1
|
Xu L, Xu H, Tang C. Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: progress of experimental models based on disease pathogenesis. Neural Regen Res 2025; 20:354-365. [PMID: 38819039 PMCID: PMC11317952 DOI: 10.4103/nrr.nrr-d-23-01325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 12/19/2023] [Indexed: 06/01/2024] Open
Abstract
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction. To date, no effective treatment exists as the exact causative mechanism remains unknown. Therefore, experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets. Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4, which is highly expressed on the membrane of astrocyte endfeet, most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes. These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders, such as aquaporin-4 loss, astrocytopathy, granulocyte and macrophage infiltration, complement activation, demyelination, and neuronal loss; however, they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders. In this review, we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro, ex vivo, and in vivo for neuromyelitis optica spectrum disorders, suggest potential pathogenic mechanisms for further investigation, and provide guidance on experimental model choices. In addition, this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders, offering further therapeutic targets and a theoretical basis for clinical trials.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Mora P, Laisné M, Bourguignon C, Rouault P, Jaspard-Vinassa B, Maître M, Gadeau AP, Renault MA, Horng S, Couffinhal T, Chapouly C. Astrocytic DLL4-NOTCH1 signaling pathway promotes neuroinflammation via the IL-6-STAT3 axis. J Neuroinflammation 2024; 21:258. [PMID: 39390606 PMCID: PMC11468415 DOI: 10.1186/s12974-024-03246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Under neuroinflammatory conditions, astrocytes acquire a reactive phenotype that drives acute inflammatory injury as well as chronic neurodegeneration. We hypothesized that astrocytic Delta-like 4 (DLL4) may interact with its receptor NOTCH1 on neighboring astrocytes to regulate astrocyte reactivity via downstream juxtacrine signaling pathways. Here we investigated the role of astrocytic DLL4 on neurovascular unit homeostasis under neuroinflammatory conditions. We probed for downstream effectors of the DLL4-NOTCH1 axis and targeted these for therapy in two models of CNS inflammatory disease. We first demonstrated that astrocytic DLL4 is upregulated during neuroinflammation, both in mice and humans, driving astrocyte reactivity and subsequent blood-brain barrier permeability and inflammatory infiltration. We then showed that the DLL4-mediated NOTCH1 signaling in astrocytes directly drives IL-6 levels, induces STAT3 phosphorylation promoting upregulation of astrocyte reactivity markers, pro-permeability factor secretion and consequent blood-brain barrier destabilization. Finally we revealed that blocking DLL4 with antibodies improves experimental autoimmune encephalomyelitis symptoms in mice, identifying a potential novel therapeutic strategy for CNS autoimmune demyelinating disease. As a general conclusion, this study demonstrates that DLL4-NOTCH1 signaling is not only a key pathway in vascular development and angiogenesis, but also in the control of astrocyte reactivity during neuroinflammation.
Collapse
Affiliation(s)
- Pierre Mora
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Margaux Laisné
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Célia Bourguignon
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Paul Rouault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Béatrice Jaspard-Vinassa
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Marlène Maître
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, F-33000, France
| | - Alain-Pierre Gadeau
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Marie-Ange Renault
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Sam Horng
- Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Thierry Couffinhal
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France
| | - Candice Chapouly
- Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, 01 avenue de Magellan, Pessac, 33601, France.
| |
Collapse
|
3
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
4
|
ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming Barriers in Glioblastoma-Advances in Drug Delivery Strategies. Cells 2024; 13:998. [PMID: 38920629 PMCID: PMC11201826 DOI: 10.3390/cells13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.
Collapse
Affiliation(s)
- Esther ter Linden
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Erik R. Abels
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Thomas S. van Solinge
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Marike L. D. Broekman
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| |
Collapse
|
5
|
Azad A, Gökmen ÜR, Uysal H, Köksoy S, Bilge U, Manguoğlu AE. Autophagy dysregulation plays a crucial role in regulatory T-cell loss and neuroinflammation in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:336-344. [PMID: 37908143 DOI: 10.1080/21678421.2023.2273365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE Neuroinflammation is the hallmark of amyotrophic lateral sclerosis (ALS) disease. Regulatory T cells (Tregs) are essential in immune tolerance and neuroinflammation prevention. It has been shown that a significant decrease in Treg and FoxP3 protein expression is observed in ALS patients. The main reason for the FoxP3+ Treg loss in ALS is unknown. In this study, the role of autophagy dysregulation in FoxP3+ Tregs in ALS was investigated. METHODS Twenty-three ALS patients and 24 healthy controls were recruited for the study. Mononuclear cells (MNCs) were obtained from peripheral blood, and then Tregs were isolated. Isolated Tregs were stained with FoxP3 and LC3 antibodies and analyzed in flow cytometry to determine autophagy levels in FoxP3+ Tregs in patients and controls. RESULTS The mean of FoxP3+ LC3+ cells, were 0.47 and 0.45 in patients and controls, respectively. The mean of FoxP3+ LC3- cells was 0.15 in patients and 0.20 in controls, p = 0.030 (p < 0.05). There is no significant correlation between ALSFRS-R decay rate and autophagy level in patients. Also, there is no significant difference between autophagy levels in FoxP3+ Tregs in patients with rapidly progressing ALS and slow-progressing ALS. CONCLUSION Excessive autophagy levels in FoxP3+ Tregs in ALS patients can potentially be an explanation for an increased cell death and result in worsened neuroinflammation and disease onset. However, the disease progress is not attributable to autophagy levels in FoxP3+ Tregs.
Collapse
Affiliation(s)
- Asef Azad
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ümmü Rana Gökmen
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sadi Köksoy
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey, and
| | - Uğur Bilge
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayşe Esra Manguoğlu
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
7
|
Shi Y, Stowe AM, Hu X. The role of immune cells in brain injuries and diseases. Neurobiol Dis 2023; 188:106340. [PMID: 37913833 DOI: 10.1016/j.nbd.2023.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Affiliation(s)
- Yejie Shi
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Xiaoming Hu
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Mokhtarzadeh Khanghahi A, Rayatpour A, Baharvand H, Javan M. Neuroglial components of brain lesions may provide new therapeutic strategies for multiple sclerosis. Neurol Sci 2023; 44:3795-3807. [PMID: 37410268 DOI: 10.1007/s10072-023-06915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune and demyelinating disease of the central nervous system (CNS) which leads to focal demyelinated lesions in the brain and spinal cord. Failure of remyelination contributes to chronic disability in young adults. Characterization of events occurring during the demyelination and remyelination processes and those of which subsequently limit remyelination or contribute to demyelination can provide the possibility of new therapies development for MS. Most of the currently available therapies and investigations modulate immune responses and mediators. Since most therapeutic strategies have unsatisfied outcomes, developing new therapies that enhance brain lesion repair is a priority. A close look at cellular and chemical components of MS lesions will pave the way to a better understanding of lesions pathology and will provide possible opportunities for repair strategies and targeted pharmacotherapy. This review summarizes the lesion components and features, particularly the detrimental elements, and discusses the possibility of suggesting new potential targets as therapies for demyelinating diseases like MS.
Collapse
Affiliation(s)
- Akram Mokhtarzadeh Khanghahi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Hossein Baharvand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Javan
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran.
- International Collaboration on Repair Discoveries (ICORD), the University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Mora P, Chapouly C. Astrogliosis in multiple sclerosis and neuro-inflammation: what role for the notch pathway? Front Immunol 2023; 14:1254586. [PMID: 37936690 PMCID: PMC10627009 DOI: 10.3389/fimmu.2023.1254586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Multiple sclerosis is an autoimmune inflammatory disease of the central nervous system leading to neurodegeneration. It affects 2.3 million people worldwide, generally younger than 50. There is no known cure for the disease, and current treatment options - mainly immunotherapies to limit disease progression - are few and associated with serious side effects. In multiple sclerosis, disruption of the blood-brain barrier is an early event in the pathogenesis of lesions, predisposing to edema, excito-toxicity and inflammatory infiltration into the central nervous system. Recently, the vision of the blood brain barrier structure and integrity has changed and include contributions from all components of the neurovascular unit, among which astrocytes. During neuro-inflammation, astrocytes become reactive. They undergo morphological and molecular changes named "astrogliosis" driving the conversion from acute inflammatory injury to a chronic neurodegenerative state. Astrogliosis mechanisms are minimally explored despite their significance in regulating the autoimmune response during multiple sclerosis. Therefore, in this review, we take stock of the state of knowledge regarding astrogliosis in neuro-inflammation and highlight the central role of NOTCH signaling in the process of astrocyte reactivity. Indeed, a very detailed nomenclature published in nature neurosciences in 2021, listing all the reactive astrocyte markers fully identified in the literature, doesn't cover the NOTCH signaling. Hence, we discuss evidence supporting NOTCH1 receptor as a central regulator of astrogliosis in the pathophysiology of neuro-inflammation, notably multiple sclerosis, in human and experimental models.
Collapse
Affiliation(s)
- Pierre Mora
- Université de Bordeaux, Institut national de la santé et de la recherche médicale (INSERM), Biology of Cardiovascular Diseases, Pessac, France
| | | |
Collapse
|
10
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
12
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
13
|
Guo J, Qiu T, Wang L, Shi L, Ai M, Xia Z, Peng Z, Zheng A, Li X, Kuang L. Microglia Loss and Astrocyte Activation Cause Dynamic Changes in Hippocampal [18F]DPA-714 Uptake in Mouse Models of Depression. Front Cell Neurosci 2022; 16:802192. [PMID: 35250485 PMCID: PMC8896346 DOI: 10.3389/fncel.2022.802192] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Major depression is a serious and chronic mental illness. However, its etiology is poorly understood. Although glial cells have been increasingly implicated in the pathogenesis of depression, the specific role of microglia and astrocytes in stress-induced depression remains unclear. Translocator protein (TSPO) has long been considered a marker of neuroinflammation and microglial activation. However, this protein is also present on astrocytes. Thus, it is necessary to explore the relationships between TSPO, microglia, and astrocytes in the context of depression. In this study, C57BL/6J male mice were subjected to chronic unpredictable stress (CUS) for 5 weeks. Subsequently, sucrose preference and tail suspension tests (TSTs) were performed to assess anhedonia and despair in these mice. [18F]DPA-714 positron emission tomography (PET) was adopted to dynamically assess the changes in glial cells before and 2, 4, or 5 weeks after CUS exposure. The numbers of TSPO+ cells, ionized calcium-binding adaptor molecule (Iba)-1+ microglial cells, TSPO+/Iba-1+ cells, glial fibrillary acidic protein (GFAP)+ astrocytes, TSPO+/GFAP+ cells, and TUNEL-stained microglia were quantified using immunofluorescence staining. Real-time PCR was used to evaluate interleukin (IL)-1β, IL-4, and IL-18 expression in the hippocampus. We observed that hippocampal [18F]DPA-714 uptake significantly increased after 2 weeks of CUS. However, the signal significantly decreased after 5 weeks of CUS. CUS significantly reduced the number of Iba-1+, TSPO+, and TSPO+/Iba-1+ cells in the hippocampus, especially in the CA1 and dentate gyrus (DG) subregions. However, this intervention increased the number of GFAP+ astrocytes in the CA2/CA3 subregions of the hippocampus. In addition, microglial apoptosis in the early stage of CUS appeared to be involved in microglia loss. Further, the expression of pro-inflammatory cytokines (IL-1β and IL-18) was significantly decreased after CUS. In contrast, the expression of the anti-inflammatory cytokine IL-4 was significantly increased after 2 weeks of CUS. These results suggested that the CUS-induced dynamic changes in hippocampal [18F]DPA-714 uptake and several cytokines may be due to combined microglial and astrocyte action. These findings provide a theoretical reference for the future clinical applications of TSPO PET.
Collapse
Affiliation(s)
- Jiamei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixia Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiping Peng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Anhai Zheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Kuang,
| |
Collapse
|
14
|
Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics 2022; 74:487-496. [PMID: 35084547 PMCID: PMC8792134 DOI: 10.1007/s00251-022-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems.
Collapse
|
15
|
Ye LY, Sun LX, Zhong XH, Chen XS, Hu S, Xu RR, Zeng XN, Xie WP, Kong H. The structure of blood-tumor barrier and distribution of chemotherapeutic drugs in non-small cell lung cancer brain metastases. Cancer Cell Int 2021; 21:556. [PMID: 34689774 PMCID: PMC8543815 DOI: 10.1186/s12935-021-02263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 11/12/2022] Open
Abstract
Background Brain metastasis is an important cause of increased mortality in patients with non-small cell lung cancer (NSCLC). In brain metastasis, the blood–brain barrier (BBB) is frequently impaired, forming blood–tumor barrier (BTB). The efficacy of chemotherapy is usually very poor. However, the characteristics of BTB and the impacts of BTB on chemotherapeutic drug delivery remain unclear. The present study investigated the structure of BTB, as well as the distribution of routine clinical chemotherapeutic drugs in both brain and peripheral tumors. Methods Bioluminescent image was used to monitor the tumor load after intracranial injection of lung cancer Lewis cells in mice. The permeability of BBB and BTB was measured by fluorescent tracers of evans blue and fluorescein sodium. Transmission electron microscopy (TEM), immunohistochemistry and immunofluorescence were performed to analyze structural differences between BBB and BTB. The concentrations of chemotherapeutic drugs (gemcitabine, paclitaxel and pemetrexed) in tissues were assayed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results Brain metastases exhibited increased BTB permeability compared with normal BBB detected by fluorescence tracers. TEM showed abnormal blood vessels, damaged endothelial cells, thick basement membranes, impaired intercellular endothelial tight junctions, as well as increased fenestrae and pinocytotic vesicles in metastatic lesions. Immunohistochemistry and immunofluorescence revealed that astrocytes were distributed surrounded the blood vessels both in normal brain and the tumor border, but no astrocytes were found in the inner metastatic lesions. By LC-MS/MS analysis, gemcitabine showed higher permeability in brain metastases. Conclusions Brain metastases of lung cancer disrupted the structure of BBB, and this disruption was heterogeneous. Chemotherapeutic drugs can cross the BTB of brain metastases of lung cancer but have difficulty crossing the normal BBB. Among the three commonly used chemotherapy drugs, gemcitabine has the highest distribution in brain metastases. The permeability of chemotherapeutic agents is related to their molecular weight and liposolubility.
Collapse
Affiliation(s)
- Ling-Yun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, People's Republic of China
| | - Li-Xiang Sun
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, People's Republic of China
| | - Xiu-Hua Zhong
- Department of Pulmonary and Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214000, Jiangsu, People's Republic of China
| | - Xue-Song Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Song Hu
- Department of Respiratory Medicine, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, No. 185 Juqian road, Changzhou, 213000, Jiangsu, People's Republic of China
| | - Rong-Rong Xu
- Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xiao-Ning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Hanslik KL, Marino KM, Ulland TK. Modulation of Glial Function in Health, Aging, and Neurodegenerative Disease. Front Cell Neurosci 2021; 15:718324. [PMID: 34531726 PMCID: PMC8439422 DOI: 10.3389/fncel.2021.718324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
In the central nervous system (CNS), glial cells, such as microglia and astrocytes, are normally associated with support roles including contributions to energy metabolism, synaptic plasticity, and ion homeostasis. In addition to providing support for neurons, microglia and astrocytes function as the resident immune cells in the brain. The glial function is impacted by multiple aspects including aging and local CNS changes caused by neurodegeneration. During aging, microglia and astrocytes display alterations in their homeostatic functions. For example, aged microglia and astrocytes exhibit impairments in the lysosome and mitochondrial function as well as in their regulation of synaptic plasticity. Recent evidence suggests that glia can also alter the pathology associated with many neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD). Shifts in the microbiome can impact glial function as well. Disruptions in the microbiome can lead to aberrant microglial and astrocytic reactivity, which can contribute to an exacerbation of disease and neuronal dysfunction. In this review, we will discuss the normal physiological functions of microglia and astrocytes, summarize novel findings highlighting the role of glia in aging and neurodegenerative diseases, and examine the contribution of microglia and astrocytes to disease progression.
Collapse
Affiliation(s)
- Kendra L. Hanslik
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
| | - Kaitlyn M. Marino
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
| | - Tyler K. Ulland
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
17
|
Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm 2021; 2021:9999146. [PMID: 34158806 PMCID: PMC8187052 DOI: 10.1155/2021/9999146] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases, whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.
Collapse
|
18
|
Omega-3 PUFAs Suppress IL-1β-Induced Hyperactivity of Immunoproteasomes in Astrocytes. Int J Mol Sci 2021; 22:ijms22115410. [PMID: 34063751 PMCID: PMC8196670 DOI: 10.3390/ijms22115410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The role of immunoproteasome (iP) in astroglia, the cellular component of innate immunity, has not been clarified. The results so far indicate that neuroinflammation, a prominent hallmark of Alzheimer’s disease, strongly activates the iP subunits expression. Since omega-3 PUFAs possess anti-inflammatory and pro-resolving activity in the brain, we investigated the effect of DHA and EPA on the gene expression of constitutive (β1 and β5) and inducible (iβ1/LMP2 and iβ5/LMP7) proteasome subunits and proteasomal activity in IL-1β-stimulated astrocytes. We found that both PUFAs downregulated the expression of IL-1β-induced the iP subunits, but not the constitutive proteasome subunits. The chymotrypsin-like activity was inhibited in a dose-dependent manner by DHA, and much strongly in the lower concentration by EPA. Furthermore, we established that C/EBPα and C/EBPβ transcription factors, being the cis-regulatory element of the transcription complex, frequently activated by inflammatory mediators, participate in a reduction in the iP subunits’ expression. Moreover, the expression of connexin 43 the major gap junction protein in astrocytes, negatively regulated by IL-1β was markedly increased in PUFA-treated cells. These findings indicate that omega-3 PUFAs attenuate inflammation-induced hyperactivity of iPs in astrocytes and have a beneficial effect on preservation of interastrocytic communication by gap junctions.
Collapse
|
19
|
Neuroimmune reactivity marker expression in rodent models of chemotherapy-induced cognitive impairment: A systematic scoping review. Brain Behav Immun 2021; 94:392-409. [PMID: 33516919 DOI: 10.1016/j.bbi.2021.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemotherapy-induced cognitive impairment (CICI) is a debilitating side effect arising from chemotherapy treatments. The condition is characterised by a range of cognitive deficits including impairment to memory, attention, and concentration. Whilst the underlying mechanisms that contribute to CICI remain unclear, neuroinflammation has been suggested as one key contributor. METHOD A comprehensive systematic search of EMBASE and Medline via PubMed was conducted to identify studies on neuroimmune reactivity marker expression changes and resulting cognitive changes in preclinical rodent models of CICI. RESULTS A total of twenty studies met the eligibility criteria and were included in the scoping review. There was significant heterogeneity in the methodology employed in the included studies. Our findings demonstrate that widespread changes in cytokines, chemokines, microglia reactivity, and astrocyte reactivity are observed in CICI in the brain regions expected to be affected, given the nature of the cognitive impairment observed in CICI. CONCLUSIONS Although there was considerable heterogeneity in study design that made comparisons between studies difficult, our findings suggest that neuroinflammation commonly occurs in CICI preclinical rodent models and shows an association with cognitive impairment.
Collapse
|
20
|
Troshina EA. [The role of cytokines in the processes of adaptive integration of immune and neuroendocrine reactions of the human body]. ACTA ACUST UNITED AC 2021; 67:4-9. [PMID: 34004098 PMCID: PMC8926132 DOI: 10.14341/probl12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Иммунная, эндокринная и нервная системы интегрированы благодаря существованию взаимных путей передачи информации об изменениях их фактического функционального состояния. Главными задачами мозга являются прием, интеграция и хранение информации, и есть убедительные доказательства, что это относится и к информации, полученной с помощью иммунных реакций организма. Доказано, что выработка цитокинов в головном мозге может быть вызвана не только периферической иммунной стимуляцией, но и собственно нервными клетками, стимулированными определенными нейросенсорными сигналами. Эволюционно сохраненные антигомеостатические механизмы, характерные для конкретных заболеваний, — предмет дальнейших исследований, результаты которых могут быть очень важны для разработки терапевтических стратегий, которые препятствовали бы нежелательным комбинированным эффектам иммунных и нейроэндокринных медиаторов.
Collapse
|
21
|
Morita M, Toida A, Horiuchi Y, Watanabe S, Sasahara M, Kawaguchi K, So T, Imanaka T. Generation of an immortalized astrocytic cell line from Abcd1-deficient H-2K btsA58 mice to facilitate the study of the role of astrocytes in X-linked adrenoleukodystrophy. Heliyon 2021; 7:e06228. [PMID: 33659749 PMCID: PMC7892932 DOI: 10.1016/j.heliyon.2021.e06228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/16/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is an inherited metabolic disease characterized by inflammatory demyelination, and activated astrocytes as well as microglia are thought to be involved in its pathogenesis. Conditionally immortalized astrocytic cell clones were prepared from wild-type or Abcd1-deficient H-2KbtsA58 transgenic mice to study the involvement of astrocytes in the pathogenesis of X-ALD. The established astrocyte clones expressed astrocyte-specific molecules such as Vimentin, S100β, Aldh1L1 and Glast. The conditionally immortalized astrocytes proliferated vigorously and exhibited a compact cell body under a permissive condition at 33 °C in the presence of IFN-γ, whereas they became quiescent and exhibited substantial cell enlargement under a non-permissive condition at 37 °C in the absence of IFN-γ. An Abcd1-deficient astrocyte clone exhibited a decrease in the β-oxidation of very long chain fatty acid (VLCFA) and an increase in cellular levels of VLCFA, typical features of Abcd1-deficiency. Upon stimulation with LPS, the Abcd1-deficient astrocyte clone expressed higher levels of pro-inflammatory genes, such as Il6, Nos2, Ccl2 and Cxcl10, compared to wild-type (WT) astrocytes. Furthermore, the Abcd1-deficient astrocytes produced higher amounts of chondroitin sulfate, a marker of reactive astrocytes. These results suggest that dysfunction of Abcd1 renders astrocytes highly responsive to innate immune stimuli. Conditionally immortalized cell clones which preserve astrocyte properties are a useful tool for analyzing the cellular and molecular pathology of ALD.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Ai Toida
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yuki Horiuchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Shiro Watanabe
- Division of Nutritional Biochemistry, Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Masakiyo Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Kosuke Kawaguchi
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takanori So
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, 737-0112, Japan
| |
Collapse
|
22
|
Garcez ML, Tan VX, Heng B, Guillemin GJ. Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes. Int J Tryptophan Res 2021; 13:1178646920978404. [PMID: 33447046 PMCID: PMC7780186 DOI: 10.1177/1178646920978404] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Michelle L Garcez
- Neurochemistry Laboratory, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X Tan
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,PANDIS.org, Little Collins St, Melbourne VIC, Australia
| |
Collapse
|
23
|
Astrocytes: News about Brain Health and Diseases. Biomedicines 2020; 8:biomedicines8100394. [PMID: 33036256 PMCID: PMC7600952 DOI: 10.3390/biomedicines8100394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.
Collapse
|
24
|
Drugs Modulating CD4+ T Cells Blood-Brain Barrier Interaction in Alzheimer's Disease. Pharmaceutics 2020; 12:pharmaceutics12090880. [PMID: 32948022 PMCID: PMC7558445 DOI: 10.3390/pharmaceutics12090880] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The effect of Alzheimer’s disease (AD) medications on CD4+ T cells homing has not been thoroughly investigated. CD4+ T cells could both exacerbate and reduce AD symptoms based on their infiltrating subpopulations. Proinflammatory subpopulations such as Th1 and Th17 constitute a major source of proinflammatory cytokines that reduce endothelial integrity and stimulate astrocytes, resulting in the production of amyloid β. Anti-inflammatory subpopulations such as Th2 and Tregs reduce inflammation and regulate the function of Th1 and Th17. Recently, pathogenic Th17 has been shown to have a superior infiltrating capacity compared to other major CD4+ T cell subpopulations. Alzheimer’s drugs such as donepezil (Aricept), rivastigmine (Exelon), galantamine (Razadyne), and memantine (Namenda) are known to play an important part in regulating the mechanisms of the neurotransmitters. However, little is known about the effect of these drugs on CD4+ T cell subpopulations’ infiltration of the brain during AD. In this review, we focus on understanding the influence of AD drugs on CD4+ T cell subpopulation interactions with the BBB in AD. While current AD therapies improve endothelial integrity and reduce astrocytes activations, they vary according to their influence on various CD4+ T cell subpopulations. Donepezil reduces the numbers of Th1 but not Th2, Rivastigmine inhibits Th1 and Th17 but not Th2, and memantine reduces Th1 but not Treg. However, none of the current AD drugs is specifically designed to target the dysregulated balance in the Th17/Treg axis. Future drug design approaches should specifically consider inhibiting CD4+ Th17 to improve AD prognosis.
Collapse
|
25
|
Uddin MS, Kabir MT, Mamun AA, Barreto GE, Rashid M, Perveen A, Ashraf GM. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease. Int Immunopharmacol 2020; 84:106479. [PMID: 32353686 DOI: 10.1016/j.intimp.2020.106479] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mamunur Rashid
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Asma Perveen
- School of Life Sciences, The Glocal University, Saharanpur, Uttar Pradesh 247121, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
26
|
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: A review. Eur J Neurosci 2020; 53:151-171. [DOI: 10.1111/ejn.14720] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Pascal Barone
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Samuel Leman
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Thomas Desmidt
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Bruno Brizard
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Wissam El Hage
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Vincent Camus
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| |
Collapse
|
27
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
28
|
Pocha K, Mock A, Rapp C, Dettling S, Warta R, Geisenberger C, Jungk C, Martins LR, Grabe N, Reuss D, Debus J, von Deimling A, Abdollahi A, Unterberg A, Herold-Mende CC. Surfactant Expression Defines an Inflamed Subtype of Lung Adenocarcinoma Brain Metastases that Correlates with Prolonged Survival. Clin Cancer Res 2020; 26:2231-2243. [PMID: 31953311 DOI: 10.1158/1078-0432.ccr-19-2184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To provide a better understanding of the interplay between the immune system and brain metastases to advance therapeutic options for this life-threatening disease. EXPERIMENTAL DESIGN Tumor-infiltrating lymphocytes (TIL) were quantified by semiautomated whole-slide analysis in brain metastases from 81 lung adenocarcinomas. Multi-color staining enabled phenotyping of TILs (CD3, CD8, and FOXP3) on a single-cell resolution. Molecular determinants of the extent of TILs in brain metastases were analyzed by transcriptomics in a subset of 63 patients. Findings in lung adenocarcinoma brain metastases were related to published multi-omic primary lung adenocarcinoma The Cancer Genome Atlas data (n = 230) and single-cell RNA-sequencing (scRNA-seq) data (n = 52,698). RESULTS TIL numbers within tumor islands was an independent prognostic marker in patients with lung adenocarcinoma brain metastases. Comparative transcriptomics revealed that expression of three surfactant metabolism-related genes (SFTPA1, SFTPB, and NAPSA) was closely associated with TIL numbers. Their expression was not only prognostic in brain metastasis but also in primary lung adenocarcinoma. Correlation with scRNA-seq data revealed that brain metastases with high expression of surfactant genes might originate from tumor cells resembling alveolar type 2 cells. Methylome-based estimation of immune cell fractions in primary lung adenocarcinoma confirmed a positive association between lymphocyte infiltration and surfactant expression. Tumors with a high surfactant expression displayed a transcriptomic profile of an inflammatory microenvironment. CONCLUSIONS The expression of surfactant metabolism-related genes (SFTPA1, SFTPB, and NAPSA) defines an inflamed subtype of lung adenocarcinoma brain metastases characterized by high abundance of TILs in close vicinity to tumor cells, a prolonged survival, and a tumor microenvironment which might be more accessible to immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kolja Pocha
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Mock
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Carmen Rapp
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Dettling
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christoph Geisenberger
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Jungk
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Leila R Martins
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, University of Heidelberg, Heidelberg, Germany
| | - David Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Christel C Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
29
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M. Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood-Brain Barrier Integrity. Front Pharmacol 2019; 10:1346. [PMID: 31824311 PMCID: PMC6881379 DOI: 10.3389/fphar.2019.01346] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes are essential for proper regulation of the central nervous system (CNS). Importantly, these cells are highly secretory in nature. Indeed they can release hundreds of molecules which play pivotal physiological roles in nervous tissues and whose abnormal regulation has been associated with several CNS disorders. In agreement with these findings, recent studies have provided exciting insights into the key contribution of astrocyte-derived signals in the pleiotropic functions of these cells in brain health and diseases. In the future, deeper analysis of the astrocyte secretome is likely to further increase our current knowledge on the full potential of these cells and their secreted molecules not only as active participants in pathophysiological events, but as pharmacological targets or even as therapeutics for neurological and psychiatric diseases. Herein we will highlight recent findings in our and other laboratories on selected molecules that are actively secreted by astrocytes and contribute in two distinct functions with pathophysiological relevance for the astroglial population: i) regulation of neural stem cells (NSCs) and their progeny within adult neurogenic niches; ii) modulation of the blood–brain barrier (BBB) integrity and function.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
31
|
Klemens J, Ciurkiewicz M, Chludzinski E, Iseringhausen M, Klotz D, Pfankuche VM, Ulrich R, Herder V, Puff C, Baumgärtner W, Beineke A. Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis. Sci Rep 2019; 9:11689. [PMID: 31406213 PMCID: PMC6690900 DOI: 10.1038/s41598-019-48146-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Canine distemper virus (CDV) causes a fatal demyelinating leukoencephalitis in young dogs resembling human multiple sclerosis. Astrocytes are the main cellular target of CDV and undergo reactive changes already in pre-demyelinating brain lesions. Based on their broad range of beneficial and detrimental effects in the injured brain reactive astrogliosis is in need of intensive investigation. The aim of the study was to characterize astrocyte plasticity during the course of CDV-induced demyelinating leukoencephalitis by the aid of immunohistochemistry, immunofluorescence and gene expression analysis. Immunohistochemistry revealed the presence of reactive glial fibrillary acidic protein (GFAP)+ astrocytes with increased survivin and reduced aquaporin 4, and glutamine synthetase protein levels, indicating disturbed blood brain barrier function, glutamate homeostasis and astrocyte maladaptation, respectively. Gene expression analysis revealed 81 differentially expressed astrocyte-related genes with a dominance of genes associated with neurotoxic A1-polarized astrocytes. Accordingly, acyl-coA synthetase long-chain family member 5+/GFAP+, and serglycin+/GFAP+ cells, characteristic of A1-astrocytes, were found in demyelinating lesions by immunofluorescence. In addition, gene expression revealed a dysregulation of astrocytic function including disturbed glutamate homeostasis and altered immune function. Observed findings indicate an astrocyte polarization towards a neurotoxic phenotype likely contributing to lesion initiation and progression in canine distemper leukoencephalitis.
Collapse
Affiliation(s)
- J Klemens
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - M Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - E Chludzinski
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - M Iseringhausen
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - D Klotz
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - V M Pfankuche
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - R Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - V Herder
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - C Puff
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - W Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - A Beineke
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
32
|
Miller ED, Dziedzic A, Saluk-Bijak J, Bijak M. A Review of Various Antioxidant Compounds and their Potential Utility as Complementary Therapy in Multiple Sclerosis. Nutrients 2019; 11:nu11071528. [PMID: 31284389 PMCID: PMC6682972 DOI: 10.3390/nu11071528] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the central nervous system (CNS). The etiology of this multifactorial disease has not been clearly defined. Conventional medical treatment of MS has progressed, but is still based on symptomatic treatment. One of the key factors in the pathogenesis of MS is oxidative stress, enhancing inflammation and neurodegeneration. In MS, both reactive oxygen and nitrogen species are formed in the CNS mainly by activated macrophages and microglia structures, which can lead to demyelination and axon disruption. The course of MS is associated with the secretion of many inflammatory and oxidative stress mediators, including cytokines (IL-1b, IL-6, IL-17, TNF-α, INF-γ) and chemokines (MIP-1a, MCP-1, IP10). The early stage of MS (RRMS) lasts about 10 years, and is dominated by inflammatory processes, whereas the chronic stage is associated with neurodegenerative axon and neuron loss. Since oxidative damage has been known to be involved in inflammatory and autoimmune-mediated processes, antioxidant therapy could contribute to the reduction or even prevention of the progression of MS. Further research is needed in order to establish new aims for novel treatment and provide possible benefits to MS patients. The present review examines the roles of oxidative stress and non-pharmacological anti-oxidative therapies in MS.
Collapse
Affiliation(s)
- Elzbieta Dorota Miller
- Department of Physical Medicine, Medical University of Lodz, Pl. Hallera 1, 90-647 Lodz, Poland
- Neurorehabilitation Ward, General Hospital no III, Milionowa 14, 90-001 Lodz, Poland
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
33
|
Jiang Y, Peng T, Gaur U, Silva M, Little P, Chen Z, Qiu W, Zhang Y, Zheng W. Role of Corticotropin Releasing Factor in the Neuroimmune Mechanisms of Depression: Examination of Current Pharmaceutical and Herbal Therapies. Front Cell Neurosci 2019; 13:290. [PMID: 31312123 PMCID: PMC6614517 DOI: 10.3389/fncel.2019.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
Abstract
Approximately 3% of the world population suffers from depression, which is one of the most common form of mental disorder. Recent findings suggest that an interaction between the nervous system and immune system might be behind the pathophysiology of various neurological and psychiatric disorders, including depression. Neuropeptides have been shown to play a major role in mediating response to stress and inducing immune activation or suppression. Corticotropin releasing factor (CRF) is a major regulator of the hypothalamic pituitary adrenal (HPA) axis response. CRF is a stress-related neuropeptide whose dysregulation has been associated with depression. In this review, we summarized the role of CRF in the neuroimmune mechanisms of depression, and the potential therapeutic effects of Chinese herbal medicines (CHM) as well as other agents. Studying the network of CRF and immune responses will help to enhance our understanding of the pathogenesis of depression. Additionally, targeting this important network may aid in developing novel treatments for this debilitating psychiatric disorder.
Collapse
Affiliation(s)
- Yizhou Jiang
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tangming Peng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
| | - Uma Gaur
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Marta Silva
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Peter Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, Australia
| | - Zhong Chen
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Wei Qiu
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yandong Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wenhua Zheng
- Center of Reproduction, Development and Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
34
|
Nazareth L, Chen M, Shelper T, Shah M, Tello Velasquez J, Walkden H, Beacham I, Batzloff M, Rayfield A, Todorovic M, Beagley KW, St John JA, Ekberg JAK. Novel insights into the glia limitans of the olfactory nervous system. J Comp Neurol 2019; 527:1228-1244. [PMID: 30592044 DOI: 10.1002/cne.24618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 02/04/2023]
Abstract
Olfactory ensheathing cells (OECs) are often described as being present in both the peripheral and the central nervous systems (PNS and CNS). Furthermore, the olfactory nervous system glia limitans (the glial layer defining the PNS-CNS border) is considered unique as it consists of intermingling OECs and astrocytes. In contrast, the glia limitans of the rest of the nervous system consists solely of astrocytes which create a distinct barrier to Schwann cells (peripheral glia). The ability of OECs to interact with astrocytes is one reason why OECs are believed to be superior to Schwann cells for transplantation therapies to treat CNS injuries. We have used transgenic reporter mice in which glial cells express DsRed fluorescent protein to study the cellular constituents of the glia limitans. We found that the glia limitans layer of the olfactory nervous system is morphologically similar to elsewhere in the nervous system, with a similar low degree of intermingling between peripheral glia and astrocytes. We found that the astrocytic layer of the olfactory bulb is a distinct barrier to bacterial infection, suggesting that this layer constitutes the PNS-CNS immunological barrier. We also found that OECs interact with astrocytes in a similar fashion as Schwann cells in vitro. When cultured in three dimensions, however, there were subtle differences between OECs and Schwann cells in their interactions with astrocytes. We therefore suggest that glial fibrillary acidic protein-reactive astrocyte layer of the olfactory bulb constitutes the glia limitans of the olfactory nervous system and that OECs are primarily "PNS glia."
Collapse
Affiliation(s)
- Lynn Nazareth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Todd Shelper
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Megha Shah
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Johana Tello Velasquez
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Heidi Walkden
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Ifor Beacham
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Andrew Rayfield
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| | - Michael Todorovic
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - Kenneth W Beagley
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.,Menzies Institute of Health Queensland, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
35
|
Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy. Front Immunol 2018; 9:2737. [PMID: 30542345 PMCID: PMC6277866 DOI: 10.3389/fimmu.2018.02737] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
CTLA-4 is a co-receptor on T-cells that controls peripheral tolerance and the development of autoimmunity. Immune check-point blockade (ICB) uses monoclonal antibodies (MAbs) to block the binding of inhibitory receptors (IRs) to their natural ligands. A humanized antibody to CTLA-4 was first approved clinically followed by the use of antibody blockade against PD-1 and its ligand PD-L1. Effective anti-tumor immunity requires the activation of tumor-specific effector T-cells, the blockade of regulatory cells and the migration of T-cells into the tumor. Here, we review data implicating CTLA-4 and PD-1 in the motility of T-cells with a specific reference to the potential exploitation of these pathways for more effective tumor infiltration and eradication.
Collapse
Affiliation(s)
- Monika C Brunner-Weinzierl
- Department of Experimental Pediatrics, University Hospital, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg, Germany
| | - Christopher E Rudd
- Research Center-Maisonneuve-Rosemont Hospital (CRHMR), Montreal, QC, Canada.,Département de Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
36
|
Besedovsky HO. The immune system as a sensorial system that can modulate brain functions and reset homeostasis. Ann N Y Acad Sci 2018; 1437:5-14. [PMID: 30126011 DOI: 10.1111/nyas.13935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
Abstract
Evidence indicates that activated immune cells release products, typically cytokines, that can convey information to the brain about the type of ongoing peripheral immune responses. This evidence led colleagues and me to categorize the immune system as another sensorial system that, upon receiving this information, can emit neuroendocrine signals with immunoregulatory functions that can also reset homeostatic mechanisms. Here, I discuss evidence and clues indicating (1) possible mechanisms by which cytokines, such as those of the interleukin 1 (IL-1) family, can reset energy homeostasis to balance the high fuel requirement of the immune system and the brain; and (2) the possibility that the tripartite synapse, which includes astrocytes as a third component, processes and integrates immune signals at brain levels with other sensorial signals that the central nervous system permanently receives.
Collapse
Affiliation(s)
- Hugo O Besedovsky
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| |
Collapse
|
37
|
Adenosine binds predominantly to adenosine receptor A1 subtype in astrocytes and mediates an immunosuppressive effect. Brain Res 2018; 1700:47-55. [PMID: 29935155 DOI: 10.1016/j.brainres.2018.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 01/21/2023]
Abstract
The four kinds of adenosine receptor subtypes (ARs), named as ARA1, ARA2A, ARA2B and ARA3, have multiple biological functions. ARs are differently distributed across the body and have distinguished ability of binding adenosine. We try to figure out how these ARs were expressed in astrocytes and which one has the first priority of utilizing adenosine. Firstly, mRNA expressions and membrane localization of all ARs were evaluated by qPCR and western blot. After the membrane localization of all ARs in astrocytes was being confirmed their individual adenosine binding ability was determined by radio-active ligand binding assay respectively. It was revealed that ARA1 had much superior adenosine binding ability than other AR subtypes. Functional study demonstrated that ARA1 potentially mediated an immune suppressive effect in astrocytes. The activation of ARA1 signaling lead to decreased IL-12 and IL-23 production, and decreased chemokine production, including CCL2, CXCL8 and IP-10. When interacted with CD4 cells ARA1 agonist pre-treated astrocytes showed hindered ability of stimulating CD4 cells to secret IL-17 and IFN-γ and inducing CD4 cells' chemo taxi. Finally, in vivo experiment confirmed that local administration of ARA1agonist ameliorated EAE in wild type B6 recipients, but not Ara1-/- recipients. As a conclusion, this paper suggested that adenosine receptor A1 subtype predominantly binds adenosine in astrocytes and mediates an immunosuppressive effect.
Collapse
|
38
|
Sun L, Li Y, Jia X, Wang Q, Li Y, Hu M, Tian L, Yang J, Xing W, Zhang W, Wang J, Xu H, Wang L, Zhang D, Ren H. Neuroprotection by IFN-γ via astrocyte-secreted IL-6 in acute neuroinflammation. Oncotarget 2018; 8:40065-40078. [PMID: 28454116 PMCID: PMC5522245 DOI: 10.18632/oncotarget.16990] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/22/2017] [Indexed: 11/25/2022] Open
Abstract
Inflammation eliminates pathogenic infections while also threatening the integrity of the central nervous system. In this study, using in vivo and in vitro models of acute neuroinflammation, we investigated the mechanisms by which inflammation and astrocytes affect neuronal apoptosis. The in vitro model mimicked acute neuroinflammation by incubation in IFN-γ-containing media with primary cultured cerebellar granule neurons, with or without cultured astrocytes. This quickly induced neuronal apoptosis characterized by cleaved caspase-3 expression, Hoechst 33342 staining, and intercellular Ca2+ influx, whereas the presence of astrocytes significantly protected neurons from these effects. IFN-γ in the inflammation media also promoted astrocyte secretion of IL-6, essential for protection. The supernatants of rat peripheral blood mononuclear cells stimulated by lymphocyte mitogen lipopolysaccharide or concanavalin A were used as inflammation media to verify the results. The in vivo model involved a peripheral challenge with lipopolysaccharide, with or without recombinant IFN-γ, in C57BL/6 mice. This confirmed the in vitro results: anti-IFN-γ antibodies exacerbated the acute course of neuroinflammation and led to neurocyte apoptosis in vivo. The pro-inflammatory cytokine IFN-γ provided neuroprotection during acute neuroinflammation via induction of astrocyte-secreted IL-6. The findings provide novel insights into the mechanisms of neuroprotection by IFN-γ during acute neuroinflammation, and may impact therapies for inflammation-related central nervous system injury and disease.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Yan Li
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Xiuzhi Jia
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Qi Wang
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Yue Li
- Center for Infectious and Inflammatory Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, USA
| | - Minghui Hu
- Department of Clinical Laboratory, The Affiliated Hospital to Qingdao University, Qingdao, China
| | - Linlu Tian
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Jinfeng Yang
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jingtao Wang
- Department of Epidemiology and Biostatistics, The Public Health Institute, Harbin Medical University, Harbin, China
| | - Hongwei Xu
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| | - Lihua Wang
- Department of Neuroscience, The Second Hospital Affiliated to Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Disease, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, USA
| | - Huan Ren
- Department of Immunology, Harbin Medical University, Harbin, China.,Key Laboratory of Infection & Immunity, Heilongjiang Province, Harbin, China
| |
Collapse
|
39
|
Milhomem AC, Souza AJSD, Silva HM, Vinaud MC, Oliveira MAPD, Machado JR, Lino Júnior RDS. Histopathologic aspects of experimental cysticercosis and in situ cytokines profile in C57BL/6 mice. ARQUIVOS DE NEURO-PSIQUIATRIA 2018; 76:339-345. [DOI: 10.1590/0004-282x20180032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/31/2018] [Indexed: 02/01/2023]
Abstract
ABSTRACT Neurocysticercosis (NCC) is one of the parasitic infections that most affects the central nervous system. The knowledge regarding its immunopathogenesis and pathophysiology needs broadening. Taenia crassiceps cysticerci are used as the NCC experimental model. The aim of this work was to describe the general pathological processes and the in situ cytokine profile in C57BL/6 mice inoculated intracranially with viable T. crassiceps cysticerci. The histopathology analysis showed cysticerci in the extraparenchymal and intraventricular region, mononuclear inflammatory infiltration surrounding the parasite, microgliosis and meningitis. The analysis of the in situ immune profiles showed a predominance of the Th2 response. The IL-4 and IL-10 dosages were significantly increased in the infected group. The decrease in the INF-gamma dosage reflects the immunomodulation from the cysticerci. In conclusion, a T. crassiceps NCC infection in C57BL/6 mice triggers an inflammatory response, a predominance of Th2 type in situ profile, with mononuclear inflammatory cell infiltration, meningitis and microgliosis.
Collapse
|
40
|
Logun M, Zhao W, Mao L, Karumbaiah L. Microfluidics in Malignant Glioma Research and Precision Medicine. ADVANCED BIOSYSTEMS 2018; 2:1700221. [PMID: 29780878 PMCID: PMC5959050 DOI: 10.1002/adbi.201700221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12-15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM.
Collapse
Affiliation(s)
- Meghan Logun
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| | - Wujun Zhao
- Department of Chemistry, University of Georgia, Athens, GA 30602-2771, USA
| | - Leidong Mao
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602-2771, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, ADS Complex, University of Georgia, 425 River Road, Athens, GA 30602-2771, USA
| |
Collapse
|
41
|
Yu Y, Wei SG, Weiss RM, Felder RB. Angiotensin II Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Neuroscience 2018; 381:46-58. [PMID: 29684507 DOI: 10.1016/j.neuroscience.2018.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
Inflammation in the hypothalamic paraventricular nucleus (PVN) contributes to neurohumoral excitation and its adverse consequences in systolic heart failure (HF). The stimuli that trigger inflammation in the PVN in HF are not well understood. Angiotensin II (AngII) has pro-inflammatory effects, and circulating levels of AngII increase in HF. The subfornical organ (SFO), a circumventricular structure that lacks an effective blood-brain barrier and senses circulating AngII, contains PVN-projecting neurons. We hypothesized that activation of AngII type 1a receptors (AT1aR) in the SFO induces neuroinflammation downstream in the PVN. Male rats received SFO microinjections of an adeno-associated virus carrying shRNA for AT1aR, a scrambled shRNA, or vehicle. One week later, some rats were euthanized to confirm the transfection potential and knockdown efficiency of the shRNA. Others underwent coronary artery ligation to induce HF or a sham coronary artery ligation (Sham). Four weeks later, HF rats that received the scrambled shRNA had increased mRNA in SFO and PVN for AT1aR, inflammatory mediators and indicators of neuronal and glial activation, increased plasma levels of AngII, tumor necrosis factor-α, norepinephrine and arginine vasopressin, and impaired cardiac function, compared with Sham rats that received scrambled shRNA. The central abnormalities were ameliorated in HF rats that received AT1aR shRNA, as were plasma norepinephrine and vasopressin. Sham rats that received AT1aR shRNA had reduced SFO AT1aR mRNA but no other changes compared with Sham rats that received scrambled shRNA. The results suggest that activation of AT1aR in the SFO upregulates the neuroinflammation in the PVN that contributes to neurohumoral excitation in HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA.
| | - Robert B Felder
- Department of Internal Medicine, University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA, USA; Research Service, Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA, USA.
| |
Collapse
|
42
|
Fakhoury M. Microglia and Astrocytes in Alzheimer's Disease: Implications for Therapy. Curr Neuropharmacol 2018; 16:508-518. [PMID: 28730967 PMCID: PMC5997862 DOI: 10.2174/1570159x15666170720095240] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the progressive loss of neurons, which typically leads to severe impairments in cognitive functions including memory and learning. Key pathological features of this disease include the deposition of highly insoluble amyloid β peptides and the formation of neurofibrillary tangles (NFTs) in the brain. Mounting evidence also implicates sustained glial-mediated inflammation as a major contributor of the neurodegenerative processes and cognitive deficits observed in AD. METHODS This paper provides an overview of findings from both human and animal studies investigating the role of microglia and astrocytes in AD, and discusses potential avenues for therapeutic intervention. RESULTS Glial-mediated inflammation is a 'double-edged sword', performing both detrimental and beneficial functions in AD. Despite tremendous effort in elucidating the molecular and cellular mechanisms underlying AD pathology, to date, there is no treatment that could prevent or cure this disease. Current treatments are only useful in slowing down the progression of AD and helping patients manage some of their behavioral and cognitive symptoms. CONCLUSION A better understanding of the role of microglia and astrocytes in the regulation of AD pathology is needed as this could pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2017; 96:379-390. [DOI: 10.1002/jnr.24185] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Neeraj Joshi
- Department of Biochemistry and Biophysics; Helen Diller Comprehensive Cancer Center; San Francisco California
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
44
|
Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017; 7:541-553. [PMID: 28924548 PMCID: PMC5595291 DOI: 10.1016/j.apsb.2017.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.
Collapse
Affiliation(s)
- Xiao Zhao
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rujing Chen
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfang Feng
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Kaili Hu
- Murad Research Center for Modernized Chinese Medicine, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
45
|
Can Astrocytes Be a Target for Precision Medicine? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:111-128. [DOI: 10.1007/978-3-319-60733-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Filipello F, Pozzi D, Proietti M, Romagnani A, Mazzitelli S, Matteoli M, Verderio C, Grassi F. Ectonucleotidase activity and immunosuppression in astrocyte-CD4 T cell bidirectional signaling. Oncotarget 2017; 7:5143-56. [PMID: 26784253 PMCID: PMC4868677 DOI: 10.18632/oncotarget.6914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/01/2016] [Indexed: 12/04/2022] Open
Abstract
Astrocytes play a crucial role in neuroinflammation as part of the glia limitans, which regulates infiltration of the brain parenchyma by leukocytes. The signaling pathways and molecular events, which result from the interaction of activated T cells with astrocytes are poorly defined. Here we show that astrocytes promote the expression and enzymatic activity of CD39 and CD73 ectonucleotidases in recently activated CD4 cells by a contact dependent mechanism that is independent of T cell receptor interaction with class II major histocompatibility complex (MHC). Transforming growth factor-β (TGF-β) is robustly upregulated and sufficient to promote ectonucleotidases expression. T cell adhesion to astrocyte results in differentiation to an immunosuppressive phenotype defined by expression of the transcription factor Rorγt, which characterizes the CD4 T helper 17 subset. CD39 activity in T cells in turn inhibits spontaneous calcium oscillations in astrocytes that correlated with enhanced and reduced transcription of CCL2 chemokine and Sonic hedgehog (Shh), respectively. We hypothesize this TCR-independent interaction promote an immunosuppressive program in T cells to control possible brain injury by deregulated T cell activation during neuroinflammation. On the other hand, the increased secretion of CCL2 with concomitant reduction of Shh might promote leukocytes extravasation into the brain parenchyma.
Collapse
Affiliation(s)
- Fabia Filipello
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Davide Pozzi
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Michele Proietti
- Institute for Research in Biomedicine, Bellinzona, Switzerland.,Center of Chronic Immunodeficiency, University Medical Center, Freiburg, Germany
| | - Andrea Romagnani
- Institute for Research in Biomedicine, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sonia Mazzitelli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Hertie Institute for Clinical Brain Research, University of Tubingen, Department of Cellular Neurology, Tubingen, Germany
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| | - Claudia Verderio
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, Rozzano, Italy.,CNR Institute of Neuroscience, Milano, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Istituto Nazionale di Genetica Molecolare, Milan, Italy
| |
Collapse
|
47
|
Iwai-Shimada M, Takahashi T, Kim MS, Fujimura M, Ito H, Toyama T, Naganuma A, Hwang GW. Methylmercury induces the expression of TNF-α selectively in the brain of mice. Sci Rep 2016; 6:38294. [PMID: 27910896 PMCID: PMC5133575 DOI: 10.1038/srep38294] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 01/01/2023] Open
Abstract
Methylmercury selectively damages the central nervous system (CNS). The tumor necrosis factor (TNF) superfamily includes representative cytokines that participate in the inflammatory response as well as cell survival, and apoptosis. In this study, we found that administration of methylmercury selectively induced TNF-α expression in the brain of mice. Although the accumulated mercury concentration in the liver and kidneys was greater than in the brain, TNF-α expression was induced to a greater extent in brain. Thus, it is possible that there may exist a selective mechanism by which methylmercury induces TNF-α expression in the brain. We also found that TNF-α expression was induced by methylmercury in C17.2 cells (mouse neural stem cells) and NF-κB may participate as a transcription factor in that induction. Further, we showed that the addition of TNF-α antagonist (WP9QY) reduced the toxicity of methylmercury to C17.2 cells. In contrast, the addition of recombinant TNF-α to the culture medium decreased the cell viability. We suggest that TNF-α may play a part in the selective damage of the CNS by methylmercury. Furthermore, our results indicate that the higher TNF-α expression induced by methylmercury maybe the cause of cell death, as TNF-α binds to its receptor after being released extracellularly.
Collapse
Affiliation(s)
- Miyuki Iwai-Shimada
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Onogawa16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Tsutomu Takahashi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0232, Japan
| | - Min-Seok Kim
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.,Department of Inhalation Toxicology Research, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea
| | - Masatake Fujimura
- Department of Basic Medical Science, National Institute for Minamata Disease, Kumamoto 867-0008, Japan
| | - Hitoyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
48
|
Becerra-Calixto A, Cardona-Gómez GP. Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Mol Neurobiol 2016; 54:6681-6696. [PMID: 27744570 DOI: 10.1007/s12035-016-0162-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia is a cerebrovascular episode that generates a high incidence of death and physical and mental disabilities worldwide. Excitotoxicity, release of free radicals, and exacerbated immune response cause serious complications in motor and cognitive areas during both short and long time frames post-ischemia. CDK5 is a kinase that is widely involved in the functions of neurons and astrocytes, and its over-activation is implicated in neurodegenerative processes. In this study, we evaluated the brain parenchymal response to the transplantation of CDK5-knockdown astrocytes into the somatosensory cortex after ischemia in rats. Male Wistar rats were subjected to the two-vessel occlusion (2VO) model of global cerebral ischemia and immediately transplanted with shCDK5miR- or shSCRmiR-transduced astrocytes or with untransduced astrocytes (Control). Our findings showed that animals transplanted with shCDK5miR astrocytes recovered motor and neurological performance better than with those transplanted with WT or shSCRmiR astrocytes. Cell transplantation produced an overall prevention of neuronal loss, and CDK5-knockdown astrocytes significantly increased the immunoreactivity (IR) of endogenous GFAP in branches surrounding blood vessels, accompanied by the upregulation of PECAM-1 IR in the walls of vessels in the motor and somatosensory regions and by an increase in Ki67 IR in the subventricular zone (SVZ), partially associated with the production of BDNF. Together, our data suggest that transplantation of shCDK5miR astrocytes protects the neurovascular unit in ischemic rats, allowing the motor and neurological function recovery.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
49
|
Revathikumar P, Bergqvist F, Gopalakrishnan S, Korotkova M, Jakobsson PJ, Lampa J, Le Maître E. Immunomodulatory effects of nicotine on interleukin 1β activated human astrocytes and the role of cyclooxygenase 2 in the underlying mechanism. J Neuroinflammation 2016; 13:256. [PMID: 27681882 PMCID: PMC5041575 DOI: 10.1186/s12974-016-0725-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022] Open
Abstract
Background The cholinergic anti-inflammatory pathway (CAP) primarily functions through acetylcholine (ACh)-alpha7 nicotinic acetylcholine receptor (α7nAChR) interaction on macrophages to control peripheral inflammation. Interestingly, ACh can also bind α7nAChRs on microglia resulting in neuroprotective effects. However, ACh effects on astrocytes remain elusive. Here, we investigated the effects of nicotine, an ACh receptor agonist, on the cytokine and cholinesterase production of immunocompetent human astrocytes stimulated with interleukin 1β (IL-1β) in vitro. In addition, the potential involvement of prostaglandins as mediators of nicotine was studied using cyclooxygenase 2 (COX-2) inhibition. Methods Cultured human fetal astrocytes were stimulated with human recombinant IL-1β and treated simultaneously with nicotine at different concentrations (1, 10, and 100 μM). Cell supernatants were collected for cytokine and cholinesterase profiling using ELISA and MesoScale multiplex assay. α7nAChR expression on activated human astrocytes was studied using immunofluorescence. For the COX-2 inhibition studies, enzyme activity was inhibited using NS-398. One-way ANOVA was used to perform statistical analyses. Results Nicotine treatment dose dependently limits the production of critical proinflammatory cytokines such as IL-6 (60.5 ± 3.3, %inhibition), IL-1β (42.4 ± 1.7, %inhibition), and TNF-α (68.9 ± 7.7, %inhibition) by activated human astrocytes. Interestingly, it also inhibits IL-8 chemokine (31.4 ± 8.5, %inhibition), IL-13 (34.243 ± 4.9, %inhibition), and butyrylcholinesterase (20.8 ± 2.8, %inhibition) production at 100 μM. Expression of α7nAChR was detected on the activated human astrocytes. Importantly, nicotine’s inhibitory effect on IL-6 production was reversed with the specific COX-2 inhibitor NS-398. Conclusions Activation of the cholinergic system through α7nAChR agonists has been known to suppress inflammation both in the CNS and periphery. In the CNS, earlier experimental data shows that cholinergic activation through nicotine inhibits microglial activation and proinflammatory cytokine release. Here, we report similar anti-inflammatory effects of cholinergic activation on human astrocytes, at least partly mediated through the COX-2 pathway. These results confirm the potential for cholinergic neuroprotection, which is looked upon as a promising therapy for neuroinflammation as well as neurodegenerative diseases and stroke. Our data implicates an important role for the prostaglandin system in cholinergic regulatory effects.
Collapse
Affiliation(s)
- Priya Revathikumar
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| | - Filip Bergqvist
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Srividya Gopalakrishnan
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Erwan Le Maître
- Department of Medicine, Unit of Rheumatology, Center for Molecular Medicine (CMM), Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Jurič DM, Kržan M, Lipnik-Stangelj M. Histamine and astrocyte function. Pharmacol Res 2016; 111:774-783. [DOI: 10.1016/j.phrs.2016.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/11/2016] [Accepted: 07/24/2016] [Indexed: 12/31/2022]
|