories, but now other systems, including, for example, the immune system and the intestinal microbiome may also be involved. Cognitive impairment has been identified in numerous disease states, both gastrointestinal and extraintestinal in nature, many of which have also been characterized as having a role for dysbiosis in disease pathogenesis. This includes, but is not limited to, inflammatory bowel diseases, irritable bowel syndrome, type 1 diabetes, obesity, major depressive disorder, and autism spectrum disorder. The role of cognition and the microbiome will be discussed in this chapter for all these diseases, as well as evidence for a role in maintaining overall human health and well being. Finally, evidence for a role for probiotics in beneficially modulating the microbiota and leading to improved cognition will be discussed.
Collapse
Affiliation(s)
- M G Gareau
- School of Veterinary Medicine, University of California Davis, Davis, CA, United States.
| |
Collapse
|
49
|
Million M, Larauche M. Stress, sex, and the enteric nervous system. Neurogastroenterol Motil 2016; 28:1283-9. [PMID: 27561694 PMCID: PMC5003424 DOI: 10.1111/nmo.12937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022]
Abstract
Made up of millions of enteric neurons and glial cells, the enteric nervous system (ENS) is in a key position to modulate the secretomotor function and visceral pain of the gastrointestinal tract. The early life developmental period, through which most of the ENS development occurs, is highly susceptible to microenvironmental perturbation. Over the past decade, accumulating evidence has shown the impact of stress and early life adversity (ELA) on host gastrointestinal pathophysiology. While most of the focus has been on alterations in brain structure and function, limited experimental work in rodents suggest that the enteric nervous system can also be directly affected, as shown by changes in the number, phenotype, and reactivity of enteric nerves. The work of Medland et al. in the current issue of this journal demonstrates that such alterations also occur in pigs, a larger mammalian species with high translational value to human. This work also highlights a sex-differential susceptibility of the ENS to the effect of ELA, which could contribute to the higher prevalence of GI disorders in women. In this mini-review, we will discuss the development and composition of the ENS and related gastrointestinal sensory motor and secretory functions. We will then focus on the influence of stress on the enteric nervous system, with a particular emphasis on neurodevelopmental changes. Finally, we will discuss the influence of sex on those parameters.
Collapse
Affiliation(s)
- Mulugeta Million
- CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress and Resilience, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Muriel Larauche
- CURE: Digestive Diseases Research Center and Oppenheimer Family Center for Neurobiology of Stress and Resilience, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90025, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
50
|
Prusator DK, Andrews A, Greenwood-Van Meerveld B. Neurobiology of early life stress and visceral pain: translational relevance from animal models to patient care. Neurogastroenterol Motil 2016; 28:1290-305. [PMID: 27251368 DOI: 10.1111/nmo.12862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Epidemiological studies show that females are twice as likely to receive a diagnosis of irritable bowel syndrome (IBS) than their male counterparts. Despite evidence pointing to a role for sex hormones in the onset or exacerbation of IBS symptoms, the mechanism by which ovarian hormones may predispose women to develop IBS remains largely undefined. On the other hand, there is a growing body of research showing a correlation between reports of early life stress (ELS) and the diagnosis of IBS. Current treatments available for IBS patients target symptom relief including abdominal pain and alterations in bowel habits, but are not directed to the etiology of the disease. PURPOSE To better understand the mechanisms by which sex hormones and ELS contribute to IBS, animal models have been developed to mirror complex human experiences allowing for longitudinal studies that investigate the lifelong consequences of ELS. These preclinical models have been successful in recapitulating ELS-induced visceral pain. Moreover, in female rats the influence of cycling hormones on visceral hypersensitivity resembles that seen in women with IBS. Such studies suggest that rodent models of ELS may serve as pivotal tools in determining (i) the etiology of IBS, (ii) novel future treatments for IBS, and (iii) improving individualized patient care. The current review aims to shed light on the progress and the challenges observed by clinicians within the field of gastroenterology and the preclinical science aimed at addressing those challenges in an effort to understand and more efficiently treat functional gastrointestinal disorders (FGIDs) in both children and adults.
Collapse
Affiliation(s)
- D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - A Andrews
- Section of Pediatric Gastroenterology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|