1
|
Harter TS, Dichiera AM, Esbaugh AJ. The physiological significance of plasma-accessible carbonic anhydrase in the respiratory systems of fishes. J Comp Physiol B 2024; 194:717-737. [PMID: 38842596 DOI: 10.1007/s00360-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Carbonic anhydrase (CA) activity is ubiquitously found in all vertebrate species, tissues and cellular compartments. Most species have plasma-accessible CA (paCA) isoforms at the respiratory surfaces, where the enzyme catalyzes the conversion of plasma bicarbonate to carbon dioxide (CO2) that can be excreted by diffusion. A notable exception are the teleost fishes that appear to lack paCA at their gills. The present review: (i) recapitulates the significance of CA activity and distribution in vertebrates; (ii) summarizes the current evidence for the presence or absence of paCA at the gills of fishes, from the basal cyclostomes to the derived teleosts and extremophiles such as the Antarctic icefishes; (iii) explores the contribution of paCA to organismal CO2 excretion in fishes; and (iv) the functional significance of its absence at the gills, for the specialized system of O2 transport in most teleosts; (v) outlines the multiplicity and isoform distribution of membrane-associated CAs in fishes and methodologies to determine their plasma-accessible orientation; and (vi) sketches a tentative time line for the evolutionary dynamics of branchial paCA distribution in the major groups of fishes. Finally, this review highlights current gaps in the knowledge on branchial paCA function and provides recommendations for future work.
Collapse
Affiliation(s)
- Till S Harter
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Angelina M Dichiera
- College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA, 23062, USA
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, 78373, USA
| |
Collapse
|
2
|
Pan YK. Structure and function of the larval teleost fish gill. J Comp Physiol B 2024; 194:569-581. [PMID: 38584182 DOI: 10.1007/s00360-024-01550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The fish gill is a multifunctional organ that is important in multiple physiological processes such as gas transfer, ionoregulation, and chemoreception. This characteristic organ of fishes has received much attention, yet an often-overlooked point is that larval fishes in most cases do not have a fully developed gill, and thus larval gills do not function identically as adult gills. In addition, large changes associated with gas exchange and ionoregulation happen in gills during the larval phase, leading to the oxygen and ionoregulatory hypotheses examining the environmental constraint that resulted in the evolution of gills. This review thus focuses exclusively on the larval fish gill of teleosts, summarizing the development of teleost larval fish gills and its function in gas transfer, ionoregulation, and chemoreception, and comparing and contrasting it to adult gills where applicable, while providing some insight into the oxygen vs ionoregulatory hypotheses debate.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Sackville MA, Gillis JA, Brauner CJ. The origins of gas exchange and ion regulation in fish gills: evidence from structure and function. J Comp Physiol B 2024; 194:557-568. [PMID: 38530435 DOI: 10.1007/s00360-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
Gill function in gas exchange and ion regulation has played key roles in the evolution of fishes. In this review, we summarize data from the fields of palaeontology, developmental biology and comparative physiology for when and how the gills first acquired these functions. Data from across disciplines strongly supports a stem vertebrate origin for gas exchange structures and function at the gills with the emergence of larger, more active fishes. However, the recent discovery of putative ionocytes in extant cephalochordates and hemichordates suggests that ion regulation at gills might have originated much earlier than gas exchange, perhaps in the ciliated pharyngeal arches in the last common ancestor of deuterostomes. We hypothesize that the ancestral form of ion regulation served a filter-feeding function in the ciliated pharyngeal arches, and was later coopted in vertebrates to regulate extracellular ion and acid-base balance. We propose that future research should explore ionocyte homology and function across extant deuterostomes to test this hypothesis and others in order to determine the ancestral origins of ion regulation in fish gills.
Collapse
Affiliation(s)
| | - J Andrew Gillis
- Bay Paul Centre, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Kovac A, Goss GG. Cellular mechanisms of ion and acid-base regulation in teleost gill ionocytes. J Comp Physiol B 2024; 194:645-662. [PMID: 38761226 DOI: 10.1007/s00360-024-01560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/20/2024]
Abstract
The mechanism(s) of sodium, chloride and pH regulation in teleost fishes has been the subject of intense interest for researchers over the past 100 years. The primary organ responsible for ionoregulatory homeostasis is the gill, and more specifically, gill ionocytes. Building on the theoretical and experimental research of the past, recent advances in molecular and cellular techniques in the past two decades have allowed for substantial advances in our understanding of mechanisms involved. With an increased diversity of teleost species and environmental conditions being investigated, it has become apparent that there are multiple strategies and mechanisms employed to achieve ion and acid-base homeostasis. This review will cover the historical developments in our understanding of the teleost fish gill, highlight some of the recent advances and conflicting information in our understanding of ionocyte function, and serve to identify areas that require further investigation to improve our understanding of complex cellular and molecular machineries involved in iono- and acid-base regulation.
Collapse
Affiliation(s)
- Anthony Kovac
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
5
|
Wang XP, Srinivasan P, El Hamdaoui M, Blobner BM, Grytz R, Kashlan OB. Varying Selection Pressure for a Na+ Sensing Site in Epithelial Na+ Channel Subunits Reflect Divergent Roles in Na+ Homeostasis. Mol Biol Evol 2024; 41:msae162. [PMID: 39101592 PMCID: PMC11331422 DOI: 10.1093/molbev/msae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
The epithelial Na+ channel (ENaC) emerged early in vertebrates and has played a role in Na+ and fluid homeostasis throughout vertebrate evolution. We previously showed that proteolytic activation of the channel evolved at the water-to-land transition of vertebrates. Sensitivity to extracellular Na+, known as Na+ self-inhibition, reduces ENaC function when Na+ concentrations are high and is a distinctive feature of the channel. A fourth ENaC subunit, δ, emerged in jawed fishes from an α subunit gene duplication. Here, we analyzed 849 α and δ subunit sequences and found that a key Asp in a postulated Na+ binding site was nearly always present in the α subunit, but frequently lost in the δ subunit (e.g. human). Analysis of site evolution and codon substitution rates provide evidence that the ancestral α subunit had the site and that purifying selection for the site relaxed in the δ subunit after its divergence from the α subunit, coinciding with a loss of δ subunit expression in renal tissues. We also show that the proposed Na+ binding site in the α subunit is a bona fide site by conferring novel function to channels comprising human δ subunits. Together, our findings provide evidence that ENaC Na+ self-inhibition improves fitness through its role in Na+ homeostasis in vertebrates.
Collapse
Affiliation(s)
- Xue-Ping Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Priyanka Srinivasan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mustapha El Hamdaoui
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Ota C, Nagashima A, Kato A. Electroneutral Na +/Cl - cotransport activity of zebrafish Slc12a10.1 expressed in Xenopus oocytes. Am J Physiol Regul Integr Comp Physiol 2024; 327:R152-R163. [PMID: 38842519 DOI: 10.1152/ajpregu.00096.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Na+/Cl- cotransporter 2 (Ncc2 or Slc12a10) is a membrane transport protein that belongs to the electroneutral cation-chloride cotransporter family. The Slc12a10 gene (slc12a10) is widely present in bony vertebrates but is deleted or pseudogenized in birds, some bony fishes, and most mammals. Slc12a10 is highly homologous to Ncc (Slc12a3 or Ncc1); however, there are only a few reports measuring the activity of Slc12a10. In this study, we focused on zebrafish Slc12a10.1 (zSlc12a10.1) and analyzed its activity using Xenopus oocyte electrophysiology. Analysis using Na+-selective microelectrodes showed that intracellular sodium activity (aNai) in zSlc12a10.1 oocytes was significantly decreased in Na+- or Cl--free medium and recovered when Na+ or Cl- was readded to the medium. Similar analysis using a Cl--selective microelectrode showed that intracellular chloride activity (aCli) in zSlc12a10.1 oocytes significantly decreased in Na+- or Cl--free medium and recovered when Na+ or Cl- was readded to the medium. When a similar experiment was performed with a voltage clamp, the membrane current did not change when aNai of zSlc12a10.1 oocytes was decreased in Na+-free medium. Molecular phylogenetic and synteny analyses suggest that gene duplication between slc12a10.2 and slc12a10.3 in zebrafish is a relatively recent event, whereas gene duplication between slc12a10.1 and the ancestral gene of slc12a10.2/slc12a10.3 occurred at least about 2 million years ago. slc12a10 deficiency was observed in species belonging to Ictaluridae, Salmoniformes, Osmeriformes, Batrachoididae, Syngnathiformes, Gobiesociformes, Labriformes, and Tetraodontiformes. These results indicate that zebrafish Slc12a10.1 is an electroneutral Na+/Cl-cotransporter and establish its evolutionary position among various teleost slc12a10 paralogs.NEW & NOTEWORTHY Na+/Cl- cotransporter 2 (Slc12a10; Ncc2) is a protein highly homologous to Ncc (Slc12a3; Ncc1); however, there are only a few reports measuring the activity of Slc12a10. Electrophysiological analysis of Xenopus oocytes expressing zebrafish Slc12a10.1 showed that Slc12a10.1 acts as an electroneutral Na+/Cl-cotransporter. This is the third report on the activity of Slc12a10, following previous reports on Slc12a10 in eels.
Collapse
Affiliation(s)
- Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
7
|
Yamaguchi Y, Ikeba K, Yoshida MA, Takagi W. Molecular basis of the unique osmoregulatory strategy in the inshore hagfish, Eptatretus burgeri. Am J Physiol Regul Integr Comp Physiol 2024; 327:R208-R233. [PMID: 38105762 DOI: 10.1152/ajpregu.00166.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important in discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney, and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acid (FAA)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kiriko Ikeba
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Masa-Aki Yoshida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
8
|
Colby RS, McCormick SD, Velotta JP, Jockusch E, Schultz ET. Paralog switching facilitates diadromy: ontogenetic, microevolutionary and macroevolutionary evidence. Oecologia 2024; 205:571-586. [PMID: 39012384 DOI: 10.1007/s00442-024-05588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Identifying how the demands of migration are met at the level of gene expression is critical for understanding migratory physiology and can potentially reveal how migratory forms evolve from nonmigratory forms and vice versa. Among fishes, migration between freshwater and seawater (diadromy) requires considerable osmoregulatory adjustments, powered by the ion pump Na+, K+-ATPase (NKA) in the gills. Paralogs of the catalytic α-subunit of the pump (NKA α1a and α1b) are reciprocally upregulated in fresh- and seawater, a response known as paralog-switching, in gills of some diadromous species. We tested ontogenetic changes in NKA α-subunit paralog expression patterns, comparing pre-migrant and migrant alewife (Alosa pseudoharengus) sampled in their natal freshwater environment and after 24 h in seawater. In comparison to pre-migrants, juvenile out-migrants exhibited stronger paralog switching via greater downregulation of NKA α1a in seawater. We also tested microevolutionary changes in the response, exposing juvenile diadromous and landlocked alewife to freshwater (0 ppt) and seawater (30 ppt) for 2, 5, and 15 days. Diadromous and landlocked alewife exhibited salinity-dependent paralog switching, but levels of NKA α1b transcription were higher and the decrease in NKA α1a was greater after seawater exposure in diadromous alewife. Finally, we placed alewife α-subunit NKA paralogs in a macroevolutionary context. Molecular phylogenies show alewife paralogs originated independently of paralogs in salmonids and other teleosts. This study demonstrated that NKA paralog switching is tied to halohabitat profile and that duplications of the NKA gene provided the substrate for multiple, independent molecular solutions that support a diadromous life history.
Collapse
Affiliation(s)
- Rebecca S Colby
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institutional Research and Planning, Fitchburg State University, Fitchburg, MA, USA
| | - Stephen D McCormick
- Department of Biology, University of Massachusetts, Amherst, MA, USA
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Elizabeth Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Eric T Schultz
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Montoya XC, Thompson WA, Smith CM, Wilson JM, Vijayan MM. Exposure to Total Suspended Solids (TSS) Impacts Gill Structure and Function in Adult Zebrafish. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:14. [PMID: 39012477 DOI: 10.1007/s00128-024-03922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
Total suspended solids (TSS) are a major contributor of anthropogenic impacts to aquatic systems. TSS exposure have been shown to affect the function of gills, but the mode of action is unclear. Zebrafish (Danio rerio) is emerging as an excellent model for mechanistic toxicology, and as there are no baseline studies on TSS effects in zebrafish gills, we tested the hypothesis that environmental concentrations of TSS damages gill structure and function in this species. Adult zebrafish were exposed to either 0, 10, 100, 500, 1000, or 2000 mg/L TSS for 4 days to assess the gill morphology. The minimal concentration that affected the gill structure was further tested for the distribution of key ion transporters, including Na+/K+- ATPase (NKA) and vacuolar-type H+-ATPase (VHA), using confocal microscopy. Our results reveal that TSS concentration as low as 100 mg/L alters the morphology of gills, including greater filament thickness, lamellae thickness, and epithelial lifting. This was also associated with a reduction in NKA immunoreactive (IR) cell count and intensity in the 100 mg/L TSS group, while there was neither a change in the VHA-IR cell count or expression nor the transcript abundance of atp6v1a and atp1a1a4 in the gills. Markers of stress response in these animals, including levels of cortisol, glucose, lactate, and glycogen were not altered after 4 days of TSS exposure. Overall, environmentally relevant concentrations of TSS can damage the gill structure and function in zebrafish and has the potential to enhance the toxicity of contaminants acting via the gills.
Collapse
Affiliation(s)
- Xena C Montoya
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - W Andrew Thompson
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Courtney M Smith
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
10
|
Nagashima A, Torii K, Ota C, Kato A. slc26a12-A novel member of the slc26 family, is located in tandem with slc26a2 in coelacanths, amphibians, reptiles, and birds. Physiol Rep 2024; 12:e16089. [PMID: 38828713 PMCID: PMC11145369 DOI: 10.14814/phy2.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Solute carrier family 26 (Slc26) is a family of anion exchangers with 11 members in mammals (named Slc26a1-a11). Here, we identified a novel member of the slc26 family, slc26a12, located in tandem with slc26a2 in the genomes of several vertebrate lineages. BLAST and synteny analyses of various jawed vertebrate genome databases revealed that slc26a12 is present in coelacanths, amphibians, reptiles, and birds but not in cartilaginous fishes, lungfish, mammals, or ray-finned fishes. In some avian and reptilian lineages such as owls, penguins, egrets, and ducks, and most turtles examined, slc26a12 was lost or pseudogenized. Phylogenetic analysis showed that Slc26a12 formed an independent branch with the other Slc26 members and Slc26a12, Slc26a1 and Slc26a2 formed a single branch, suggesting that these three members formed a subfamily in Slc26. In jawless fish, hagfish have two genes homologous to slc26a2 and slc26a12, whereas lamprey has a single gene homologous to slc26a2. African clawed frogs express slc26a12 in larval gills, skin, and fins. These results show that slc26a12 was present at least before the separation of lobe-finned fish and tetrapods; the name slc26a12 is appropriate because the gene duplication occurred in the distant past.
Collapse
Affiliation(s)
- Ayumi Nagashima
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kota Torii
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Chihiro Ota
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Akira Kato
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
11
|
Caneos WG, Shrivastava J, Ndugwa M, De Boeck G. Physiological responses of European sea bass (Dicentrarchus labrax) exposed to increased carbon dioxide and reduced seawater salinities. Mol Biol Rep 2024; 51:496. [PMID: 38587695 DOI: 10.1007/s11033-024-09460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The iono- and osmoregulatory capacities of marine teleosts, such as European sea bass (Dicentrarchus labrax) are expected to be challenged by high carbon dioxide exposure, and the adverse effects of elevated CO2 could be amplified when such fish migrate into less buffered hypo-osmotic estuarine environments. Therefore, the effects of increased CO2 on the physiological responses of European sea bass (Dicentrarchus labrax) acclimated to 32 ppt, 10 ppt and 2.5 ppt were investigated. METHODS Following acclimation to different salinities for two weeks, fish were exposed to present-day (400 µatm) and future (1000 µatm) atmospheric CO2 for 1, 3, 7 and 21 days. Blood pH, plasma ions (Na+, K+, Cl-), branchial mRNA expression of ion transporters such as Na+/K+-ATPase (NKA), Na+/K+/2Cl- co-transporters (NKCC) and ammonia transporters (e.g. Rhesus glycoproteins Rhbg, Rhcg1 and Rhcg2) were examined to understand the iono- and osmoregulatory consequences of elevated CO2. RESULTS A transient but significant increase in the blood pH of exposed fish acclimated at 10 ppt (day 1) and 2.5 ppt (day 21) was observed possibly due to an overshoot of the blood HCO3- accumulation while a significant reduction of blood pH was observed after 21 days at 2.5ppt. However, no change was seen at 32 ppt. Generally, Na + concentration of control fish was relatively higher at 10 ppt and lower at 2.5 ppt compared to 32 ppt control group at all sampling periods. Additionally, NKA was upregulated in gill of juvenile sea bass when acclimated to lower salinities compared to 32 ppt control group. CO2 exposure generally downregulated NKA mRNA expression at 32ppt (day 1), 10 ppt (days 3, 7 and 21) and 2.5ppt (days 1 and 7) and also a significant reduction of NKCC mRNA level of the exposed fish acclimated at 32 ppt (1-3 days) and 10 ppt (7-21 days) was observed. Furthermore, Rhesus glycoproteins were generally upregulated in the fish acclimated at lower salinities indicating a higher dependance on gill ammonia excretion. Increased CO2 led to a reduced expression of Rhbg and may therefore reduce ammonia excretion rate. CONCLUSION Juvenile sea bass were relatively successful in keeping acid base balance under an ocean acidification scenario. However, this came at a cost for ionoregulation with reduced NKA, NKCC and Rhbg expression rates as a consequence.
Collapse
Affiliation(s)
- Warren G Caneos
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium.
- Fisheries Department, College of Fisheries and Aquatic Sciences, Mindanao State University-Marawi, Marawi City, 9700, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines.
| | - Jyotsna Shrivastava
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| | - Moses Ndugwa
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, BE-2020, Belgium
| |
Collapse
|
12
|
Zhang F, Yu Q, Huang Y, Luo Y, Qin J, Chen L, Li E, Wang X. Study on the osmotic response and function of myo-inositol oxygenase in euryhaline fish nile tilapia ( Oreochromis niloticus). Am J Physiol Cell Physiol 2024; 326:C1054-C1066. [PMID: 38344798 DOI: 10.1152/ajpcell.00513.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024]
Abstract
To understand the role of myo-inositol oxygenase (miox) in the osmotic regulation of Nile tilapia, its expression was analyzed in various tissues. The results showed that the expression of miox gene was highest in the kidney, followed by the liver, and was significantly upregulated in the kidney and liver under 1 h hyperosmotic stress. The relative luminescence efficiency of the miox gene transcription starting site (-4,617 to +312 bp) under hyperosmotic stress was measured. Two fragments (-1,640/-1,619 and -620/-599) could induce the luminescence activity. Moreover, the -1,640/-1,619 and -620/-599 responded to hyperosmotic stress and high-glucose stimulation by base mutation, suggesting that osmotic and carbohydrate response elements may exist in this region. Finally, the salinity tolerance of Nile tilapia was significantly reduced after the knocking down of miox gene. The accumulation of myo-inositol was affected, and the expression of enzymes in glucose metabolism was significantly reduced after the miox gene was knocked down. Furthermore, hyperosmotic stress can cause oxidative stress, and MIOX may help maintain the cell redox balance under hyperosmotic stress. In summary, MIOX is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.NEW & NOTEWORTHY Myo-inositol oxygenase (MIOX) is the rate-limiting enzyme that catalyzes the first step of MI metabolism and determines MI content in aquatic animals. To understand the role of miox in the osmotic regulation of Nile tilapia, we analyzed its expression in different tissues and its function under hyperosmotic stress. This study showed that miox is essential in osmotic regulation to enhance the salinity tolerance of Nile tilapia by affecting myo-inositol accumulation, glucose metabolism, and antioxidant performance.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Horng JL, Kung GX, Lin LY. Acidified water promotes silver-induced toxicity in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106865. [PMID: 38377931 DOI: 10.1016/j.aquatox.2024.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Freshwater acidification is a global environmental challenge, yet the effects of acidic water on fish resistance to toxic Ag+ remain an unexplored area. To address this knowledge gap, zebrafish embryos were exposed to different concentrations (0 (control), 0.1, and 0.25 mg/L) of AgNO3 under pH 5 or 7 for 7 days. Notably, AgNO3 at 0.25 mg/L resulted in 100 % mortality in both pH conditions, while AgNO3 at 0.1 mg/L resulted in higher mortality at pH 5 (85 %) compared to pH 7 (20 %), indicating that acidic water enhanced Ag+ toxicity. Several parameters, including body length, inner ear (otic vesicle and otolith) and yolk sac areas, lateral line hair cell number and morphology, the number of ionocytes (H+-ATP-rich cells and Na+/K+-ATP-rich cells), and ion contents (Ag+, Na+, and Ca2+) were assessed at 96 h (day 4) to investigate individual and combined effects of Ag+ and acid on embryos. Acid alone did not significantly alter most parameters, but it decreased the yolk sac area and increased the ionocyte number. Conversely, Ag+ alone caused reductions in most parameters, including body length, the inner ear area, hair cell number, and ionocyte number. Combining acid and Ag+ resulted in greater suppression of the otolith area, hair cell number, and Na+/Ca2+ contents. In conclusion, acidification of freshwater poses a potential risk to fish embryo viability by increasing their susceptibility to silver toxicity, specifically affecting sensory function and ion regulation.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Geng-Xin Kung
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
14
|
Varga E, Prause HC, Riepl M, Hochmayr N, Berk D, Attakpah E, Kiss E, Medić N, Del Favero G, Larsen TO, Hansen PJ, Marko D. Cytotoxicity of Prymnesium parvum extracts and prymnesin analogs on epithelial fish gill cells RTgill-W1 and the human colon cell line HCEC-1CT. Arch Toxicol 2024; 98:999-1014. [PMID: 38212450 PMCID: PMC10861388 DOI: 10.1007/s00204-023-03663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Harmful algal blooms kill fish populations worldwide, as exemplified by the haptophyte microalga Prymnesium parvum. The suspected causative agents are prymnesins, categorized as A-, B-, and C-types based on backbone carbon atoms. Impacts of P. parvum extracts and purified prymnesins were tested on the epithelial rainbow trout fish gill cell line RTgill-W1 and on the human colon epithelial cells HCEC-1CT. Cytotoxic potencies ranked A > C > B-type with concentrations spanning from low (A- and C-type) to middle (B-type) nM ranges. Although RTgill-W1 cells were about twofold more sensitive than HCEC-1CT, the cytotoxicity of prymnesins is not limited to fish gills. Both cell lines responded rapidly to prymnesins; with EC50 values for B-types in RTgill-W1 cells of 110 ± 11 nM and 41.5 ± 0.6 nM after incubations times of 3 and 24 h. Results of fluorescence imaging and measured lytic effects suggest plasma membrane interactions. Postulating an osmotic imbalance as mechanisms of toxicity, incubations with prymnesins in media lacking either Cl-, Na+, or Ca2+ were performed. Cl- removal reduced morphometric rearrangements observed in RTgill-W1 and cytotoxicity in HCEC-1CT cells. Ca2+-free medium in RTgill-W1 cells exacerbated effects on the cell nuclei. Prymnesin composition of different P. parvum strains showed that analog composition within one type scarcely influenced the cytotoxic potential, while analog type potentially dictate potency. Overall, A-type prymnesins were the most potent ones in both cell lines followed by the C-types, and lastly B-types. Disturbance of Ca2+ and Cl- ionoregulation may be integral to prymnesin toxicity.
Collapse
Affiliation(s)
- Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria.
- Unit Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Hélène-Christine Prause
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Matthias Riepl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Nadine Hochmayr
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Deniz Berk
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Eva Attakpah
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Endre Kiss
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090, Vienna, Austria
| | - Nikola Medić
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Center for Bioresources, Division for Food and Production, Danish Technological Institute, Gregersensvej 8, 2630, Taastrup, Denmark
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090, Vienna, Austria
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs, Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| |
Collapse
|
15
|
Lin LY, Cheng CA, Liu ST, Horng JL. Investigation of ammonia-induced lethal toxicity toward ion regulation in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109807. [PMID: 38013044 DOI: 10.1016/j.cbpc.2023.109807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Ammonia is an environmental pollutant that is toxic to all aquatic animals. However, the mechanism of ammonia toxicity toward the ion regulatory function of early-stage fish has not been fully documented. We addressed this issue using zebrafish embryos as a model. We hypothesized that ammonia might impair ion regulation by inducing oxidative stress, mitochondrial dysfunction, and cell death of epidermal ionocytes and keratinocytes in zebrafish embryos. After exposure to various concentrations (10- 30 mM) of NH4Cl for 96 h, mortality increased up to 50 % and 100 % at 25 and 30 mM, respectively. Whole-embryo sodium, potassium, and calcium contents decreased at ≥10 mM, suggesting dysfunction of ion regulation. Numbers of H+-ATPase-rich (HR) cells and Na+/K+-ATPase-rich (NaR) cells (two ionocyte subtypes) were not significantly altered at 15 or 20 mM, while the mitochondrial abundance significantly decreased and reactive oxygen species (ROS) levels significantly increased in ionocytes. Moreover, caspase-3-dependent apoptosis was found in epidermal keratinocytes. Whole-embryo transcript levels of several genes involved in ion regulation, antioxidation, and apoptosis were upregulated after ammonia exposure. In conclusion, ammonia exposure was shown to induce oxidative stress and mitochondrial dysfunction in ionocytes and apoptosis in keratinocytes, thereby impairing ion regulation and ultimately leading to the death of zebrafish embryos.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chieh-An Cheng
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| |
Collapse
|
16
|
Edwards TM, Puglis HJ, Kent DB, Durán JL, Bradshaw LM, Farag AM. Ammonia and aquatic ecosystems - A review of global sources, biogeochemical cycling, and effects on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167911. [PMID: 37871823 DOI: 10.1016/j.scitotenv.2023.167911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
The purpose of this review is to better understand the full life cycle and influence of ammonia from an aquatic biology perspective. While ammonia has toxic properties in water and air, it also plays a central role in the biogeochemical nitrogen (N) cycle and regulates mechanisms of normal and abnormal fish physiology. Additionally, as the second most synthesized chemical on Earth, ammonia contributes economic value to many sectors, particularly fertilizers, energy storage, explosives, refrigerants, and plastics. But, with so many uses, industrial N2-fixation effectively doubles natural reactive N concentrations in the environment. The consequence is global, with excess fixed nitrogen driving degradation of soils, water, and air; intensifying eutrophication, biodiversity loss, and climate change; and creating health risks for humans, wildlife, and fisheries. Thus, the need for ammonia research in aquatic systems is growing. In response, we prepared this review to better understand the complexities and connectedness of environmental ammonia. Even the term "ammonia" has multiple meanings. So, we have clarified the nomenclature, identified units of measurement, and summarized methods to measure ammonia in water. We then discuss ammonia in the context of the N-cycle, review its role in fish physiology and mechanisms of toxicity, and integrate the effects of human N-fixation, which continuously expands ammonia's sources and uses. Ammonia is being developed as a carbon-free energy carrier with potential to increase reactive nitrogen in the environment. With this in mind, we review the global impacts of excess reactive nitrogen and consider the current monitoring and regulatory frameworks for ammonia. The presented synthesis illustrates the complex and interactive dynamics of ammonia as a plant nutrient, energy molecule, feedstock, waste product, contaminant, N-cycle participant, regulator of animal physiology, toxicant, and agent of environmental change. Few molecules are as influential as ammonia in the management and resilience of Earth's resources.
Collapse
Affiliation(s)
- Thea M Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA.
| | - Holly J Puglis
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Douglas B Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, CA, USA
| | - Jonathan López Durán
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Lillian M Bradshaw
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Aïda M Farag
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA
| |
Collapse
|
17
|
Varshney S, Lundås M, Siriyappagouder P, Kristensen T, Olsvik PA. Ecotoxicological assessment of Cu-rich acid mine drainage of Sulitjelma mine using zebrafish larvae as an animal model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115796. [PMID: 38061085 DOI: 10.1016/j.ecoenv.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Acid mine drainage (AMD) is widely acknowledged as a substantial threat to the biodiversity of aquatic ecosystems. The present study aimed to study the toxicological effects of Cu-rich AMD from the Sulitjelma mine in zebrafish larvae. The AMD from this mine was found to contain elevated levels of dissolved metals including Mg (46.7 mg/L), Al (20.2 mg/L), Cu (18.3 mg/L), Fe (19.8 mg/L) and Zn (10.6 mg/L). To investigate the toxicological effects, the study commenced by exposing zebrafish embryos to various concentrations of AMD (ranging from 0.75% to 9%) to determine the median lethal concentration (LC50). Results showed that 96 h LC50 for zebrafish larvae following AMD exposure was 2.86% (95% CI: 2.32-3.52%). Based on acute toxicity results, zebrafish embryos (<2 hpf) were exposed to 0.1% AMD (Cu: 21.7 µg/L) and 0.45% AMD (Cu: 85.7 µg/L) for 96 h to assess development, swimming behaviour, heart rate, respiration and transcriptional responses at 116 hpf. Light microscopy results showed that both 0.1% and 0.45% AMD reduced the body length, eye size and swim bladder area of zebrafish larvae and caused phenotypic abnormalities. Swimming behaviour results showed that 0.45% AMD significantly decreased the locomotion of zebrafish larvae. Heart rate was not affected by AMD exposure. Furthermore, exposure caused a significant increase in oxygen consumption indicating vascular stress in developing larvae. Taken altogether, the study shows that even heavily diluted AMD with environmentally relevant levels of Cu caused toxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mikkel Lundås
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
| |
Collapse
|
18
|
Ramya S, Barathinivas A, Jayakumararaj R, Pothiraj C, Ali D, Piccione G, Multisanti CR, Balaji P, Faggio C. Ecotoxicological insights: Effects of pesticides on ionic metabolism regulation in freshwater catfish, Mystus keletius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106764. [PMID: 37972502 DOI: 10.1016/j.aquatox.2023.106764] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Fish maintain their body fluid ionic and osmotic homeostasis using sophisticated iono-/osmoregulation mechanisms through gills ionocytes. Pesticide-induced ionic imbalance in fish has been recognized as a valuable tool to determine its toxic effects. Acute exposure to synthetic and organo-chemical pesticides on the regulation of ionic (Na+, Ca2+, P) metabolism in freshwater catfish Mystus keletius was evaluated. Fish were exposed to sub-lethal concentrations (mg/l) of selected pesticide for a period of 7, 14, 21 and 28 days. Results indicated that chemical pesticides - Impala and Ekalux - evoked adverse toxic effects on selected tissues compared to organo-chemical pesticide tested. Statistical analysis of the summative data using two-way ANOVA was significant (p-value<0.001). Variations in the cellular parameters analysed were attributed to the physiological acclimatization of fish to the pesticide exposed. Based on the results it is concluded that organic pesticides may be preferred for rice field application considering safety aspects.
Collapse
Affiliation(s)
- Subramanian Ramya
- P.G and Research Department of Zoology, Yadava College (Men), Madurai, TN, India
| | - Ayyanar Barathinivas
- P.G and Research Department of Zoology, Yadava College (Men), Madurai, TN, India
| | | | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy
| | | | - Paulraj Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, TN, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
19
|
Dambrós BF, Batista da Silva H, de Moura KRS, Gomes Castro AJ, Van Der Kraak G, Silva FRMB. Influence of the aquatic environment and 1α,25(OH) 2 vitamin D 3 on calcium influx in the intestine of adult zebrafish. Biochimie 2023; 214:123-133. [PMID: 37429409 DOI: 10.1016/j.biochi.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
We investigated the effects of environment calcium challenge and 1α,25(OH)2 vitamin D3 (1,25-D3) on 45Ca2+ influx in the intestine of zebrafish (ZF). In vitro45Ca2+ influx was analyzed using intestines from fed and fasted fish. ZF were held in water containing Ca2+ (0.02, 0.7, 2.0 mM) to analyze the ex vivo45Ca2+ influx in the intestine and for histology. Intestines from fish held in water with Ca2+ were incubated ex vivo to characterize ion channels, receptors, ATPases and ion exchangers that orchestrate 45Ca2+ influx. For in vitro studies, intestines were incubated with antagonists/agonist or inhibitors to study the mechanism of 1,25-D3 on 45Ca2+ influx. Fasted ZF reached a plateau for 45Ca2+ influx at 30 min. In vivo fish at high Ca2+ stimulated ex vivo45Ca2+ influx and increased the height of intestinal villi in low calcium. In the normal calcium, 45Ca2+ influx was maintained by the reverse-mode Na+/Ca2+ (NCX) activation, Na+/K+-ATPase pump and sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. However, Ca2+ hyperosmolarity is supported by L-type voltage-dependent calcium channels (L-VDCC), transient receptor potential vanilloid subfamily 1 (TRPV1) and Na+/K+-ATPase activity. The calcium challenge causes morphological alteration and changes the ion type-channels involved in the intestine to maintain hyperosmolarity. 1,25-D3 stimulates Ca2+ influx in normal osmolarity coordinated by L-VDCC activation and SERCA inhibition to keeps high intracellular calcium in intestine. Our data showed that the adult ZF regulates the calcium challenge (per se osmolarity), independently of the hormonal regulation to maintain the calcium balance through the intestine to support ionic adaptation.
Collapse
Affiliation(s)
- Betina Fernanda Dambrós
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Hemily Batista da Silva
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Kieiv Resende Sousa de Moura
- Universidade Federal de Santa Catarina, Departamento de Ciências Morfológicas, Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Allisson Jhonatan Gomes Castro
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Campus Universitário, Bairro Trindade, Florianópolis, SC, Brazil.
| |
Collapse
|
20
|
Zheng S, Wang WX. Physiological and immune profiling of tilapia Oreochromis niloticus gills by high-throughput single-cell transcriptome sequencing. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109070. [PMID: 37709178 DOI: 10.1016/j.fsi.2023.109070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
The physiological and immune functions of fish gills are largely recognized, but their following functional heterogeneity at the single cell scale has been rarely reported. Here, we performed single cell RNA sequencing (scRNA-seq) on the gills of tilapia fish Oreochromis niloticus. We identified a total of 12 cell populations and analyzed their functional heterogeneity. To investigate the physiological function of O. niloticus gills, expression patterns of genes encoding ion transporters were selected from the identified H+-ATPase-rich cells (HR cells), Na+/K+-ATPase-rich cells (NaR cells), and pavement cells. Specific enrichment of ca4a, slc9a1a, and LOC100692482 in the HR cells of O. niloticus gills explained their functions in acid-base regulation. Genes encoding Ca2+ transporters, including atp2b1, LOC100696627, and LOC 100706765, were specifically expressed in the NaR cells. Pavement cells were presumably the main sites responsible for ammonia and urea transports in O. niloticus gills with specific enrichment of Rhbg and LOC100693008, respectively. The expression patterns of the four immune cell subtypes varied greatly, with B cells being enriched with the most immune-related GO terms. KEGG enrichment analysis showed that MAPK signaling pathway was the most enriched pathway among the four types of immune cells in O. niloticus gills. Our results are important in understanding the physiological and immune responses of fish gills at the cellular resolution.
Collapse
Affiliation(s)
- Siwen Zheng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
21
|
Wiegand J, Hoang J, Avila-Barnard S, Nemarugommula C, Ha M, Zhang S, Stapleton HM, Volz DC. Triphenyl phosphate-induced pericardial edema in zebrafish embryos is reversible following depuration in clean water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106699. [PMID: 37734274 PMCID: PMC10878734 DOI: 10.1016/j.aquatox.2023.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Triphenyl phosphate (TPHP) - a widely used organophosphate-based flame retardant - blocks cardiac looping during zebrafish development in a concentration-dependent manner, a phenotype that is dependent on disruption of embryonic osmoregulation and pericardial edema formation. However, it's currently unclear whether (1) TPHP-induced effects on osmoregulation are driven by direct TPHP-induced injury to the embryonic epidermis and (2) whether TPHP-induced pericardial edema is reversible or irreversible following cessation of exposure. Therefore, the objectives of this study were to determine whether TPHP-induced pericardial edema is reversible and whether TPHP causes injury to the embryonic epidermis by quantifying the number of DAPI-positive epidermal cells and analyzing the morphology of the yolk sac epithelium using scanning electron microscopy. First, we found that exposure to 5 μM TPHP from 24-72 h post-fertilization (hpf) did not increase prolactin - a hormone that regulates ions and water levels - in embryonic zebrafish, whereas high ionic strength exposure media was associated with elevated levels of prolactin. Second, we found that exposure to 5 μM TPHP from 24-72 hpf did not decrease DAPI-positive epidermal cells within the embryonic epithelium, and that co-exposure with 2.14 μM fenretinide - a synthetic retinoid that promotes epithelial wound repair - from 24-72 hpf did not mitigate the prevalence of TPHP-induced epidermal folds within the yolk sac epithelium when embryos were exposed within high ionic strength exposure media. Finally, we found that the pericardial area and body length of embryos exposed to 5 μM TPHP from 24-72 hpf were similar to vehicle-treated embryos at 120 hpf following transfer to clean water and depuration of TPHP from 72-120 hpf. Overall, our findings suggest that (1) the ionic strength of exposure media may influence the baseline physiology of zebrafish embryos; (2) TPHP does not cause direct injury to the embryonic epidermis; and (3) TPHP-induced effects on pericardial area and body length are reversible 48 h after transferring embryos to clean water.
Collapse
Affiliation(s)
- Jenna Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - John Hoang
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Sarah Avila-Barnard
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Charvita Nemarugommula
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Megan Ha
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Sharon Zhang
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States
| | - Heather M Stapleton
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
22
|
Sousa B, Domingues I, Nunes B. A fish perspective on SARS-CoV-2: Toxicity of benzalkonium chloride on Danio rerio. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104200. [PMID: 37394081 DOI: 10.1016/j.etap.2023.104200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
SARS-CoV-2 outbreak led to an increased marketing of disinfectants, creating a potential environmental problem. For instance, pre-pandemic environmental levels of the disinfectant benzalkonium chloride (BAC) ranging from 0.5 to 5 mgL-1 in effluents were expected to further increase threatening aquatic life. Our aim was to characterize potential adverse effects after an acute exposure of zebrafish to different concentrations of BAC. An increase in the overall swimming activity, thigmotaxis behavior, and erratic movements were observed. An increase in CYP1A1 and catalase activities, but inhibitions of CY1A2, GSTs and GPx activities were also noticed. BAC is metabolized by CYP1A1, increasing the production of H2O2, thereby activating the antioxidant enzyme CAT. Data also showed an increase of AChE activity. Our study highlights adverse embryonic, behavioral, and metabolic effects of noteworthy environmental significance, especially considering that the use and release of BAC is most likely to increase in a near future.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Serradell A, Montero D, Terova G, Rimoldi S, Makol A, Acosta F, Bajek A, Haffray P, Allal F, Torrecillas S. Functional Additives in a Selected European Sea Bass ( Dicentrarchus labrax) Genotype: Effects on the Stress Response and Gill Antioxidant Response to Hydrogen Peroxide (H 2O 2) Treatment. Animals (Basel) 2023; 13:2265. [PMID: 37508043 PMCID: PMC10376812 DOI: 10.3390/ani13142265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Functional ingredients have profiled as suitable candidates for reinforcing the fish antioxidant response and stress tolerance. In addition, selective breeding strategies have also demonstrated a correlation between fish growth performance and susceptibility to stressful culture conditions as a key component in species domestication processes. The aim of the present study is to evaluate the ability of a selected high-growth genotype of 300 days post-hatch European sea bass (Dicentrarchus labrax) juveniles to use different functional additives as endogenous antioxidant capacity and stress resistance boosters when supplemented in low fish meal (FM) and fish oil (FO) diets. Three isoenergetic and isonitrogenous diets (10% FM/6% FO) were supplemented with 200 ppm of a blend of garlic and Labiatae plant oils (PHYTO0.02), 1000 ppm of a mixture of citrus flavonoids and Asteraceae and Labiatae plant essential oils (PHYTO0.1) or 5000 ppm of galactomannan-oligosaccharides (GMOS0.5). A reference diet was void of supplementation. The fish were fed the experimental diets for 72 days and subjected to a H2O2 exposure oxidative stress challenge. The fish stress response was evaluated through measuring the circulating plasma cortisol levels and the fish gill antioxidant response by the relative gene expression analysis of nfΚβ2, il-1b, hif-1a, nd5, cyb, cox, sod, cat, gpx, tnf-1α and caspase 9. After the oxidative stress challenge, the genotype origin determined the capacity of the recovery of basal cortisol levels after an acute stress response, presenting GS fish with a better pattern of recovery. All functional diets induced a significant upregulation of cat gill gene expression levels compared to fish fed the control diet, regardless of the fish genotype. Altogether, suggesting an increased capacity of the growth selected European sea bass genotype to cope with the potential negative side-effects associated to an H2O2 bath exposure.
Collapse
Affiliation(s)
- Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Alex Makol
- Global Solution Aquaculture Unit, Delacon Biotechnik Gmbh, 4209 Engerwitzdorf, Austria
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Aline Bajek
- Ecloserie Marine de Graveline Ichtus, Route des Enrochements, 59820 Gravelines, France
| | - Pierrick Haffray
- SYSAAF, French Association of Poultry and Aquaculture Breeders, Campus de Beaulieu, 35042 Rennes, France
| | - François Allal
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, 34250 Palavas-les-Flots, France
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| |
Collapse
|
24
|
Gaillard S, Réveillon D, Mason PL, Ayache N, Sanderson M, Smith JL, Giddings S, McCarron P, Séchet V, Hégaret H, Hess P, Vogelbein WK. Mortality and histopathology in sheepshead minnow (Cyprinodon variegatus) larvae exposed to pectenotoxin-2 and Dinophysis acuminata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106456. [PMID: 36889127 DOI: 10.1016/j.aquatox.2023.106456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Toxic species of the dinoflagellate genus Dinophysis can produce diarrheic toxins including okadaic acid (OA) and dinophysistoxins (DTXs), and the non-diarrheic pectenotoxins (PTXs). Okadaic acid and DTXs cause diarrheic shellfish poisoning (DSP) in human consumers, and also cause cytotoxic, immunotoxic and genotoxic effects in a variety of mollusks and fishes at different life stages in vitro. The possible effects of co-produced PTXs or live cells of Dinophysis to aquatic organisms, however, are less understood. Effects on an early life stage of sheepshead minnow (Cyprinodon variegatus), a common finfish in eastern USA estuaries, were evaluated using a 96-h toxicity bioassay. Three-week old larvae were exposed to PTX2 concentrations from 50 to 4000 nM, live Dinophysis acuminata culture (strain DAVA01), live cells resuspended in clean medium or culture filtrate. This D. acuminata strain produced mainly intracellular PTX2 (≈ 21 pg cell-1), with much lower levels of OA and dinophysistoxin-1. No mortality or gill damages were observed in larvae exposed to D. acuminata (from 5 to 5500 cells mL-1), resuspended cells and culture filtrate. However, exposure to purified PTX2 at intermediate to high concentrations (from 250 to 4000 nM) resulted in 8 to 100% mortality after 96 h (24-h LC50 of 1231 nM). Histopathology and transmission electron microscopy of fish exposed to intermediate to high PTX2 concentrations revealed important gill damage, including intercellular edema, necrosis and sloughing of gill respiratory epithelia, and damage to the osmoregulatory epithelium, including hypertrophy, proliferation, redistribution and necrosis of chloride cells. Tissue damage in gills is likely caused by the interaction of PTX2 with the actin cytoskeleton of the affected gill epithelia. Overall, the severe gill pathology observed following the PTX2 exposure suggested death was due to loss of respiratory and osmoregulatory functions in C. variegatus larvae.
Collapse
Affiliation(s)
- S Gaillard
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America; IFREMER, PHYTOX unit, F-44000 Nantes, France.
| | - D Réveillon
- IFREMER, PHYTOX unit, F-44000 Nantes, France
| | - P L Mason
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - N Ayache
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - M Sanderson
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - J L Smith
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| | - S Giddings
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - P McCarron
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford Street, Nova Scotia, Halifax B3H 3Z1, Canada
| | - V Séchet
- IFREMER, PHYTOX unit, F-44000 Nantes, France
| | - H Hégaret
- Laboratoire des Sciences de l'Environnement Marin (UMR6539 CNRS/UBO/IFREMER/IRD), Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Plouzané 29280, France
| | - P Hess
- IFREMER, PHYTOX unit, F-44000 Nantes, France
| | - W K Vogelbein
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA 23062, United States of America
| |
Collapse
|
25
|
Shih SW, Yan JJ, Lu SW, Chuang YT, Lin HW, Chou MY, Hwang PP. Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts. Int J Mol Sci 2023; 24:ijms24076597. [PMID: 37047570 PMCID: PMC10094795 DOI: 10.3390/ijms24076597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The gills are the major organ for Na+ uptake in teleosts. It was proposed that freshwater (FW) teleosts adopt Na+/H+ exchanger 3 (Nhe3) as the primary transporter for Na+ uptake and Na+-Cl− co-transporter (Ncc) as the backup transporter. However, convincing molecular physiological evidence to support the role of Ncc in branchial Na+ uptake is still lacking due to the limitations of functional assays in the gills. Thus, this study aimed to reveal the role of branchial Ncc in Na+ uptake with an in vivo detection platform (scanning ion-selective electrode technique, SIET) that has been recently established in fish gills. First, we identified that Ncc2-expressing cells in zebrafish gills are a specific subtype of ionocyte (NCC ionocytes) by using single-cell transcriptome analysis and immunofluorescence. After a long-term low-Na+ FW exposure, zebrafish increased branchial Ncc2 expression and the number of NCC ionocytes and enhanced gill Na+ uptake capacity. Pharmacological treatments further suggested that Na+ is indeed taken up by Ncc, in addition to Nhe, in the gills. These findings reveal the uptake roles of both branchial Ncc and Nhe under FW and shed light on osmoregulatory physiology in adult fish.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Ya-Ting Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - How-Wei Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
26
|
Ding YC, Lee SS, Peng SK, Yang WK, Lee TH. Salinity-dependent changes in branchial morphometry and Na + , K + -ATPase responses of euryhaline Asian sea bass, Lates calcarifer. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:451-463. [PMID: 36878859 DOI: 10.1002/jez.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Asian sea bass (Lates calcarifer Bloch, 1790) is a euryhaline fish widely cultured in Asia and Australia. Although it is common to culture Asian sea bass at different salinities, osmoregulatory responses of Asian sea bass during acclimation to various salinities have not been fully observed. In this study, we used scanning electron microscopy to observe the morphology of the ionocyte apical membrane of Asian sea bass acclimated to fresh water (FW), 10‰ brackish water (BW10), 20‰ brackish water (BW20), and seawater (SW; 35‰). Three types of ionocytes were identified in FW and BW fish: (I) flat type with microvilli, (II) basin type with microvilli, and (III) small- hole type. Flat type I ionocytes were also observed in the lamellae of the FW fish. In contrast, two types of ionocytes were identified in SW fish: (III) small-hole type and (IV) big-hole type. Furthermore, we observed Na+ , K+ -ATPase (NKA) immunoreactive cells in the gills, which represent the localization of ionocytes. The highest protein abundance was observed in the SW and FW groups, whereas the highest activity was observed in the SW group. In contrast, the BW10 group had the lowest protein abundance and activity. This study demonstrates the effects of osmoregulatory responses on the morphology and density of ionocytes, as well as protein abundance and activity of NKA. In this study, we found that Asian sea bass had the lowest osmoregulatory response in BW10, because the lowest amounts of ionocytes and NKA were required to maintain osmolality at this salinity.
Collapse
Affiliation(s)
- Yu-Chen Ding
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Sih-Shien Lee
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Kai Peng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Kai Yang
- Water Resources Development Center, Feng Chia University, Taichung, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
27
|
Motoshima T, Nagashima A, Ota C, Oka H, Hosono K, Braasch I, Nishihara H, Kato A. Na +/Cl - cotransporter 2 is not fish-specific and is widely found in amphibians, non-avian reptiles, and select mammals. Physiol Genomics 2023; 55:113-131. [PMID: 36645671 PMCID: PMC9988527 DOI: 10.1152/physiolgenomics.00143.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Solute carrier 12 (Slc12) is a family of electroneutral cation-coupled chloride (Cl-) cotransporters. Na+/K+/2Cl- (Nkcc) and Na+/Cl- cotransporters (Ncc) belong to the Nkcc/Ncc subfamily. Human and mouse possess one gene for the Na+/Cl- cotransporter (ncc gene: slc12a3), whereas teleost fishes possess multiple ncc genes, slc12a3 (ncc1) and slc12a10 (ncc2), in addition to their species-specific paralogs. Amphibians and squamates have two ncc genes: slc12a3 (ncc1) and ncc3. However, the evolutionary relationship between slc12a10 and ncc3 remains unresolved, and the presence of slc12a10 (ncc2) in mammals has not been clarified. Synteny and phylogenetic analyses of vertebrate genome databases showed that ncc3 is the ortholog of slc12a10, and slc12a10 is present in most ray-finned fishes, coelacanths, amphibians, reptiles, and a few mammals (e.g., platypus and horse) but pseudogenized or deleted in birds, most mammals, and some ray-finned fishes (pufferfishes). This shows that slc12a10 is widely present among bony vertebrates and pseudogenized or deleted independently in multiple lineages. Notably, as compared with some fish that show varied slc12a10 tissue expression profile, spotted gar, African clawed frog, red-eared slider turtle, and horse express slc12a10 in the ovaries or premature gonads. In horse tissues, an unexpectedly large number of splicing variants for Slc12a10 have been cloned, many of which encode truncated forms of Slc12a10, suggesting that the functional constraints of horse slc12a10 are weakened, which may be in the process of becoming a pseudogene. Our results elaborate on the evolution of Nkcc/Ncc subfamily of Slc12 in vertebrates.NEW & NOTEWORTHY slc12a10 is not a fish-specific gene and is present in a few mammals (e.g., platypus and horse), non-avian reptiles, amphibians, but was pseudogenized or deleted in most mammals (e.g., human, mouse, cat, cow, and rhinoceros), birds, and some ray-finned fishes (pufferfishes).
Collapse
Affiliation(s)
- Toya Motoshima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Chihiro Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Haruka Oka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kohei Hosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ingo Braasch
- Department of Integrative Biology, College of Natural Science, Michigan State University, East Lansing, Michigan, United States
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
28
|
Dichiera AM, De Anda V, Gilmour KM, Baker BJ, Esbaugh AJ. Functional divergence of teleost carbonic anhydrase 4. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111368. [PMID: 36642322 DOI: 10.1016/j.cbpa.2023.111368] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The functional role of membrane-bound carbonic anhydrases (CAs) has been of keen interest in the past decade, and in particular, studies have linked CA in red muscle, heart, and eye to enhanced tissue oxygen extraction in bony fishes (teleosts). However, the number of purported membrane-bound CA isoforms in teleosts, combined with the imperfect system of CA isoform nomenclature, present roadblocks for ascribing physiological functions to particular CA isoforms across different teleost lineages. Here we developed an organizational framework for membrane-bound CAs in teleosts, providing the latest phylogenetic analysis of extant CA4 and CA4-like isoforms. Our data confirm that there are three distinct isoforms of CA4 (a, b, and c) that are conserved across major teleost lineages, with the exception of CA4c gene being lost in salmonids. Tissue distribution analyses suggest CA4a functions in oxygen delivery across teleost lineages, while CA4b may be specialized for renal acid-base balance and ion regulation. This work provides an important foundation for researchers to elucidate the functional significance of CA4 isoforms in fishes.
Collapse
Affiliation(s)
- Angelina M Dichiera
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Valerie De Anda
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA. https://twitter.com/val_deanda
| | | | - Brett J Baker
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA. https://twitter.com/archaeal
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
29
|
Revealing Natural Intracellular Peptides in Gills of Seahorse Hippocampus reidi. Biomolecules 2023; 13:biom13030433. [PMID: 36979368 PMCID: PMC10046794 DOI: 10.3390/biom13030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023] Open
Abstract
The seahorse is a marine teleost fish member of the Syngnathidae family that displays a complex variety of morphological and reproductive behavior innovations and has been recognized for its medicinal importance. In the Brazilian ichthyofauna, the seahorse Hippocampus reidi is among the three fish species most used by the population in traditional medicine. In this study, a protocol was performed based on fast heat inactivation of proteases plus liquid chromatography coupled to mass spectrometry to identify native peptides in gills of seahorse H. reidi. The MS/MS spectra obtained from gills allowed the identification of 1080 peptides, of which 1013 peptides were present in all samples and 67 peptide sequences were identified in an additional LC-MS/MS run from an alkylated and reduced pool of samples. The majority of peptides were fragments of the internal region of the amino acid sequence of the precursor proteins (67%), and N- and C-terminal represented 18% and 15%, respectively. Many peptide sequences presented ribosomal proteins, histones and hemoglobin as precursor proteins. In addition, peptide fragments from moronecidin-like protein, described with antimicrobial activity, were found in all gill samples of H. reidi. The identified sequences may reveal new bioactive peptides.
Collapse
|
30
|
Wiegand J, Avila-Barnard S, Nemarugommula C, Lyons D, Zhang S, Stapleton HM, Volz DC. Triphenyl phosphate-induced pericardial edema in zebrafish embryos is dependent on the ionic strength of exposure media. ENVIRONMENT INTERNATIONAL 2023; 172:107757. [PMID: 36680802 PMCID: PMC9974852 DOI: 10.1016/j.envint.2023.107757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Pericardial edema is commonly observed in zebrafish embryo-based chemical toxicity screens, and a mechanism underlying edema may be disruption of embryonic osmoregulation. Therefore, the objective of this study was to identify whether triphenyl phosphate (TPHP) - a widely used aryl phosphate ester-based flame retardant - induces pericardial edema via impacts on osmoregulation within embryonic zebrafish. In addition to an increase in TPHP-induced microridges in the embryonic yolk sac epithelium, an increase in ionic strength of exposure media exacerbated TPHP-induced pericardial edema when embryos were exposed from 24 to 72 h post-fertilization (hpf). However, there was no difference in embryonic sodium concentrations in situ within TPHP-exposed embryos relative to embryos exposed to vehicle (0.1% DMSO) from 24 to 72 hpf. Interestingly, increasing the osmolarity of exposure media with mannitol (an osmotic diuretic which mitigates TPHP-induced pericardial edema) and increasing the ionic strength of the exposure media (which exacerbates TPHP-induced pericardial edema) did not affect embryonic doses of TPHP, suggesting that TPHP uptake was not altered under these varying experimental conditions. Overall, our findings suggest that TPHP-induced pericardial edema within zebrafish embryos is dependent on the ionic strength of exposure media, underscoring the importance of further standardization of exposure media and embryo rearing protocols in zebrafish-based chemical toxicity screening assays.
Collapse
Affiliation(s)
- Jenna Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Sarah Avila-Barnard
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Charvita Nemarugommula
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - David Lyons
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Sharon Zhang
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States
| | - Heather M Stapleton
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States
| | - David C Volz
- Division of Environmental Sciences and Policy, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
31
|
Yang S, Li D, Feng L, Zhang C, Xi D, Liu H, Yan C, Xu Z, Zhang Y, Li Y, Yan T, He Z, Wu J, Gong Q, Du J, Huang X, Du X. Transcriptome analysis reveals the high temperature induced damage is a significant factor affecting the osmotic function of gill tissue in Siberian sturgeon (Acipenser baerii). BMC Genomics 2023; 24:2. [PMID: 36597034 PMCID: PMC9809011 DOI: 10.1186/s12864-022-08969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Maintaining osmotic equilibrium plays an important role in the survival of cold-water fishes. Heat stress has been proven to reduce the activity of Na+/K+-ATPase in the gill tissue, leading to destruction of the osmotic equilibrium. However, the mechanism of megatemperature affecting gill osmoregulation has not been fully elucidated. RESULTS In this study, Siberian sturgeon (Acipenser baerii) was used to analyze histopathological change, plasma ion level, and transcriptome of gill tissue subjected to 20℃, 24℃and 28℃. The results showed that ROS level and damage were increased in gill tissue with the increasing of heat stress temperature. Plasma Cl- level at 28℃ was distinctly lower than that at 20℃ and 24℃, while no significant difference was found in Na+ and K+ ion levels among different groups. Transcriptome analysis displayed that osmoregulation-, DNA-repair- and apoptosis-related terms or pathways were enriched in GO and KEGG analysis. Moreover, 194 osmoregulation-related genes were identified. Amongst, the expression of genes limiting ion outflow, occluding (OCLN), and ion absorption, solute carrier family 4, member 2 (AE2) solute carrier family 9, member 3 (NHE3) chloride channel 2 (CLC-2) were increased, while Na+/K+-ATPase alpha (NKA-a) expression was decreased after heat stress. CONCLUSIONS This study reveals for the first time that the effect of heat stress on damage and osmotic regulation in gill tissue of cold-water fishes. Heat stress increases the permeability of fish's gill tissue, and induces the gill tissue to keep ion balance through active ion absorption and passive ion outflow. Our study will contribute to research of global-warming-caused effects on cold-water fishes.
Collapse
Affiliation(s)
- Shiyong Yang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Datian Li
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Langkun Feng
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaoyang Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dandan Xi
- grid.80510.3c0000 0001 0185 3134College of Landscape Architecture, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Hongli Liu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Chaozhan Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zihan Xu
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yujie Zhang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yunkun Li
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Taiming Yan
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhi He
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jiayun Wu
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| | - Quan Gong
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Jun Du
- grid.465230.60000 0004 1777 7721Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan China
| | - Xiaoli Huang
- grid.80510.3c0000 0001 0185 3134Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiaogang Du
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Ya’an, 625014 Sichuan China
| |
Collapse
|
32
|
Retention of ion channel genes expression increases Japanese medaka survival during seawater reacclimation. J Comp Physiol B 2023; 193:81-93. [PMID: 36264377 DOI: 10.1007/s00360-022-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
Euryhaline teleosts exhibit varying acclimability to survive in environments that alternate between being hypotonic and hypertonic. Such ability is conferred by ion channels expressed by ionocytes, the ion-regulating cells in the gills or skin. However, switching between environments is physiologically challenging, because most channels can only perform unidirectional ion transportation. Coordination between acute responses, such as gene expression, and long-term responses, such as cell differentiation, is believed to strongly facilitate adaptability. Moreover, the pre-acclimation to half seawater salinity can improve the survivability of Japanese medaka (Oryzias latipes) during direct transfer to seawater; here, the ionocytes preserve hypertonic acclimability while performing hypotonic functions. Whether acclimability can be similarly induced in a closed species and their corresponding responses in terms of ion channel expression remain unclear. In the present study, Japanese medaka pre-acclimated in brackish water were noted to have higher survival rates while retaining higher expression of the three ion channel genes ATP1a1a.1, ATP1b1b, and SLC12a2a. This retention was maintained up to 2 weeks after the fish were transferred back into freshwater. Notably, this induced acclimability was not found in its close kin, Indian medaka (Oryzias dancena), the natural habitat of which is brackish water. In conclusion, Japanese medaka surpassed Indian medaka in seawater acclimability after experiencing exposure to brackish water, and this ability coincided with seawater-retention gene expression.
Collapse
|
33
|
Liu Q, Wang H, Ge J, Luo J, He K, Yan H, Zhang X, Tahir R, Luo W, Li Z, Yang S, Zhao L. Enhance energy supply of largemouth bass (Micropterus salmoides) in gills during acute hypoxia exposure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1649-1663. [PMID: 36417053 DOI: 10.1007/s10695-022-01139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Gills are the location of gas exchange and also the first target organ of fish response for environmental stress. As a multifunctional organ, its energy supply, when faced with insufficient dissolved oxygen in the water, remains unclear. In this study, largemouth bass was subjected to hypoxia stress (1.2 mg/L) for 24 h and 12 h reoxygenation (R12) to evaluate energy supply strategy of gills. Under hypoxia exposure, the respiratory rate of largemouth bass increased by an average of 20 breaths per minute. A total of 2026, 1744, 1003, 579, 485, and 265 differentially expressed genes (DGEs) were identified at 0 h, 4 h, 8 h, 12 h, 24 h, and R12h in gills after hypoxia exposure. KEGG functional analysis of DEGs revealed that the glycolysis/gluconeogenesis pathway was enriched across all the sampling points (0, 4, 8, 12, 24 h, R12). The gene expression and enzyme activity of three rate-limiting enzymes (hexokinase, phosphofructokinase-6, pyruvate kinase) in glycolysis pathway were significantly increased. Increased levels of glycolysis products pyruvate and lactic acid, as well as the number of mitochondria (1.8-fold), suggesting an enhancement of aerobic and anaerobic metabolism of glucose in gills. These results suggest that the gill of largemouth bass enhanced the energy supply during acute exposure to hypoxia stress.
Collapse
Affiliation(s)
- Qiao Liu
- Sichuan Agricultural University, Chengdu, China
| | - Hong Wang
- Sichuan Agricultural University, Chengdu, China
| | - Jiayu Ge
- Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- Sichuan Agricultural University, Chengdu, China
| | - Kuo He
- Sichuan Agricultural University, Chengdu, China
| | - Haoxiao Yan
- Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Sichuan Agricultural University, Chengdu, China
| | - Rabia Tahir
- Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Sichuan Agricultural University, Chengdu, China
| | - Song Yang
- Sichuan Agricultural University, Chengdu, China.
| | - Liulan Zhao
- Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
34
|
Serradell A, Montero D, Fernández-Montero Á, Terova G, Makol A, Valdenegro V, Acosta F, Izquierdo MS, Torrecillas S. Gill Oxidative Stress Protection through the Use of Phytogenics and Galactomannan Oligosaccharides as Functional Additives in Practical Diets for European Sea Bass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233332. [PMID: 36496852 PMCID: PMC9737065 DOI: 10.3390/ani12233332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of the present study is to evaluate the potential of two functional additives as gill endogenous antioxidant capacity boosters in European sea-bass juveniles fed low-FM/FO diets when challenged against physical and biological stressors. For that purpose, two isoenergetic and isonitrogenous diets with low FM (10%) and FO (6%) contents were supplemented with 5000 ppm plant-derived galactomannan-oligosaccharides (GMOS) or 200 ppm of a mixture of garlic and labiate plant essential oils (PHYTO). A control diet was void from supplementation. Fish were fed the experimental diet for nine weeks and subjected to a confinement stress challenge (C challenge) or a confinement stress challenge combined with an exposure to the pathogen Vibrio anguillarum (CI challenge). Both GMOS and PHYTO diets attenuated fish stress response, inducing lower circulating plasma cortisol and down-regulating nfκβ2 and gr relative gene-expression levels in the gill. This attenuated stress response was associated with a minor energetic metabolism response in relation to the down-regulation of nd5 and coxi gene expression.
Collapse
Affiliation(s)
- Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
- Correspondence:
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, 2-21100 Varese, Italy
| | - Alex Makol
- Global Solution Aquaculture Unit, Delacon Biotechnik Gmbh, 24-4209 Engerwitzdorf, Austria
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - María Soledad Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, 35200 Las Palmas, Spain
| |
Collapse
|
35
|
Wu H, Forghani B, Abdollahi M, Undeland I. Five cuts from herring ( Clupea harengus): Comparison of nutritional and chemical composition between co-product fractions and fillets. Food Chem X 2022; 16:100488. [PMID: 36345506 PMCID: PMC9636446 DOI: 10.1016/j.fochx.2022.100488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Weight distribution, proximate composition, fatty acids, amino acids, minerals and vitamins were investigated in five sorted cuts (head, backbone, viscera + belly flap, tail, fillet) emerging during filleting of spring and fall herring (Clupea harengus). The herring co-product cuts constituted ∼ 60 % of the whole herring weight, with backbone and head dominating. Substantial amounts of lipids (5.8-17.6 % wet weight, ww) and proteins (12.8-19.2 % ww) were identified in the co-products, the former being higher in fall than in spring samples. Co-product cuts contained up to 43.1 % long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of total FA, absolute levels peaking in viscera + belly flap. All cuts contained high levels of essential amino acids (up to 43.3 %), nutritional minerals (e.g., iodine, selenium, calcium, and iron/heme-iron), and vitamins E, D, and B12. Co-products were, in many cases, more nutrient-rich than the fillet and could be excellent sources for both (functional) food and nutraceuticals.
Collapse
|
36
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
37
|
Transcriptomic Analysis in Marine Medaka Gill Reveals That the Hypo-Osmotic Stress Could Alter the Immune Response via the IL17 Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012417. [PMID: 36293271 PMCID: PMC9604416 DOI: 10.3390/ijms232012417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fish gills are the major osmoregulatory tissue that contact the external water environment and have developed an effective osmoregulatory mechanism to maintain cellular function. Marine medaka (Oryzias melastigma) has the ability to live in both seawater and fresh water environments. The present study performed a seawater (SW) to 50% seawater (SFW) transfer, and the gill samples were used for comparative transcriptomic analysis to study the alteration of hypo-osmotic stress on immune responsive genes in this model organism. The result identified 518 differentiated expressed genes (DEGs) after the SW to SFW transfer. Various pathways such as p53 signaling, forkhead box O signaling, and the cell cycle were enriched. Moreover, the immune system was highlighted as one of the top altered biological processes in the enrichment analysis. Various cytokines, chemokines, and inflammatory genes that participate in the IL-17 signaling pathway were suppressed after the SW to SFW transfer. On the other hand, some immunoglobulin-related genes were up-regulated. The results were further validated by real-time qPCR. Taken together, our study provides additional gill transcriptome information in marine medaka; it also supports the notion that osmotic stress could influence the immune responses in fish gills.
Collapse
|
38
|
Nedoluzhko A, Orlova SY, Kurnosov DS, Orlov AM, Galindo-Villegas J, Rastorguev SM. Genomic Signatures of Freshwater Adaptation in Pacific Herring ( Clupea pallasii). Genes (Basel) 2022; 13:genes13101856. [PMID: 36292743 PMCID: PMC9601299 DOI: 10.3390/genes13101856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint Petersburg, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
| | - Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 107140 Moscow, Russia
- Laboratory of Genetic Basis of Identification, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Denis S. Kurnosov
- Research Group of Intraspecific Differentiation, Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), 690091 Vladivostok, Russia
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Marine Biology, Caspian Institute of Biological Resources, Russian Academy of Sciences, 367000 Makhachkala, Russia
| | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Sergey M. Rastorguev
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| |
Collapse
|
39
|
Tseng YC, Yan JJ, Furukawa F, Chen RD, Lee JR, Tsou YL, Liu TY, Tang YH, Hwang PP. Teleostean fishes may have developed an efficient Na + uptake for adaptation to the freshwater system. Front Physiol 2022; 13:947958. [PMID: 36277196 PMCID: PMC9581171 DOI: 10.3389/fphys.2022.947958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding Na+ uptake mechanisms in vertebrates has been a research priority since vertebrate ancestors were thought to originate from hyperosmotic marine habitats to the hypoosmotic freshwater system. Given the evolutionary success of osmoregulator teleosts, these freshwater conquerors from the marine habitats are reasonably considered to develop the traits of absorbing Na+ from the Na+-poor circumstances for ionic homeostasis. However, in teleosts, the loss of epithelial Na+ channel (ENaC) has long been a mystery and an issue under debate in the evolution of vertebrates. In this study, we evaluate the idea that energetic efficiency in teleosts may have been improved by selection for ENaC loss and an evolved energy-saving alternative, the Na+/H+ exchangers (NHE3)-mediated Na+ uptake/NH4 + excretion machinery. The present study approaches this question from the lamprey, a pioneer invader of freshwater habitats, initially developed ENaC-mediated Na+ uptake driven by energy-consuming apical H+-ATPase (VHA) in the gills, similar to amphibian skin and external gills. Later, teleosts may have intensified ammonotelism to generate larger NH4 + outward gradients that facilitate NHE3-mediated Na+ uptake against an unfavorable Na+ gradient in freshwater without consuming additional ATP. Therefore, this study provides a fresh starting point for expanding our understanding of vertebrate ion regulation and environmental adaptation within the framework of the energy constraint concept.
Collapse
Affiliation(s)
- Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Fumiya Furukawa
- Kitasato University School of Marine Biosciences, Tokyo, Japan
| | - Ruo-Dong Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jay-Ron Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Tsou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Yen Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Tang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Villa-Villaseñor IM, Yáñez-Rivera B, Rueda-Jasso RA, Herrera-Vargas MA, Hernández-Morales R, Meléndez-Herrera E, Domínguez-Domínguez O. Differential sensitivity of offspring from four species of goodeine freshwater fish to acute exposure to nitrates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1014814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitrate-nitrogen (NO3-N) pollution related to anthropogenic activities is increasing in freshwater ecosystems. Knowledge about NO3-N sensitivity in freshwater wild fish is needed to understand the differential tolerance between species. Goodeinae is a subfamily of 41 endemic fishes that inhabit central Mexico, with 33 species in the IUCN red list and three extinct. Distributional patterns suggest tolerant and sensitive goodeines related to the conservation gradient of freshwater ecosystems. Four species with a differential distribution and tolerance were selected to evaluate their physiological responses to NO3-N. Fish were exposed to different NO3-N concentrations for 96 h and the median lethal concentration (LC50) was determined. Swimming disorders plus gill and liver histopathological indexes were estimated and incorporated into an Integrated Biomarker Response (IBR) for each species. Skiffia lermae (LC50 = 474.332 mg/L) and Xenotoca variata (LC50 = 520.273 mg/L) were more sensitive than Goodea atripinnis (LC50 = 953.049 mg/L) and Alloophorus robustus (LC50 = 1537.13 mg/L). The typical histological damage produced by NaNO3-N exposure was fusion of secondary lamellae in gills. This was present in all species and cellular degeneration was observed at the highest concentrations. Secondary lamellae aneurysms were only observed in G. atripinnis. Liver alterations included vascular dilation in hepatic sinusoids, hyperemia and nuclear hypertrophy; higher concentrations produced hepatocyte cytoplasmic vacuolation and reduced frequency of cell nuclei. Behavioral and histopathological alterations could explain the differential species sensitivity. The results suggest that species which preserve gill function and transfer the task of detoxification to the liver might have the best chance of surviving in polluted environments. Moreover, species previously considered as tolerant may be highly susceptible to NaNO3-N exposure. Therefore, it is necessary to closely monitor NaNO3-N concentrations in freshwater ecosystems and, if possible, reduce their levels to avoid the loss of wild populations.
Collapse
|
41
|
Kwan GT, Frable BW, Thompson AR, Tresguerres M. Optimizing immunostaining of archival fish samples to enhance museum collection potential. Acta Histochem 2022; 124:151952. [PMID: 36099745 DOI: 10.1016/j.acthis.2022.151952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Immunohistochemistry (IHC) is a powerful biochemical technique that uses antibodies to specifically label and visualize proteins of interests within biological samples. However, fluid-preserved specimens within natural history collection often use fixatives and protocols that induce high background signal (autofluorescence), which hampers IHC as it produces low signal-to-noise ratio. Here, we explored techniques to reduce autofluorescence using sodium borohydride (SBH), citrate buffer, and their combination on fish tissue preserved with paraformaldehyde, formaldehyde, ethanol, and glutaraldehyde. We found SBH was the most effective quenching technique, and applied this pretreatment to the gill or skin of 10 different archival fishes - including specimens that had been preserved in formaldehyde or ethanol for up to 65 and 37 years, respectively. The enzyme Na+/K+-ATPase (NKA) was successfully immunostained and imaged using confocal fluorescence microscopy, allowing for the identification and characterization of NKA-rich ionocytes essential for fish ionic and acid-base homeostasis. Altogether, our SBH-based method facilitates the use of IHC on archival samples, and unlocks the historical record on fish biological responses to environmental factors (such as climate change) using specimens from natural history collections that were preserved decades to centuries ago.
Collapse
Affiliation(s)
- Garfield T Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA; NOAA Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA.
| | - Benjamin W Frable
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, USA
| | - Andrew R Thompson
- NOAA Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, USA
| |
Collapse
|
42
|
Liu S, Wilson JM, Taylor EB, Richards JG. Freshwater adaptation in prickly sculpin (Pisces: Cottidae): intraspecific comparisons reveal evidence for water pH and Na+ concentration driving diversity in gill H+-ATPase and ionoregulation. J Exp Biol 2022; 225:276687. [PMID: 36062522 DOI: 10.1242/jeb.243500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Phenotypic divergence is a hallmark of adaptive radiation. One example involves differentiation in physiological traits involved in ion regulation among species with contrasting life-styles and living in distinct environments. Differentiation in ion regulation and its ecological implications among populations within species are, however, less well understood. To address this knowledge gap, we collected prickly sculpin (Cottus asper) from distinct habitat types including coastal rivers connected to estuaries, coastal lakes, and interior lakes, all from British Columbia, Canada. We tested for differences in plasma Na+ and Cl-, gill Na+/K+-ATPase and H+-ATPase activities and protein abundance as well as changes in body mass, and arterial blood pH in fish sampled from the field and acclimated to two different freshwater conditions in the laboratory including artificial lake water (ALW) and ion-poor water (IPW). We also tested for associations between environmental water chemistry and the physiological characteristics associated with ion regulation. Transfer to IPW resulted upregulation in gill Na+/K+-ATPase and H+-ATPase activities as well as increases in gill H+-ATPase protein expression level in each habitat compared with the common ALW treatment. Despite the presence of population-within-habitat type differences, significant habitat-type effects were revealed in most of the ion regulation characteristics examined under different acclimation conditions. Significantly lower plasma Cl- was detected in fish from coastal rivers compared to fish from the other two habitat types during the IPW treatment, which was also significantly lower compared with ALW. Similarly, gill Na+/K+-ATPase activity was lower in the coastal river populations in IPW than in fish from coastal and interior lakes, which was not in accordance with the protein expressed in the gill. For gill H+-ATPase, fish from interior lake populations had the highest level of activity across all habitat types under all conditions, which was related to the protein levels in the gill. The activity of gill H+-ATPase was positively correlated with the combined effect of water Na+ and pH under the ALW treatment. Our results suggest that variation in habitat may be an important factor driving differences in gill Na+/K+-ATPase and H+-ATPase activities across populations of C. asper. Further, the combined effect of water Na+ and pH may have played a key role in physiological adaptation in C. asper during post-glacial freshwater colonization and dispersal.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, 75 University Ave., Waterloo, ON N2L 3C5, Canada
| | - Eric B Taylor
- Department of Zoology, Biodiversity Research Centre and Beaty Biodiversity Museum, The University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
43
|
Brown CJM, Curry RA, Gray MA, Lento J, MacLatchy DL, Monk WA, Pavey SA, St-Hilaire A, Wegscheider B, Munkittrick KR. Considering Fish as Recipients of Ecosystem Services Provides a Framework to Formally Link Baseline, Development, and Post-operational Monitoring Programs and Improve Aquatic Impact Assessments for Large Scale Developments. ENVIRONMENTAL MANAGEMENT 2022; 70:350-367. [PMID: 35596789 PMCID: PMC9252955 DOI: 10.1007/s00267-022-01665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In most countries, major development projects must satisfy an Environmental Impact Assessment (EIA) process that considers positive and negative aspects to determine if it meets environmental standards and appropriately mitigates or offsets negative impacts on the values being considered. The benefits of before-after-control-impact monitoring designs have been widely known for more than 30 years, but most development assessments fail to effectively link pre- and post-development monitoring in a meaningful way. Fish are a common component of EIA evaluation for both socioeconomic and scientific reasons. The Ecosystem Services (ES) concept was developed to describe the ecosystem attributes that benefit humans, and it offers the opportunity to develop a framework for EIA that is centred around the needs of and benefits from fish. Focusing an environmental monitoring framework on the critical needs of fish could serve to better align risk, development, and monitoring assessment processes. We define the ES that fish provide in the context of two common ES frameworks. To allow for linkages between environmental assessment and the ES concept, we describe critical ecosystem functions from a fish perspective to highlight potential monitoring targets that relate to fish abundance, diversity, health, and habitat. Finally, we suggest how this framing of a monitoring process can be used to better align aquatic monitoring programs across pre-development, development, and post-operational monitoring programs.
Collapse
Affiliation(s)
- Carolyn J M Brown
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
| | - R Allen Curry
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Michelle A Gray
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Jennifer Lento
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
| | - Wendy A Monk
- Environment and Climate Change Canada @ Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - Scott A Pavey
- Department of Biological Sciences and Canadian Rivers Institute, University of New Brunswick, Saint John, NB, Canada
| | - André St-Hilaire
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, QC, Canada
| | - Bernhard Wegscheider
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
- Institute of Ecology and Evolution and the Wyss Academy for Nature at the University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Kelly R Munkittrick
- Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada.
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
44
|
Su M, Liu N, Zhang Z, Zhang J. Osmoregulatory strategies of estuarine fish Scatophagus argus in response to environmental salinity changes. BMC Genomics 2022; 23:545. [PMID: 35907798 PMCID: PMC9339187 DOI: 10.1186/s12864-022-08784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Scatophagus argus, an estuarine inhabitant, can rapidly adapt to different salinity environments. However, the knowledge of the molecular mechanisms underlying its strong salinity tolerance remains unclear. The gill, as the main osmoregulatory organ, plays a vital role in the salinity adaptation of the fish, and thus relative studies are constructive to reveal unique osmoregulatory mechanisms in S. argus. RESULTS In the present study, iTRAQ coupled with nanoLC-MS/MS techniques were employed to explore branchial osmoregulatory mechanisms in S. argus acclimated to different salinities. Among 1,604 identified proteins, 796 differentially expressed proteins (DEPs) were detected. To further assess osmoregulatory strategies in the gills under different salinities, DEPs related to osmoregulatory (22), non-directional (18), hypo- (52), and hypersaline (40) stress responses were selected. Functional annotation analysis of these selected DEPs indicated that the cellular ion regulation (e.g. Na+-K+-ATPase [NKA] and Na+-K+-2Cl- cotransporter 1 [NKCC1]) and ATP synthesis were deeply involved in the osmoregulatory process. As an osmoregulatory protein, NKCC1 expression was inhibited under hyposaline stress but showed the opposite trend in hypersaline conditions. The expression levels of NKA α1 and β1 were only increased under hypersaline challenge. However, hyposaline treatments could enhance branchial NKA activity, which was inhibited under hypersaline environments, and correspondingly, reduced ATP content was observed in gill tissues exposed to hyposaline conditions, while its contents were increased in hypersaline groups. In vitro experiments indicated that Na+, K+, and Cl- ions were pumped out of branchial cells under hypoosmotic stress, whereas they were absorbed into cells under hyperosmotic conditions. Based on our results, we speculated that NKCC1-mediated Na+ influx was inhibited, and proper Na+ efflux was maintained by improving NKA activity under hyposaline stress, promoting the rapid adaptation of branchial cells to the hyposaline condition. Meanwhile, branchial cells prevented excessive loss of ions by increasing NKA internalization and reducing ATP synthesis. In contrast, excess ions in cells exposed to the hyperosmotic medium were excreted with sufficient energy supply, and reduced NKA activity and enhanced NKCC1-mediated Na+ influx were considered a compensatory regulation. CONCLUSIONS S. argus exhibited divergent osmoregulatory strategies in the gills when encountering hypoosmotic and hyperosmotic stresses, facilitating effective adaptabilities to a wide range of environmental salinity fluctuation.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhengqi Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
45
|
Gill transcriptome of the yellow peacock bass (Cichla ocellaris monoculus) exposed to contrasting physicochemical conditions. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Inokuchi M, Yamaguchi Y, Moorman BP, Seale AP. Age-Dependent Decline in Salinity Tolerance in a Euryhaline Fish. FRONTIERS IN AGING 2022; 2:675395. [PMID: 35822031 PMCID: PMC9261306 DOI: 10.3389/fragi.2021.675395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
Euryhaline teleost fish are characterized by their ability to tolerate a wide range of environmental salinities by modifying the function of osmoregulatory cells and tissues. In this study, we experimentally addressed the age-related decline in the sensitivity of osmoregulatory transcripts associated with a transfer from fresh water (FW) to seawater (SW) in the euryhaline teleost, Mozambique tilapia, Oreochromis mossambicus. The survival rates of tilapia transferred from FW to SW were inversely related with age, indicating that older fish require a longer acclimation period during a salinity challenge. The relative expression of Na+/K+/2Cl− cotransporter 1a (nkcc1a), which plays an important role in hyposmoregulation, was significantly upregulated in younger fish after SW transfer, indicating a clear effect of age in the sensitivity of branchial ionocytes. Prolactin (Prl), a hyperosmoregulatory hormone in O. mossambicus, is released in direct response to a fall in extracellular osmolality. Prl cells of 4-month-old tilapia were sensitive to hyposmotic stimuli, while those of >24-month-old fish did not respond. Moreover, the responsiveness of branchial ionocytes to Prl was more robust in younger fish. Taken together, multiple aspects of osmotic homeostasis, from osmoreception to hormonal and environmental control of osmoregulation, declined in older fish. This decline appears to undermine the ability of older fish to survive transfer to hyperosmotic environments.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Benjamin P Moorman
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI, United States
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI, United States.,Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
47
|
Kato A, Nagashima A, Hosono K, Romero MF. Membrane Transport Proteins Expressed in the Renal Tubular Epithelial Cells of Seawater and Freshwater Teleost Fishes. Front Physiol 2022; 13:939114. [PMID: 35812342 PMCID: PMC9259948 DOI: 10.3389/fphys.2022.939114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The kidney is an important organ that maintains body fluid homeostasis in seawater and freshwater teleost fishes. Seawater teleosts excrete sulfate and magnesium in small amounts of isotonic urine, and freshwater teleosts excrete water in large amounts of hypo-osmotic urine. The volume, osmolality, and ionic compositions of the urine are regulated mainly by membrane transport proteins expressed in the renal tubular epithelial cells. Gene expression, immunohistochemical, and functional analyses of the fish kidney identified membrane transport proteins involved in the secretion of sulfate and magnesium ions by the proximal tubules and reduction of urine volume by the collecting ducts in seawater teleosts, and excretion of water as hypotonic urine by the distal tubules and collecting ducts in freshwater teleosts. These studies promote an understanding of how the kidney contributes to the seawater and freshwater acclimation of teleosts at the molecular level.
Collapse
Affiliation(s)
- Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Akira Kato,
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kohei Hosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael F. Romero
- Department of Physiology and Biomedical Engineering, Nephrology and Hypertension and O’Brien Urology Research Center, Mayo Clinic College of Medicine & Science, Rochester, MN, United States
| |
Collapse
|
48
|
Li J, Wang X, Lan T, Lu Y, Hong M, Ding L, Wang L. CDK5/NFAT5-Regulated Transporters Involved in Osmoregulation in Fejervarya cancrivora. BIOLOGY 2022; 11:biology11060858. [PMID: 35741379 PMCID: PMC9220195 DOI: 10.3390/biology11060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
Crab-eating frogs (Fejervarya cancrivora) can live in brackish water with a salinity of up to 18‱, although most amphibians are not able to tolerate such high saline environments. To investigate its potential osmoregulation, we conducted experiments in F. cancrivora and F. multistriata. The results showed that F. cancrivora made use of ions (such as Na+ and Cl−) to increase intracellular concentrations via the Na+/K+-ATPase (NKA) enzyme. The mRNA expression of aldose reductase (AR) was significantly higher in F. cancrivora (p < 0.05), indicating that more organic osmolytes were produced and transported to maintain cellular homeosis. The mRNA expressions of Aquaporin 1 (AQP1) and AQP3 in kidney were significantly higher in F. cancrivora, while AQP expression in skin was higher in F. multistriata (p < 0.05). The mRNA level in activating the transcription of the nuclear factor of activated T cells-5 (NFAT5) which is one of the target genes of regulating the cellular response to hypertonicity, was higher in F. cancrivora. The protein expression of CDK5, the upstream protein of the NFAT5 pathway, was 2 times higher in F. cancrivora. Therefore, we can conclude that CDK5/NFAT5-regulated transporters might be involved in osmoregulation in F. cancrivora.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Ding
- Correspondence: (L.D.); (L.W.)
| | | |
Collapse
|
49
|
Sganga DE, Dahlke FT, Sørensen SR, Butts IAE, Tomkiewicz J, Mazurais D, Servili A, Bertolini F, Politis SN. CO2 induced seawater acidification impacts survival and development of European eel embryos. PLoS One 2022; 17:e0267228. [PMID: 35436318 PMCID: PMC9015118 DOI: 10.1371/journal.pone.0267228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing “control” (pH 8.1, 300 μatm CO2), end-of-century climate change (“intermediate”, pH 7.6, 900 μatm CO2) and “extreme” aquaculture conditions (pH 7.1, 3000 μatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1, crfr2), stress/repair response (hsp70, hsp90), water and solute transport (aqp1, aqp3), acid-base regulation (nkcc1a, ncc, car15), and inhibitory neurotransmission (GABAAα6b, Gabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.
Collapse
Affiliation(s)
- Daniela E. Sganga
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- * E-mail:
| | | | - Sune R. Sørensen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
- Billund Aquaculture, Billund, Denmark
| | - Ian A. E. Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David Mazurais
- CNRS, IRD, LEMAR, Ifremer, Université de Brest, Plouzané, France
| | - Arianna Servili
- CNRS, IRD, LEMAR, Ifremer, Université de Brest, Plouzané, France
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sebastian N. Politis
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
50
|
Shih SW, Yan JJ, Tsou YL, Lu SW, Wang MC, Chou MY, Hwang PP. In Vivo Functional Assay in Fish Gills: Exploring Branchial Acid-Excreting Mechanisms in Zebrafish. Int J Mol Sci 2022; 23:ijms23084419. [PMID: 35457237 PMCID: PMC9031880 DOI: 10.3390/ijms23084419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular and physiological analyses in ionoregulatory organs (e.g., adult gills and embryonic skin) are essential for studying fish ion regulation. Recent progress in the molecular physiology of fish ion regulation was mostly obtained in embryonic skin; however, studies of ion regulation in adult gills are still elusive and limited because there are no direct methods for in vivo functional assays in the gills. The present study applied the scanning ion-selective electrode technique (SIET) in adult gills to investigate branchial H+-excreting functions in vivo. We removed the opercula from zebrafish and then performed long-term acid acclimation experiments. The results of Western blot and immunofluorescence showed that the protein expression of H+-ATPase (HA) and the number of H+-ATPase-rich ionocytes were increased under acidic situations. The SIET results proved that the H+ excretion capacity is indeed enhanced in the gills acclimated to acidic water. In addition, both HA and Na+/H+ exchanger (Nhe) inhibitors suppressed the branchial H+ excretion capacity, suggesting that H+ is excreted in association with HA and Nhe in zebrafish gills. These results demonstrate that SIET is effective for in vivo detection in fish gills, representing a breakthrough approach for studying the molecular physiology of fish ion regulation.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Yi-Ling Tsou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Min-Chen Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence:
| |
Collapse
|