1
|
Zhao H, Zhu H, Yun H, Liu J, Song G, Teng J, Zou D, Lu N, Liu C. Assessment of Urolithin A effects on muscle endurance, strength, inflammation, oxidative stress, and protein metabolism in male athletes with resistance training: an 8-week randomized, double-blind, placebo-controlled study. J Int Soc Sports Nutr 2024; 21:2419388. [PMID: 39487653 PMCID: PMC11536656 DOI: 10.1080/15502783.2024.2419388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND This study aimed to investigate the impact of Urolithin A (UA) on muscle endurance, muscle strength, inflammatory levels, oxidative stress, and protein metabolism status in resistance-trained male athletes. METHOD An 8-week randomized, double-blind, placebo-controlled study was conducted with twenty resistance-trained male athletes. Participants were supplemented with 1 g of UA daily. Muscle strength and muscle endurance measures were assessed, and fasting venous blood samples and morning urine samples were collected to evaluate their oxidative stress levels, inflammatory markers, and protein metabolism status. RESULTS There were no significant differences observed in terms of dietary energy intake and composition between the two assessments conducted within a 24-hour period. After 8 weeks of UA supplementation, compared to baseline measurements, the UA group exhibited increases in 1RM bench press and squat, although these changes were not statistically significant (Δ = 3.00 ± 0.17 kg, p = 0.051, Δ = 1.35 ± 2.73 kg, p = 0.499). However, significant improvements were noted in Maximum Voluntary Isometric Contraction (MVIC) and repetitions to failure (RTF) performance (Δ = 36.10 ± 0.62 NM, p = 0.000; Δ = 2.00 ± 0.56, p = 0.001). When compared to the placebo group, the UA supplementation for 8 weeks led to an increase in 1RM bench press and squat, although statistical significance was not reached (Δ = 3.50 ± 0.79 kg, p = 0.462; Δ = 2.55 ± 1.36 kg, p = 0.710). Furthermore, the group receiving UA supplementation, compared to the placebo group, showed significant improvements in MVIC and RTF (Δ = 43.50 ± 0.77 NM, p = 0.048; Δ = 2.00 ± 1.22, p = 0.011), indicating that the UA group exhibited superior performance enhancements in these metrics compared to the placebo group. After 8 weeks of UA supplementation, the UA group showed a significant decrease in 3-methylhistidine (3-MH) compared to baseline measurement (Δ=-2.38 ± 1.96 μmol/L, p = 0.049). Additionally, the UA group exhibited a significant increase in C-reactive protein (CRP) compared to baseline (Δ = 0.71 ± 0.21 mg/L, p = 0.001). However, there was no significant changes observed in Interleukin-6 (IL-6) (Δ=-1.00 ± 1.01 pg/mL, p = 0.076), or superoxide dismutase (SOD) (Δ=-0.004 ± 0.72 U/mL, p = 0.996) compared to baseline in the UA group. When compared to the placebo group, there was no significant difference observed in 3-MH in the UA group (Δ=-3.20 ± 0.31 μmol/L, p = 0.36). In terms of inflammation markers, the UA group exhibited a significant decrease in CRP (Δ=-0.79 ± 0.38 mg/L, p = 0.032) compared to the placebo group, whereas there was a decrease in IL-6 without statistical significance (Δ=-1.75 ± 0.45 pg/mL, p = 0.215). Furthermore, the UA group showed a significant decrease in SOD compared to the placebo group (Δ=-4.32 ± 0.90 U/mL, p = 0.041). CONCLUSIONS After 8 weeks of UA supplementation at 1 g/day, resistance-trained male athletes showed improvements in muscle strength and endurance. Additionally, UA supplementation was also associated with reduced oxidative stress levels and a decrease in inflammation response levels.
Collapse
Affiliation(s)
- Haotian Zhao
- Jiangnan University, Department of physical education, Wuxi, China
- Jiangnan University, School of Food Science and Technology, Wuxi, China
- Canterbury Christ Church University, School of Psychology and Life Sciences, Canterbury, UK
| | - Hongkang Zhu
- Jiangnan University, School of Food Science and Technology, Wuxi, China
| | - Hezhang Yun
- Beijing Sport University, School of Sport Science, Beijing, China
| | - Jingqi Liu
- Beijing Sport University, School of Sport Science, Beijing, China
| | - Ge Song
- Beijing Sport University, School of Sport Science, Beijing, China
| | - Jin Teng
- Beijing Sport University, School of Sport Science, Beijing, China
| | - Dixin Zou
- China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Naiyan Lu
- Jiangnan University, School of Food Science and Technology, Wuxi, China
| | - Chang Liu
- Beijing Sport University, School of Sport Science, Beijing, China
| |
Collapse
|
2
|
Lv Z, Du Y, Zhang H, Fang H, Guo Y, Zeng L, Chen Y, Li D, Li R. Inhibition of JNK/STAT3/NF-KB pathway-mediated migration and clonal formation of lung adenocarcinoma A549 cells by daphnetin. Cell Adh Migr 2024; 18:27-37. [PMID: 39469948 PMCID: PMC11540088 DOI: 10.1080/19336918.2024.2418049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Daphnetin, a coumarin derivative isolated from Daphne odorifera, has anti-tumor effects. The MAPK, STAT3, and NF-κB signaling pathways are closely related to the pathogenesis of lung cancer. To investigate the effect of daphnetin on anti-lung adenocarcinoma A549 cells and its mechanism. The anti-tumor effects of daphnetin on the proliferation, clone formation, migration, and invasion of A549 lung adenocarcinoma cells were investigated. The results showed that daphnetin inhibited the proliferation, colony formation, migration, and invasion of A549 cells through the MAPK/STAT3/NF-KB pathway, and mainly inhibited the clonal formation and migration of A549 cells through the JNK pathway. These results provide a new research direction and theoretical basis for the use of daphnetin in the inhibition of lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuna Du
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huiqing Zhang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Fang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yujie Guo
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lifeng Zeng
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yiguo Chen
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Dan Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rong Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
3
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
4
|
Wang S, Huang J, Chen Y, Liang Y, Chen L, Ye D, Yang H, Hui Z, Wang X, Zhang Z, Zhu X. Qifu-yin activates the Keap1/Nrf2/ARE signaling and ameliorates synaptic injury and oxidative stress in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118497. [PMID: 38942156 DOI: 10.1016/j.jep.2024.118497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional medicinal formulation, Qifu-yin (QFY), has been widely prescribed for Alzheimer's disease (AD) treatment in China, yet the comprehensive mechanisms through which QFY mitigates AD pathology remain to be fully delineated. AIM OF THE STUDY This study aimed to explore the therapeutic implications of QFY on the synaptic injury and oxidative stress in the hippocampus of APPswe/PS1dE9 (APP/PS1) mice, with a concerted effort to elucidate the molecular mechanisms related to synaptic preservation and memory improvement. MATERIALS AND METHODS The components of QFY were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The neuroprotective effects of QFY was evaluated using six-month-old male APP/PS1 mice. Subsequent to a 15 days of QFY regimen, spatial memory was assessed utilizing the Morris water maze (MWM) test. Amyloid-beta (Aβ) aggregation was detected via immunostaining, while the quantification of Aβ1-40 and Aβ1-42 was achieved through enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to investigate the synaptic structure and mitochondrial morphology. Golgi staining was applied to examine dendritic spine density. Reactive oxygen species (ROS), 3-nitrotyrosine (3-NT) and 4-hydroxy-nonenal (4-HNE) assays were employed to assess oxidative stress. The expression profiles of Aβ metabolism-associated enzymes and the Keap1/Nrf2/ARE signaling pathway were determined by Western blot. RESULTS A total of 20 principal compounds in QFY were identified. QFY mitigated memory deficits of APP/PS1 mice, including reducing escape latency and search distance and increasing the time and distance spent in the target quadrant. In addition, QFY increased platform crossings of APP/PS1 mice in the probe trial of MWM tests. TEM analysis showed that QFY increased synapse number in the CA1 region of APP/PS1 mice. Further studies indicated that QFY elevated the expression levels of Post synaptic density protein 95 (PSD95) and synaptophysin, and mitigated the loss of dendritic spine density in the hippocampus of APP/PS1 mice. QFY has been shown to ameliorated the structural abnormalities of mitochondria, including mitochondrial dissolution and degradation, up-regulate ATP synthesis and membrane potential in the hippocampus of APP/PS1 mice. Moreover, QFY activated the Keap1/Nrf2/ARE signaling pathway in the hippocampus of APP/PS1 mice, which might contribute to the neuroprotective effects of QFY. CONCLUSION QFY activates the Keap1/Nrf2/ARE signaling, and protects against synaptic and mitochondrial dysfunction in APP/PS1 mice, proposing a potential alternative therapeutic strategy for AD management.
Collapse
Affiliation(s)
- Sulei Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Jing Huang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Yanting Chen
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Ying Liang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Liqiu Chen
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Dan Ye
- Department of Neurology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, 213000, China.
| | - Hui Yang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Zhen Hui
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Xiaomian Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Zhennian Zhang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China; Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
| |
Collapse
|
5
|
Zhang YN, Ouyang WJ, Hu JY, Liu ZG. Targeting Nrf2 signaling in dry eye. Int J Ophthalmol 2024; 17:1911-1920. [PMID: 39430029 PMCID: PMC11422368 DOI: 10.18240/ijo.2024.10.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/06/2024] [Indexed: 10/22/2024] Open
Abstract
Dry eye, the most common ocular surface disease, can cause ocular surface tissue damage and discomfort symptoms and seriously affect people's quality of life. The etiology of dry eye is diverse, and its pathogenesis is complex. The oxidative stress reaction is considered to be among the important factors in the pathogenesis of dry eye. Therefore, activating the antioxidant system has a potential therapeutic effect on dry eye. Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is considered the most important antioxidant pathway in the body. The activation of the Nrf2 signaling pathway and its interaction with other pathways are important mechanisms to prevent the occurrence and development of dry eye. This review describes the structure and function of Nrf2, summarizes the changes in the oxidative stress response in dry eye, focuses on the potential mechanism of the Nrf2 signaling pathway in the treatment of dry eye, and, finally, summarizes the drugs that activate the Nrf2 signaling pathway in the treatment of dry eye.
Collapse
Affiliation(s)
- Yu-Nuo Zhang
- Xiamen University Affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen 361005, Fujian Province, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Wei-Jie Ouyang
- Xiamen University Affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Jiao-Yue Hu
- Xiamen University Affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen 361005, Fujian Province, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen 361005, Fujian Province, China
| | - Zu-Guo Liu
- Xiamen University Affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science; Fujian Engineering and Research Center of Eye Regenerative Medicine; Eye Institute of Xiamen University; School of Medicine, Xiamen University, Xiamen 361005, Fujian Province, China
- Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen 361005, Fujian Province, China
| |
Collapse
|
6
|
Alruhaimi RS, Kamel EM, Alnasser SM, Alzoghaibi MA, Lamsabhi AM, Mahmoud AM. Mechanistic insights into carbonic anhydrase IX inhibition by coumarins from Calendula officinalis: in vitro and in silico approaches. RSC Adv 2024; 14:33602-33618. [PMID: 39444941 PMCID: PMC11497074 DOI: 10.1039/d4ra05984k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Given the critical role of carbonic anhydrase IX (CA IX) in various pathological conditions, there is a significant demand for new inhibitors to enhance patient outcomes and clinical management. In this study, we examined the inhibitory effectiveness of five coumarins derived from Calendula officinalis against CA IX using in vitro assays and computational modeling. Among the coumarins tested, xeroboside and isobaisseoside were identified as the most potent inhibitors. Kinetic studies indicated that xeroboside and isobaisseoside exhibit a mixed inhibition mode. Molecular docking analysis showed that the tested coumarins exhibit binding affinities and extensive polar interactions with CA IX. These coumarins demonstrated significant hydrophobic interactions and occupied the same binding site as acetazolamide (AAZ). Molecular dynamics (MD) indicated that xeroboside and isobaisseoside exhibited consistent trajectories and notable energy stabilization during their interaction with CA IX. MM/PBSA calculations showed that xeroboside displayed the lowest binding free energy (-27.26 ± 2.48 kJ mol-1). Potential Energy Landscape (PEL) analysis revealed distinct and stable conformational states for the CA IX-ligand complexes, with xeroboside exhibiting the most stable and lowest energy configuration. These computational findings are consistent with the experimental results, highlighting the potential efficacy of xeroboside and isobaisseoside as CA IX inhibitors. In conclusion, Calendula officinalis-derived coumarins are promising candidates as effective CA IX inhibitors.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University Riyadh 11461 Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco Módulo 13 Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
7
|
Saadati F, Modarresi Chahardehi A, Jamshidi N, Jamshidi N, Ghasemi D. Coumarin: A natural solution for alleviating inflammatory disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100202. [PMID: 39398983 PMCID: PMC11470182 DOI: 10.1016/j.crphar.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Coumarin, a naturally occurring compound found in various plants, has a rich history of use in traditional medicine. Recent research has highlighted its anti-inflammatory properties, positioning it as a promising candidate for treating inflammatory disorders such as rheumatoid arthritis, asthma, and inflammatory bowel disease. This narrative review aims to comprehensively summarize the current knowledge regarding coumarin's pharmacological effects in alleviating inflammatory conditions by analyzing preclinical and clinical studies. The review focuses on elucidating the mechanisms through which coumarin exerts its anti-inflammatory effects, including its antioxidant activity, inhibiting pro-inflammatory cytokine production, and modulation of immune cell functions. Additionally, the paper addresses potential limitations of using coumarin, such as concerns about toxicity at high doses or with prolonged use. Before widespread clinical application, further investigation is needed to fully understand coumarin's potential benefits and risks.
Collapse
Affiliation(s)
- Farnoosh Saadati
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Negar Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Nazanin Jamshidi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| | - Darioush Ghasemi
- Kimia Andisheh Teb Medical and Molecular Research Laboratory Co., Tehran, Iran
| |
Collapse
|
8
|
Akhigbe RE, Adelowo OE, Ajani EO, Oyesetan RI, Oladapo DD, Akhigbe TM. Testicular toxicity in cisplatin-treated Wistar rats is mitigated by Daflon and associated with modulation of Nrf2/HO-1 and TLR4/NF-kB signaling. J Trace Elem Med Biol 2024; 85:127489. [PMID: 38943836 DOI: 10.1016/j.jtemb.2024.127489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Testicular toxicity is a complication of cisplatin therapy and it limits its use. Since cisplatin-induced testicular damage is mediated by inflammation and oxidative stress, evaluation of the protective role of antioxidant and anti-inflammatory molecules such as micronized purified flavonoid fraction (Daflon®) is pertinent. AIM Therefore, this study investigated the mitigating effect of daflon against cisplatin-induced testicular toxicity. Also, the impact of daflon on Nrf2/HO-1 and TLR4/NF-kB pathways, which are key pathways in cisplatin toxicity, was explored. MATERIALS AND METHODS After 2 weeks of acclimatization, 20 male albino Wistar rats were allotted at random into 4 equal groups; control, daflon-treated, cisplatin-treated, and cisplatin+daflon-treated. RESULTS Daflon significantly restored cisplatin-induced reductions in body weight (112.20±9.01 vs. 129.60±5.68, P= 0.0175), body weight gain (-39.80±9.52 vs. -16.80±16.53, P= 0.0154), and testicular weight (1.69±0.08 vs. 1.95±0.13, P= 0.0980) and alterations in testicular histology. In addition, daflon abrogated cisplatin-induced rise in testicular CK (55.53±2.77 vs. 37.40±3.29, P< 0.0001) and LDH (74.52±3.20 vs. 65.89±2.08, P= 0.0009) activities, and lactate content (180.50±4.19 vs. 166.20±2.78, P< 0.0001). Also, daflon alleviated cisplatin-induced suppression of GnRH (5.09±0.60 vs. 10.17±0.51, P< 0.0001), LH (1.33±0.07 vs. 2.77±0.13, P< 0.0001), FSH (0.51±0.10 vs. 1.82±0.09, P< 0.0001), and testosterone (2.39±0.11 vs. 4.70±0.33, P< 0.001) as well as lowered sperm quality. More so, daflon attenuated cisplatin-induced testicular oxidative stress, inflammation, and apoptosis evidenced by daflon-driven suppression of MDA (14.16±0.66 vs. 9.22±0.52, P< 0.0001), TNF-α (79.42±5.66 vs. 54.13±3.56, P< 0.0001), IL-1β (8.63±0.41 vs. 3.37±0.43, P< 0.0001), IL-6 (6.87±0.48 vs. 3.67±0.32, P< 0.0001), and caspase 3 activity (4.20±0.26 vs. 0.72±0.23, P< 0.0001) and DNA fragmentation (34.60±3.05 vs. 17.20±3.19, P< 0.0001), and upregulation of GSH level (0.07±0.03 vs. 0.36±0.03, P< 0.0001), and GPx (5.96±0.46 vs. 11.88±1.05, P< 0.0001), GST (5.16±0.71 vs. 11.50±0.81, P< 0.0001), SOD (1.29±0.15 vs. 2.81±0.29, P< 0.0001), and catalase activities (6.18±0.69 vs. 10.71±0.74, P< 0.0001). Furthermore, daflon upregulated testicular Nrf2 expression (40.25±2.65 vs. 66.62±4.01, P< 0.0001) and HO-1 (4.18±0.56 vs. 8.79±0.55, P< 0.0001) activity but downregulated TLR4 (11.63±0.89 vs. 7.23±0.43, P< 0.0001) and NF-kB levels (113.20±3.36 vs. 78.22±3.90, P< 0.0001) in cisplatin-treated rats. CONCLUSION Collectively, the ameliorative effect of daflon on cisplatin-induced testicular toxicity is associated with inhibition of oxidative stress and TLR4/NF-kB-mediated inflammatory pathways and activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| | - Olayinka Emmanuel Adelowo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Esther Olamide Ajani
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Rachael Ibukun Oyesetan
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - David Damola Oladapo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise Maryanne Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Genetics Unit, Department of Agronomy, Osun State University, Ejigbo Campus, Osun State, Nigeria
| |
Collapse
|
9
|
Mendis WRH, Lim JW, Jung SJ, Kang SY. Antiviral effects of umbelliferone against viral hemorrhagic septicemia virus in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109767. [PMID: 39009196 DOI: 10.1016/j.fsi.2024.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Viral hemorrhagic septicemia virus (VHSV) poses a significant threat to global aquaculture, prompting ongoing efforts to identify potential drug candidates for disease prevention. Coumarin derivatives have recently emerged as a promising class of compounds effective against rhabdoviruses, which severely impact the aquaculture industry. In this study, we assessed the anti-VHSV activity of umbelliferone (7-hydroxycoumarin) in fathead minnow (FHM) cells and olive flounder Paralichthys olivaceus. Umbelliferone exhibited an EC50 of 100 μg/mL by reducing cytopathic effect, with a maximum cytotoxicity of 30.9 % at 750 μg/mL. Mechanistic analyses via a time-course plaque reduction assay revealed that direct incubation with the virus for 1 h resulted in 97.0 ± 1.8 % plaque reduction, showing excellent direct virucidal activity. Pretreatment for 4 h resulted in a 33.5 ± 7.8 % plaque reduction, which increased with longer incubation times. Cotreatment led to a 33.5 ± 2.9 % plaque reduction, suggesting interference with viral binding, whereas postinfection treatment proved less effective. Umbelliferone was prophylactically administered to the olive flounder through short-term (3 days) and long-term (14 days) medicated feeding, followed by a 4-day postinfection period. Short-term administration at 100 mg/kg body weight (bw)/day resulted in the highest relative percent survival (RPS) of 56 %, whereas long-term administration achieved a maximum RPS of 44 % at 30 mg/kg bw/day. Umbelliferone administration delayed mortality at these doses. Additionally, umbelliferone significantly inhibited the expression of the VHSV N gene during viral challenge, with no observed toxic effects in fish up to an administration dose of 30 mg/kg bw/day for 28 days. Our findings suggest that the protective mechanism of short-term administration of 100 mg umbelliferone against VHSV infection may involve the overexpression of TLR2, MDA5, STAT1, and NF-κB at 24 h postinfection (hpi). IL-8 and IFN II expression was upregulated, whereas TNF-α, IL-1β, and IFN I expression was suppressed at 24 hpi. The upregulation of ISG15 at 48 hpi may contribute to the inhibition of VHSV replication, whereas the downregulation of Caspase 3 expression at 96 hpi suggests a possible inhibition of virus-induced apoptosis at later infection stages. Overall, umbelliferone exhibited anti-VHSV activity through multiple mechanisms, with the added advantage of convenient administration via medicated feed.
Collapse
Affiliation(s)
| | - Jae-Woong Lim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea
| | - So Young Kang
- Department of Aqualife Medicine, Chonnam National University, Yeosu 59626, Republic of Korea.
| |
Collapse
|
10
|
El-Shoura EAM, Hassanein EHM, Taha HH, Shalkami AGS, Hassanein MMH, Ali FEM, Bakr AG. Edaravone and obeticholic acid protect against cisplatin-induced heart toxicity by suppressing oxidative stress and inflammation and modulating Nrf2, TLR4/p38MAPK, and JAK1/STAT3/NF-κB signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5649-5662. [PMID: 38285279 PMCID: PMC11329704 DOI: 10.1007/s00210-024-02956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Cardiotoxicity is a significant adverse effect of cisplatin (CIS) that necessitates extensive medical care. The current study examines the cardioprotective effects of edaravone (EDV), obeticholic acid (OCA), and their combinations on CIS-induced cardiac damage. Rats were allocated into five groups: the normal control group, the remaining four groups received CIS (7.5 mg/kg, i.p.) as a single dose on the fifth day and were assigned to CIS, OCA (10 mg/kg/day) + CIS, EDV (20 mg/kg/day) + CIS, and the (EDV + OCA) + CIS group. Compared to the CIS-treated group, co-treating rats with EDV, OCA, or their combinations significantly decreased ALP, AST, LDH, CK-MB, and troponin-I serum levels and alleviated histopathological heart abnormalities. Biochemically, EDV, OCA, and EDV plus OCA administration mitigated cardiac oxidative stress as indicated by a marked decrease in heart MDA content with a rise in cardiac antioxidants SOD and GSH associated with upregulating Nrf2, PPARγ, and SIRT1 expression. Besides, it dampened inflammation by decreasing cardiac levels of TNF-α, IL-1β, and IL-6, mediated by suppressing NF-κB, JAK1/STAT3, and TLR4/p38MAPK signal activation. Notably, rats co-administered with EDV plus OCA showed noticeable protection that exceeded that of EDV and OCA alone. In conclusion, our study provided that EDV, OCA, and their combinations effectively attenuated CIS-induced cardiac intoxication by activating Nrf2, PPARγ, and SIRT1 signals and downregulating NF-κB, JAK1/STAT3, and TLR4/p38MAPK signals.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hesham H Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Clinical Pharmacy Program, Faculty of Health Science and Nursing, Al-Rayan Colleges, Medina, Kingdom of Saudi Arabia
| | | | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
11
|
Li N, Li C, Zheng A, Liu W, Shi Y, Jiang M, Xiao Y, Qiu Z, Qiu Y, Jia A. Ultra-high-performance liquid chromatography-mass spectrometry combined with molecular docking and molecular dynamics simulation reveals the source of bitterness in the traditional Chinese medicine formula Runchang-Tongbian. Biomed Chromatogr 2024; 38:e5929. [PMID: 38881323 DOI: 10.1002/bmc.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 06/18/2024]
Abstract
The Runchang-Tongbian (RCTB) formula is a traditional Chinese medicine (TCM) formula consisting of four herbs, namely Cannabis Fructus (Huomaren), Rehmanniae Radix (Dihuang), Atractylodis Macrocephalae Rhizoma (Baizhu), and Aurantii Fructus (Zhiqiao). It is widely used clinically because of its beneficial effect on constipation. However, its strong bitter taste leads to poor patient compliance. The bitter components of TCM compounds are complex and numerous, and inhibiting the bitter taste of TCM has become a major clinical challenge. Here, we use ultra-high-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) and high-resolution mass spectrometry to identify 59 chemical components in the TCM compound RCTB formula. Next, four bitter taste receptors, TAS2R39, TAS2R14, TAS2R7, and TAS2R5, which are tightly bound to the compounds in RCTB, were screened as molecular docking receptors using the BitterX database. The top-three-scoring receptor-small-molecule complexes for each of the four receptors were selected for molecular dynamics simulation. Finally, seven bitter components were identified, namely six flavonoids (rhoifolin, naringin, poncirin, diosmin, didymin, and narirutin) and one phenylpropanoid (purpureaside C). Thus, we proposed a new method for identifying the bitter components in TCM compounds, which provides a theoretical reference for bitter taste inhibition in TCM compounds.
Collapse
Affiliation(s)
- Na Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chunyu Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Aizhu Zheng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weipeng Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuwen Shi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mengcheng Jiang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yusheng Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ailing Jia
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Gao B, Cui C, Yan F, Li N, Sun X, Wang F, Wang C. In Vitro Protective Effect of Pea-Derived Peptides (PPs) via the Keap1/Nrf2 Signaling Pathway on Alpha-Gliadin-Sensitizing Peptide Induced Cacao-2 Cells. Mol Nutr Food Res 2024; 68:e2400010. [PMID: 38958100 DOI: 10.1002/mnfr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/09/2024] [Indexed: 07/04/2024]
Abstract
SCOPE Celiac disease (CD) is an allergic intestinal disease caused mainly by gliadin in wheat, which is widespread in the population and currently lacks effective treatment. α-Gliadin peptides cause cellular damage by substantially increasing cellular reactive oxygen species (ROS) levels. METHODS AND RESULTS This study investigates the protective effect of 11 pea-derived peptides (PPs) on ɑ-gliadin peptide (P31-43) treated Caco-2 cells. Results show that cells treated with PP2, PP5, and PP6 peptides significantly reduce the cell mortality caused by P31-43. Three PPs significantly reduce the P31-43-induced decrease in ROS levels to control levels, and there is no difference between them and the vitamin C (Vc) group. The results in terms of antioxidant-related enzymes show that PPs significantly decrease superoxide dismutase activity (SOD), glutathione reductases (GR), and glutathione (GSH)/oxidized glutathione (GSSG) levels, thus significantly enhancing the antioxidant level of cells. By studying the key proteins of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway, it is found that PPs activate the Keap1/Nrf2 signaling pathway. CONCLUSION The study finds that peptides from peas can effectively alleviate ɑ-gliadin peptide-induced cell damage. The discovery of these food-derived peptides provides novel potential solutions for the prevention and treatment of CD.
Collapse
Affiliation(s)
- Bing Gao
- The First Affiliated Hospital of Zhengzhou University, 1# Mianfang Street, Zhengzhou, 450052, China
| | - Chenxu Cui
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou, Henan Province, 450002, China
| | - Fang Yan
- The First Affiliated Hospital of Zhengzhou University, 1# Mianfang Street, Zhengzhou, 450052, China
| | - Ning Li
- School of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou, 450000, PR China
| | - Xuefeng Sun
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou, Henan Province, 450002, China
| | - Fangyu Wang
- Henan Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou, Henan Province, 450002, China
| | - Chunfeng Wang
- The First Affiliated Hospital of Zhengzhou University, 1# Mianfang Street, Zhengzhou, 450052, China
| |
Collapse
|
13
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
14
|
Ageena SA, Bakr AG, Mokhlis HA, Abd-Ellah MF. Renoprotective effects of apocynin and/or umbelliferone against acrylamide-induced acute kidney injury in rats: role of the NLRP3 inflammasome and Nrf-2/HO-1 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03271-9. [PMID: 39028331 DOI: 10.1007/s00210-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Acrylamide (ACR) is a toxic, probably carcinogenic compound commonly found in fried foods and used in the production of many industrial consumer products. ACR-induced acute kidney injury is mediated through several signals. In this research, we investigated, for the first time, the therapeutic effects of phytochemicals apocynin (APO) and/or umbelliferone (UMB) against ACR-induced nephrotoxicity in rats and emphasized the underlying molecular mechanism. To achieve this goal, five groups of rats were randomly assigned: the control group received vehicle (0.5% CMC; 1 ml/rat), ACR (40 mg/kg, i.p.), ACR + APO (100 mg/kg, P.O.), ACR + UMB (50 mg/kg, P.O.), and combination group for 10 days. In ACR-intoxicated rats, there was a significant reduction in weight gain while the levels of blood urea, uric acid, creatinine, and Kim-1 were elevated, indicating renal injury. Histopathological injury was also observed in the kidneys of ACR-intoxicated rats, confirming the biochemical data. Moreover, MDA, TNF-α, and IL-1β levels were raised; and GSH and SOD levels were decreased. In contrast, treatment with APO, UMB, and their combination significantly reduced the kidney function biomarkers, prevented tissue damage, and decreased inflammatory cytokines and MDA. Mechanistically, it suppressed the expression of NLRP-3, ASC, GSDMD, caspase-1, and IL-1β, while it upregulated Nrf-2 and HO-1 in the kidneys of ACR-intoxicated rats. In conclusion, APO, UMB, and their combination prevented ACR-induced nephrotoxicity in rats by attenuating oxidative injury and inflammation, suppressing NLRP-3 inflammasome signaling, enhancing antioxidants, and upregulating Nrf-2 and HO-1 in the kidneys of ACR-induced rats.
Collapse
Affiliation(s)
- Saad A Ageena
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hamada A Mokhlis
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Kantara Branch, Sinai University, Cairo, Egypt
| | - Mohamed F Abd-Ellah
- Department of Pharmacology & Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
15
|
Peng B, Dai Q, Liu X, Jiang S. Fraxin alleviates oral lichen planus by suppressing OCT3-mediated activation of FGF2/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03270-w. [PMID: 38980409 DOI: 10.1007/s00210-024-03270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Oral lichen planus (OLP) is a carcinogenic chronic inflammatory oral disease, which lacks effective treatments. Fraxin is an active ingredient of the traditional Chinese medicine Qin Pi, which has an anti-inflammatory effect, but its effect on OLP is unclear. The aim of this study was to investigate the therapeutic effect of fraxin on OLP and the underlying mechanism. Human immortalized keratinocytes (HaCat) were incubated with fraxin (10, 20, or 40 µM) for 48 h and then treated with 10 µg/mL LPS for 24 h. Cell viability and apoptosis were detected. Next, the interaction between OCT3 and FGF2 was predicted by online database and verified by Co-IP analysis. Fraxin, Ad-OCT3, sh-OCT3, and sh-FGF2 were, respectively, applied to treat LPS-incubated HaCat cells, and cell viability, apoptosis, and secretion of inflammatory factors were detected with MTT, flow cytometry, and ELISA assays. Then, the involvement of OCT3 and FGF2 in the prevention of fraxin on HaCat cells from LPS-induced cell apoptosis and inflammation was investigated through multiple rescue experiments. In addition, OLP models were constructed in VDR-/- mice and NOD/SCID mice by injecting with human OLP pathological tissue homogenates to verify the therapeutic effect of fraxin on OLP. Fraxin treatment increased cell viability and reduced cell apoptosis and the secretion of IL-6 and TNF-α in a dose-dependent manner. OCT3 was significantly upregulated in oral mucosa tissues of OLP mice. OCT3 silencing inhibited LPS-induced cell apoptosis and secretion of inflammatory factors. Fraxin incubation reduced the expression of OCT3, and OCT3 interacted with FGF2 to upregulate FGF2 protein. FGF2 silencing reduced the expression of p-p65/NF-κB protein and improved LPS-induced cell apoptosis and secretion of inflammatory factors. OCT3 overexpression increased the expression of FGF2 and p-p65/NF-κB proteins, rh-FGF2 aggravated this effect, while FGF2-Neu-Ab reversed this effect. The results of in vivo experiments showed that fraxin alleviated cell apoptosis and inflammation in oral buccal mucosa tissues of OLP mice. Fraxin inhibited cell apoptosis and inflammation by suppressing OCT3-mediated activation of the FGF2/NF-κB pathway, alleviating the progression of OLP.
Collapse
Affiliation(s)
- Bo Peng
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China.
| | - Quanhong Dai
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| | - Xiaodong Liu
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| | - Songyang Jiang
- Department of Stomatology, Zhumadian Central Hospital, 747 West Zhonghua Road, Zhumadian, 463000, Henan, China
| |
Collapse
|
16
|
Yadav P, Singh SK, Datta S, Verma S, Verma A, Rakshit A, Bali A, Bhatti JS, Khurana A, Navik U. Therapeutic potential and pharmacological mechanism of visnagin. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:399-412. [PMID: 38797603 DOI: 10.1016/j.joim.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Visnagin is a furanochromone and one of the most important compound in the Ammi visnaga (L.) Lam (a synonym of Visnaga daucoides Gaertn.) plant, which is used to cure various ailments. Many investigations into the bioactive properties of visnagin have been studied to date. The literature on visnagin demonstrates its biological properties, including anti-inflammatory, anti-diabetic, and beneficial effects in cardiovascular and renal diseases. Moreover, visnagin improves sperm quality parameters, stimulates steroidogenesis, and increases serum gonadotropins and testosterone levels, while decreasing pro-inflammatory cytokines, oxidative damage, genomic instability, and it modulates apoptosis. Thus, visnagin has emerged as an exciting lead for further research, owing to its potential in various unmet clinical needs. The current review summarized its basic structure, pharmacokinetics, and pharmacological effects, focusing on its mechanisms of action. The review will help to understand the potential of visnagin as an alternative treatment strategy for several diseases and provide insight into research topics that need further exploration for visnagin's safe clinical use. Please cite this article as: Yadav P, Singh SK, Datta S, Verma S, Verma A, Rakshit A, Bali A, Bhatti JS, Khurana A, Navik U. Therapeutic potential and pharmacological mechanism of visnagin. J Integr Med. 2024; 22(4): 399-412.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5000, USA
| | - Saloni Verma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Aarti Verma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Arnab Rakshit
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Anjana Bali
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Amit Khurana
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
17
|
Wei Z, Wei N, Su L, Gao S. The molecular effects underlying the pharmacological activities of daphnetin. Front Pharmacol 2024; 15:1407010. [PMID: 39011506 PMCID: PMC11246999 DOI: 10.3389/fphar.2024.1407010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
As an increasingly well-known derivative of coumarin, daphnetin (7,8-dithydroxycoumarin) has demonstrated various pharmacological activities, including anti-inflammation, anti-cancer, anti-autoimmune diseases, antibacterial, organ protection, and neuroprotection properties. Various studies have been conducted to explore the action mechanisms and synthetic methods of daphnetin, given its therapeutic potential in clinical. Despite these initial insights, the precise mechanisms underlying the pharmacological activities of daphnetin remain largely unknown. In order to address this knowledge gap, we explore the molecular effects from the perspectives of signaling pathways, NOD-like receptor protein 3 (NLRP3) inflammasome and inflammatory factors; and try to find out how these mechanisms can be utilized to inform new combined therapeutic strategies.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Na Wei
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Zheng S, Hu G, Zheng J, Li Y, Li J. Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/β-catenin pathway. Phytother Res 2024. [PMID: 38873735 DOI: 10.1002/ptr.8267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy-induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up-regulated the expression of angiogenic-related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis-angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/β-catenin pathway. Subsequently, using ovariectomy-induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/β-catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guanyu Hu
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yikai Li
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Lu H, Kong J, Cai S, Huang H, Luo J, Liu L. Hsa_circ_0096157 silencing suppresses autophagy and reduces cisplatin resistance in non-small cell lung cancer by weakening the Nrf2/ARE signaling pathway. Mol Biol Rep 2024; 51:703. [PMID: 38822881 DOI: 10.1007/s11033-024-09552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/15/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS A549 cells were treated with DDP (0 μg/mL or 3 μg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS DDP (3 μg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Huasong Lu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Jinliang Kong
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Shuangqi Cai
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Hong Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Jing Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Lihua Liu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
20
|
Ju S, Tan Y, Wang Q, Zhou L, Wang K, Wen C, Wang M. Antioxidant and anti‑inflammatory effects of esculin and esculetin (Review). Exp Ther Med 2024; 27:248. [PMID: 38682114 PMCID: PMC11046185 DOI: 10.3892/etm.2024.12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Fraxinus chinensis Roxb is a deciduous tree, which is distributed worldwide and has important medicinal value. In Asia, the bark of Fraxinus chinensis Roxb is a commonly used traditional Chinese medicine called Qinpi. Esculetin is a coumarin compound derived from the bark of Fraxinus chinensis Roxb and its glycoside form is called esculin. The aim of the present study was to systematically review relevant literature on the antioxidant and anti-inflammatory effects of esculetin and esculin. Esculetin and esculin can promote the expression of various endogenous antioxidant proteins, such as superoxide dismutase, glutathione peroxidase and glutathione reductase. This is associated with the activation of the nuclear factor erythroid-derived factor 2-related factor 2 signaling pathway. The anti-inflammatory effects of esculetin and esculin are associated with the inhibition of the nuclear factor κ-B and mitogen-activated protein kinase inflammatory signaling pathways. In various inflammatory models, esculetin and esculin can reduce the expression levels of various proinflammatory factors such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6, thereby inhibiting the development of inflammation. In summary, esculetin and esculin may be promising candidates for the treatment of numerous diseases associated with inflammation and oxidative stress, such as ulcerative colitis, acute lung and kidney injury, lung cancer, acute kidney injury.
Collapse
Affiliation(s)
- Shaohua Ju
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Youli Tan
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Qiang Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Zhou
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Kun Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Chenghong Wen
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| | - Mingjian Wang
- Department of Pharmacy, Affiliated Sport Hospital, Chengdu Sport University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
21
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
22
|
Shi Z, Nan Y, Zhou X, Zhang W, Zhang Z, Zhang C, Duan H, Ge J, Zhao L. Molecular Mechanisms of Intestinal Protection by Levilactobacillus brevis 23017 against Salmonella typhimurium C7731-Induced Damage: Role of Nrf2. Microorganisms 2024; 12:1135. [PMID: 38930517 PMCID: PMC11205325 DOI: 10.3390/microorganisms12061135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The treatment and prevention of pathogenic diseases by lactic acid bacteria (LAB) has attracted more and more attention. As a special LAB, Levilactobacillus brevis (L. brevis) has relatively less research on its antibacterial infection in vivo, and its protective effect and mechanism still need to be fully studied. In this study, we selected L. brevis 23017, which can regulate the intestinal immunity of the host animal and resist pathogen infection, to evaluate its protective role and potential molecular mechanisms in the mouse model of S. typhimurium C7731 infection. As expected, we confirmed that L. brevis 23017 reduced the diarrhea rate and increased the daily weight gain and survival rate of the mouse model, and inhibited S. typhimurium colonization in the jejunum and liver. It also reduced the level of oxidative damage and protected the integrity of intestinal tissue by increasing the activity of intestinal antioxidant enzymes (SOD, GSH-Px and T-AOC). From the perspective of intestinal mucosal barrier injury and repair, it was confirmed that L. brevis 23017 could increase the expression levels of intestinal tight junction proteins (ZO-1 and OCLN). Our research results also show that L. brevis 23017 inhibits the inflammatory response and promotes the occurrence of cellular immunity in the body by promoting the increase in IL-10 and inhibiting IL-13 in serum and intestinal tissue. Notably, L. brevis 23017 increased total secretory immunoglobulin A (SIgA) levels in the intestine, which were closely associated with elevated levels of IL-5, IL-13, pIgR, j-chain, and IgAα-chain. In addition, L. brevis 23017 increased the expression of antioxidant proteins Nrf2, NQO1, and HO-1 associated with Nrf2 signaling to inhibit intestinal oxidative damage. This mechanism may be responsible for its protective effect against S. typhimurium-infected intestine. Our study provides new evidence and theoretical support for the analysis of the anti-bacterial infection effect and mechanism of L. brevis, which will contribute to the development of L. brevis and the treatment of pathogenic bacteria intestinal infection.
Collapse
Affiliation(s)
- Ziqi Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China;
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Yongchao Nan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Xinyao Zhou
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Wenzhi Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Zheng Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Chuankun Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Haoyuan Duan
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Junwei Ge
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.N.); (X.Z.); (W.Z.); (Z.Z.); (C.Z.); (H.D.)
| | - Lili Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China;
| |
Collapse
|
23
|
Jin X, Dong W, Chang K, Yan Y. Research on the signaling pathways related to the intervention of traditional Chinese medicine in Parkinson's disease:A literature review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117850. [PMID: 38331124 DOI: 10.1016/j.jep.2024.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the most common progressive neurodegenerative disorder affecting more than 10 million people worldwide and is characterized by the progressive loss of Daergic (DA) neurons in the substantia nigra pars compacta. It has been reported that signaling pathways play a crucial role in the pathogenesis of PD, while the active ingredients of traditional Chinese medicine (TCM) have been found to possess a protective effect against PD. TCM has demonstrated significant potential in mitigating oxidative stress (OS), neuroinflammation, and apoptosis of DA neurons via the regulation of signaling pathways associated with PD. AIM OF THE REVIEW This study discussed and analyzed the signaling pathways involved in the occurrence and development of PD and the mechanism of active ingredients of TCM regulating PD via signaling pathways, with the aim of providing a basis for the development and clinical application of therapeutic strategies for TCM in PD. MATERIALS AND METHODS With "Parkinson's disease", "Idiopathic Parkinson's Disease", "Lewy Body Parkinson's Disease", "Parkinson's Disease, Idiopathic", "Parkinson Disease, Idiopathic", "Parkinson's disorders", "Parkinsonism syndrome", "Traditional Chinese medicine", "Chinese herbal medicine", "active ingredients", "medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS PD exhibits a close association with various signaling pathways, including but not limited to MAPKs, NF-κB, PI3K/Akt, Nrf2/ARE, Wnt/β-catenin, TLR/TRIF, NLRP3, Notch. The therapeutic potential of TCM lies in its ability to regulate these signaling pathways. In addition, the active ingredients of TCM have shown significant effects in improving OS, neuroinflammation, and DA neuron apoptosis in PD. CONCLUSION The active ingredients of TCM have unique advantages in regulating PD-related signaling pathways. It is suggested to combine network pharmacology and bioinformatics to study the specific targets of TCM. This not only provides a new way for the prevention and treatment of PD with the active ingredients of TCM, but also provides a scientific basis for the selection and development of TCM preparations.
Collapse
Affiliation(s)
- Xiaxia Jin
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wendi Dong
- Foshan Clinical Medical College, Guangzhou University of Traditional Chinese Medicine, Foshan 528000, China
| | - Kaile Chang
- Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Yongmei Yan
- National Key Laboratory of Quality Assurance and Sustainable Utilization of Authentic Medicinal Materials, Chinese Medicine Resource Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Encephalopathy, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China.
| |
Collapse
|
24
|
Yang Z, Zhang L, Liu J, Li D. Litchi Pericarp Extract Treats Type 2 Diabetes Mellitus by Regulating Oxidative Stress, Inflammatory Response, and Energy Metabolism. Antioxidants (Basel) 2024; 13:495. [PMID: 38671942 PMCID: PMC11047702 DOI: 10.3390/antiox13040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Litchi pericarp is rich in polyphenols, and demonstrates significant biological activity. This study assessed the therapeutic effects of litchi pericarp extract (LPE) on type 2 diabetes mellitus in db/db mice. The results showed that LPE ameliorated symptoms of glucose metabolism disorder, oxidative stress, inflammatory response, and insulin resistance in db/db mice. The mechanistic studies indicated that LPE activates adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and suppresses the protein expression of phosphoenolpyruvate carboxykinase (PEPCK), thereby reducing hepatic gluconeogenesis. Additionally, LPE facilitates the translocation of nuclear factor erythroid2-related factor 2 (Nrf2) into the cell nucleus, initiating the transcription of antioxidant factors superoxide dismutase (SOD) and NAD(P)H: quinone oxidoreductase 1 (NQO1), which alleviate oxidative stress and reduce oxidative damage. Furthermore, LPE blocks nuclear factor kappa-B (NF-κB) nuclear translocation and subsequent inflammatory response initiation, thereby reducing inflammation. These findings indicate that LPE addresses type 2 diabetes mellitus by activating the AMPK energy metabolic pathway and regulating the Nrf2 oxidative stress and NF-κB inflammatory signaling pathways.
Collapse
Affiliation(s)
- Ziming Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Li Zhang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Jinlei Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
| | - Dianpeng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.)
- Engineering Research Center of Innovative Traditional Chinese, Zhuang and Yao Materia Medica, Ministry of Education, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
25
|
Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium-induced lung injury is associated with oxidative stress, apoptosis, and altered SIRT1 and Nrf2/HO-1 signaling; protective role of the melatonin agonist agomelatine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2335-2345. [PMID: 37819390 DOI: 10.1007/s00210-023-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Cadmium (Cd) is a hazardous heavy metal extensively employed in manufacturing polyvinyl chloride, batteries, and other industries. Acute lung injury has been directly connected to Cd exposure. Agomelatine (AGM), a melatonin analog, is a drug licensed for treating severe depression. This study evaluated the effect of AGM against Cd-induced lung injury in rats. AGM was administered in a dose of 25 mg/kg/day orally, while cadmium chloride (CdCl2) was injected intraperitoneally in a dose of 1.2 mg/kg to induce lung injury. Pre-treatment with AGM remarkably ameliorated Cd-induced lung histopathological abrasions. AGM decreased reactive oxygen species (ROS) production, lipid peroxidation, suppressed NDAPH oxidase, and boosted the antioxidants. AGM increased Nrf2, GCLC, HO-1, and TNXRD1 mRNA, as well as HO-1 activity and downregulated Keap1. AGM downregulated Bax and caspase-3 and upregulated Bcl-2, SIRT1, and FOXO3 expression levels in the lung. In conclusion, AGM has a protective effect against Cd-induced lung injury via its antioxidant and anti-apoptotic effects mediated via regulating Nrf2/HO-1 and SIRT1/FOXO3 signaling.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71562, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
26
|
Kausar R, Nishiuchi T, Komatsu S. Proteomic and molecular analyses to understand the promotive effect of safranal on soybean growth under salt stress. J Proteomics 2024; 294:105072. [PMID: 38218428 DOI: 10.1016/j.jprot.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
27
|
Tang FL, Xie LW, Tang LF, Lu HY, Zhu RQ, Wang DF, Tian Y, Cai S, Li M. Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside) confers protection against ionizing radiation-induced intestinal epithelial injury in vitro and in vivo. Int Immunopharmacol 2024; 129:111637. [PMID: 38335653 DOI: 10.1016/j.intimp.2024.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The small intestine exhibits remarkable sensitivity to ionizing radiation (IR), which significantly hampers the effectiveness of radiotherapy in the treatment of abdominal and pelvic tumors. Unfortunately, no effective medications are available to treat radiation-induced intestinal damage (RIID). Fraxin (7-hydroxy-6-methoxycoumarin 8-glucoside), is a coumarin derivative extracted from the Chinese herb Cortex Fraxini. Several studies have underscored the anti-inflammatory, antibacterial, antioxidant, and immunomodulatory properties of fraxin. However, the efficacy of fraxin at preventing or mitigating RIID remains unclear. Thus, the present study aimed to investigate the protective effects of fraxin against RIID in vitro and in vivo and to elucidate the underlying mechanisms. The study findings revealed that fraxin markedly ameliorated intestinal injuries induced by 13 Gy whole abdominal irradiation (WAI), which was accompanied by a significant increase in the population of Lgr5+ intestinal stem cells (ISCs) and Ki67+ progeny. Furthermore, fraxin mitigated WAI-induced intestinal barrier damage, and reduced oxidative stress and intestinal inflammation in mice. Transcriptome sequencing of fraxin-treated mice revealed upregulation of IL-22, a pleiotropic cytokine involved in regulating the function of intestinal epithelial cells. Moreover, in both human intestinal epithelial cells and ex vivo cultured mouse intestinal organoids, fraxin effectively ameliorated IR-induced damage by promoting the expression of IL-22. The radioprotective effects of fraxin were partially negated in the presence of an IL-22-neutralizing antibody. In summary, fraxin is demonstrated to possess the ability to alleviate RIID and maintain intestinal homeostasis, suggesting that fraxin might serve as a strategy for mitigating accidental radiation exposure- or radiotherapy-induced RIID.
Collapse
Affiliation(s)
- Feng-Ling Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Li-Wei Xie
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Lin-Feng Tang
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hai-Yan Lu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Rui-Qiu Zhu
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China
| | - Di-Fan Wang
- Medical College of Soochow University, Suzhou 215123, China
| | - Ye Tian
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Shang Cai
- Suzhou Key Laboratory for Radiation Oncology, Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Radiotherapy and Oncology, Soochow University, Suzhou 215004, China.
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
28
|
Ai L, Li R, Wang X, Liu Z, Li Y. Tempol alleviates acute lung injury by affecting glutathione synthesis through Nrf2 and inhibiting ferroptosis in lung epithelial cells. J Biochem Mol Toxicol 2024; 38:e23674. [PMID: 38454815 DOI: 10.1002/jbt.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
As a life-threatening disease, acute lung injury (ALI) may progress to chronic pulmonary fibrosis. For the treatment of lung injury, Tempol is a superoxide dismutase mimetic and intracellular redox agent that can be a potential drug. This study investigated the regulatory mechanism of Tempol in the treatment of ALI. A mouse model of ALI was established, and HE staining was used to examine histomorphology. The CCK-8 assay was used to measure cell viability, and oxidative stress was assessed by corresponding kits. Flow cytometry and dichlorodihydrofluorescein diacetate staining assays were used to detect reactive oxygen species (ROS) levels. Protein expression levels were measured by Western blot analysis and ELISA. Pulmonary vascular permeability was used to measure the lung wet/dry weight ratio. The level of oxidative stress was increased in ALI mice, and the level of ferroptosis was upregulated. Tempol inhibited this effect and alleviated ALI. The administration of Tempol alleviated the pathological changes in ALI, inhibited pulmonary vascular permeability, and improved lung injury in ALI mice. The upregulation of genes essential for glutathione (GSH) metabolism induced by lipopolysaccharide (LPS) was inhibited by Tempol. In addition, nuclear factor-related factor 2 (Nrf2) is activated by Tempol therapy to regulate the de novo synthesis pathway of GSH, thereby alleviating LPS-induced lung epithelial cell damage. The results showed that Tempol alleviated ALI by activating the Nrf2 pathway to inhibit oxidative stress and ferroptosis in lung epithelial cells. In conclusion, this study demonstrates that Tempol alleviates ALI by inhibiting ferroptosis in lung epithelial cells through the effect of Nrf2 on GSH synthesis.
Collapse
Affiliation(s)
- Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaona Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhijuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
29
|
Yang Y, Wang C, Wang J, Yang L, Lv Z, An Q, Wang Y, Shao X, Wang F, Huo T, Liu J, Luo H, Quan Q. Rhizoma Paridis saponins attenuate Gram-negative bacteria-induced inflammatory acne by binding to KEAP1 and modulating Nrf2 and MAPK pathways. J Cell Mol Med 2024; 28:e18146. [PMID: 38426932 PMCID: PMC10906378 DOI: 10.1111/jcmm.18146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/30/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1β and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.
Collapse
Affiliation(s)
- Yang Yang
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Juan Wang
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- Key Laboratory for Space Bioscience and Biotechnology, School of Life SciencesNorthwestern Polytechnical UniversityXi'anShaanxiChina
| | - Lingli Yang
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Quan An
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Yiming Wang
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
| | - Xue Shao
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Fei Wang
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Tong Huo
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Haoshu Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qianghua Quan
- R&D DepartmentYunnan Baiyao Group Health Products Co., LtdKunmingYunnanChina
- R&D DepartmentEast Asia Skin Health Research CenterBeijingChina
- R&D DepartmentYunnan Baiyao Group Shanghai Science & Technology Co., LtdShanghaiChina
| |
Collapse
|
30
|
Atia MM, Mahmoud HAA, Wilson M, Abd-Allah EA. A comprehensive survey of warfarin-induced hepatic toxicity using histopathological, biomarker, and molecular evaluation. Heliyon 2024; 10:e26484. [PMID: 38440292 PMCID: PMC10909775 DOI: 10.1016/j.heliyon.2024.e26484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Abstract
Warfarin finds human application as anticoagulant therapy. Warfarin usage can cause liver damage and hemorrhage. Besides functioning as anticoagulant and causing continuous bleeding of pests, the mechanism of toxicity of warfarin is unknown. In this study, Wild female and male rats were administrated orally with warfarin for 18 days at 9, 18, 27.5, and 55 mg/kg, respectively. Hepatoxicity was determined by assessing, LD50, leukocyte counts, immunochemistry, histopathology, serum proteins, Western blotting, especially of markers of liver injury, such as AST, ALT & ALP, and markers of antioxidant and oxidative stress markers. Warfarin treatment decreased Nrf2 levels while it increased caspase 3, CYP2C9, COLL1A1. It caused cellular damage and fibrosis of liver. The plasma levels of markers of liver injury, AST, ALT, ALP, bilirubin and transferrin were increased. The plasma levels of albumin, IgG and antitrypsin were decreased. Warfarin treatment decreased RBC and total lymphocyte count while increasing selectively neutrophils. Warfarin exposure caused increased oxidative stress; increased LPO and decreased GSH, SOD, CAT and NO production. Oral exposure of rats with Warfarin leads to increased oxidative stress resulting into liver damage via CYP2C9 mediated by Nrf2 depletion.
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology, Zoology Department, Faculty of Science, Assiut University, Egypt
| | - Heba Allah Ahmed Mahmoud
- Plant Protection Research Institute (PPRI), Agriculture Research Center, Animal Pests Department, Egypt
| | - Magdy Wilson
- Plant Protection Research Institute (PPRI), Agriculture Research Center, Animal Pests Department, Egypt
| | - Elham A. Abd-Allah
- Laboratory of Physiology, Department of Zoology, Faculty of Science, New Valley University, EL-kharga, Egypt
| |
Collapse
|
31
|
Consorti G, Monarchi G, Paglianiti M, Betti E, Balercia P. Reduction of Post-Surgical Facial Edema Following Bromelain and Coumarin Intake in Traumatology: A Prospective Study with 100 Patients. J Clin Med 2024; 13:922. [PMID: 38398236 PMCID: PMC10889715 DOI: 10.3390/jcm13040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Bromelain and coumarins are recognized as safe and effective therapeutic agents, used by individuals to treat ailments such as postoperative edema, inflammation and other diseases. Bromelain has been proven to be well absorbed by the body after oral administration, and it has no major side effects even after prolonged use. The purpose of this study is to evaluate the effectiveness of bromelain and other nutraceuticals in reducing post-surgical swelling, pain and the need of anti-inflammatory drugs in maxillofacial post-traumatic surgery. Methods: This prospective open-label study was conducted on patients undergoing surgery for trauma of the maxillofacial area. One hundred patients were selected and divided into two groups: one group who underwent therapy with bromelain, Aesculus hippocastanum and Melilotus officinalis and a control group that was not given the drug in postoperative therapy. Results: Patients in the experimental group showed a reduction of edema in the first and second postoperative weeks, a faster complete reduction of facial edema and a lower reduction in maximum mouth opening and needed less anti-inflammatory therapy to control pain. Conclusions: These findings seem to provide evidence that Brovas® may be effective in improving postoperative edema outcomes in patients undergoing surgical treatment of facial fractures.
Collapse
Affiliation(s)
- Giuseppe Consorti
- Division of Maxillofacial Surgery, University Hospitals of Ancona, 60126 Ancona, Italy; (E.B.); (P.B.)
| | - Gabriele Monarchi
- Department of Medicine, Section of Maxillo-Facial Surgery, University of Siena, Viale Bracci, 53100 Siena, Italy; (G.M.); (M.P.)
| | - Mariagrazia Paglianiti
- Department of Medicine, Section of Maxillo-Facial Surgery, University of Siena, Viale Bracci, 53100 Siena, Italy; (G.M.); (M.P.)
| | - Enrico Betti
- Division of Maxillofacial Surgery, University Hospitals of Ancona, 60126 Ancona, Italy; (E.B.); (P.B.)
| | - Paolo Balercia
- Division of Maxillofacial Surgery, University Hospitals of Ancona, 60126 Ancona, Italy; (E.B.); (P.B.)
| |
Collapse
|
32
|
Mao M, Xia Q, Zhan G, Bing H, Zhang C, Wang J, Tian W, Lian H, Li X, Chu Q. Vialinin A alleviates oxidative stress and neuronal injuries after ischaemic stroke by accelerating Keap1 degradation through inhibiting USP4-mediated deubiquitination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155304. [PMID: 38176274 DOI: 10.1016/j.phymed.2023.155304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Oxidative stress is known as a hallmark of cerebral ischaemia‒reperfusion injury and it exacerbates the pathologic progression of ischaemic brain damage. Vialinin A, derived from a Chinese edible mushroom, possesses multiple pharmacological activities in cancer, Kawasaki disease, asthma and pathological scarring. Notably, vialinin A is an inhibitor of ubiquitin-specific peptidase 4 (USP4) that shows anti-inflammatory and antioxidative properties. However, the precise effect of vialinin A in ischaemic stroke, as well as its underlying mechanisms, remains largely unexplored. PURPOSE The present research focuses on the impacts of vialinin A on oxidative stress and explores the underlying mechanisms involved while also examining its potentiality as a therapeutic candidate for ischaemic stroke. METHODS Mouse ischaemic stroke was conducted by MCAO surgery. Vialinin A was administered via lateral ventricular injection at a dose of 2 mg/kg after reperfusion. Subsequent experiments were meticulously conducted at the appropriate time points. Stroke outcomes were evaluated by TTC staining, neurological score, Nissl staining and behavioural analysis. Co-IP assays were operated to examine the protein-protein interactions. Immunoblot analysis, qRT-PCR, and luciferase reporter assays were conducted to further investigate its underlying mechanisms. RESULTS In this study, we initially showed that administration of vialinin A alleviated cerebral ischaemia‒reperfusion injury-induced neurological deficits and neuronal apoptosis. Furthermore, vialinin A, which is an antioxidant, reduced oxidative stress injury, promoted the activation of the Keap1-Nrf2-ARE signaling pathway and increased the protein degradation of Keap1. The substantial neuroprotective effects of vialinin A against ischaemic stroke were compromised by the overexpression of USP4. Mechanistically, vialinin A inhibited the deubiquitinating enzymatic activity of USP4, leading to enhanced ubiquitination of Keap1 and subsequently promoting its degradation. This cascade caused the activation of Nrf2-dependent antioxidant response, culminating in a reduction of neuronal apoptosis and the amelioration of neurological dysfunction following ischaemic stroke. CONCLUSIONS This study demonstrates that inhibition of USP4 to activate Keap1-Nrf2-ARE signaling pathway may represent a mechanism by which vialinin A conferred protection against cerebral ischaemia‒reperfusion injury and sheds light on its promising prospects as a therapeutic intervention for ischaemic stroke.
Collapse
Affiliation(s)
- Meng Mao
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China; Trauma Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China; Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| | - Qian Xia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hailong Bing
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Chenxi Zhang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Jie Wang
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Wangli Tian
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Hongkai Lian
- Trauma Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China; Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qinjun Chu
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China.
| |
Collapse
|
33
|
Zhang JC, Zhang HL, Xin XY, Zhu YT, Mao X, Hu HQ, Jin YX, Fan RW, Zhang XH, Ye Y, Li D. Mechanisms of Bushen Tiaoxue Granules against controlled ovarian hyperstimulation-induced abnormal morphology of endometrium based on network pharmacology. J Ovarian Res 2024; 17:25. [PMID: 38279186 PMCID: PMC10811918 DOI: 10.1186/s13048-023-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
Bushen Tiaoxue Granules (BTG) is an empirical Chinese herbal formula that has been used for the treatment of subfertility. The protective effect of BTG on controlled ovarian hyperstimulation (COH)-induced impaired endometrial receptivity has been reported in our previous study. This study aims to explore the mechanisms of BTG on ameliorating abnormal morphology of endometrium based on network pharmacology. Active compounds of BTG were identified via the traditional Chinese medicine systems pharmacology and UPLC-MS technology. The SwissTargetPrediction platform and HERB database were used to screen out the putative targets of BTG. Potential targets of endometrial dysfunction caused by COH were obtained from three GEO databases. Through the STRING database, the protein-protein interaction was carried out according to the cross-common targets of diseases and drugs. GO terms and KEGG pathways enrichment analyses were conducted via the Metascape database. AutoDock Vina was used for docking validation of the affinity between active compounds and potential targets. Finally, in vivo experiments were used to verify the potential mechanisms derived from network pharmacology study. A total of 141 effective ingredients were obtained from TCMSP and nine of which were verified in UPLC-MS. Six genes were selected through the intersection of 534 disease related genes and 165 drug potential targets. Enrichment analyses showed that BTG might reverse endometrial dysfunction by regulating adherens junction and arachidonic acid metabolism. Hematoxylin-eosin staining revealed that BTG ameliorated the loose and edematous status of endometrial epithelium caused by COH. The protein expression of FOXO1A, β-Catenin and COX-2 was decreased in the COH group, and was up-regulated by BTG. BTG significantly alleviates the edema of endometrial epithelium caused by COH. The mechanisms may be related to adheren junctions and activation of arachidonic acid metabolism. The potential active compounds quercetin, taxifolin, kaempferol, eriodictyol, and isorhamnetin identified from the BTG exhibit marginal cytotoxicity. Both high and low concentrations of kaempferol, eriodictyol, and taxifolin are capable of effectively ameliorating impaired hESC cellular activity.
Collapse
Affiliation(s)
- Jia-Cheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Xin Mao
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Hang-Qi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Rui-Wen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Xiao-Hui Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
34
|
Granados-Balbuena SY, Díaz-Pacheco A, García-Meza MG, Tapia-López L, Cruz-Narváez Y, Ocaranza-Sánchez E. Phytochemical profile of petals from black Dahlia pinnata by flow injection analysis-electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:1009-1021. [PMID: 37518673 DOI: 10.1002/pca.3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 08/01/2023]
Abstract
INTRODUCTION Dahlia pinnata Cav. is a flower native to Mexico that has many applications; in particular, its petals have been used for ornamental, food, and medicinal purposes, for example to treat skin rashes and skin cracks. It has been reported that the medicinal properties of plants are generally related to the phytochemical constituents they possess. However, there are few studies on black D. pinnata. OBJECTIVES The present study was aimed at qualitatively and quantitatively determining the phytochemical profile of petals from black D. pinnata. METHODOLOGY Phytochemicals from Dahlia petals were extracted by consecutive maceration (hexane, dichloromethane, and methanol); then, the extracts were analyzed through colorimetric assays and UV-Vis spectroscopy for qualitative identification and quantification of phytochemical compounds, respectively. The methanolic extract was analyzed by flow injection analysis-electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (FIA-ESI-FTICR-MS) in negative and positive mode. RESULTS Quantitative phytochemical profiling of the methanolic extract by UV-Vis spectroscopy indicated high contents of phenolic compounds (34.35 ± 3.59 mg EQ/g plant) and sugars (23.91 ± 1.99 mg EQ/g plant), while the qualitative profiling by FIA-ESI-FTICR-MS allowed the tentative identification of several flavonoids and phenolic acids. Kaempferol-3-rutinoside, pelargonidin-3-(6″-malonylglucoside)-5-glucoside, rutin, kaempferol-3-(2″,3″-diacetyl-4″-p-coumaroylrhamnoside), and myricetin-3-(2‴-galloylrhamnoside) were the main compounds detected. CONCLUSION The results expand our knowledge of the phytochemical constituents of petals from black D. pinnata.
Collapse
Affiliation(s)
- Sulem Yali Granados-Balbuena
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Guillermo Valle, Tlaxcala, Mexico
| | - Adrian Díaz-Pacheco
- Unidad Profesional Interdisciplinaria de Ingeniería Campus Tlaxcala del Instituto Politécnico Nacional, Guillermo Valle, Tlaxcala, Mexico
| | - María Guadalupe García-Meza
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Lilia Tapia-López
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Yair Cruz-Narváez
- Laboratorio de Posgrado de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Erik Ocaranza-Sánchez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, Mexico
| |
Collapse
|
35
|
Ouyang ZQ, Shao LS, Wang WP, Ke TF, Chen D, Zheng GR, Duan XR, Chu JX, Zhu Y, Yang L, Shan HY, Huang L, Liao CD. Low intensity pulsed ultrasound ameliorates Adriamycin-induced chronic renal injury by inhibiting ferroptosis. Redox Rep 2023; 28:2251237. [PMID: 37652897 PMCID: PMC10472869 DOI: 10.1080/13510002.2023.2251237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE It is very important to develop a new therapeutic strategy to cope with the increasing morbidity and mortality of chronic kidney disease (CKD). As a kind of physical therapy, low intensity pulsed ultrasound (LIPUS) has remarkable anti-inflammatory and repair-promoting effects and is expected to become a new therapeutic method for CKD. This study aims to clarify the treatment effect of LIPUS on CKD-related renal inflammation and fibrosis, and to further explore the potential signal network of LIPUS treatment for ameliorating chronic renal injury. METHODS A rat model simulating the progress of CKD was established by twice tail-vein injection of Adriamycin (ADR). Under anesthesia, bilateral kidneys of CKD rats were continuously stimulated by LIPUS for four weeks. The parameters of LIPUS were 1.0 MHz, 60 mW/cm2, 50% duty cycle and 20 min/d. RESULTS LIPUS treatment effectively inhibited ADR-induced renal inflammation and fibrosis, and improved CKD-related to oxidative stress and ferroptosis. In addition, the therapeutic effect of LIPUS is closely related to the regulation of TGF-β1/Smad and Nrf2/keap1/HO-1 signalling pathways. DISCUSSION This study provides a new direction for further mechanism research and lays an important foundation for clinical trials.
Collapse
Affiliation(s)
- Zhi-Qiang Ouyang
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| | - Li-shi Shao
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Wei-peng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Teng-fei Ke
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Dong Chen
- Department of Ultrasound, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Guang-rong Zheng
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| | - Xi-rui Duan
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Ji-xiang Chu
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Yu Zhu
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Lu Yang
- Department of Radiology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, People’s Republic of China
| | - Hai-yan Shan
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Cheng-de Liao
- Department of Radiology, Yan` an Hospital of Kunming City (Yanan Hospital Affiliated to Kunming Medical University), Kunming, People’s Republic of China
| |
Collapse
|
36
|
Ghany LMAA, Beshay BY, Youssef Moustafa AM, Maghrabi AHA, Ali EHK, Saleem RM, Zaki I, Ryad N. Design, synthesis, anti-inflammatory evaluation, and molecular modelling of new coumarin-based analogs combined curcumin and other heterocycles as potential TNF-α production inhibitors via upregulating Nrf2/HO-1, downregulating AKT/mTOR signalling pathways and downregulating NF-κB in LPS induced macrophages. J Enzyme Inhib Med Chem 2023; 38:2243551. [PMID: 37558232 PMCID: PMC10413923 DOI: 10.1080/14756366.2023.2243551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Persistent inflammation contributes to various inflammatory conditions. Inflammation-related diseases may be treated by inhibiting pro-inflammatory mediators and cytokines. Curcumin and coumarin derivatives can target signalling pathways and cellular factors to address immune-related and inflammatory ailments. This study involved designing and synthesising three series of coumarin-based analogs that incorporated curcumin and other heterocycles. These analogs were evaluated for their potential as anti-inflammatory agents in LPS-induced macrophages. Among the fourteen synthesised coumarin derivatives, compound 14b, which contained 3,4-dimethoxybenzylidene hydrazinyl, demonstrated the highest anti-inflammatory activity with an EC50 value of 5.32 μM. The anti-inflammatory effects of 14b were achieved by modulating signalling pathways like AKT/mTOR and Nrf2/HO-1, and downregulating NF-kβ, resulting in reduced production of pro-inflammatory cytokines such as IL-6, IL-1β, and TNF-α. The modelling studies revealed that 14b and dexamethasone bind to the same TNF-α pocket, suggesting that 14b has potential as a therapeutic agent superior to dexamethasone for TNF-α.
Collapse
Affiliation(s)
- Lina M. A. Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Botros Y. Beshay
- Pharmaceutical Sciences (Pharmaceutical Chemistry) Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | | | | | | | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| |
Collapse
|
37
|
Luo C, Hou C, Yang D, Tan T, Chao C. Urolithin C alleviates pancreatic β-cell dysfunction in type 1 diabetes by activating Nrf2 signaling. Nutr Diabetes 2023; 13:24. [PMID: 38040681 PMCID: PMC10692094 DOI: 10.1038/s41387-023-00253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
AIMS Type 1 diabetes (T1D) is an autoimmune disorder that destroys insulin-generating pancreatic β-cells. Preserving pancreatic β-cell function is important for treating T1D. Our study aims to explore the mechanism underlying urolithin C (UC)-mediated regulation of β-cell function. METHODS Non-obese diabetic (NOD) mice were administrated with UC to evaluate UC-mediated protection of T1D. The inflammation of the pancreas islets was examined by hematoxylin and eosin staining. Glucose-stimulated insulin secretion (GSIS) assay and oral glucose tolerance test were applied to evaluate the progression of T1D. MIN6 cells were treated with TNF-α, IL-1β and IFN-γ in the presence of UC. Cell viability was analyzed by CCK-8. Cell apoptosis, proliferation and DNA fragmentation were examined by Annexin V-FITC and PI staining, EdU incorporation and comet assays. Keap1, Nrf2, HO-1 and NQO1 were examined by western blot. Immunofluorescence staining was applied to detect Nrf2 and insulin. RESULTS UC administration significantly reduced diabetes incidence, attenuated insulitis, elevated insulin levels and GSIS and reduced blood glucose and AUC in NOD mice. Cytokine treatment suppressed MIN6 cell viability and proliferation but enhanced apoptosis and DNA damage, and these detrimental effects were relieved by UC treatment. Furthermore, UC administration inhibited Keap1 expression and promoted the expression of Nrf2, HO-1 and NQO1 in NOD mice. Nrf2 signaling has been reported to be implicated in preventing the onset of diabetes, and HO-1 and NQO1 are phase II antioxidant enzymes that are regulated by Nrf2 signaling. Cytokine treatment upregulated Keap1 and downregulated Nrf2, HO-1 and NQO1 in MIN6 cells, but it was reversed by UC. The nuclear translocation of Nrf2 was prevented by cytokine treatment, but UC promoted its nuclear translocation. UC-mediated upregulation of Nrf2, HO-1 and NQO1, decreased cell apoptosis and increased proliferation and insulin secretion were abolished by silencing of Nrf2. CONCLUSION UC improves pancreatic β-cell function by activating Nrf2 signaling, thereby alleviating T1D progression.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Can Hou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Tingting Tan
- Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Chen Chao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
38
|
Alruhaimi RS, Hassanein EHM, Abd El-Aziz MK, Siddiq Abduh M, Bin-Ammar A, Kamel EM, Mahmoud AM. The melatonin receptor agonist agomelatine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 124:110833. [PMID: 37634447 DOI: 10.1016/j.intimp.2023.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Pancreatitis is a serious effect of the heavy metal cadmium (Cd) and inflammation and oxidative stress (OS) are implicated in Cd-induced pancreatic injury. This study evaluated the effect of the melatonin receptor agonist agomelatine (AGM) on Cd-induced acute pancreatitis (AP), pointing to its modulatory effect on inflammation, OS, and Nrf2/HO-1 pathway. Rats were supplemented with AGM orally for 14 days and a single injection of cadmium chloride (CdCl2) on day 7. Cd increased serum amylase and lipase and caused pancreatic endocrine and exocrine tissue injury. Malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) were elevated, nuclear factor (NF)-kB p65, inducible NO synthase (iNOS), interleukin (IL)-6, tumor necrosis factor (TNF)-α and CD40 were upregulated, and antioxidants were decreased in the pancreas of Cd-administered rats. AGM ameliorated serum amylase and lipase and pancreatic OS, NF-kB p65, CD40, pro-inflammatory mediators and caspase-3, prevented tissue injury and enhanced antioxidants. AGM downregulated Keap1 and enhanced Nrf2 and HO-1 in the pancreas of Cd-administered rats. In silico findings revealed the binding affinity of AGM with Keap1, HO-1, CD40L and caspase-3. In conclusion, AGM protected against AP induced by Cd by preventing inflammation, OS and apoptosis and modulating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71562, Egypt
| | | | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
39
|
Song G, Tong J, Wang Y, Li Y, Liao Z, Fan D, Fan X. Nrf2-mediated macrophage function in benign prostatic hyperplasia: Novel molecular insights and implications. Biomed Pharmacother 2023; 167:115566. [PMID: 37778273 DOI: 10.1016/j.biopha.2023.115566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
One of the most common urological diseases is benign prostatic hyperplasia (BPH), with a high prevalence in the middle-aged and elderly male population. Patient's mental and physical health is affected significantly by this condition, causing them considerable discomfort. During the development of BPH, a synergistic effect occurs in response to inflammation, oxidative stress, and apoptosis induced by the activation of macrophages. The nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway can mediate macrophage activation and inhibit prostate hyperplasia by suppressing pro-inflammatory factors, anti-oxidative stress disorder, and initiating apoptosis. The purpose of this study was to review the mechanism of action of Nrf2 signaling pathway-mediated macrophage activation on the immune microenvironment of BPH and to summarize the Chinese medicine based on Nrf2 to provide an overview of BPH treatment options.
Collapse
Affiliation(s)
- Guanhui Song
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Jinlin Tong
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuhe Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zeqi Liao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Danping Fan
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xinrong Fan
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
40
|
Pourova J, Dias P, Pour M, Bittner Fialová S, Czigle S, Nagy M, Tóth J, Balázs VL, Horváth A, Csikós E, Farkas Á, Horváth G, Mladěnka P. Proposed mechanisms of action of herbal drugs and their biologically active constituents in the treatment of coughs: an overview. PeerJ 2023; 11:e16096. [PMID: 37901462 PMCID: PMC10607228 DOI: 10.7717/peerj.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/24/2023] [Indexed: 10/31/2023] Open
Abstract
Various medicinal plants find their use in cough treatment, based on traditions and long-term experience. Pharmacological principles of their action, however, are much less known. Herbal drugs usually contain a mixture of potentially active compounds, which can manifest diverse effects. Expectorant or antitussive effects, which can be accompanied by others, such as anti-inflammatory or antibacterial, are probably the most important in the treatment of coughs. The aim of this review is to summarize the current state of knowledge of the effects of medicinal plants or their constituents on cough, based on reliable pharmacological studies. First, a comprehensive description of each effect is provided in order to explain the possible mechanism of action in detail. Next, the results related to individual plants and substances are summarized and critically discussed based on pharmacological in vivo and in vitro investigation.
Collapse
Affiliation(s)
- Jana Pourova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Patricia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| | - Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | | | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University Prague, Hradec Králové, Czech Republic
| |
Collapse
|
41
|
Zhao H, Song G, Zhu H, Qian H, Pan X, Song X, Xie Y, Liu C. Pharmacological Effects of Urolithin A and Its Role in Muscle Health and Performance: Current Knowledge and Prospects. Nutrients 2023; 15:4441. [PMID: 37892516 PMCID: PMC10609777 DOI: 10.3390/nu15204441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Urolithin A (UA) is a naturally occurring compound derived from the metabolism of gut microbiota, which has attracted considerable research attention due to its pharmacological effects and potential implications in muscle health and performance. Recent studies have demonstrated that Urolithin A exhibits diverse biological activities, encompassing anti-inflammatory, antioxidant, anti-tumor, and anti-aging properties. In terms of muscle health, accumulating evidence suggests that Urolithin A may promote muscle protein synthesis and muscle growth through various pathways, offering promise in mitigating muscle atrophy. Moreover, Urolithin A exhibits the potential to enhance muscle health and performance by improving mitochondrial function and regulating autophagy. Nonetheless, further comprehensive investigations are still warranted to elucidate the underlying mechanisms of Urolithin A and to assess its feasibility and safety in human subjects, thereby advancing its potential applications in the realms of muscle health and performance.
Collapse
Affiliation(s)
- Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.Q.)
| | - Ge Song
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (G.S.); (X.P.)
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.Q.)
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.Q.)
| | - Xinliang Pan
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (G.S.); (X.P.)
| | - Xiaoneng Song
- Department of Physical Education, Jiangnan University, Wuxi 214122, China;
| | - Yijie Xie
- Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (G.S.); (X.P.)
| |
Collapse
|
42
|
Yang Z, Zhang L, Liu J, Chan ASC, Li D. Saponins of Tomato Extract Improve Non-Alcoholic Fatty Liver Disease by Regulating Oxidative Stress and Lipid Homeostasis. Antioxidants (Basel) 2023; 12:1848. [PMID: 37891927 PMCID: PMC10604231 DOI: 10.3390/antiox12101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The present study investigated the impact of saponins of tomato extract (STE) on non-alcoholic fatty liver disease (NAFLD). The findings demonstrated that introducing STE in NAFLD mice revealed promising results in ameliorating symptoms of oxidative stress, lipid metabolism disorders, visceral fat deposition and fatty liver disease. Moreover, the mechanistic studies have demonstrated that STE delivers its effects by activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), thereby suppressing downstream protein expression associated with fatty acid synthesis. In such conditions, lipid metabolism can be improved. Simultaneously, STE enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and entry into the nucleus and initiated the transcription of downstream antioxidant factors, thereby relieving oxidative stress induced by a high-fat diet and lowering oxidative damage to the liver. Such results imply that the administration of STE can be regarded as a viable treatment option for NAFLD, providing a mechanism that can regulate the AMPK and Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Ziming Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.); (D.L.)
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Li Zhang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.); (D.L.)
| | - Jinlei Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.); (D.L.)
| | - Albert S. C. Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dianpeng Li
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China; (L.Z.); (J.L.); (D.L.)
| |
Collapse
|
43
|
Akwu NA, Lekhooa M, Deqiang D, Aremu AO. Antidepressant effects of coumarins and their derivatives: A critical analysis of research advances. Eur J Pharmacol 2023; 956:175958. [PMID: 37543158 DOI: 10.1016/j.ejphar.2023.175958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Coumarins and their derivatives are non-flavonoids polyphenols with diverse pharmacological activities including anti-depressant effects. This study systematically examines the antidepressant effects of coumarins and their derivatives in relation to time series of research progress in the pharmacological pathways, association with other diseases, toxicity and bibliometric analysis. The review was approached using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) coupled with R package involving Biblioshiny, a web interface for Bibliometrix analysis and VOSviewer software analytic tools. Literature searches were conducted in Scopus, Web of Science, and PubMed from the inception through January 21, 2023. Coumarins, depression, coumarin derivatives and treatment were the main search terms used which resulted in the inclusion of 46 eligible publications. Scopoletin, psoralen, 7-hydroxycoumarin, meranzin hydrate, osthole, esculetin/umbelliferone were the most studied coumarins with antidepressant effects. Coumarins and their derivatives exerted antidepressant effects with a stronger affinity for monoamine oxidase-B (MAO-B) inhibition and, their inhibitory effect via neurotransmitter pathway on MAO is well-studied. However, epigenetic modification, neuroendocrine, neurotrophic pathways are understudied. Recent research focuses on their antidepressant effects which targeted cytokines and fibromyalgia. There is a link between the gut microbiome, the brain, and depression; meranzin hydrate exerts an antidepressant activity by remodelling the gastrointestinal system. We established that empirical data on some coumarins and their derivatives to support their antidepressant effects are limited. Likewise, the safe dose range for several coumarins and their derivatives is yet to be fully determined.
Collapse
Affiliation(s)
- Nneka Augustina Akwu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian, 116600, China
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
44
|
Han W, Li H, Jiang H, Xu H, Lin Y, Chen J, Bi C, Liu Z. Progress in the mechanism of autophagy and traditional Chinese medicine herb involved in alcohol-related liver disease. PeerJ 2023; 11:e15977. [PMID: 37727691 PMCID: PMC10506582 DOI: 10.7717/peerj.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
Alcohol-related liver disease (ALD) is chronic liver damage caused by long-term heavy drinking with, extremely complicated pathogenesis. The current studies speculated that excessive alcohol and its metabolites are the major causes of liver cell toxicity. Autophagy is evolutionarily conserved in eukaryotes and aggravates alcoholic liver damage, through various mechanisms, such as cellular oxidative stress, inflammation, mitochondrial damage and lipid metabolism disorders. Therefore, autophagy plays an critical role in the occurrence and development of ALD. Some studies have shown that traditional Chinese medicine extracts improve the histological characteristics of ALD, as reflected in the improvement of oxidative stress and lipid droplet clearance, which might be achieved by inducing autophagy. This article reviews the mechanisms of quercetin, baicalin, glycycoumarin, salvianolic acid A, resveratrol, ginsenoside rg1, and dihydromyricetin inducing autophagy and their participation in the inhibition of ALD. The regulation of autophagy in ALD by these traditional Chinese medicine extracts provides novel ideas for the treatment of the disease; however, its molecular mechanism needs to be elucidated further.
Collapse
Affiliation(s)
- Wenwen Han
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Haiyu Li
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hanqi Jiang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Hang Xu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Yifeng Lin
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Jiahuan Chen
- Department of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang Province, China
| |
Collapse
|
45
|
Althagafy HS, Sharawi ZW, Batawi AH, Almohaimeed HM, Al-Thubiani WS, Hassanein EHM, Rateb A. Buspirone attenuated methotrexate-induced hippocampal toxicity in rats by regulating Nrf2/HO-1, PPAR-γ, NF-κB/nNOS, and ROS/NLRP3/caspase-1 signaling pathways. J Biochem Mol Toxicol 2023; 37:e23414. [PMID: 37341015 DOI: 10.1002/jbt.23414] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Methotrexate (MTX) is a chemotherapeutic agent widely used to treat a variety of tumors. Nonetheless, MTX-induced hippocampal neurotoxicity is a well-defined dose-limiting adverse effect that limits clinical utility. Proinflammatory cytokine production and oxidative stress are possible mechanisms for MTX-induced neurotoxicity. Buspirone (BSP), a partial agonist of the 5-HT1a receptor (5-HT1aR), has emerged as an anxiolytic drug. BSP has been shown to possess antioxidant and anti-inflammatory effects. The current study investigated BSP's potential anti-inflammatory and antioxidant effects in attenuating MTX-induced hippocampal toxicity. Rats received either BSP (1.5 mg/kg) orally for 10 days and MTX (20 mg/kg) i.p. on Day 5. BSP administration markedly protected hippocampal neurons from drastic degenerated neuronal changes induced by MTX. BSP significantly attenuated oxidative injury by downregulating Kelch-like ECH-associated protein 1 expression while potently elevating hippocampal Nrf2, heme oxygenase-1, and peroxisome proliferator-activated receptor expression. BSP dampened inflammation by reducing NO2 - , tumor necrosis factor-alpha, IL-6, and interleukin 1 beta levels mediated by downregulating NF-κB and neuronal nitric oxides synthase expression. Moreover, BSP potently counteracted hippocampal pyroptosis by downregulating NLRP3, ASC, and cleaved-caspase-1 proteins. Therefore, BSP may represent a promising approach to attenuate neurotoxicity in patients receiving MTX.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zeina W Sharawi
- Department Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashwaq H Batawi
- Department Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Wafa S Al-Thubiani
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Amal Rateb
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assuit University, Assiut, Egypt
- Department of Basic Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arbia
| |
Collapse
|
46
|
Bai W, Huo S, Zhou G, Li J, Yang Y, Shao J. Biliverdin modulates the Nrf2/A20/eEF1A2 axis to alleviate cerebral ischemia-reperfusion injury by inhibiting pyroptosis. Biomed Pharmacother 2023; 165:115057. [PMID: 37399716 DOI: 10.1016/j.biopha.2023.115057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
This study aimed to examine whether Biliverdin, which is a common metabolite of haem, can alleviate cerebral ischemia reperfusion injury (CIRI) by inhibiting pyroptosis. Here, CIRI was induced by middle cerebral artery occlusion-reperfusion (MCAO/R) in C57BL/6 J mice and modelled by oxygen and glucose deprivation/reoxygenation (OGD/R) in HT22 cells, it was treated with or without Biliverdin. The spatiotemporal expression of GSDMD-N and infarction volumes were assessed by immunofluorescence staining and triphenyltetrazolium chloride (TTC), respectively. The NLRP3/Caspase-1/GSDMD pathway, which is central to the pyroptosis process, as well as the expression of Nrf2, A20, and eEF1A2 were determined by Western-blots. Nrf2, A20, and eEF1A2 interactions were verified using dual-luciferase reporter assays, chromatin immunoprecipitation, or co-immunoprecipitation. Additionally, the role of Nrf2/A20/eEF1A2 axis in modulating the neuroprotective properties of Biliverdin was investigated using A20 or eEF1A2 gene interference (overexpression and/or silencing). 40 mg/kg of Biliverdin could significantly alleviate CIRI both in vivo and in vitro, promoted the activation of Nrf2, elevated A20 expression, but decreased eEF1A2 expression. Nrf2 can bind to the promoter of A20, thereby transcriptionally regulating the expression of A20. A20 can furthermore interacted with eEF1A2 through its ZnF4 domain to ubiquitinate and degrade it, leading to the downregulation of eEF1A2. Our studies have also demonstrated that either the knock-down of A20 or over-expression of eEF1A2 blunted the protective effect of Biliverdin. Rescue experiments further confirmed that Biliverdin could regulate the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. In summary, our study demonstrates that Biliverdin ameliorates CIRI by inhibiting the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. Our findings can help identify novel therapeutic targets for the treatment of CIRI.
Collapse
Affiliation(s)
- Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Guilin Zhou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Yuan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China.
| |
Collapse
|
47
|
Guan T, Bian C, Ma Z. In vitro and in silico perspectives on the activation of antioxidant responsive element by citrus-derived flavonoids. Front Nutr 2023; 10:1257172. [PMID: 37674886 PMCID: PMC10478098 DOI: 10.3389/fnut.2023.1257172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Oxidative stress plays an essential role in the pathogenesis of chronic diseases. Disrupting the Keap1-Nrf2 pathway by binding Keap1 is identified as a potential strategy to prevent oxidative stress-related chronic diseases. Therefore, of special interest is the utilization of dietary antioxidations from citrus, including narirutin, naringenin, hesperetin, hesperidin, naringin, neohesperidin dihydrochalcone, neohesperidin, and nobiletin, has been exploited as a prospective way to treat or prevent several human pathologies as Keap1-Nrf2 inhibitors for modulation of antioxidant properties. Methods To probe into the structural foundation of the molecular identification of citrus-derived antioxidations, we calculated the antioxidant responsive element activation ability of citrus-derived flavonoids after binding with Keap1. Also, the quantum chemistry properties and binding mode were performed theoretically with frontier molecular orbitals, molecular electrostatic potential analysis, molecular docking, and absorption, distribution, metabolism, excretion (ADME) calculation. Results and discussion Experimental findings combining computational assays revealed that the tested citrus-derived flavonoids can be grouped into strong agonists and weak agonists. The citrus-derived antioxidations were well housed in the bound zone of Keap1 via stable hydrogen bonding and hydrophobic interaction. Eventually, three of eight antioxidations were identified after ADME and physicochemical evaluations. The citrus-derived flavonoids were identified as potential dietary antioxidants of the Keap1-Nrf2 interaction, and can be used to improve oxidative stress-related chronic diseases.
Collapse
Affiliation(s)
- Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Canfeng Bian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
48
|
Abdelmawgood IA, Mahana NA, Badr AM, Mohamed AS, Al Shawoush AM, Atia T, Abdelrazak AE, Sakr HI. Echinochrome Ameliorates Physiological, Immunological, and Histopathological Alterations Induced by Ovalbumin in Asthmatic Mice by Modulating the Keap1/Nrf2 Signaling Pathway. Mar Drugs 2023; 21:455. [PMID: 37623736 PMCID: PMC10455754 DOI: 10.3390/md21080455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Asthma is a persistent inflammatory disease of the bronchi characterized by oxidative stress, airway remodeling, and inflammation. Echinochrome (Ech) is a dark-red pigment with antioxidant and anti-inflammatory activities. In this research, we aimed to investigate the effects of Ech against asthma-induced inflammation, oxidative stress, and histopathological alterations in the spleen, liver, and kidney in mice. Mice were divided into four groups (n = 8 for each): control, asthmatic, and asthmatic mice treated intraperitoneally with 0.1 and 1 mg/kg of Ech. In vitro, findings confirmed the antioxidant and anti-inflammatory activities of Ech. Ech showed antiasthmatic effects by lowering the serum levels of immunoglobulin E (IgE), interleukin 4 (IL-4), and interleukin 1β (IL-1β). It attenuated oxidative stress by lowering malondialdehyde (MDA) and nitric oxide (NO) contents and increasing reduced glutathione (GSH), superoxide dismutase (SOD), glutathione-s-transferase (GST), and catalase (CAT) in the liver, spleen, and kidney. Moreover, it protected asthma-induced kidney and liver functions by increasing total protein and albumin and decreasing aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, urea, and uric acid levels. Additionally, it ameliorated histopathological abnormalities in the lung, liver, spleen, and kidney. Additionally, molecular docking studies were used to examine the interactions between Ech and Kelch-like ECH-associated protein 1 (Keap1). PCR and Western blot analyses confirmed the association of Ech with Keap1 and, consequently, the regulatory role of Ech in the Keap1-(nuclear factor erythroid 2-related factor 2) Nrf2 signaling pathway in the liver, spleen, and kidney. According to our findings, Ech prevented asthma and its complications in the spleen, liver, and kidney. Inhibition of inflammation and oxidative stress are two of echinochrome's therapeutic actions in managing asthma by modulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
| | - Noha Ahmed Mahana
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | | | - Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amir Elhadi Abdelrazak
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; (A.E.A.); (H.I.S.)
| | - Hader I. Sakr
- Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; (A.E.A.); (H.I.S.)
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
49
|
Zheng L, Zhu B, Wu Z, Guo M, Chen J, Hong M, Liu G, Li W, Ren G, Tang Y. Pharmaceutical Cocrystal Discovery via 3D-SMINBR: A New Network Recommendation Tool Augmented by 3D Molecular Conformations. J Chem Inf Model 2023. [PMID: 37399241 DOI: 10.1021/acs.jcim.3c00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Cocrystals have significant potential in various fields such as chemistry, material, and medicine. For instance, pharmaceutical cocrystals have the ability to address issues associated with physicochemical and biopharmaceutical properties. However, it can be challenging to find proper coformers to form cocrystals with drugs of interest. Herein, a new in silico tool called 3D substructure-molecular-interaction network-based recommendation (3D-SMINBR) has been developed to address this problem. This tool first integrated 3D molecular conformations with a weighted network-based recommendation model to prioritize potential coformers for target drugs. In cross-validation, the performance of 3D-SMINBR surpassed the 2D substructure-based predictive model SMINBR in our previous study. Additionally, the generalization capability of 3D-SMINBR was confirmed by testing on unseen cocrystal data. The practicality of this tool was further demonstrated by case studies on cocrystal screening of armillarisin A (Arm) and isoimperatorin (iIM). The obtained Arm-piperazine and iIM-salicylamide cocrystals present improved solubility and dissolution rate compared to their parent drugs. Overall, 3D-SMINBR augmented by 3D molecular conformations would be a useful network-based tool for cocrystal discovery. A free web server for 3D-SMINBR can be freely accessed at http://lmmd.ecust.edu.cn/netcorecsys/.
Collapse
Affiliation(s)
- Lulu Zheng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Laboratory of Molecular Modeling & Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Zhu
- State Key Laboratory of Bioreactor Engineering, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Laboratory of Molecular Modeling & Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mei Guo
- State Key Laboratory of Bioreactor Engineering, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinyao Chen
- State Key Laboratory of Bioreactor Engineering, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Minghuang Hong
- State Key Laboratory of Bioreactor Engineering, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Laboratory of Molecular Modeling & Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Laboratory of Molecular Modeling & Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guobin Ren
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Laboratory of Molecular Modeling & Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Laboratory of Molecular Modeling & Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Hassanein EHM, Ali FEM, Sayed MM, Mahmoud AR, Jaber FA, Kotob MH, Abd-Elhamid TH. Umbelliferone potentiates intestinal protective effect of Lactobacillus Acidophilus against methotrexate-induced intestinal injury: Biochemical and histological study. Tissue Cell 2023; 82:102103. [PMID: 37178526 DOI: 10.1016/j.tice.2023.102103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Intestinal injury is a common adverse effect of methotrexate (MTX) therapy, limiting its clinical use. Despite oxidative stress and inflammation being the most embedded mechanism of injury, pharmacological agents that exhibit antioxidant and anti-inflammatory impacts could prevent such toxicities. This study aimed to assess the enteroprotective effect of lactobacillus acidophilus (LB) and/or umbelliferone (UMB) against MTX-induced intestinal injury. Histologically, pretreatment with LB, UMB, or their combinations preserve the intestinal histological structure and mucin content with superior effect in combination therapy. In addition, oral pretreatment with UMB, LB, or their combinations significantly restored oxidant/antioxidant status, as evidenced by the upregulation of Nrf2, SOD3, HO-1, GSH, and GST levels concurrent with a decline in MDA contents. Besides, they suppressed the inflammatory burden by inhibiting STAT3, MPO, TLR4, NF-κB, TNF-α, and IL-6 levels. Moreover, LB, UMB, or their combinations significantly upregulated Wnt and β-catenin expression. Notably, pretreatment with the combination therapy is superior to monotherapy in protecting rats' small intestines from MTX-induced enteritis. In conclusion, combined pretreatment with LB and UMB could be a novel therapeutic regimen for conditions of intestinal injury induced by MTX via restoring oxidant/antioxidant balance and suppressing inflammatory burden.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mohamed H Kotob
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
| |
Collapse
|