1
|
Klimpel M, Pflüger‐Müller B, Cascallana MA, Schwingal S, Lal NI, Noll T, Pirzas V, Laux H. Perfusion Process Intensification for Lentivirus Production Using a Novel Scale-Down Model. Biotechnol Bioeng 2025; 122:344-360. [PMID: 39535315 PMCID: PMC11718438 DOI: 10.1002/bit.28880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/09/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Process intensification has become an important strategy to lower production costs and increase manufacturing capacities for biopharmaceutical products. In particular for the production of viral vectors like lentiviruses (LVs), the transition from (fed-)batch to perfusion processes is a key strategy to meet the increasing demands for cell and gene therapy applications. However, perfusion processes are associated with higher medium consumption. Therefore, it is necessary to develop appropriate small-scale models to reduce development costs. In this work, we present the use of the acoustic wave separation technology in combination with the Ambr 250 high throughput bioreactor system for intensified perfusion process development using stable LV producer cells. The intensified perfusion process developed in the Ambr 250 model, performed at a harvest rate of 3 vessel volumes per day (VVD) and high cell densities, resulted in a 1.4-fold higher cell-specific functional virus yield and 2.8-fold higher volumetric virus yield compared to the control process at a harvest rate of 1 VVD. The findings were verified at bench scale after optimizing the bioreactor set-up, resulting in a 1.4-fold higher cell-specific functional virus yield and 3.1-fold higher volumetric virus yield.
Collapse
Affiliation(s)
| | | | | | - Sarah Schwingal
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Nikki Indresh Lal
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Thomas Noll
- Center for Biotechnology (CeBiTec)University of BielefeldBielefeldGermany
| | - Vicky Pirzas
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| | - Holger Laux
- Biopharmaceutical Product DevelopmentCSL Innovation GmbHMarburgGermany
| |
Collapse
|
2
|
Memari E, Helfield B. Shear stress preconditioning and microbubble flow pattern modulate ultrasound-assisted plasma membrane permeabilization. Mater Today Bio 2024; 27:101128. [PMID: 38988819 PMCID: PMC11234154 DOI: 10.1016/j.mtbio.2024.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The recent and exciting success of anti-inflammatory therapies for ischemic heart disease (e.g. atherosclerosis) is hindered by the lack of site-specific and targeted therapeutic deposition. Microbubble-mediated focused ultrasound, which uses circulating, lipid-encapsulated intravascular microbubbles to locally enhance endothelial permeability, offers an exciting approach. Atherosclerotic plaques preferentially develop in regions with disturbed blood flow, and microbubble-endothelial cell membrane interactions under such flow conditions are not well understood. Here, using an acoustically-coupled microscopy system, endothelial cells were sonicated (1 MHz, 20 cycle bursts, 1 ms PRI, 4 s duration, 300 kPa peak-negative pressure) under perfusion with Definity™ bubbles to examine microbubble-mediated endothelial permeabilization under a range of physiological conditions. Endothelial preconditioning under prolonged shear influenced physiology and the secretome, inducing increased expression of pro-angiogenesis analytes, decreasing levels of pro-inflammatory ones, and increasing the susceptibility of ultrasound therapy. Ultrasound treatment efficiency was positively correlated with concentrations of pro-angiogenic cytokines (e.g. VEGF-A, EGF, FGF-2), and negatively correlated with pro-inflammatory chemokines (e.g. MCP-1, GCP-2, SDF-1). Furthermore, ultrasound therapy under non-reversing pulsatile flow (∼4-8 dyne/cm2, 0.5-1 Hz) increased permeabilization up to 2.4-fold compared to shear-matched laminar flow, yet treatment under reversing oscillatory flow resulted in more heterogeneous modulation. This study provides insight into the role of vascular physiology, including endothelial biology, into the design of a localized ultrasound drug delivery system for ischemic heart disease.
Collapse
Affiliation(s)
- Elahe Memari
- Department of Physics, Concordia University, Montreal, H4B 1R6, Canada
| | - Brandon Helfield
- Department of Physics, Concordia University, Montreal, H4B 1R6, Canada
- Department of Biology, Concordia University, Montreal, H4B 1R6, Canada
| |
Collapse
|
3
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J 2024; 43:3175-3191. [PMID: 38886581 PMCID: PMC11294477 DOI: 10.1038/s44318-024-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Minghao Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Zhenwu Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Anthony Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT, USA
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598386. [PMID: 38915515 PMCID: PMC11195282 DOI: 10.1101/2024.06.13.598386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs) and PlexinD1 located at cell-cell junctions mediates many of these events. But available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn-2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology and disease.
Collapse
|
5
|
Hamada T, Mizuno S, Kitahata H. Shear-Induced Nonequilibrium Patterns in Lipid Bilayer Membranes Exhibiting Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8843-8850. [PMID: 38634601 DOI: 10.1021/acs.langmuir.3c03970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The nonequilibrium dynamics of a fluid lipid membrane under external stimuli is an important issue that spans disciplines such as soft matter, biophysical chemistry, and interface science. This study investigated the dynamic response of lipid vesicles with order-disorder phase separation, which mimics a plasma membrane heterogeneity, to shear flow. Lipid vesicles were immobilized in a microfluidic chamber, and shear-induced nonequilibrium patterns on the membrane surface were observed by an optical microscope. We found that phase-separated membranes exhibit a dissipative structure of stripe patterns along the vortex flow on the membrane surface, and the number of stripes increased with the flow rate. At a high flow rate, the membrane exhibited a stripe-to-wave transition, where striped domains often migrated and the replacement of two different phases happened at vortex centers with time. We obtained a dynamic phase diagram of the shear-induced wave pattern by changing the flow rate, membrane components, and temperature. These findings could provide insight into the dissipative structures of lipid membranes out of equilibrium and flow-mediated mechanotransduction of biological membranes.
Collapse
Affiliation(s)
- Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi City, Ishikawa 923-1292, Japan
| | - Shino Mizuno
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi City, Ishikawa 923-1292, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Honerkamp-Smith AR. Forces and Flows at Cell Surfaces. J Membr Biol 2023; 256:331-340. [PMID: 37773346 PMCID: PMC10947748 DOI: 10.1007/s00232-023-00293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
|
7
|
Yamamoto K, Shimogonya Y, Maeno R, Kawabe K, Ando J. Endothelial cells differentially sense laminar and disturbed flows by altering the lipid order of their plasma and mitochondrial membranes. Am J Physiol Cell Physiol 2023; 325:C1532-C1544. [PMID: 37927239 PMCID: PMC10861177 DOI: 10.1152/ajpcell.00393.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Endothelial cells (ECs) experience two different blood flow patterns: laminar and disturbed flow. Their responses to laminar flow contribute to vascular homeostasis, whereas their responses to disturbed flow result in EC dysfunction and vascular diseases. However, it remains unclear how ECs differentially sense laminar and disturbed flow and trigger signaling that elicits different responses. Here, we showed that ECs differentially sense laminar and disturbed flows by altering the lipid order of their plasma and mitochondrial membranes in opposite directions. This results in distinct changes in mitochondrial function, namely, increased adenosine triphosphate (ATP) production for laminar flow and increased hydrogen peroxide (H2O2) release for disturbed flow, leading to ATP- and H2O2-mediated signaling, respectively. When cultured human aortic ECs were subjected to laminar or disturbed flow in flow-loading devices, the lipid order of their plasma membranes immediately decreased in response to laminar flow and increased in response to disturbed flow. Laminar flow also decreased the lipid order of mitochondrial membranes and increased mitochondrial ATP production. In contrast, disturbed flow increased the lipid order of mitochondrial membranes and increased the release of H2O2 from the mitochondria. The addition of cholesterol to the cells increased the lipid order of both membranes and abrogated laminar flow-induced ATP production, while treatment of the cells with a cholesterol-depleting reagent, methyl-β cyclodextrin, decreased the lipid order of both membranes and abolished disturbed flow-induced H2O2 release, indicating that changes in the membrane lipid order and/or cholesterol content are closely linked to flow-induced changes in mitochondrial functions.NEW & NOTEWORTHY How vascular endothelial cells (ECs) differentially sense laminar and disturbed flows and trigger intracellular signaling remains unclear. Here, we show that EC plasma membranes act as mechanosensors to discriminate between laminar and disturbed flows by undergoing opposite changes in their lipid order. Similar lipid order changes occur simultaneously in the mitochondrial membranes, which are linked to changes in mitochondrial function, that is, increased ATP production for laminar flow and increased H2O2 release for disturbed flow.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Shimogonya
- Department of Mechanical Engineering, College of Engineering, Nihon University, Koriyama, Japan
| | - Ryohei Maeno
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenshiroh Kawabe
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
8
|
Espina JA, Cordeiro MH, Milivojevic M, Pajić-Lijaković I, Barriga EH. Response of cells and tissues to shear stress. J Cell Sci 2023; 136:jcs260985. [PMID: 37747423 PMCID: PMC10560560 DOI: 10.1242/jcs.260985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Shear stress is essential for normal physiology and malignancy. Common physiological processes - such as blood flow, particle flow in the gut, or contact between migratory cell clusters and their substrate - produce shear stress that can have an impact on the behavior of different tissues. In addition, shear stress has roles in processes of biomedical interest, such as wound healing, cancer and fibrosis induced by soft implants. Thus, understanding how cells react and adapt to shear stress is important. In this Review, we discuss in vivo and in vitro data obtained from vascular and epithelial models; highlight the insights these have afforded regarding the general mechanisms through which cells sense, transduce and respond to shear stress at the cellular levels; and outline how the changes cells experience in response to shear stress impact tissue organization. Finally, we discuss the role of shear stress in collective cell migration, which is only starting to be appreciated. We review our current understanding of the effects of shear stress in the context of embryo development, cancer and fibrosis, and invite the scientific community to further investigate the role of shear stress in these scenarios.
Collapse
Affiliation(s)
- Jaime A. Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Marilia H. Cordeiro
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, 11120 Belgrade, Serbia
| | | | - Elias H. Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| |
Collapse
|
9
|
Miller EJ, Phan MD, Shah J, Honerkamp-Smith AR. Passive and reversible area regulation of supported lipid bilayers in response to fluid flow. Biophys J 2023; 122:2242-2255. [PMID: 36639867 PMCID: PMC10257118 DOI: 10.1016/j.bpj.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Biological and model membranes are frequently subjected to fluid shear stress. However, membrane mechanical responses to flow remain incompletely described. This is particularly true of membranes supported on a solid substrate, and the influences of membrane composition and substrate roughness on membrane flow responses remain poorly understood. Here, we combine microfluidics, fluorescence microscopy, and neutron reflectivity to explore how supported lipid bilayer patches respond to controlled shear stress. We demonstrate that lipid membranes undergo a significant, passive, and partially reversible increase in membrane area due to flow. We show that these fluctuations in membrane area can be constrained, but not prevented, by increasing substrate roughness. Similar flow-induced changes to membrane structure may contribute to the ability of living cells to sense and respond to flow.
Collapse
Affiliation(s)
| | - Minh D Phan
- Large-Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Center for Neutron Science, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware
| | | | | |
Collapse
|
10
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
11
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
12
|
Directly imaging emergence of phase separation in peroxidized lipid membranes. Commun Chem 2023; 6:15. [PMID: 36697756 PMCID: PMC9845225 DOI: 10.1038/s42004-022-00809-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Lipid peroxidation is a process which is key in cell signaling and disease, it is exploited in cancer therapy in the form of photodynamic therapy. The appearance of hydrophilic moieties within the bilayer's hydrocarbon core will dramatically alter the structure and mechanical behavior of membranes. Here, we combine viscosity sensitive fluorophores, advanced microscopy, and X-ray diffraction and molecular simulations to directly and quantitatively measure the bilayer's structural and viscoelastic properties, and correlate these with atomistic molecular modelling. Our results indicate an increase in microviscosity and a decrease in the bending rigidity upon peroxidation of the membranes, contrary to the trend observed with non-oxidized lipids. Fluorescence lifetime imaging microscopy and MD simulations give evidence for the presence of membrane regions of different local order in the oxidized membranes. We hypothesize that oxidation promotes stronger lipid-lipid interactions, which lead to an increase in the lateral heterogeneity within the bilayer and the creation of lipid clusters of higher order.
Collapse
|
13
|
Goult BT, von Essen M, Hytönen VP. The mechanical cell - the role of force dependencies in synchronising protein interaction networks. J Cell Sci 2022; 135:283155. [PMID: 36398718 PMCID: PMC9845749 DOI: 10.1242/jcs.259769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK,Authors for correspondence (; )
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland,Fimlab Laboratories, FI-33520 Tampere, Finland,Authors for correspondence (; )
| |
Collapse
|
14
|
Gong J, Chen J, Gu P, Shang Y, Ruppell KT, Yang Y, Wang F, Wen Q, Xiang Y. Shear stress activates nociceptors to drive Drosophila mechanical nociception. Neuron 2022; 110:3727-3742.e8. [PMID: 36087585 DOI: 10.1016/j.neuron.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Mechanical nociception is essential for animal survival. However, the forces involved in nociceptor activation and the underlying mechanotransduction mechanisms remain elusive. Here, we address these problems by investigating nocifensive behavior in Drosophila larvae. We show that strong poking stimulates nociceptors with a mixture of forces including shear stress and stretch. Unexpectedly, nociceptors are selectively activated by shear stress, but not stretch. Both the shear stress responses of nociceptors and nocifensive behavior require transient receptor potential A1 (TrpA1), which is specifically expressed in nociceptors. We further demonstrate that expression of mammalian or Drosophila TrpA1 in heterologous cells confers responses to shear stress but not stretch. Finally, shear stress activates TrpA1 in a membrane-delimited manner, through modulation of membrane fluidity. Together, our study reveals TrpA1 as an evolutionarily conserved mechanosensitive channel specifically activated by shear stress and suggests a critical role of shear stress in activating nociceptors to drive mechanical nociception.
Collapse
Affiliation(s)
- Jiaxin Gong
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jiazhang Chen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Pengyu Gu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ye Shang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kendra Takle Ruppell
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ying Yang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fei Wang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01605, USA.
| | - Yang Xiang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Briole A, Abou B. Molecular rotors in haemoglobin and bovine serum albumin proteins. J R Soc Interface 2022; 19:20220709. [PMID: 36448286 PMCID: PMC9709517 DOI: 10.1098/rsif.2022.0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Molecular rotors are fluorescent viscosity probes and their response in simple fluids is known to be a Förster-Hoffman power law, allowing the viscosity of the medium to be quantified by its fluorescence intensity. They are attractive probes in biological media, usually consisting of proteins, but how does a molecular rotor behave in a protein solution? The response of the DASPI molecular rotor is compared in two globular protein solutions of similar size, haemoglobin (Hb) and bovine serum albumin, one absorbent, the other not. In absorbent Hb, a model validated by experiments in triangular geometry allows one to correct the absorbing effect and to compare the rotor response in both proteins. With concomitant microrheology measurements, we investigate the relation between the DASPI fluorescence intensity and solution viscosity. In protein solutions, we show that viscosity is no longer the parameter determining the rotor response in contrast to simple fluids. Varying the viscosity by concentration or temperature is not equivalent, and the Förster-Hoffmann power laws do not apply when the solution concentration varies. We show that the concentration regime of the protein solution, semi-dilute or concentrated, determines the sensitivity of the rotor to its environment.
Collapse
Affiliation(s)
- Alice Briole
- Matière et Systèmes Complexes, UMR7057 CNRS—Université Paris Cité, 75205 Paris, France
| | - Bérengère Abou
- Matière et Systèmes Complexes, UMR7057 CNRS—Université Paris Cité, 75205 Paris, France
| |
Collapse
|
16
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
17
|
A Review of Functional Analysis of Endothelial Cells in Flow Chambers. J Funct Biomater 2022; 13:jfb13030092. [PMID: 35893460 PMCID: PMC9326639 DOI: 10.3390/jfb13030092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular endothelial cells constitute the innermost layer. The cells are exposed to mechanical stress by the flow, causing them to express their functions. To elucidate the functions, methods involving seeding endothelial cells as a layer in a chamber were studied. The chambers are known as parallel plate, T-chamber, step, cone plate, and stretch. The stimulated functions or signals from endothelial cells by flows are extensively connected to other outer layers of arteries or organs. The coculture layer was developed in a chamber to investigate the interaction between smooth muscle cells in the middle layer of the blood vessel wall in vascular physiology and pathology. Additionally, the microfabrication technology used to create a chamber for a microfluidic device involves both mechanical and chemical stimulation of cells to show their dynamics in in vivo microenvironments. The purpose of this study is to summarize the blood flow (flow inducing) for the functions connecting to endothelial cells and blood vessels, and to find directions for future chamber and device developments for further understanding and application of vascular functions. The relationship between chamber design flow, cell layers, and microfluidics was studied.
Collapse
|
18
|
Endothelial Cell Plasma Membrane Biomechanics Mediates Effects of Pro-Inflammatory Factors on Endothelial Mechanosensors: Vicious Circle Formation in Atherogenic Inflammation. MEMBRANES 2022; 12:membranes12020205. [PMID: 35207126 PMCID: PMC8877251 DOI: 10.3390/membranes12020205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023]
Abstract
Chronic low-grade vascular inflammation and endothelial dysfunction significantly contribute to the pathogenesis of cardiovascular diseases. In endothelial cells (ECs), anti-inflammatory or pro-inflammatory signaling can be induced by different patterns of the fluid shear stress (SS) exerted by blood flow on ECs. Laminar blood flow with high magnitude is anti-inflammatory, while disturbed flow and laminar flow with low magnitude is pro-inflammatory. Endothelial mechanosensors are the key upstream signaling proteins in SS-induced pro- and anti-inflammatory responses. Being transmembrane proteins, mechanosensors, not only experience fluid SS but also become regulated by the biomechanical properties of the lipid bilayer and the cytoskeleton. We review the apparent effects of pro-inflammatory factors (hypoxia, oxidative stress, hypercholesterolemia, and cytokines) on the biomechanics of the lipid bilayer and the cytoskeleton. An analysis of the available data suggests that the formation of a vicious circle may occur, in which pro-inflammatory cytokines enhance and attenuate SS-induced pro-inflammatory and anti-inflammatory signaling, respectively.
Collapse
|
19
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23031308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
20
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
21
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
22
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Páez-Pérez M, López-Duarte I, Vyšniauskas A, Brooks NJ, Kuimova MK. Imaging non-classical mechanical responses of lipid membranes using molecular rotors. Chem Sci 2020; 12:2604-2613. [PMID: 34164028 PMCID: PMC8179291 DOI: 10.1039/d0sc05874b] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid packing in cellular membranes has a direct effect on membrane tension and microviscosity, and plays a central role in cellular adaptation, homeostasis and disease. According to conventional mechanical descriptions, viscosity and tension are directly interconnected, with increased tension leading to decreased membrane microviscosity. However, the intricate molecular interactions that combine to build the structure and function of a cell membrane suggest a more complex relationship between these parameters. In this work, a viscosity-sensitive fluorophore ('molecular rotor') is used to map changes in microviscosity in model membranes under conditions of osmotic stress. Our results suggest that the relationship between membrane tension and microviscosity is strongly influenced by the bilayer's lipid composition. In particular, we show that the effects of increasing tension are minimised for membranes that exhibit liquid disordered (Ld) - liquid ordered (Lo) phase coexistence; while, surprisingly, membranes in pure gel and Lo phases exhibit a negative compressibility behaviour, i.e. they soften upon compression.
Collapse
Affiliation(s)
- Miguel Páez-Pérez
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Ismael López-Duarte
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Departamento de Química Orgánica, Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Aurimas Vyšniauskas
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
- Center of Physical Sciences and Technology Saulėtekio av. 3 Vilnius Lithuania
| | - Nicholas J Brooks
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| | - Marina K Kuimova
- MSRH, Department of Chemistry, Imperial College London Wood Lane London W12 0BZ UK
| |
Collapse
|
24
|
Pereno V, Lei J, Carugo D, Stride E. Microstreaming inside Model Cells Induced by Ultrasound and Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6388-6398. [PMID: 32407094 DOI: 10.1021/acs.langmuir.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Studies on the bioeffects produced by ultrasound and microbubbles have focused primarily on transport in bulk tissue, drug uptake by individual cells, and disruption of biological membranes. Relatively little is known about the physical perturbations and fluid dynamics of the intracellular environment during ultrasound exposure. To investigate this, a custom acoustofluidic chamber was designed to expose model cells, in the form of giant unilamellar vesicles, to ultrasound and microbubbles. The motion of fluorescent tracer beads within the lumen of the vesicles was tracked during exposure to laminar flow (∼1 mm s-1), ultrasound (1 MHz, ∼150 kPa, 60 s), and phospholipid-coated microbubbles, alone and in combination. To decouple the effects of fluid flow and ultrasound exposure, the system was also modeled numerically by using boundary-driven streaming field equations. Both the experimental and numerical results indicate that all conditions produced internal streaming within the vesicles. Ultrasound alone produced an average bead velocity of 6.5 ± 1.3 μm/s, which increased to 8.5 ± 3.8 μm/s in the presence of microbubbles compared to 12 ± 0.12 μm/s under laminar flow. Further research on intracellular forces in mammalian cells and the associated biological effects in vitro and in vivo are required to fully determine the implications for safety and/or therapy.
Collapse
Affiliation(s)
- Valerio Pereno
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| | - Junjun Lei
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences and Institute for Life Sciences, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, U.K
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K
| |
Collapse
|
25
|
Liu X, Chi W, Qiao Q, Kokate SV, Cabrera EP, Xu Z, Liu X, Chang YT. Molecular Mechanism of Viscosity Sensitivity in BODIPY Rotors and Application to Motion-Based Fluorescent Sensors. ACS Sens 2020; 5:731-739. [PMID: 32072803 DOI: 10.1021/acssensors.9b01951] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viscosity in the intracellular microenvironment shows a significant difference in various organelles and is closely related to cellular processes. Such microviscosity in live cells is often mapped and quantified with fluorescent molecular rotors. To enable the rational design of viscosity-sensitive molecular rotors, it is critical to understand their working mechanisms. Herein, we systematically synthesized and investigated two sets of BODIPY-based molecular rotors to study the relationship between intramolecular motions and viscosity sensitivity. Through experimental and computational studies, two conformations (i.e., the planar and butterfly conformations) are found to commonly exist in BODIPY rotors. We demonstrate that the transformation energy barrier from the planar conformation to the butterfly conformation is strongly affected by the molecular structures of BODIPY rotors and plays a critical role in viscosity sensitivity. These findings enable rational structure modifications of BODIPY molecular rotors for highly effective protein detection and recognition.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Qinglong Qiao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Siddhant V. Kokate
- Departamento de Quimica DCNE, Campus Guanajuato, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Eduardo Peña Cabrera
- Departamento de Quimica DCNE, Campus Guanajuato, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Zhaochao Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| |
Collapse
|
26
|
Butler PJ. Mechanobiology of dynamic enzyme systems. APL Bioeng 2020; 4:010907. [PMID: 32161834 PMCID: PMC7054122 DOI: 10.1063/1.5133645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022] Open
Abstract
This Perspective paper advances a hypothesis of mechanosensation by endothelial cells in which the cell is a dynamic crowded system, driven by continuous enzyme activity, that can be shifted from one non-equilibrium state to another by external force. The nature of the shift will depend on the direction, rate of change, and magnitude of the force. Whether force induces a pathophysiological or physiological change in cell biology will be determined by whether the dynamics of a cellular system can accommodate the dynamics and magnitude of the force application. The complex interplay of non-static cytoskeletal structures governs internal cellular rheology, dynamic spatial reorganization, and chemical kinetics of proteins such as integrins, and a flaccid membrane that is dynamically supported; each may constitute the necessary dynamic properties able to sense external fluid shear stress and reorganize in two and three dimensions. The resulting reorganization of enzyme systems in the cell membrane and cytoplasm may drive the cell to a new physiological state. This review focuses on endothelial cell mechanotransduction of shear stress, but may lead to new avenues of investigation of mechanobiology in general requiring new tools for interrogation of mechanobiological systems, tools that will enable the synthesis of large amounts of spatial and temporal data at the molecular, cellular, and system levels.
Collapse
Affiliation(s)
- Peter J. Butler
- Department of Biomedical Engineering The Pennsylvania State University University Park, Pennsylvania 16802, USA
| |
Collapse
|
27
|
White CM, Haidekker MA, Kisaalita WS. Ratiometric Nanoviscometers: Applications for Measuring Cellular Physical Properties in 3D Cultures. SLAS Technol 2020; 25:234-246. [PMID: 31997709 DOI: 10.1177/2472630319901262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.
Collapse
Affiliation(s)
- Charles McRae White
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - Mark A Haidekker
- School of Electrical and Computer Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - William S Kisaalita
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev 2019; 11:729-743. [PMID: 31529361 DOI: 10.1007/s12551-019-00596-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Human body is subject to many and variegated mechanical stimuli, actuated in different ranges of force, frequency, and duration. The process through which cells "feel" forces and convert them into biochemical cascades is called mechanotransduction. In this review, the effects of fluid shear stress on bone cells will be presented. After an introduction to present the major players in bone system, we describe the mechanoreceptors in bone tissue that can feel and process fluid flow. In the second part of the review, we present an overview of the biological processes and biochemical cascades initiated by fluid shear stress in bone cells.
Collapse
Affiliation(s)
- Roberta Alfieri
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - National Research Council (IGM-CNR), Via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Federica Viti
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
29
|
Gal N, Charwat V, Städler B, Reimhult E. Poly(ethylene glycol) Grafting of Nanoparticles Prevents Uptake by Cells and Transport Through Cell Barrier Layers Regardless of Shear Flow and Particle Size. ACS Biomater Sci Eng 2019; 5:4355-4365. [PMID: 33438401 DOI: 10.1021/acsbiomaterials.9b00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It has long been a central tenet of biomedical research that coating of nanoparticles with hydrated polymers can improve their performance in biomedical applications. However, the efficacy of the approach in vivo is still debated. In vitro model systems to test the performance of engineered nanoparticles for in vivo applications often use nonrepresentative cell lines and conditions for uptake and toxicity tests. We use our platform of monodisperse iron oxide nanoparticles densely grafted with nitrodopamide-poly(ethylene glycol) (PEG) to probe cell interactions with a set of cell types and culture conditions that are relevant for applications in which nanoparticles are injected into the bloodstream. In the past, these particles have proved to have excellent stability and negligible interaction with proteins and membranes under physiological conditions. We test the influence of flow on the uptake of nanoparticles. We also investigate the transport through endothelial barrier cell layers, as well as the effect that PEG-grafted iron oxide nanoparticles have on cell layers relevant for nanoparticles injected into the bloodstream. Our results show that the dense PEG brush and resulting lack of nonspecific protein and membrane interaction lead to negligible cell uptake, toxicity, and transport across barrier layers. These results contrast with far less well-defined polymer-coated nanoparticles that tend to aggregate and consequently strongly interact with cells, for example, by endocytosis.
Collapse
Affiliation(s)
- Noga Gal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | | | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | | |
Collapse
|
30
|
Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180221. [PMID: 31431176 PMCID: PMC6627014 DOI: 10.1098/rstb.2018.0221] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Nikhil Walani
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
31
|
Dela Paz NG, Frangos JA. Rapid flow-induced activation of Gα q/11 is independent of Piezo1 activation. Am J Physiol Cell Physiol 2019; 316:C741-C752. [PMID: 30811222 PMCID: PMC6580164 DOI: 10.1152/ajpcell.00215.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Endothelial cell (EC) mechanochemical transduction is the process by which mechanical stimuli are sensed by ECs and transduced into biochemical signals and ultimately into physiological responses. Identifying the mechanosensor/mechanochemical transducer(s) and describing the mechanism(s) by which they receive and transmit the signals has remained a central focus within the field. The heterotrimeric G protein, Gαq/11, is proposed to be part of a macromolecular complex together with PECAM-1 at EC junctions and may constitute the mechanochemical transducer as it is rapidly activated within seconds of flow onset. The mechanically activated cation channel Piezo1 has recently been implicated due to its involvement in mediating early responses, such as calcium and ATP release. Here, we investigate the role of Piezo1 in rapid shear stress-induced Gαq/11 activation. We show that flow-induced dissociation of Gαq/11 from PECAM-1 in ECs at 15 s is abrogated by BIM-46187, a selective inhibitor of Gαq/11 activation, suggesting that Gαq/11 activation is required for PECAM-1/Gαq/11 dissociation. Although siRNA knockdown of Piezo1 caused a dramatic decrease in PECAM-1/Gαq/11 association in the basal condition, it had no effect on flow-induced dissociation. Interestingly, siRNA knockdown of Piezo1 caused a marked decrease in PECAM-1 expression. Additionally, selective blockade of Piezo1 with ion channel inhibitors had no effect on flow-induced PECAM-1/Gαq/11 dissociations. Lastly, flow onset caused increased association of Gβ1 with Piezo1 as well as with the p101 subunit of phosphoinositide 3-kinase, which were both blocked by the Gβγ inhibitor gallein. Together, our results indicate that flow-induced activation of Piezo1 is not upstream of G protein activation.
Collapse
Affiliation(s)
| | - John A Frangos
- La Jolla Bioengineering Institute , La Jolla, California
| |
Collapse
|
32
|
Balogh P, Bagchi P. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks. Physiol Rep 2019; 7:e14067. [PMID: 31062494 PMCID: PMC6503071 DOI: 10.14814/phy2.14067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/13/2023] Open
Abstract
Using a high-fidelity, 3D computational model of blood flow in microvascular networks, we provide the full 3D distribution of wall shear stress (WSS), and its gradient (WSSG), and quantify the influence of red blood cells (RBCs) on WSS and WSSG. The deformation and flow dynamics of the individual RBCs are accurately resolved in the model, while physiologically realistic microvascular networks comprised of multiple bifurcations, convergences, and tortuous vessels are considered. A strong heterogeneity in WSS and WSSG is predicted across the networks, with the highest WSS occurring in precapillary bifurcations and capillary vessels. 3D variations of WSS and WSSG are shown to occur due to both network morphology and the influence of RBCs. The RBCs increase the WSS by as much as three times compared to that when no RBCs are present, and the highest increase is observed in venules. WSSG also increases significantly, and high WSSGs occur over wider regions in the presence of RBCs. In most vessels, the circumferential component of WSSG is observed to be greater than the axial component in the presence of RBCs, while the opposite trend is observed when RBCs are not considered. These results underscore the important role of RBCs on WSS and WSSG that cannot be predicted by widely used 1D models of network blood flow. Furthermore, the subendothelium-scale variations of WSS and WSSG predicted by the present model have implications in terms of endothelial cell functions in the microvasculature.
Collapse
Affiliation(s)
- Peter Balogh
- Mechanical and Aerospace Engineering DepartmentRutgers, The State University of New JerseyPiscatawayNew Jersey
| | - Prosenjit Bagchi
- Mechanical and Aerospace Engineering DepartmentRutgers, The State University of New JerseyPiscatawayNew Jersey
| |
Collapse
|
33
|
Abstract
Vascular endothelial cells (ECs) maintain circulatory system homeostasis by changing their functions in response to changes in hemodynamic forces, including shear stress and stretching. However, it is unclear how ECs sense changes in shear stress and stretching and transduce these changes into intracellular biochemical signals. The plasma membranes of ECs have recently been shown to respond to shear stress and stretching differently by rapidly changing their lipid order, fluidity, and cholesterol content. Such changes in the membranes' physical properties trigger the activation of membrane receptors and cell responses specific to each type of force. Artificial lipid-bilayer membranes show similar changes in lipid order in response to shear stress and stretching, indicating that they are physical phenomena rather than biological reactions. These findings suggest that the plasma membranes of ECs act as mechanosensors; in response to mechanical forces, they first alter their physical properties, modifying the conformation and function of membrane proteins, which then activates downstream signaling pathways. This new appreciation of plasma membranes as mechanosensors could help to explain the distinctive features of mechanotransduction in ECs involving shear stress and stretching, which activate a variety of membrane proteins and multiple signal transduction pathways almost simultaneously.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo
| | - Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University
| |
Collapse
|
34
|
Zhang X, Sun D, Song JW, Zullo J, Lipphardt M, Coneh-Gould L, Goligorsky MS. Endothelial cell dysfunction and glycocalyx – A vicious circle. Matrix Biol 2018; 71-72:421-431. [DOI: 10.1016/j.matbio.2018.01.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
|
35
|
Vyšniauskas A, Kuimova MK. A twisted tale: measuring viscosity and temperature of microenvironments using molecular rotors. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1510461] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aurimas Vyšniauskas
- Center of Physical Sciences and Technology, Vilnius, Lithuania
- Chemistry Department, Vilnius University, Vilnius, Lithuania
| | | |
Collapse
|
36
|
Song JW, Goligorsky MS. Perioperative implication of the endothelial glycocalyx. Korean J Anesthesiol 2018; 71:92-102. [PMID: 29619781 PMCID: PMC5903118 DOI: 10.4097/kjae.2018.71.2.92] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 11/10/2022] Open
Abstract
The endothelial glycocalyx (EG) is a gel-like layer lining the luminal surface of healthy vascular endothelium. Recently, the EG has gained extensive interest as a crucial regulator of endothelial funtction, including vascular permeability, mechanotransduction, and the interaction between endothelial and circulating blood cells. The EG is degraded by various enzymes and reactive oxygen species upon pro-inflammatory stimulus. Ischemia-reperfusion injury, oxidative stress, hypervolemia, and systemic inflammatory response are responsible for perioperative EG degradation. Perioperative damage of the EG has also been demonstrated, especially in cardiac surgery. However, the protection of the EG and its association with perioperative morbidity needs to be elucidated in future studies. In this review, the present knowledge about EG and its perioperative implication is discussed from an anesthesiologist's perspective.
Collapse
Affiliation(s)
- Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology, and Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
37
|
The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:1-27. [PMID: 30315537 DOI: 10.1007/978-3-319-96445-4_1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The endothelial cells (ECs) forming the inner wall of every blood vessel are constantly exposed to the mechanical forces generated by blood flow. The EC responses to these hemodynamic forces play a critical role in the homeostasis of the circulatory system. A variety of mechanosensors and transducers, locating on the EC surface, intra- and trans-EC membrane, and within the EC cytoskeleton, have thus been identified to ensure proper functions of ECs. Among them, the most recent candidate is the endothelial surface glycocalyx (ESG), which is a matrix-like thin layer covering the luminal surface of the EC. It consists of various proteoglycans, glycosaminoglycans, and plasma proteins and is close to other prominent EC mechanosensors and transducers. This chapter summarizes the ESG composition, thickness, and structure observed by different labeling and visualization techniques and in different types of vessels. It also presents the literature in determining the ESG mechanical properties by atomic force microscopy and optical tweezers. The molecular mechanisms by which the ESG plays the role in EC mechanosensing and transduction are described as well as the ESG remodeling by shear stress, the actin cytoskeleton, the membrane rafts, the angiogenic factors, and the sphingosine-1-phosphate.
Collapse
|
38
|
Sebastian B, Favero T, Dittrich PS. The Effects of Shear Force Transmission Across Vesicle Membranes. J Phys Chem Lett 2017; 8:6128-6134. [PMID: 29190425 PMCID: PMC6426246 DOI: 10.1021/acs.jpclett.7b02676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report a comprehensive study on mechanotransmission of shear forces across lipid bilayer membranes of giant unilamellar vesicles (GUVs). GUVs containing fluorescent tracer particles were immobilized on a microfluidic platform and exposed to shear flows. A method was developed for the visualization of three-dimensional flows at high precision by defocusing microscopy. We quantify the symmetry of external flow around the GUV and show its effects on vortex flows and luminal dynamics. With increasing asymmetry, luminal vortices merged while liquid exchange in between them increased. The effect of membrane composition was studied through addition of cholesterol. Mechanotransmission efficacy, quantified by the ratio of luminal flow to external flow, ranged from ε = 0.094 (0 mol % cholesterol) to ε = 0.043 (16 mol % cholesterol). Our findings give new cues to the mechanisms underlying the sensing of strength and spatial distribution of shear forces by cells and the impact of membrane composition.
Collapse
Affiliation(s)
- Bernhard Sebastian
- Department of Biosystems Science and Engineering, ETH Zurich,
Mattenstrasse 26, 4058 Basel, Switzerland
| | - Tobias Favero
- Department of Biosystems Science and Engineering, ETH Zurich,
Mattenstrasse 26, 4058 Basel, Switzerland
| | - Petra S. Dittrich
- Corresponding Author: Mailing address: ETH Zurich
Department of Biosystems Science and Engineering Mattenstrasse 26 CH-4058
Basel/Switzerland. Phone: +41 63 387 33 10;
| |
Collapse
|
39
|
Barlow NE, Bolognesi G, Haylock S, Flemming AJ, Brooks NJ, Barter LMC, Ces O. Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress. Sci Rep 2017; 7:17551. [PMID: 29242597 PMCID: PMC5730560 DOI: 10.1038/s41598-017-17883-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022] Open
Abstract
A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.
Collapse
Affiliation(s)
- Nathan E Barlow
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Guido Bolognesi
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Stuart Haylock
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Anthony J Flemming
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Laura M C Barter
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK.
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
40
|
Jin YJ, Park H, Ohk YJ, Kwak G. Hydrodynamic fluorescence emission behavior of molecular rotor-based vinyl polymers used as viscosity sensors. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Stires JC, Latz MI. Contribution of the cytoskeleton to mechanosensitivity reported by dinoflagellate bioluminescence. Cytoskeleton (Hoboken) 2017; 75:12-21. [PMID: 28771965 DOI: 10.1002/cm.21392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 01/24/2023]
Abstract
The cytoskeleton is crucial to cell mechanics and sensing the extracellular physical environment. The objective of this study was to examine the role of the cortical cytoskeleton in mechanosensitivity in a unicellular protist, the marine dinoflagellate Lingulodinium polyedra, using its intrinsic bioluminescence as a rapid reporter of mechanotransduction. Pharmacological treatments resolved effects due to immediate cytoskeleton disruption from those due to cytoskeletal remodeling during the light to dark phase transition. The cytoskeleton was visualized by confocal laser scanning microscopy of immunohistochemically labeled microtubules and phalloidin labeled F-actin, and mechanosensitivity assessed based on the bioluminescence response to mechanical stimulation measured during the dark phase. Latrunculin B treatment after the transition from the light to dark phase resulted in some disruption of cortical F-actin, no observed effect on the cortical microtubules, and partial inhibition of the bioluminescence response. Treatment with oryzalin, which depolarizes microtubules, completely disrupted the microtubule network and cortical F-actin, and partially inhibited bioluminescence. These results demonstrate that cells retain some mechanosensitivity despite a disrupted cytoskeleton; link mechanosensitivity to intact F-actin; show a close connection between F-actin and microtubules comprising the cortical cytoskeleton; confirm a strong contribution of the actin cytoskeleton to the translocation of scintillons, vesicles containing the luminescent chemistry; and support the role of the actin cytoskeleton in the association of scintillons with the vacuole membrane.
Collapse
Affiliation(s)
- J C Stires
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92039
| | - M I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92039
| |
Collapse
|
42
|
Maneshi MM, Maki B, Gnanasambandam R, Belin S, Popescu GK, Sachs F, Hua SZ. Mechanical stress activates NMDA receptors in the absence of agonists. Sci Rep 2017; 7:39610. [PMID: 28045032 PMCID: PMC5206744 DOI: 10.1038/srep39610] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/24/2016] [Indexed: 01/13/2023] Open
Abstract
While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Bruce Maki
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | | | - Sophie Belin
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | - Gabriela K. Popescu
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
| | - Susan Z. Hua
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York, 14260, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, New York 14260, USA
| |
Collapse
|
43
|
Carugo D, Aron M, Sezgin E, Bernardino de la Serna J, Kuimova MK, Eggeling C, Stride E. Modulation of the molecular arrangement in artificial and biological membranes by phospholipid-shelled microbubbles. Biomaterials 2017; 113:105-117. [DOI: 10.1016/j.biomaterials.2016.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/22/2016] [Accepted: 10/23/2016] [Indexed: 12/17/2022]
|
44
|
Linan-Rico A, Ochoa-Cortes F, Beyder A, Soghomonyan S, Zuleta-Alarcon A, Coppola V, Christofi FL. Mechanosensory Signaling in Enterochromaffin Cells and 5-HT Release: Potential Implications for Gut Inflammation. Front Neurosci 2016; 10:564. [PMID: 28066160 PMCID: PMC5165017 DOI: 10.3389/fnins.2016.00564] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Enterochromaffin (EC) cells synthesize 95% of the body 5-HT and release 5-HT in response to mechanical or chemical stimulation. EC cell 5-HT has physiological effects on gut motility, secretion and visceral sensation. Abnormal regulation of 5-HT occurs in gastrointestinal disorders and Inflammatory Bowel Diseases (IBD) where 5-HT may represent a key player in the pathogenesis of intestinal inflammation. The focus of this review is on mechanism(s) involved in EC cell "mechanosensation" and critical gaps in our knowledge for future research. Much of our knowledge and concepts are from a human BON cell model of EC, although more recent work has included other cell lines, native EC cells from mouse and human and intact mucosa. EC cells are "mechanosensors" that respond to physical forces generated during peristaltic activity by translating the mechanical stimulus (MS) into an intracellular biochemical response leading to 5-HT and ATP release. The emerging picture of mechanosensation includes Piezo 2 channels, caveolin-rich microdomains, and tight regulation of 5-HT release by purines. The "purinergic hypothesis" is that MS releases purines to act in an autocrine/paracrine manner to activate excitatory (P2Y1, P2Y4, P2Y6, and A2A/A2B) or inhibitory (P2Y12, A1, and A3) receptors to regulate 5-HT release. MS activates a P2Y1/Gαq/PLC/IP3-IP3R/SERCA Ca2+signaling pathway, an A2A/A2B-Gs/AC/cAMP-PKA signaling pathway, an ATP-gated P2X3 channel, and an inhibitory P2Y12-Gi/o/AC-cAMP pathway. In human IBD, P2X3 is down regulated and A2B is up regulated in EC cells, but the pathophysiological consequences of abnormal mechanosensory or purinergic 5-HT signaling remain unknown. EC cell mechanosensation remains poorly understood.
Collapse
Affiliation(s)
- Andromeda Linan-Rico
- Department of Anesthesiology, Wexner Medical Center at Ohio State UniversityColumbus, OH, USA; CONACYT-Centro Universitario de Investigaciones Biomedicas, University of ColimaColima, Mexico
| | - Fernando Ochoa-Cortes
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Suren Soghomonyan
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Alix Zuleta-Alarcon
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| | - Vincenzo Coppola
- SBS-Cancer Biology and Genetics, Ohio State University Columbus, OH, USA
| | - Fievos L Christofi
- Department of Anesthesiology, Wexner Medical Center at Ohio State University Columbus, OH, USA
| |
Collapse
|
45
|
Mechanoregulation of Wound Healing and Skin Homeostasis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3943481. [PMID: 27413744 PMCID: PMC4931093 DOI: 10.1155/2016/3943481] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.
Collapse
|
46
|
Tesson B, Latz MI. Mechanosensitivity of a rapid bioluminescence reporter system assessed by atomic force microscopy. Biophys J 2016; 108:1341-1351. [PMID: 25809248 DOI: 10.1016/j.bpj.2015.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/10/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cells are sophisticated integrators of mechanical stimuli that lead to physiological, biochemical, and genetic responses. The bioluminescence of dinoflagellates, alveolate protists that use light emission for predator defense, serves as a rapid noninvasive whole-cell reporter of mechanosensitivity. In this study, we used atomic force microscopy (AFM) to explore the relationship between cell mechanical properties and mechanosensitivity in live cells of the dinoflagellate Pyrocystis lunula. Cell stiffness was 0.56 MPa, consistent with cells possessing a cell wall. Cell response depended on both the magnitude and velocity of the applied force. At the maximum stimulation velocity of 390 μm s(-1), the threshold response occurred at a force of 7.2 μN, resulting in a contact time of 6.1 ms and indentation of 2.1 μm. Cells did not respond to a low stimulation velocity of 20 μm s(-1), indicating a velocity dependent response that, based on stress relaxation experiments, was explained by the cell viscoelastic properties. This study demonstrates the use of AFM to study mechanosensitivity in a cell system that responds at fast timescales, and provides insights into how viscoelastic properties affect mechanosensitivity. It also provides a comparison with previous studies using hydrodynamic stimulation, showing the discrepancy in cell response between direct compressive forces using AFM and those within flow fields based on average flow properties.
Collapse
Affiliation(s)
- Benoit Tesson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California.
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California.
| |
Collapse
|
47
|
Rawat J, Gadgil M. Shear stress increases cytotoxicity and reduces transfection efficiency of liposomal gene delivery to CHO-S cells. Cytotechnology 2016; 68:2529-2538. [PMID: 27130551 DOI: 10.1007/s10616-016-9974-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/19/2016] [Indexed: 11/26/2022] Open
Abstract
Animal cells in suspension experience shear stress in different situations such as in vivo due to hemodynamics, or in vitro due to agitation in large-scale bioreactors. Shear stress is known to affect cell physiology, including binding and uptake of extracellular cargo. In adherent cells the effects of exposure to shear stress on particle binding kinetics and uptake have been studied. There are however no reports on the effect of shear stress on extracellular cargo delivery to suspension cells. In this study, we have evaluated the effect of shear stress on transfection of CHO-S cells using Lipofectamine 2000 in a simple flow apparatus. Our results show decreased cell growth and transfection efficiency upon lipoplex assisted transfection of CHO-S while being subjected to shear stress. This effect is not seen to the same extent when cells are exposed to shear stress in absence of the lipoplex complex and subsequently transfected, or if the lipoplex is subjected to shear stress and subsequently used to transfect the cells. It is also not seen to the same extent when cells are exposed to shear stress in presence of liposome alone, suggesting that the observed effect is dependent on interaction of the lipoplex with cells in the presence of shear stress. These results suggest that studies involving liposomal DNA delivery in presence of shear stress such as large scale transient protein expression should account for the effect of shear during lipoplex assisted DNA delivery.
Collapse
Affiliation(s)
- Jyoti Rawat
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Mugdha Gadgil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
48
|
Morawski O, Kozankiewicz B, Miniewicz A, Sobolewski AL. Environment-Sensitive Behavior of DCNP in Solvents with Different Viscosity, Polarity and Proticity. Chemphyschem 2015; 16:3500-10. [DOI: 10.1002/cphc.201500563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Olaf Morawski
- Institute of Physics; Polish Academy of Sciences; Al. Lotnikow 32/46 02-668 Warsaw Poland
| | - Boleslaw Kozankiewicz
- Institute of Physics; Polish Academy of Sciences; Al. Lotnikow 32/46 02-668 Warsaw Poland
| | - Andrzej Miniewicz
- Advanced Materials Engineering and Modelling Group; Faculty of Chemistry; Wroclaw University of Technology; 50-370 Wroclaw Poland
| | - Andrzej L. Sobolewski
- Institute of Physics; Polish Academy of Sciences; Al. Lotnikow 32/46 02-668 Warsaw Poland
| |
Collapse
|
49
|
Yamamoto K, Ando J. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases. Am J Physiol Heart Circ Physiol 2015; 309:H1178-85. [PMID: 26297225 DOI: 10.1152/ajpheart.00241.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022]
Abstract
Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.
Collapse
Affiliation(s)
- Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; and
| | - Joji Ando
- Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
50
|
Abstract
Many papers have used fluorescent probe diffusion to infer membrane viscosity but the measurement is actually an assay of the free volume of the membrane. The free volume is also related to the membrane tension. Thus, changes in probe mobility refer equally well to changes in membrane tension. In complicated structures like cell membranes, it appears more intuitive to consider variations in free volume as referring to the effect of domains structures and interactions with the cytoskeleton than changes in viscosity since tension is a state variable and viscosity is not.
Collapse
Affiliation(s)
- V S Markin
- Department of Anesthesiology and Pain Management, UT Southwestern, Dallas, TX, USA
| | - F Sachs
- Physiology & Biophysical Sciences, SUNY Buffalo, Buffalo, NY, USA
| |
Collapse
|