1
|
Song RX, Ma XY, Zhou TT, Yu ZF, Wang J, Li BD, Jing YM, Wang H, Fu Y, Lv RZ, Jia SY, Li XM, Zhang LM. Excessive hydrogen sulfide-induced activation of NMDA receptors in the colon participates in anxiety- and compulsive-like behaviors in a rodent model of hemorrhagic shock and resuscitation. Int Immunopharmacol 2024; 142:113255. [PMID: 39332088 DOI: 10.1016/j.intimp.2024.113255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
OBJECTIVE Hemorrhagic shock and resuscitation (HSR) cause inflammatory responses in the gastrointestinal tract and is associated with substantial morbidity and mortality rates. Hydrogen sulfide (H2S), a gasotransmitter with pleiotropic activity, exhibits anti-inflammatory benefits at physiological levels. However, deleterious effects are observed when its concentration increases. In this investigation, we employed a mouse model of HSR to examine the effects of an H2S scavenger on the gastrointestinal tract and brain, with emphasis on N-Methyl-d-Aspartate (NMDA) receptor function. METHODS Mice were immediately administered dl-propargylglycine (PAG) intragastrically as an H2S scavenger after HSR exposure. The O-maze and buried beads tests were used to assess compulsive- and anxiety-like behaviors. Pathological changes in the intestine were evaluated at 24 and 30 days after HSR. Subsequently, at 30 days after HSR, we examined electrophysiological and pathological changes in the amygdala. RESULTS Within 24 h of HSR exposure, animals treated with PAG showed significantly lower colonic injury. Additionally, compared to the HSR-treated mice 30 days after HSR, the PAG-treated mice displayed reduced buried beads, increased open-arm time, lower blood levels of Diamine Oxidase (DAO) and considerably improved ZO-1 intensity, a stronger association between the delta rhythm phase and beta activity amplitude, and lower neuroinflammatory response in the amygdala. MK-801, an NMDA receptor inhibitor, significantly reversed H2S-induced intestinal and cerebral injury. CONCLUSION This experimental data suggests that H2S-induced excessive activation of NMDA receptors contributes to anxiety- and compulsive-like behaviors caused by HSR.
Collapse
Affiliation(s)
- Rong-Xin Song
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Xiao-Yi Ma
- Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Ting-Ting Zhou
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Zhi-Fang Yu
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Jun Wang
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Bao-Dong Li
- Department of Neurology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Yu-Mo Jing
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Han Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Yue Fu
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Rui-Zhao Lv
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China
| | - Shi-Yan Jia
- Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China
| | - Xiao-Ming Li
- Department of Orthopedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research, China.
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No.2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, Cangzhou, China.
| |
Collapse
|
2
|
Miranda DAG, Cerqueira ARA, Muscará MN, Severino B, Caliendo G, Corvino A, Andreozzi G, Scognamiglio A, Chorilli M, Frecentese F, Costa SKP, Lopes LB. Development and evaluation of nanostructured systems for cutaneous delivery of H 2S-releasing corticosteroids for skin inflammatory diseases. Eur J Pharm Sci 2024; 203:106925. [PMID: 39374744 DOI: 10.1016/j.ejps.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Psoriasis is an immune-mediated chronic inflammatory disease that causes major psychosocial impact. Topical corticosteroids represent the standard pharmacological treatment for mild-to-moderate disease, but their local and systemic adverse effects reinforce the need for treatment innovations. Here we developed lamellar phase-based formulations for topical delivery of a hybrid dexamethasone and hydrogen sulfide (H2S) donor molecule (Dexa-TBZ), aiming to potentiate the effects of the glucocorticoid with H2S. They offer the possibility to obtain precursor formulations free of water that originate lamellar phases upon water addition, preventing drug hydrolysis during storage. Two groups of formulations were developed varying the surfactants and oil phase types and content. Systems containing 20 and 70 % of water formed, respectively, bulk lamellar phase and a more fluid formulation consisting of dispersed droplets (< 1000 nm) stabilized by lamellar phase. Both presented pseudoplastic behavior. Dexa-TBZ was incorporated at 1 %, remaining stable for 8 h. Drug content decreased to ∼80 % after 1 week in precursor formulations free of water, but remained stable after that. Without causing changes to the cutaneous barrier function ex vivo or to the histological structure of the skin in vivo, the formulation containing phosphatidylcholine as surfactant and 70 % of water promoted 1.8- and 2.7-fold increases in Dexa-TBZ penetration in the stratum corneum and epidermis+dermis, respectively, compared to a control solution, demonstrating their potential applicability as topical delivery systems.
Collapse
Affiliation(s)
- Daniel A G Miranda
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anderson R A Cerqueira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Giorgia Andreozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Antonia Scognamiglio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Jing MR, Liang XY, Zhang YX, Zhu YW, Wang Y, Chu T, Jin YQ, Zhang CH, Zhu SG, Zhang CJ, Wang QM, Feng ZF, Ji XY, Wu DD. Role of hydrogen sulfide-microRNA crosstalk in health and disease. Nitric Oxide 2024; 152:19-30. [PMID: 39260562 DOI: 10.1016/j.niox.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
5
|
Jiang ZL, Liu Y, Zhang CH, Chu T, Yang YL, Zhu YW, Wang Y, Liu YF, Zhang YX, Feng ZF, Ji XY, Wu DD. Emerging roles of hydrogen sulfide in colorectal cancer. Chem Biol Interact 2024; 403:111226. [PMID: 39237072 DOI: 10.1016/j.cbi.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.
Collapse
Affiliation(s)
- Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Medicine, Huaxian County People's Hospital, Anyang, Henan, 456400, China; Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
6
|
Fang H, Zang Y. An overview of analytical methods for detecting endogenous hydrogen sulfide (H 2S) in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154315. [PMID: 39053091 DOI: 10.1016/j.jplph.2024.154315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The significance of hydrogen sulfide (H2S) as a crucial gasotransmitter has been shown extensively in plants, and endogenous H2S is often modulated to activate H2S signaling when plants respond to numerous developmental and environmental cues. Consequently, elucidating the H2S physiological concentrations and the H2S generation intensity of plants is key to understanding the activation mechanism of H2S signaling, which has attracted increasing attention. Currently, a variety of reaction-based methods have been reported for monitoring H2S concentration in vivo and in vitro. In this review, we summarize and describe in detail several methods for quantifying and bioimaging endogenous H2S in plants systems, mainly the spectrophotometer-dependent methylene blue (MB) method and fluorescence probes, including the reaction mechanisms, design strategies, response principles, and application details. Moreover, we also summarize the advantages and disadvantages of these methods as well as the research scenarios in which they are applicable. We expect that this review will provide some guidelines on the selection of methods for H2S sensing and the comprehensive investigations into H2S signaling in plants.
Collapse
Affiliation(s)
- Huihui Fang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Roy B, Shieh M, Takata T, Jung M, Das E, Xu S, Akaike T, Xian M. Phototriggered Hydrogen Persulfide Donors via Hydrosulfide Radical Formation Enhancing the Reactive Sulfur Metabolome in Cells. J Am Chem Soc 2024. [PMID: 39449660 DOI: 10.1021/jacs.4c11540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hydrogen persulfide (H2S2) is an important sulfur-containing signaling molecule that plays a crucial role in the homeostasis of various organ systems, such as the renal, cardiovascular, liver, and gastrointestinal systems. However, research on H2S2 in biological settings is still challenging due to its instability and high reactivity. Compounds that can controllably release H2S2 (also known as donors) are thus crucial research tools. Currently, available H2S2 donors are still very limited, with most of them relying on modified disulfide templates. These templates possess an unavoidable limitation of being susceptible to cellular disulfide exchange which can compromise their efficacy. In this work, we explored nondisulfide-based and nonoxidation-dependent templates for the design of H2S2 donors. We found that tertiary naphthacyl thiols could undergo phototriggered C-S homolytic cleavage to form H2S2 via hydrosulfide (HS) radicals. In addition, the release of H2S2 was associated with the formation of a product with strong blue fluorescence, which allowed for real-time monitoring of the release process. This reaction was demonstrated to proceed effectively in both buffers and cells, with the ability to enhance intracellular production of persulfides, including GSSH, CysSSH, H2S2, H2S3, etc. It provides a unique photocontrolled H2S2 donor system with distinct advantages compared to known H2S2 donors due to its good stability and spatiotemporal control ability.
Collapse
Affiliation(s)
- Biswajit Roy
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tsuyoshi Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Eshani Das
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
8
|
Zhu X, Cao Y, Chen S, Liu Q, Chai J, Wang W. Insufficient S-sulfhydration of serum and glucocorticoid-regulated kinase 1 participates in hyperhomocysteinemia-induced liver injury. Free Radic Biol Med 2024; 225:517-527. [PMID: 39427745 DOI: 10.1016/j.freeradbiomed.2024.10.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND & AIMS Previous studies have established that hyperhomocysteinemia (HHcy) significantly contributes to the development of non-alcoholic steatohepatitis (NASH). Conversely, hydrogen sulfide (H2S) has shown potential in mitigating NASH. Despite these findings, it remains uncertain whether H2S can serve as a therapeutic agent against HHcy-induced liver damage. METHODS Mice were fed a high-methionine diet to induce HHcy and HepG2 cells were exposed to homocysteine (Hcy). In both models, we assessed liver injury, H2S concentration, and autophagy levels. For rescue, sodium hydrosulfide (NaHS), an H2S donor, was used to test its potential in reversing hepatic pathological features induced by HHcy. RESULTS 1) Hcy accumulation led to liver damage and increased autophagy. This was linked to insufficient S-sulfhydration of serum and glucocorticoid-regulated kinase 1 (SGK1) at Cys244 and Cys282, a crucial autophagy regulator. The deficiency in S-sulfhydration was resulted from downregulation of cystathionine-γ-lyase (CSE) and subsequent H2S decrease, leading to SGK1 inactivation. 2) Administration of NaHS reduced the liver damage caused by high Hcy levels and restored H2S levels, promoting the S-sulfhydration and activation of SGK1. 3) Pharmacological inhibition of SGK1 induced autosis, a specific type of cell death caused by overactivation of autophagy. Conversely, a constitutively active mutant of SGK1 (SGK1S422D) significantly decreased autophagy and improved cell viability. CONCLUSIONS NaHS supplementation mitigates HHcy-induced liver injury by downregulating hepatic autophagy through the S-sulfhydration and activation of SGK1. This post-translational modification by H2S holds promise as a therapeutic approach for HHcy-induced liver injury.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Cao
- Department of Basic Medical Sciences, Beijing Health Vocational College, Beijing, 101149, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qinchi Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China.
| |
Collapse
|
9
|
Zheng H, Chen H, Cai Y, Shen M, Li X, Han Y, Deng X, Cao H, Liu J, Li H, Liu B, Li G, Wang X, Chen H, Hou J, Lin SH, Zong L, Zhang Y. Hydrogen sulfide-mediated persulfidation regulates homocysteine metabolism and enhances ferroptosis in non-small cell lung cancer. Mol Cell 2024; 84:4016-4030.e6. [PMID: 39321805 DOI: 10.1016/j.molcel.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/15/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Hydrogen sulfide (H₂S), a metabolite of the transsulfuration pathway, has been implicated in ferroptosis, a unique form of cell death caused by lipid peroxidation. While the exact mechanisms controlling ferroptosis remain unclear, our study reveals that H₂S sensitizes human non-small cell lung cancer (NSCLC) cells to this process, particularly when cysteine levels are low. Combining H₂S with cystine depletion significantly enhances the effectiveness of ferroptosis-based cancer therapy. Mechanistically, H₂S persulfidates the 195th cysteine on S-adenosyl homocysteine hydrolase (SAHH), reducing its enzymatic activity. This leads to decreased homocysteine levels, subsequently lowering cysteine and glutathione concentrations under cystine depletion conditions. These changes ultimately increase the vulnerability of NSCLC cells to ferroptosis. Our findings establish H₂S as a key regulator of homocysteine metabolism and a critical factor in determining NSCLC cell susceptibility to ferroptosis. These results highlight the potential of H₂S-based therapies to improve the efficacy of ferroptosis-targeted cancer treatments for NSCLC.
Collapse
Affiliation(s)
- Hualei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Huidi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunjie Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Min Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xilin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yi Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xusheng Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hongjie Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Junjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Benchao Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Ganlin Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xindong Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hui Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Shu-Hai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, Fujian, China
| | - Lili Zong
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yongyou Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; National Institute for Data Science in Health and Medicine Engineering, Faculty of Medicine and Life Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
10
|
Li Z, Thomas M, Berač CM, Stach OS, Besenius P, Matson JB. Regulating H 2S release from self-assembled peptide H 2S-donor conjugates using cysteine derivatives. Org Biomol Chem 2024; 22:8173-8181. [PMID: 39291596 PMCID: PMC11409224 DOI: 10.1039/d4ob01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Self-assembled peptides provide a modular and diverse platform for drug delivery, and innovative delivery methods are needed for delivery of hydrogen sulfide (H2S), an endogenous signaling molecule (gasotransmitter) with significant therapeutic potential. Of the available types of H2S donors, peptide/protein H2S donor conjugates (PHDCs) offer significant versatility. Here we discuss the design, synthesis, and in-depth study of a PHDC containing three covalently linked components: a thiol-triggered H2S donor based on an S-aroylthiooxime (SATO), a GFFF tetrapeptide, and a tetraethylene glycol (TEG) dendron. Conventional transmission electron microscopy showed that the PHDC self-assembled into spherical structures without heat or stirring, but it formed nanofibers with gentle heat (37 °C) and stirring. Circular dichroism (CD) spectroscopy data collected during self-assembly under nanofiber-forming conditions suggested an increase in β-sheet character and a decrease in organization of the SATO units. Release of H2S from the nanofibers was studied through triggering with various thiols. The release rate and total amount of H2S released over both short (5 h) and long (7 d) time scales varied with the charge state: negatively charged and zwitterionic thiols (e.g., Ac-Cys-OH and H-Cys-OH) triggered release slowly while a neutral thiol (Ac-Cys-OMe) showed ∼10-fold faster release, and a positively charged thiol (H-Cys-OMe) triggered H2S release nearly 50-fold faster than the negatively charged thiols. CD spectroscopy studies monitoring changes in secondary structure over time during H2S release showed similar trends. This study sheds light on the driving forces behind self-assembling nanostructures and offers insights into tuning H2S release through thiol charge state modulation.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Marius Thomas
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Oliver S Stach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - John B Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
11
|
Zhou M, Zheng M, Deng W, Kong N, Hu J, Wang P, Yang X. A highly sensitive and selective fluorescent "on-off-on" peptide-based probe for sequential detection of Hg 2+ and S 2- ions: Applications in living cells and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124514. [PMID: 38805991 DOI: 10.1016/j.saa.2024.124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.
Collapse
Affiliation(s)
- Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Na Kong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Jinglan Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
12
|
Li Y, Wang YX, Liu D, Ni CC, Ni J, Ni JS. Structural isomerism engineering regulates molecular AIE behavior and application in visualizing endogenous hydrogen sulfide. J Mater Chem B 2024. [PMID: 39363751 DOI: 10.1039/d4tb01617c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Hydrogen sulfide (H2S) is a critical bioregulator implicated in numerous physiological and pathological processes, including cancer and neurodegenerative diseases. Compared with traditional instrument analysis, fluorescence detection technology based on small molecules in real-time and in situ sensing H2S has attracted attention. In this investigation, we developed a system of coumarin-based fluorophores linked with aminopyridine via a dipolar imino-double bond. Their aggregation-induced emission (AIE) behaviors were further regulated via structural isomerism engineering. Owing to restricting intramolecular motions and high molecular dipole moment, 2-amino-pyridyl-substituted coumarin (CMR-o-Py) forms stable AIE nanoaggregates with brighter fluorescence than the others. The CMR-o-Py nanoaggregates serve as probes for sensing H2S with a detection limit of 18.1 μM in a hydrophilic environment via Michael addition between imino-bond and sulfide ions. The 1 : 1 stoichiometric binding energy constant between the probe and H2S is 5.68 × 108 M-1, and its half-time of the first-order binding reaction was estimated to be 4.85 min. Moreover, CMR-o-Py, with excellent biocompatibility, holds promise as an ideal sensor for endogenous H2S in living cells and onion tissues, further highlighting its potential application in biological fields.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Yong-Xiang Wang
- Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Dujuan Liu
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Chen-Chieh Ni
- Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Jianming Ni
- Department of Radiology, Jiangnan University Medical Center (JUMC), Wuxi 214002, China
| | - Jen-Shyang Ni
- Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| |
Collapse
|
13
|
Miller RA, Harrison DE, Cortopassi GA, Dehghan I, Fernandez E, Garratt M, Geisler JG, Ginsburg BC, Han ML, Kaczorowski CC, Kumar N, Leiser SF, Lopez-Cruzan M, Milne G, Mitchell JR, Nelson JF, Reifsnyder PC, Salmon AB, Korstanje R, Rosenthal N, Strong R. Lifespan effects in male UM-HET3 mice treated with sodium thiosulfate, 16-hydroxyestriol, and late-start canagliflozin. GeroScience 2024; 46:4657-4670. [PMID: 38753230 PMCID: PMC11336000 DOI: 10.1007/s11357-024-01176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024] Open
Abstract
Genetically heterogeneous UM-HET3 mice born in 2020 were used to test possible lifespan effects of alpha-ketoglutarate (AKG), 2,4-dinitrophenol (DNP), hydralazine (HYD), nebivolol (NEBI), 16α-hydroxyestriol (OH_Est), and sodium thiosulfate (THIO), and to evaluate the effects of canagliflozin (Cana) when started at 16 months of age. OH_Est produced a 15% increase (p = 0.0001) in median lifespan in males but led to a significant (7%) decline in female lifespan. Cana, started at 16 months, also led to a significant increase (14%, p = 0.004) in males and a significant decline (6%, p = 0.03) in females. Cana given to mice at 6 months led, as in our previous study, to an increase in male lifespan without any change in female lifespan, suggesting that this agent may lead to female-specific late-life harm. We found that blood levels of Cana were approximately 20-fold higher in aged females than in young males, suggesting a possible mechanism for the sex-specific disparities in its effects. NEBI was also found to produce a female-specific decline (4%, p = 0.03) in lifespan. None of the other tested drugs provided a lifespan benefit in either sex. These data bring to 7 the list of ITP-tested drugs that induce at least a 10% lifespan increase in one or both sexes, add a fourth drug with demonstrated mid-life benefits on lifespan, and provide a testable hypothesis that might explain the sexual dimorphism in lifespan effects of the SGLT2 inhibitor Cana.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- Geriatrics Center, University of Michigan, Ann Arbor, MI, USA.
| | | | | | - Ishmael Dehghan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Fernandez
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- GRECC, South Texas Veterans Health Care Network, San Antonio, TX, USA
| | - Michael Garratt
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Brett C Ginsburg
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Melissa L Han
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine C Kaczorowski
- Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Navasuja Kumar
- Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Scott F Leiser
- Geriatrics Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Marisa Lopez-Cruzan
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ginger Milne
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - James F Nelson
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | - Adam B Salmon
- GRECC, South Texas Veterans Health Care Network, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies and Dept of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | - Randy Strong
- Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
14
|
Ligi S, Ali A, Yang G. Cystathionine gamma-lyase deficiency exaggerates diethylnitrosamine-induced liver damage in mice. Nitric Oxide 2024; 151:1-9. [PMID: 39151724 DOI: 10.1016/j.niox.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cystathionine gamma-lyase (CSE) is a key enzyme in reverse transsulfuration pathway and contributes to the majority of H2S generation in liver tissues via cysteine metabolism. Dysfunction of the CSE/H2S system is linked to both chronic and acute liver damage. This study investigated the regulatory role of CSE deficiency on diethylnitrosamine (DEN)-induced liver damage in mice. A single injection of DEN was administered into 4-week-old male CSE knockout (CSE-KO) mice and wild-type (WT) littermates, and the mice were sacrificed at 28 weeks of age. Compared to age-matched WT mice, CSE-KO mice spontaneously developed steatosis with increased oxidative stress and higher expressions of inflammation and fibrosis-related genes at 28-weeks of age. Following DEN injection, CSE-KO mice experienced more severe liver damage in comparison with the WT group as reflected by elevated levels of lipid accumulation, increased activities of alanine aminotransferase and aspartate aminotransferase, higher oxidative stress and fibrosis development, and increased expressions of inflammation and fibrosis-related genes. No visible tumors were observed in both types of mice with DEN treatment. In addition, the expression levels of the three H2S-generating proteins (CSE, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase) and the H2S production rate in liver tissues were unaffected by DEN. Taken together, our study demonstrates that CSE provides a significant hepatoprotective effect and deficiency of CSE exaggerates DEN-induced liver damage in mice. Based on these findings, it can be suggested that targeting the CSE/H2S signaling pathway could be a potential therapeutic target for the treatment of liver diseases.
Collapse
Affiliation(s)
- Samantha Ligi
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Arm Ali
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
15
|
Song N, Yu JE, Ji E, Choi KH, Lee S. Hydrogen sulfide inhibits gene expression associated with aortic valve degeneration by inducing NRF2-related pro-autophagy effect in human aortic valve interstitial cells. Mol Cell Biochem 2024; 479:2653-2662. [PMID: 37861880 DOI: 10.1007/s11010-023-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease but there are currently no effective medical treatments that can delay disease progression due to a lack of knowledge of the precise pathophysiology. The expression of sulfide: quinone oxidoreductase (SQOR) and nuclear factor erythroid 2-related factor 2 (NRF2) was decreased in the aortic valve of AS patients. However, the role of SQOR and NRF2 in the pathophysiology of AS has not been found. We investigated the effects of hydrogen sulfide (H2S)-releasing compounds on diseased aortic valve interstitial cells (AVICs) to explain the cellular mechanism of SQOR and elucidate the medical value of H2S for AS treatment. Sodium hydrosulfide (NaHS) treatment increased the expression of SQOR and NRF2 gene and consequently induced the NRF2 target genes, such as NAD(P)H quinone dehydrogenase 1 and cystathionine γ-lyase. In addition, NaHS dose-dependently decreased the expression level of fibrosis and inflammation-related genes (MMP9, TNF-α, IL6) and calcification-related genes (ALP, osteocalcin, RUNX2, COL1A1) in human AVICs. Furthermore, NaHS activated the AMPK-mTOR pathway and inhibited the PI3K-AKT pathway, resulting in a pro-autophagy effect in human AVICs. An NRF2 inhibitor, brusatol, attenuated NaHS-induced AMPK activation and decreased the autophagy markers Beclin-1 and LC3AB, suggesting that the mechanism of action of H2S is related to NRF2. In conclusion, H2S decreased gene expression levels related to aortic valve degeneration and activated AMPK-mTOR-mediated pro-autophagy function associated with NRF2 in human AVICs. Therefore, H2S could be a potential therapeutic target for the development of AS treatment.
Collapse
Affiliation(s)
- Naaleum Song
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeong Eun Yu
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eunhye Ji
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Hee Choi
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sahmin Lee
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
16
|
Xu J, Lv Z, Wang L, Wu X, Tan B, Shen XC, Chen H. Tuning Tumor Targeting and Ratiometric Photoacoustic Imaging by Fine-Tuning Torsion Angle for Colorectal Liver Metastasis Diagnosis. Chemistry 2024; 30:e202402019. [PMID: 38923040 DOI: 10.1002/chem.202402019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.
Collapse
Affiliation(s)
- Jinyuan Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhangkang Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xingqing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bisui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
17
|
Li H, Wang S, An S, Gao B, Wu D, Li Y. Hydrogen sulphide reduces renal ischemia-reperfusion injury by enhancing autophagy and reducing oxidative stress. Nephrology (Carlton) 2024; 29:645-654. [PMID: 39075751 DOI: 10.1111/nep.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
AIM Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulphide (H2S) exerts a protective effect in renal IRI. The present study was carried out to investigate the effects of exogenous H2S on renal IRI by regulating autophagy in mice. METHODS Mice were randomly assigned to control, IRI and NaHS (an H2S donor, 28, 56 and 100 μmol/kg) groups. Renal IRI was induced by clamping the bilateral renal pedicles with non-traumatic arterial clamp for 45 min and then reperfused for 24 h. Mice were administered intraperitoneally with NaHS 20 min prior to renal ischemia. Sham group mice underwent the same procedures without clamping. Serum and kidney tissues were harvested 24 h after reperfusion for functional, histological, oxidative stress, and autophagic determination. RESULTS Compared with the control group, the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), the protein levels of LC3II/I, Beclin-1 and P62, as well as the number of autophagosomes were significantly increased, but the activity of superoxide dismutase (SOD) was decreased after renal IRI. NaHS pre-treatment dramatically attenuated renal IRI-induced renal dysfunction, histological changes, MDA concentration and p62 expression in a dose-dependent manner. However, NaHS increased the SOD activity and the protein levels of LC3II/I and Beclin-1. CONCLUSION These results indicate that exogenous H2S protects the kidney from IRI through enhancement of autophagy and reduction of oxidative stress. Novel H2S donors could be developed in the treatment of renal IRI.
Collapse
Affiliation(s)
- Hui Li
- Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, Henan, China
| | - Shuaiwei Wang
- International Laboratory for Sepsis Research, Huaihe Hospital, Henan University, Kaifeng, Henan, China
| | - Shuangshuang An
- Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, Henan, China
| | - Biao Gao
- Kaifeng Central Hospital, Kaifeng, Henan, China
| | - Dongdong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yanzhang Li
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
18
|
Myszkowska J, Klotz K, Leandro P, Kruger WD, Froese DS, Baumgartner MR, Spiekerkoetter U, Hannibal L. Real-time detection of enzymatically formed hydrogen sulfide by pathogenic variants of cystathionine beta-synthase using hemoglobin I of Lucina pectinata as a biosensor. Free Radic Biol Med 2024; 223:281-295. [PMID: 39067625 DOI: 10.1016/j.freeradbiomed.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Classical homocystinuria is a rare disease caused by mutations in cystathionine β-synthase (CBS) gene (OMIM 613381). CBS catalyzes the first step of the transsulfuration pathway that converts homocysteine (Hcy) into cystathionine (Cysta) via a number of co-substrates and mechanisms. Formation of Cysta by condensation of Hcy and cysteine (Cys) produces a molar equivalent of hydrogen sulfide (H2S). H2S plays important roles in cognitive and vascular functions. Clinically, patients with CBS deficiency present with vascular, ocular, neurological and skeletal impairments. Biochemically, CBS deficiency manifests with elevated Hcy and reduced concentration of Cysta in plasma and urine. A number of pathogenic variants of human CBS have been characterized by their residual enzymatic activity, but very few studies have examined H2S production by pathogenic CBS variants, possibly due to technical hurdles in H2S detection and quantification. We describe a method for the real-time, continuous quantification of H2S formed by wild-type and pathogenic variants of human recombinant CBS, as well as by fibroblast extracts from healthy controls and patients diagnosed with CBS deficiency. The method takes advantage of the specificity and high affinity of hemoglobin I of the clam Lucina pectinata toward H2S and is based on UV-visible spectrophotometry. Comparison with the gold-standard, end-point H2S quantification method employing monobromobimane, as well as correlations with CBS enzymatic activity determined by LC-MS/MS showed agreement and correlation, and permitted the direct, time-resolved determination of H2S production rates by purified human recombinant CBS and by CBS present in fibroblast extracts. Rates of H2S production were highest for wild-type CBS, and lower for pathogenic variants. This method enables the examination of structural determinants of CBS that are important for H2S production and its possible relevance to the clinical outcome of patients.
Collapse
Affiliation(s)
- Joanna Myszkowska
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Kalapos MP, de Bari L. The evolutionary arch of bioenergetics from prebiotic mechanisms to the emergence of a cellular respiratory chain. Biosystems 2024; 244:105288. [PMID: 39128646 DOI: 10.1016/j.biosystems.2024.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
This article proposes an evolutionary trajectory for the development of biological energy producing systems. Six main stages of energy producing system evolution are described, from early evolutionary pyrite-pulled mechanism through the Last Universal Common Ancestor (LUCA) to contemporary systems. We define the Last Pure Chemical Entity (LPCE) as the last completely non-enzymatic entity. LPCE could have had some life-like properties, but lacked genetic information carriers, thus showed greater instability and environmental dependence than LUCA. A double bubble model is proposed for compartmentalization and cellularization as a prerequisite to both highly efficient protein synthesis and transmembrane ion-gradient. The article finds that although LUCA predominantly functioned anaerobically, it was a non-exclusive anaerobe, and sulfur dominated metabolism preceded phosphate dominated one.
Collapse
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
20
|
Lee LCC, Lo KKW. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024:e2400563. [PMID: 39319499 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
21
|
Pilsova Z, Pilsova A, Zelenkova N, Klusackova B, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction. Front Endocrinol (Lausanne) 2024; 15:1427069. [PMID: 39324123 PMCID: PMC11423738 DOI: 10.3389/fendo.2024.1427069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is produced in various tissues and cells of the male reproductive system, including testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate, penile tissues, and sperm cells. This review aims to summarize the knowledge about the presence and effects of H2S in male reproductive tissues and outline possible therapeutic strategies in pathological conditions related to male fertility, e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S supports spermatogenesis by maintaining the integrity of the blood-testicular barrier (BTB), stimulating testosterone production, and providing cytoprotective effects. In spermatozoa, H2S modulates sperm motility, promotes sperm maturation, capacitation, and acrosome reaction, and has significant cytoprotective effects. Given its vasorelaxant effects, it supports the erection of penile tissue. These findings suggest the importance and therapeutic potential of H2S in male reproduction, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Zuzana Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
22
|
Shahid A, Bhatia M. Hydrogen Sulfide: A Versatile Molecule and Therapeutic Target in Health and Diseases. Biomolecules 2024; 14:1145. [PMID: 39334911 PMCID: PMC11430449 DOI: 10.3390/biom14091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, research has unveiled the significant role of hydrogen sulfide (H2S) in many physiological and pathological processes. The role of endogenous H2S, H2S donors, and inhibitors has been the subject of studies that have aimed to investigate this intriguing molecule. The mechanisms by which H2S contributes to different diseases, including inflammatory conditions, cardiovascular disease, viral infections, and neurological disorders, are complex. Despite noteworthy progress, several questions remain unanswered. H2S donors and inhibitors have shown significant therapeutic potential for various diseases. This review summarizes our current understanding of H2S-based therapeutics in inflammatory conditions, cardiovascular diseases, viral infections, and neurological disorders.
Collapse
Affiliation(s)
- Aqsa Shahid
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
23
|
Yuan Z, Li J, He K, Sun Z, Luo G, Liu H, Dong J, Zhou C, Cui H, Fan C. Endogenous hydrogen sulfide accelerated trauma-induced heterotopic ossification through the Ca 2+/ERK pathway-enhanced aberrant osteogenic activity. Redox Biol 2024; 75:103265. [PMID: 39003920 PMCID: PMC11298937 DOI: 10.1016/j.redox.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Unveiling of the mechanism involved in the occurrence and development of trauma-induced heterotopic ossification (tHO) is highly demanding due to current ineffective clinical treatment for it. Previous studies proposed that hydrogen sulfide (H2S) was vital for fate determination of stem cells, suggesting a potential role in the regulation of tHO development. In the current study, We found that expression of metabolic enzyme within sulfur conversion pathway was enhanced after tendon injury, leading to H2S accumulation within the tHO region. Increased production of endogenous H2S was shown to promote aberrant osteogenic activity of tendon-derived stem cells (TDSCs), which accelerated tHO formation. The inhibition of metabolic enzyme of H2S production or directly absorption of H2S could abolished osteogenic induction of TDSCs and the formation of tHO. Mechanistically, through RNA sequencing combined with rescue experiments, we demonstrated that activation of Ca2+/ERK pathway was the downstream molecular event of H2S-induced osteogenic commitment of TDSCs and tHO. For treatment strategy exploration, zine oxide nanoparticles (ZnO) as an effective H2S elimination material was validated to ideally halt the tHO formation in this study. Furthermore, in terms of chirality of nanoparticles, D-ZnO or L-ZnO nanoparticles showed superiority over R-ZnO nanoparticles in both clearing of H2S and inhibition of tHO. Our study not only revealed the mechanism of tHO through the endogenous gas signaling event from a new perspective, but also presented a applicable platform for elimination of the inordinate gas production, thus aiding the development of clinical treatment for tHO.
Collapse
Affiliation(s)
- Zhengqiang Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kuangyu He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Gang Luo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinlei Dong
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haomin Cui
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
24
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
25
|
Wang X, Chen S, Wang X, Song Z, Wang Z, Niu X, Chen X, Chen X. Application of artificial hibernation technology in acute brain injury. Neural Regen Res 2024; 19:1940-1946. [PMID: 38227519 DOI: 10.4103/1673-5374.390968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Controlling intracranial pressure, nerve cell regeneration, and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury. There is currently a lack of effective treatment methods. Hibernation has the characteristics of low temperature, low metabolism, and hibernation rhythm, as well as protective effects on the nervous, cardiovascular, and motor systems. Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body's metabolism, lowering the body's core temperature, and allowing the body to enter a state similar to hibernation. This review introduces artificial hibernation technology, including mild hypothermia treatment technology, central nervous system regulation technology, and artificial hibernation-inducer technology. Upon summarizing the relevant research on artificial hibernation technology in acute brain injury, the research results show that artificial hibernation technology has neuroprotective, anti-inflammatory, and oxidative stress-resistance effects, indicating that it has therapeutic significance in acute brain injury. Furthermore, artificial hibernation technology can alleviate the damage of ischemic stroke, traumatic brain injury, cerebral hemorrhage, cerebral infarction, and other diseases, providing new strategies for treating acute brain injury. However, artificial hibernation technology is currently in its infancy and has some complications, such as electrolyte imbalance and coagulation disorders, which limit its use. Further research is needed for its clinical application.
Collapse
Affiliation(s)
- Xiaoni Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shulian Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xiaoyu Wang
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhen Song
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqi Wang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaofei Niu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaochu Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| |
Collapse
|
26
|
Liang XY, Wang Y, Zhu YW, Zhang YX, Yuan H, Liu YF, Jin YQ, Gao W, Ren ZG, Ji XY, Wu DD. Role of hydrogen sulfide in dermatological diseases. Nitric Oxide 2024; 150:18-26. [PMID: 38971520 DOI: 10.1016/j.niox.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.
Collapse
Affiliation(s)
- Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Guang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
27
|
Hu XJ, Sun Y, Liu GJ, Zhang J, Zhang LX, Peng YH. Cystathionine- β-synthase expression correlates with tumour progression and adverse prognosis in patients with colon cancer. J Int Med Res 2024; 52:3000605241263726. [PMID: 39324183 PMCID: PMC11439173 DOI: 10.1177/03000605241263726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE To investigate the levels of cystathionine-β-synthase (CBS) in colon cancer tissues compared with adjacent control tissues; and to examine the relationship between CBS level and clinical characteristics and prognosis. METHODS This retrospective study enrolled patients with primary colon cancer. Paraffin-embedded specimens were used to create pathological tissue microarrays. Immunohistochemistry was performed on the microarray to detect the levels of CBS in colon cancer tissues and normal adjacent tissues. Analyses were undertaken to examine the relationship between the level of CBS and clinical characteristics and prognosis. RESULTS A total of 216 patients (107 males and 109 females) were included in the study. The level of CBS in cancer tissues was found to be significantly increased compared with normal adjacent control tissues. There were significant differences in tumour location, tumour-node-metastasis stage and survival rate between the CBS-negative and CBS-positive groups. Positive CBS immunostaining was associated with decreased survival in colon cancer patients. The results of multivariate Cox regression analysis revealed that tumour location and positive CBS immunostaining were independent prognostic factors for survival. CONCLUSION Positive CBS immunostaining was closely associated with colon cancer and high levels of CBS might accelerate tumour development and affect patient prognosis in colon cancer.
Collapse
Affiliation(s)
- Xiao-Jie Hu
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei Province, China
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Yun Sun
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Guang-Jie Liu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Juan Zhang
- Department of Epidemiology and Statistics, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Li-Xiao Zhang
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Yan-Hui Peng
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei Province, China
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
28
|
Liu T, Chen H, Luo S, Xue S. Hydrogen sulphide alleviates root growth inhibition induced by phosphate starvation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39175420 DOI: 10.1111/pce.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Phosphorus (P) has crucial roles in plant growth and development. Hydrogen sulphide (H2S) has multiple functions in plants, particularly having the ability to promote tolerance to a variety of adversity stresses. However, it is unclear whether H2S has a function when plants suffer Pi-deficiency stress. DES1, encoding L-cysteine desulfhydrase1, is a crucial source of H2S in Arabidopsis thaliana by catalysing the substrate L-cysteine. Under phosphate starvation, the des1 mutant had a significantly shorter primary root length than the wild-type Col-0, and exogenous application of H2S donor NaHS could compensate for the root growth-sensitive phenotype. In contrast, the transgenic lines DES1ox overexpressing DES1 exhibited less sensitivity to phosphate starvation in terms of longer roots compared to the Col-0. These results demonstrate that H2S is involved in the regulation of Arabidopsis root growth under phosphate starvation. Moreover, using quantitative real-time polymerase chain reaction experiments to analyse the changes in genes induced by phosphate starvation in des1 mutant and Col-0, we screened to find that the expression of the Sulfoquinovosyl diacylglycerol 1 (SQD1) gene was significantly downregulated in the des1 mutant. Consistently, exogenous H2S significantly promoted SQD1 expression levels in roots of Col-0. Taken together, we demonstrate that DES1-mediated H2S participates in alleviating root growth inhibition by promoting the expression of SQD1 under Pi starvation.
Collapse
Affiliation(s)
- Tong Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sheng Luo
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
29
|
Sun HJ, Lu QB, Zhu XX, Ni ZR, Su JB, Fu X, Chen G, Zheng GL, Nie XW, Bian JS. Pharmacology of Hydrogen Sulfide and Its Donors in Cardiometabolic Diseases. Pharmacol Rev 2024; 76:846-895. [PMID: 38866561 DOI: 10.1124/pharmrev.123.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Qing-Bo Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xue-Xue Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Zhang-Rong Ni
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jia-Bao Su
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao Fu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guo Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Guan-Li Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Xiao-Wei Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| | - Jin-Song Bian
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China (H.-J.S., X.-X.Z., Z.-R.N., J.-B.S., X.F., G.C., G.-L.Z.); Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, Jiangsu, China (Q.-B.L.); Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong, China (X.-W.N.); and Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China (J.-S.B.)
| |
Collapse
|
30
|
Zhang CJ, Wang Y, Jin YQ, Zhu YW, Zhu SG, Wang QM, Jing MR, Zhang YX, Cai CB, Feng ZF, Ji XY, Wu DD. Recent advances in the role of hydrogen sulfide in age-related diseases. Exp Cell Res 2024; 441:114172. [PMID: 39053869 DOI: 10.1016/j.yexcr.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.
Collapse
Affiliation(s)
- Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Municipal Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
31
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
32
|
Ghosh P, De D, Sahoo P. Development of an assay for colorimetric and fluorometric detection of H 2S. RSC Adv 2024; 14:25071-25076. [PMID: 39135977 PMCID: PMC11317793 DOI: 10.1039/d4ra04339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Hydrogen sulfide is a highly toxic gas that can produce extremely rapid CNS and respiratory depression and sometimes becomes fatal at high concentrations. There is no proven antidote for hydrogen sulfide poisoning. Hence, it is important to reduce the production of H2S in several industries, such as oil and gas refining and mining industries. As a consequence, researchers are always inquisitive about inventing different sensing devices or useful tools to detect H2S selectively in a cost-effective manner. Colorimetric and fluorometric detection methods are the most attractive owing to their simplicity, profitability, ease of understanding, and "on-spot" detection convenience. In this research, we developed some colorimetric and fluorometric chemosensors and established an assay for the easy detection of H2S following a specific mechanism. The sensing mechanisms were well established through exhaustive spectroscopic studies and theoretical calculations. We first synthesized a series of chemosensors using 2-hydroxy naphthaldehyde as a primary fluorophore. The chemosensors were developed by incorporating various electron-releasing and donating groups while keeping the binding site unchanged. Subsequently, we compared their efficiency and binding ability towards H2S with a possible mechanism. The chemosensor was employed through a paper strip for demonstration as an "in-field" device by changing the naked-eye and fluorescence color both in liquid and gas phases.
Collapse
Affiliation(s)
- Priyotosh Ghosh
- Department of Chemistry, Visva-Bharati University Santiniketan-731235 India
| | - Diptiman De
- Department of Chemistry, Visva-Bharati University Santiniketan-731235 India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University Santiniketan-731235 India
| |
Collapse
|
33
|
Mokhtari S, Mahdavi AH, Jafarpour F, Andani MR, Dattilo M, Nasr-Esfahani MH. Taurine, alpha lipoic acid and vitamin B6 ameliorate the reduced developmental competence of immature mouse oocytes exposed to methylglyoxal. Sci Rep 2024; 14:17937. [PMID: 39095405 PMCID: PMC11297043 DOI: 10.1038/s41598-024-66785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
Advanced glycation end products (AGEs) are the final products of the Maillard reaction, formed through the interaction of carbohydrates and proteins. Reactive dicarbonyl compounds such as methylglyoxal (MGO) serve as precursors for AGEs formation. Elevated levels of MGO/AGEs are observed in conditions like obesity, polycystic ovarian syndrome (PCOS), and diabetes, negatively impacting oocyte development. Previous studies have shown that hydrogen sulfide, a gasotransmitter with anti-AGEs effects, is produced in a process influenced by vitamin B6. R-α-lipoic acid (ALA) inhibits protein glycation and AGEs formation while stimulating glutathione (GSH) production. Taurine mitigates oxidative stress and acts as an anti-glycation compound, preventing in vitro glycation and AGEs accumulation. This study aimed to explore the ameliorative effects of a micronutrient support (Taurine, ALA and B6: TAB) on mouse oocytes challenged with MGO. Our results indicate that MGO reduces oocyte developmental competence, while TAB supplementation improves maturation, fertilization, and blastocyst formation rates. TAB also restores cell lineage allocation, redox balance and mitigates mitochondrial dysfunction in MGO-challenged oocytes. Furthermore, cumulus cells express key enzymes in the transsulfuration pathway, and TAB enhances their mRNA expression. However, TAB does not rescue MGO-induced damage in denuded oocytes, emphasizing the supportive role of cumulus cells. Overall, these findings suggest that TAB interventions may have significant implications for addressing reproductive dysfunctions associated with elevated MGO/AGEs levels. This study highlights the potential of TAB supplementation in preserving the developmental competence of COCs exposed to MGO stress, providing insights into mitigating the impact of dicarbonyl stress on oocyte quality and reproductive outcomes.
Collapse
Affiliation(s)
- Saba Mokhtari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
34
|
Qi Q, Zhang H, Jin Z, Wang C, Xia M, Chen B, Lv B, Peres Diaz L, Li X, Feng R, Qiu M, Li Y, Meseguer D, Zheng X, Wang W, Song W, Huang H, Wu H, Chen L, Schneeberger M, Yu X. Hydrogen sulfide produced by the gut microbiota impairs host metabolism via reducing GLP-1 levels in male mice. Nat Metab 2024; 6:1601-1615. [PMID: 39030389 DOI: 10.1038/s42255-024-01068-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/21/2024] [Indexed: 07/21/2024]
Abstract
Dysbiosis of the gut microbiota has been implicated in the pathogenesis of metabolic syndrome (MetS) and may impair host metabolism through harmful metabolites. Here, we show that Desulfovibrio, an intestinal symbiont enriched in patients with MetS, suppresses the production of the gut hormone glucagon-like peptide 1 (GLP-1) through the production of hydrogen sulfide (H2S) in male mice. Desulfovibrio-derived H2S is found to inhibit mitochondrial respiration and induce the unfolded protein response in intestinal L cells, thereby hindering GLP-1 secretion and gene expression. Remarkably, blocking Desulfovibrio and H2S with an over-the-counter drug, bismuth subsalicylate, improves GLP-1 production and ameliorates diet-induced metabolic disorder in male mice. Together, our study uncovers that Desulfovibrio-derived H2S compromises GLP-1 production, shedding light on the gut-relayed mechanisms by which harmful microbiota-derived metabolites impair host metabolism in MetS and suggesting new possibilities for treating MetS.
Collapse
Affiliation(s)
- Qingqing Qi
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Huijie Zhang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Zheyu Jin
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Changchun Wang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Mengyu Xia
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Bandy Chen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Bomin Lv
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Ludmila Peres Diaz
- Department of Immunobiology, Institute for Biomolecular Design and Discovery, Yale University School of Medicine, New Haven, CT, USA
| | - Xue Li
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Ru Feng
- Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Yang Li
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - He Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Lei Chen
- Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Huang G, Zheng Y, Zhang N, Huang G, Zhang W, Li Q, Ren X. Desulfovibrio vulgaris caused gut inflammation and aggravated DSS-induced colitis in C57BL/6 mice model. Gut Pathog 2024; 16:39. [PMID: 39060944 PMCID: PMC11282857 DOI: 10.1186/s13099-024-00632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) is a potential pathogen usually detected in patients with gastrointestinal diseases. Hydrogen sulfide (H2S), a metabolic byproduct of SRB, was considered the main causative agent that disrupted the morphology and function of gut epithelial cells. Associated study also showed that flagellin from Desulfovibrio vulgaris (DVF), the representative bacterium of the Desulfovibrio genus, could exacerbate colitis due to the interaction of DVF and LRRC19, leading to the secretion of pro-inflammatory cytokines. However, we still have limited understanding about the change of gut microbiota (GM) composition caused by overgrowth of SRB and its exacerbating effects on colitis. RESULTS In this study, we transplanted D. vulgaris into the mice treated with or without DSS, and set a one-week recovery period to investigate the impact of D. vulgaris on the mice model. The outcomes showed that transplanted D. vulgaris into the normal mice could cause the gut inflammation, disrupt gut barrier and reduce the level of short-chain fatty acids (SCFAs). Moreover, D. vulgaris also significantly augmented DSS-induced colitis by exacerbating the damage of gut barrier and the secretion of inflammatory cytokines, for instance, IL-1β, iNOS, and TNF-α. Furthermore, results also showed that D. vulgaris could markedly change GM composition, especially decrease the relative abundance of SCFAs-producing bacteria. Additionally, D. vulgaris significantly stimulated the growth of Akkermansia muciniphila probably via its metabolic byproduct, H2S, in vivo. CONCLUSIONS Collectively, this study indicated that transplantation of D. vulgaris could cause gut inflammation and aggravate the colitis induced by DSS.
Collapse
Affiliation(s)
- Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China.
- Department of Geriatrics, Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Ni Zhang
- Metabolic Medicine Center, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Guohai Huang
- Department of Blood Purification Center, Shantou Central Hospital, Shantou, China
| | - Weijin Zhang
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China
| | - Qingnan Li
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Xuecong Ren
- Department of Rheumatology and Immunology, Shantou Central Hospital, Shantou, China.
| |
Collapse
|
36
|
Lian J, Chen Y, Zhang Y, Guo S, Wang H. The role of hydrogen sulfide regulation of ferroptosis in different diseases. Apoptosis 2024:10.1007/s10495-024-01992-z. [PMID: 38980600 DOI: 10.1007/s10495-024-01992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/10/2024]
Abstract
Ferroptosis is a programmed cell death that relies on iron and lipid peroxidation. It differs from other forms of programmed cell death such as necrosis, apoptosis and autophagy. More and more evidence indicates that ferroptosis participates in many types of diseases, such as neurodegenerative diseases, ischemia-reperfusion injury, cardiovascular diseases and so on. Hence, clarifying the role and mechanism of ferroptosis in diseases is of great significance for further understanding the pathogenesis and treatment of some diseases. Hydrogen sulfide (H2S) is a colorless and flammable gas with the smell of rotten eggs. Many years ago, H2S was considered as a toxic gas. however, in recent years, increasing evidence indicates that it is the third important gas signaling molecule after nitric oxide and carbon monoxide. H2S has various physiological and pathological functions such as antioxidant stress, anti-inflammatory, anti-apoptotic and anti-tumor, and can participate in various diseases. It has been reported that H2S regulation of ferroptosis plays an important role in many types of diseases, however, the related mechanisms are not fully clear. In this review, we reviewed the recent literature about the role of H2S regulation of ferroptosis in diseases, and analyzed the relevant mechanisms, hoping to provide references for future in-depth researches.
Collapse
Affiliation(s)
- Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuhang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanting Zhang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shiyun Guo
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
37
|
Cichowicz R, Dobrzański M. Air quality in a revitalized special economic zone at the center of an urban monocentric agglomeration. Sci Rep 2024; 14:15503. [PMID: 38969703 PMCID: PMC11226688 DOI: 10.1038/s41598-024-66255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
In this study, we have examined the air quality within a revitalized, post-industrial urban area in Łódź, Poland. The use of Dron technology with mobile measurement equipment allowed for accurate assessment of air quality (particulate matter and gaseous pollutants) and factors influencing air quality (wind speed and direction) on a local scale in an area of 0.18 km2 and altitudes from 2 to 50 m. The results show that the revitalization carried out in the Lodz special economic zone area contributed to eliminate internal air pollution emitters through the use of ecological and effective heat sources. The exceedances permissible concentration values were local, and concerned mainly the higher measurement zones of the troposphere (more than 30 m above ground level). In the case of gaseous pollutants, higher wind speeds were associated with a decrease in the concentration of SO2 and an increase in H2S concentration. In both cases, the wind contributed to the occurrence of local areas of accumulation of these gaseous pollutants in the spaces between buildings or wooded areas.
Collapse
Affiliation(s)
- Robert Cichowicz
- Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924, Lodz, Poland.
| | - Maciej Dobrzański
- Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924, Lodz, Poland
| |
Collapse
|
38
|
Deng W, Li S, Zhou M, Zheng M, Wang P, An Y. Ratiometric peptide-based fluorescent probe with large Stokes shift for detection of Hg 2+ and S 2- and its applications in cells imaging and smartphone-assisted recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124306. [PMID: 38640624 DOI: 10.1016/j.saa.2024.124306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
In this work, a new ratiometric fluorescent probe DKA was synthesized based on the double sides of lysine backbone conjugated with alanine and dansyl groups. DKA exhibited fluorescence ratiometric response for Hg2+ with high sensitivity (13.4 nM), specific selectivity (only Hg2+), strong anti-interference ability (no interference), fast recognition (within 60 s) and wide pH range (5-10). The stoichiometry of binding of DKA and Hg2+ was determined to be 1:1 via Job's plot, ESI-HRMS and 1HNMR titration analysis. Subsequently, the in situ formation of DKA-Hg2+ complex was used for highly selective detection of S2- as a novel fluorescence "on-off" probe, and the lowest detection limit for S2- was 12.9 nM. In addition, DKA possessed excellent cells permeation and low toxicity, and fluorescence imaging of Hg2+ and S2- was performed in living Hacat cells. Most importantly, the digital imaging using a smartphone color recognition APP indicated that DKA could semi-quantitatively and visually detected Hg2+ and S2- without expensive equipment.
Collapse
Affiliation(s)
- Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Shiyang Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Yong An
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730030, PR China.
| |
Collapse
|
39
|
Song D, He J, Cheng T, Jin L, Li S, Chen B, Li Y, Liao C. Cystathionine γ-lyase contributes to exacerbation of periodontal destruction in experimental periodontitis under hyperglycemia. J Periodontol 2024. [PMID: 38937859 DOI: 10.1002/jper.23-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Diabetes is one of the major inflammatory comorbidities of periodontitis via 2-way interactions. Cystathionine γ-lyase (CTH) is a pivotal endogenous enzyme synthesizing hydrogen sulfide (H2S), and CTH/H2S is crucially implicated in modulating inflammation in various diseases. This study aimed to explore the potential role of CTH in experimental periodontitis under a hyperglycemic condition. METHODS CTH-silenced and normal human periodontal ligament cells (hPDLCs) were cultured in a high glucose and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS) condition. The effects of CTH on hPDLCs were assessed by Cell Counting Kit 8 (CCK8), real-time quantitative polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The model of experimental periodontitis under hyperglycemia was established on both Cth-/- and wild-type (WT) mice, and the extent of periodontal destruction was assessed by micro-CT, histology, RNA-Seq, Western blot, tartrate-resistant acid phosphatase (TRAP) staining and immunostaining. RESULTS CTH mRNA expression increased in hPDLCs in response to increasing concentration of P.g-LPS stimulation in a high glucose medium. With reference to WT mice, Cth-/- mice with experimental periodontitis under hyperglycemia exhibited reduced bone loss, decreased leukocyte infiltration and hindered osteoclast formation, along with reduced expression of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in periodontal tissue. RNA-seq-enriched altered NF-κB pathway signaling in healthy murine gingiva with experimental periodontitis mice under hyperglycemia. Accordingly, phosphorylation of p65 (P-p65) was alleviated in CTH-silenced hPDLCs, leading to decreased expression of IL6 and TNF. CTH knockdown inhibited activation of nuclear factor kappa-B (NF-κB) pathway and decreased production of proinflammatory cytokines under high glucose and P.g-LPS treatment. CONCLUSION The present findings suggest the potential of CTH as a therapeutic target for tackling periodontitis in diabetic patients.
Collapse
Affiliation(s)
- Danni Song
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jiangfeng He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Sijin Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Beibei Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Yongming Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Chongshan Liao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
40
|
Ye S, Jin N, Liu N, Cheng F, Hu L, Zhang G, Li Q, Jing J. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci 2024; 12:3273-3292. [PMID: 38727636 DOI: 10.1039/d4bm00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic non-healing wounds are a common consequence of skin ulceration in diabetic patients, with severe cases such as diabetic foot even leading to amputations. The interplay between pathological factors like hypoxia-ischemia, chronic inflammation, bacterial infection, impaired angiogenesis, and accumulation of advanced glycosylation end products (AGEs), resulting from the dysregulation of the immune microenvironment caused by hyperglycemia, establishes an unending cycle that hampers wound healing. However, there remains a dearth of sufficient and effective approaches to break this vicious cycle within the complex immune microenvironment. Consequently, numerous scholars have directed their research efforts towards addressing chronic diabetic wound repair. In recent years, gases including Oxygen (O2), Nitric oxide (NO), Hydrogen (H2), Hydrogen sulfide (H2S), Ozone (O3), Carbon monoxide (CO) and Nitrous oxide (N2O), along with gas-releasing materials associated with them have emerged as promising therapeutic solutions due to their ability to regulate angiogenesis, intracellular oxygenation levels, exhibit antibacterial and anti-inflammatory effects while effectively minimizing drug residue-induced damage and circumventing drug resistance issues. In this review, we discuss the latest advances in the mechanisms of action and treatment of these gases and related gas-releasing materials in diabetic wound repair. We hope that this review can provide different ideas for the future design and application of gas therapy for chronic diabetic wounds.
Collapse
Affiliation(s)
- Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Neng Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Nan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Feixiang Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
41
|
Sun X, Wu S, Mao C, Qu Y, Xu Z, Xie Y, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Ischemia and Reperfusion Injury. Biomolecules 2024; 14:740. [PMID: 39062455 PMCID: PMC11274451 DOI: 10.3390/biom14070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury, a prevalent pathological condition in medical practice, presents significant treatment challenges. Hydrogen sulfide (H2S), acknowledged as the third gas signaling molecule, profoundly impacts various physiological and pathophysiological processes. Extensive research has demonstrated that H2S can mitigate I/R damage across multiple organs and tissues. This review investigates the protective effects of H2S in preventing I/R damage in the heart, brain, liver, kidney, intestines, lungs, stomach, spinal cord, testes, eyes, and other tissues. H2S provides protection against I/R damage by alleviating inflammation and endoplasmic reticulum stress; inhibiting apoptosis, oxidative stress, and mitochondrial autophagy and dysfunction; and regulating microRNAs. Significant advancements in understanding the mechanisms by which H2S reduces I/R damage have led to the development and synthesis of H2S-releasing agents such as diallyl trisulfide-loaded mesoporous silica nanoparticles (DATS-MSN), AP39, zofenopril, and ATB-344, offering a new therapeutic avenue for I/R injury.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Zihang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (S.W.); (C.M.); (Y.Q.); (Z.X.)
| |
Collapse
|
42
|
Lin K, Zhang Y, Shen Y, Xu Y, Huang M, Liu X. Hydrogen Sulfide can Scavenge Free Radicals to Improve Spinal Cord Injury by Inhibiting the p38MAPK/mTOR/NF-κB Signaling Pathway. Neuromolecular Med 2024; 26:26. [PMID: 38907170 DOI: 10.1007/s12017-024-08794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yanyang Shen
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiqin Xu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
43
|
Kožich V, Majtan T. Komrower Memorial Lecture 2023. Molecular basis of phenotype expression in homocystinuria: Where are we 30 years later? J Inherit Metab Dis 2024. [PMID: 38873792 DOI: 10.1002/jimd.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
This review summarises progress in the research of homocystinuria (HCU) in the past three decades. HCU due to cystathionine β-synthase (CBS) was discovered in 1962, and Prof. Jan Peter Kraus summarised developments in the field in the first-ever Komrower lecture in 1993. In the past three decades, significant advancements have been achieved in the biology of CBS, including gene organisation, tissue expression, 3D structures, and regulatory mechanisms. Renewed interest in CBS arose in the late 1990s when this enzyme was implicated in biogenesis of H2S. Advancements in genetic and biochemical techniques enabled the identification of several hundreds of pathogenic CBS variants and the misfolding of missense mutations as a common mechanism. Several cellular, invertebrate and murine HCU models allowed us to gain insights into functional and metabolic pathophysiology of the disease. Establishing the E-HOD consortium and patient networks, HCU Network Australia and HCU Network America, offered new possibilities for acquiring clinical data in registries and data on patients´ quality of life. A recent analysis of data from the E-HOD registry showed that the clinical variability of HCU is broad, extending from severe childhood disease to milder (late) adulthood forms, which typically respond to pyridoxine. Pyridoxine responsiveness appears to be the key factor determining the clinical course of HCU. Increased awareness about HCU played a role in developing novel therapies, such as gene therapy, correction of misfolding by chaperones, removal of methionine from the gut and enzyme therapies that decrease homocysteine or methionine in the circulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
44
|
Pilsova A, Pilsova Z, Klusackova B, Zelenkova N, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its role in female reproduction. Front Vet Sci 2024; 11:1378435. [PMID: 38933705 PMCID: PMC11202402 DOI: 10.3389/fvets.2024.1378435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.
Collapse
Affiliation(s)
- Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | | | | | | | | |
Collapse
|
45
|
Baffy G, Portincasa P. Gut Microbiota and Sinusoidal Vasoregulation in MASLD: A Portal Perspective. Metabolites 2024; 14:324. [PMID: 38921459 PMCID: PMC11205793 DOI: 10.3390/metabo14060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition with heterogeneous outcomes difficult to predict at the individual level. Feared complications of advanced MASLD are linked to clinically significant portal hypertension and are initiated by functional and mechanical changes in the unique sinusoidal capillary network of the liver. Early sinusoidal vasoregulatory changes in MASLD lead to increased intrahepatic vascular resistance and represent the beginning of portal hypertension. In addition, the composition and function of gut microbiota in MASLD are distinctly different from the healthy state, and multiple lines of evidence demonstrate the association of dysbiosis with these vasoregulatory changes. The gut microbiota is involved in the biotransformation of nutrients, production of de novo metabolites, release of microbial structural components, and impairment of the intestinal barrier with impact on innate immune responses, metabolism, inflammation, fibrosis, and vasoregulation in the liver and beyond. The gut-liver axis is a conceptual framework in which portal circulation is the primary connection between gut microbiota and the liver. Accordingly, biochemical and hemodynamic attributes of portal circulation may hold the key to better understanding and predicting disease progression in MASLD. However, many specific details remain hidden due to limited access to the portal circulation, indicating a major unmet need for the development of innovative diagnostic tools to analyze portal metabolites and explore their effect on health and disease. We also need to safely and reliably monitor portal hemodynamics with the goal of providing preventive and curative interventions in all stages of MASLD. Here, we review recent advances that link portal metabolomics to altered sinusoidal vasoregulation and may allow for new insights into the development of portal hypertension in MASLD.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Piero Portincasa
- Division of Internal Medicine, Department of Precision and Regenerative Medicine, University ‘Aldo Moro’ Medical School, 70121 Bari, Italy;
| |
Collapse
|
46
|
Yang J, Dong X, Wei W, Liu K, Wu X, Dai H. An injectable hydrogel dressing for controlled release of hydrogen sulfide pleiotropically mediates the wound microenvironment. J Mater Chem B 2024; 12:5377-5390. [PMID: 38716615 DOI: 10.1039/d4tb00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The healing of scalded wounds faces many challenges such as chronic inflammation, oxidative stress, wound infection, and difficulties in vascular and nerve regeneration. Treating a single problem cannot effectively coordinate the complex regenerative microenvironment of scalded wounds, limiting the healing and functional recovery of the skin. Therefore, there is a need to develop a multi-effect treatment plan that can adaptively address the issues at each stage of wound healing. In this study, we propose a scheme for on-demand release of hydrogen sulfide (H2S) based on the concentration of reactive oxygen species (ROS) in the wound microenvironment. This is achieved by encapsulating peroxythiocarbamate (PTCM) in the ROS-responsive polymer poly(ethylene glycol)-poly(L-methionine) (PMet) to form nanoparticles, which are loaded into a thermosensitive injectable hydrogel, F127-poly(L-aspartic acid-N-hydroxysuccinimide) (F127-P(Asp-NHS)), to create a scald dressing. The H2S released by the hydrogel dressing on demand regulates the wound microenvironment by alleviating infection, reducing oxidative stress, and remodeling inflammation, thereby accelerating the healing of full-thickness scalded wounds. This hydrogel dressing for the adaptive release of H2S has great potential in addressing complex scalded wounds associated with infection and chronic inflammation.
Collapse
Affiliation(s)
- Junwei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xianzhen Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
47
|
Salti T, Braunstein I, Haimovich Y, Ziv T, Benhar M. Widespread S-persulfidation in activated macrophages as a protective mechanism against oxidative-inflammatory stress. Redox Biol 2024; 72:103125. [PMID: 38574432 PMCID: PMC11000178 DOI: 10.1016/j.redox.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Acute inflammatory responses often involve the production of reactive oxygen and nitrogen species by innate immune cells, particularly macrophages. How activated macrophages protect themselves in the face of oxidative-inflammatory stress remains a long-standing question. Recent evidence implicates reactive sulfur species (RSS) in inflammatory responses; however, how endogenous RSS affect macrophage function and response to oxidative and inflammatory insults remains poorly understood. In this study, we investigated the endogenous pathways of RSS biogenesis and clearance in macrophages, with a particular focus on exploring how hydrogen sulfide (H2S)-mediated S-persulfidation influences macrophage responses to oxidative-inflammatory stress. We show that classical activation of mouse or human macrophages using lipopolysaccharide and interferon-γ (LPS/IFN-γ) triggers substantial production of H2S/RSS, leading to widespread protein persulfidation. Biochemical and proteomic analyses revealed that this surge in cellular S-persulfidation engaged ∼2% of total thiols and modified over 800 functionally diverse proteins. S-persulfidation was found to be largely dependent on the cystine importer xCT and the H2S-generating enzyme cystathionine γ-lyase and was independent of changes in the global proteome. We further investigated the role of the sulfide-oxidizing enzyme sulfide quinone oxidoreductase (SQOR), and found that it acts as a negative regulator of S-persulfidation. Elevated S-persulfidation following LPS/IFN-γ stimulation or SQOR inhibition was associated with increased resistance to oxidative stress. Upregulation of persulfides also inhibited the activation of the macrophage NLRP3 inflammasome and provided protection against inflammatory cell death. Collectively, our findings shed light on the metabolism and effects of RSS in macrophages and highlight the crucial role of persulfides in enabling macrophages to withstand and alleviate oxidative-inflammatory stress.
Collapse
Affiliation(s)
- Talal Salti
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Haimovich
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
48
|
Wang L, Sivakumar A, Zhang R, Cho S, Kim Y, Aggarwal T, Wang L, Izgu EC. Benzylic Trifluoromethyl Accelerates 1,6-Elimination Toward Rapid Probe Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596105. [PMID: 38854154 PMCID: PMC11160802 DOI: 10.1101/2024.05.30.596105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Activity-based detection of hydrogen sulfide in live cells can expand our understanding of its reactivity and complex physiological effects. We have discovered a highly efficient method for fluorescent probe activation, which is driven by H2S-triggered 1,6-elimination of an α-CF3-benzyl to release resorufin. In detecting intracellular H2S, 4-azido-(α-CF3)-benzyl resorufin offers significantly faster signal generation and improved sensitivity compared to 4-azidobenzyl resorufin. Computed free energy profiles for the 1,6-elimination process support the hypothesis that a benzylic CF3 group can reduce the activation energy barrier toward probe activation. This novel probe design allows for near-real-time detection of H2S in HeLa cells under stimulation conditions.
Collapse
Affiliation(s)
- Liming Wang
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
| | - Aditya Sivakumar
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Zhang
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
| | - Sarah Cho
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
| | - Yuhyun Kim
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
| | - Tushar Aggarwal
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
- Institute for Quantitative Biomedicine, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
| | - Enver Cagri Izgu
- Department of Chemistry and Chemical Biology, Rutgers University–New Brunswick, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University–New Brunswick, New Brunswick, NJ 08901, USA
| |
Collapse
|
49
|
Erguven H, Wang L, Gutierrez B, Beaven AH, Sodt AJ, Izgu EC. Biomimetic Vesicles with Designer Phospholipids Can Sense Environmental Redox Cues. JACS AU 2024; 4:1841-1853. [PMID: 38818047 PMCID: PMC11134385 DOI: 10.1021/jacsau.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
Cell-like materials that sense environmental cues can serve as next-generation biosensors and help advance the understanding of intercellular communication. Currently, bottom-up engineering of protocell models from molecular building blocks remains a grand challenge chemists face. Herein, we describe giant unilamellar vesicles (GUVs) with biomimetic lipid membranes capable of sensing environmental redox cues. The GUVs employ activity-based sensing through designer phospholipids that are fluorescently activated in response to specific reductive (hydrogen sulfide) or oxidative (hydrogen peroxide) conditions. These synthetic phospholipids are derived from 1,2-dipalmitoyl-rac-glycero-3-phosphocholine and they possess a headgroup with heterocyclic aromatic motifs. Despite their structural deviation from the phosphocholine headgroup, the designer phospholipids (0.5-1.0 mol %) mixed with natural lipids can vesiculate, and the resulting GUVs (7-20 μm in diameter) remain intact over the course of redox sensing. All-atom molecular dynamics simulations gave insight into how these lipids are positioned within the hydrophobic core of the membrane bilayer and at the membrane-water interface. This work provides a purely chemical method to investigate potential redox signaling and opens up new design opportunities for soft materials that mimic protocells.
Collapse
Affiliation(s)
- Huseyin Erguven
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Liming Wang
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Bryan Gutierrez
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
| | - Andrew H. Beaven
- Unit
on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United States
- Postdoctoral
Research Associate Program, National Institute
of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Unit
on Membrane Chemical Physics, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Bethesda, Maryland 20892, United States
| | - Enver Cagri Izgu
- Department
of Chemistry and Chemical Biology, Rutgers
University, New Brunswick, New Jersey 08854, United States
- Cancer
Institute of New Jersey, Rutgers University, New Brunswick, New Jersey 08901, United States
- Rutgers
Center for Lipid Research, New Jersey Institute
for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
50
|
Serrenho I, Ferreira SA, Baltazar G. Preconditioning of MSCs for Acute Neurological Conditions: From Cellular to Functional Impact-A Systematic Review. Cells 2024; 13:845. [PMID: 38786067 PMCID: PMC11119364 DOI: 10.3390/cells13100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
This systematic review aims to gather evidence on the mechanisms triggered by diverse preconditioning strategies for mesenchymal stem cells (MSCs) and their impact on their potential to treat ischemic and traumatic injuries affecting the nervous system. The 52 studies included in this review report nine different types of preconditioning, namely, manipulation of oxygen pressure, exposure to chemical substances, lesion mediators or inflammatory factors, usage of ultrasound, magnetic fields or biomechanical forces, and culture in scaffolds or 3D cultures. All these preconditioning strategies were reported to interfere with cellular pathways that influence MSCs' survival and migration, alter MSCs' phenotype, and modulate the secretome and proteome of these cells, among others. The effects on MSCs' phenotype and characteristics influenced MSCs' performance in models of injury, namely by increasing the homing and integration of the cells in the lesioned area and inducing the secretion of growth factors and cytokines. The administration of preconditioned MSCs promoted tissue regeneration, reduced neuroinflammation, and increased angiogenesis and myelinization in rodent models of stroke, traumatic brain injury, and spinal cord injury. These effects were also translated into improved cognitive and motor functions, suggesting an increased therapeutic potential of MSCs after preconditioning. Importantly, none of the studies reported adverse effects or less therapeutic potential with these strategies. Overall, we can conclude that all the preconditioning strategies included in this review can stimulate pathways that relate to the therapeutic effects of MSCs. Thus, it would be interesting to explore whether combining different preconditioning strategies can further boost the reparative effects of MSCs, solving some limitations of MSCs' therapy, namely donor-associated variability.
Collapse
Affiliation(s)
- Inês Serrenho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (I.S.); (S.A.F.)
| | - Susana Alves Ferreira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (I.S.); (S.A.F.)
| | - Graça Baltazar
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|