1
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
2
|
Bugno J, Wang L, Yu X, Cao X, Wang J, Huang X, Yang K, Piffko A, Chen K, Luo SY, Naccasha E, Hou Y, Fu S, He C, Fu YX, Liang HL, Weichselbaum RR. Targeting the Dendritic Cell-Secreted Immunoregulatory Cytokine CCL22 Alleviates Radioresistance. Clin Cancer Res 2024; 30:4450-4463. [PMID: 38691100 PMCID: PMC11444901 DOI: 10.1158/1078-0432.ccr-23-3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE Radiation-mediated immune suppression limits efficacy and is a barrier in cancer therapy. Radiation induces negative regulators of tumor immunity including regulatory T cells (Treg). Mechanisms underlying Treg infiltration after radiotherapy (RT) are poorly defined. Given that conventional dendritic cells (cDC) maintain Treg, we sought to identify and target cDC signaling to block Treg infiltration after radiation. EXPERIMENTAL DESIGN Transcriptomics and high dimensional flow cytometry revealed changes in murine tumor cDC that not only mediate Treg infiltration after RT but also associate with worse survival in human cancer datasets. Antibodies perturbing a cDC-CCL22-Treg axis were tested in syngeneic murine tumors. A prototype interferon-anti-epidermal growth factor receptor fusion protein (αEGFR-IFNα) was examined to block Treg infiltration and promote a CD8+ T cell response after RT. RESULTS Radiation expands a population of mature cDC1 enriched in immunoregulatory markers that mediates Treg infiltration via the Treg-recruiting chemokine CCL22. Blocking CCL22 or Treg depletion both enhanced RT efficacy. αEGFR-IFNα blocked cDC1 CCL22 production while simultaneously inducing an antitumor CD8+ T cell response to enhance RT efficacy in multiple EGFR-expressing murine tumor models, including following systemic administration. CONCLUSIONS We identify a previously unappreciated cDC mechanism mediating Treg tumor infiltration after RT. Our findings suggest blocking the cDC1-CCL22-Treg axis augments RT efficacy. αEGFR-IFNα added to RT provided robust antitumor responses better than systemic free interferon administration and may overcome clinical limitations to interferon therapy. Our findings highlight the complex behavior of cDC after RT and provide novel therapeutic strategies for overcoming RT-driven immunosuppression to improve RT efficacy. See related commentary by Kalinski et al., p. 4260.
Collapse
Affiliation(s)
- Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Xianbin Yu
- Department of Chemistry, University of Chicago, Chicago, Illinois
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois
| | - Xuezhi Cao
- Guangzhou National Laboratory, Guangzhou, China
| | - Jiaai Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Andras Piffko
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katherine Chen
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Stephen Y Luo
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Emile Naccasha
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Sherry Fu
- UT Southwestern Medical School, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois
| | - Yang-Xin Fu
- Department of Basic Medical Science, Tsinghua University, Beijing, China
| | - Hua L Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00992-0. [PMID: 39325360 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
4
|
Ager CR, Obradovic A, McCann P, Chaimowitz M, Wang ALE, Shaikh N, Shah P, Pan S, Laplaca CJ, Virk RK, Hill JC, Jugler C, DeFranco G, Bhattacharya N, Scher HI, DeCastro GJ, Anderson CB, McKiernan JM, Spina CS, Stein MN, Runcie K, Drake CG, Califano A, Dallos MC. Neoadjuvant androgen deprivation therapy with or without Fc-enhanced non-fucosylated anti-CTLA-4 (BMS-986218) in high risk localized prostate cancer: a randomized phase 1 trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313308. [PMID: 39314954 PMCID: PMC11419205 DOI: 10.1101/2024.09.09.24313308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Men with high-risk localized prostate cancer exhibit high rates of post-surgical recurrence. In these patients, androgen deprivation therapy (ADT) is immunomodulatory, however increased infiltration of regulatory T cells (Tregs) may limit the antitumor immune effects of ADT. We designed a neoadjuvant clinical trial to test whether BMS-986218 - a next-generation non-fucosylated anti-CTLA-4 antibody engineered for enhanced antibody-dependent cellular cytotoxicity or phagocytosis (ADCC/P) - depletes intratumoral Tregs and augments the response to ADT. In this single-center, two-arm, open-label study, 24 men with high-risk localized prostate cancer were randomized to receive a single dose of ADT with or without two pre-operative doses of BMS-986218 (anti-CTLA4-NF) prior to radical prostatectomy. Treatment was well tolerated and feasible in the neoadjuvant setting. A secondary clinical outcome was the rate of disease recurrence, which was lower than predicted in both arms. Mechanistically, anti-CTLA4-NF reduced ADT-induced Treg accumulation through engagement of CD16a/FCGR3A on tumor macrophages, and depth of Treg depletion was quantitatively associated with clinical outcome. Increased intratumoral dendritic cell (DC) frequencies also associated with lack of recurrence, and pre-clinical data suggest ADCC/P-competent anti-CTLA-4 antibodies elicit activation and expansion of tumor DCs. Patients receiving anti-CTLA4-NF also exhibited phenotypic signatures of enhanced antitumor T cell priming. In total, this study provides the first-in-human evidence of Treg depletion by glycoengineered antibodies targeting CTLA-4 in humans and their potential in combination with ADT in prostate cancer patients with high-risk of recurrence.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
- Department of Urology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Aleksandar Obradovic
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Patrick McCann
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - Matthew Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Alexander L E Wang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Neha Shaikh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Parin Shah
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Samuel Pan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Caroline J Laplaca
- Department of Urology, Columbia University Irving Medical Center, New York, NY
| | - Renu K Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY
| | - Jessica C Hill
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Collin Jugler
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | - Grace DeFranco
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - James M McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY
| | - Catherine S Spina
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY
| | - Mark N Stein
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
| | - Karie Runcie
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
| | - Charles G Drake
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
- Current Address: JnJ Innovative Medicine, Springhouse, PA
| | - Andrea Califano
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA 10032
- Chan Zuckerberg Biohub New York, New York, NY, USA
| | - Matthew C Dallos
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
5
|
Suto A, Minaguchi T, Qi N, Fujieda K, Itagaki H, Tenjimbayashi Y, Shikama A, Tasaka N, Akiyama A, Nakao S, Nakahashi-Oda C, Kobayashi Y, Shibuya A, Satoh T. CD25 +FOXP3 +CD45RA - regulatory T-cell infiltration as a prognostic biomarker for endometrial carcinoma. BMC Cancer 2024; 24:1100. [PMID: 39232704 PMCID: PMC11373268 DOI: 10.1186/s12885-024-12851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Regulatory T (Treg) cells reportedly play crucial roles in tumor angiogenesis as well as antitumor immunity. In order to explore their therapeutic potential, we investigated the precise prognostic impact of Treg markers in endometrial carcinoma. METHODS We performed multiplexed immunofluorescence and quantitative image analyses of CD25, FOXP3, CTLA4, and CD45RA in tumor specimens from 176 consecutive patients treated at our institution for primary endometrial carcinomas. Bioinformatics analyses were further conducted to corroborate the findings. RESULTS High CD25+, FOXP3+, and CD25+FOXP3+CD45RA- stromal cell counts correlated with better overall survival (OS) (p = 0.00019, 0.028 and 0.0012) and MSI-high (p = 0.015, 0.016 and 0.047). High CD45RA+ stromal cell count was associated with superficial myometrial invasion (p = 0.0038). Bioinformatics survival analysis by Kaplan-Meier plotter showed that high CD25, FOXP3, CTLA4, and CD45RA mRNA expressions correlated with better OS (p = 0.046, 0.00042, 0.000044, and 0.0022). Univariate and multivariate analyses with various clinicopathologic prognostic factors indicated that high CD25+ or CD25+FOXP3+CD45RA- stromal cell count was significant and independent for favorable OS (p = 0.0053 and 0.0015). We subsequently analyzed the correlations between the multiplexed immunofluorescence results and treatment-free interval (TFI) after primary chemotherapy in recurrent cases, finding no significant associations. Further analysis revealed that high ratio of CD25+ : CD8+ cell count or CD25+FOXP3+CD45RA- : CD8+ cell count correlated with longer TFI (p = 0.021 and 0.021). CONCLUSION The current observations suggest that the balance between CD25+ or CD25+FOXP3+CD45RA- cells and CD8+ cells, corresponding to promoting or inhibiting effect on tumor angiogenesis, affect tumor chemosensitivity leading to prognostic significance. CD25+FOXP3+CD45RA- effector Treg tumor infiltration may serve as a useful prognostic biomarker and a potential target for immunotherapeutic manipulation of tumor chemosensitivity by novel management for advanced/recurrent endometrial carcinomas.
Collapse
Affiliation(s)
- Asami Suto
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Takeo Minaguchi
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan.
| | - Nan Qi
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaoru Fujieda
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Hiroya Itagaki
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Yuri Tenjimbayashi
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Ayumi Shikama
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Nobutaka Tasaka
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Azusa Akiyama
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Sari Nakao
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Chigusa Nakahashi-Oda
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, 305-8575, Ibaraki, Japan
| |
Collapse
|
6
|
Nie P, Cao Z, Yu R, Dong C, Zhang W, Meng Y, Zhang H, Pan Y, Tong Z, Jiang X, Wang S, Zhu M, Han Y, Wang W, Zhang Y, Tan L, Li C, Xu Y, An L, Li B, Jiao S, Zhou Z. Targeting p97-Npl4 interaction inhibits tumor T reg cell development to enhance tumor immunity. Nat Immunol 2024; 25:1623-1636. [PMID: 39107403 DOI: 10.1038/s41590-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/28/2024] [Indexed: 09/01/2024]
Abstract
Targeting tumor-infiltrating regulatory T (TI-Treg) cells is a potential strategy for cancer therapy. The ATPase p97 in complex with cofactors (such as Npl4) has been investigated as an antitumor drug target; however, it is unclear whether p97 has a function in immune cells or immunotherapy. Here we show that thonzonium bromide is an inhibitor of the interaction of p97 and Npl4 and that this p97-Npl4 complex has a critical function in TI-Treg cells. Thonzonium bromide boosts antitumor immunity without affecting peripheral Treg cell homeostasis. The p97-Npl4 complex bridges Stat3 with E3 ligases PDLIM2 and PDLIM5, thereby promoting Stat3 degradation and enabling TI-Treg cell development. Collectively, this work shows an important role for the p97-Npl4 complex in controlling Treg-TH17 cell balance in tumors and identifies possible targets for immunotherapy.
Collapse
Affiliation(s)
- Pingping Nie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Ruixian Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weihong Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoya Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengwen Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Du WY, Masuda H, Nagaoka K, Yasuda T, Kuge K, Seto Y, Kakimi K, Nomura S. Janus kinase inhibitor overcomes resistance to immune checkpoint inhibitor treatment in peritoneal dissemination of gastric cancer in C57BL/6 J mice. Gastric Cancer 2024; 27:971-985. [PMID: 38805119 PMCID: PMC11335826 DOI: 10.1007/s10120-024-01514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Cancer immunotherapy aims to unleash the immune system's potential against cancer cells, providing sustained relief for tumors responsive to immune checkpoint inhibitors (ICIs). While promising in gastric cancer (GC) trials, the efficacy of ICIs diminishes in the context of peritoneal dissemination. Our objective is to identify strategies to enhance the impact of ICI treatment specifically for cases involving peritoneal dissemination in GC. METHODS The therapeutic efficacy of anti-PD1, CTLA4 treatment alone, or in combination was assessed using the YTN16 peritoneal dissemination tumor model. Peritoneum and peritoneal exudate cells were collected for subsequent analysis. Immunohistochemical staining, flow cytometry, and bulk RNA-sequence analyses were conducted to evaluate the tumor microenvironment (TME). A Janus kinase inhibitor (JAKi) was introduced based on the pathway analysis results. RESULTS Anti-PD1 and anti-CTLA4 combination treatment (dual ICI treatment) demonstrated therapeutic efficacy in certain mice, primarily mediated by CD8 + T cells. However, in mice resistant to dual ICI treatment, even with CD8 + T cell infiltration, most of the T cells exhibited an exhaustion phenotype. Notably, resistant tumors displayed abnormal activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway compared to the untreated group, with observed infiltration of macrophages, neutrophils, and Tregs in the TME. The concurrent administration of JAKi rescued CD8 + T cells function and reshaped the immunosuppressive TME, resulting in enhanced efficacy of the dual ICI treatment. CONCLUSION Dual ICI treatment exerts its anti-tumor effects by increasing tumor-specific CD8 + T cell infiltration, and the addition of JAKi further improves ICI resistance by reshaping the immunosuppressive TME.
Collapse
Affiliation(s)
- Wan-Ying Du
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Hiroki Masuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Gastrointestinal Surgery, Nippon Medical School, Tokyo, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomohiko Yasuda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Gastrointestinal Surgery, Nippon Medical School, Tokyo, Japan
| | - Komei Kuge
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Department of Gastrointestinal Surgery, Nippon Medical School, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
8
|
Wu MM, Yang YC, Cai YX, Jiang S, Xiao H, Miao C, Jin XY, Sun Y, Bi X, Hong Z, Zhu D, Yu M, Mao JJ, Yu CJ, Liang C, Tang LL, Wang QS, Shao Q, Jiang QH, Pan ZW, Zhang ZR. Anti-CTLA-4 m2a Antibody Exacerbates Cardiac Injury in Experimental Autoimmune Myocarditis Mice By Promoting Ccl5-Neutrophil Infiltration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400486. [PMID: 38978328 PMCID: PMC11425905 DOI: 10.1002/advs.202400486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/12/2024] [Indexed: 07/10/2024]
Abstract
The risk for suffering immune checkpoint inhibitors (ICIs)-associated myocarditis increases in patients with pre-existing conditions and the mechanisms remain to be clarified. Spatial transcriptomics, single-cell RNA sequencing, and flow cytometry are used to decipher how anti-cytotoxic T lymphocyte antigen-4 m2a antibody (anti-CTLA-4 m2a antibody) aggravated cardiac injury in experimental autoimmune myocarditis (EAM) mice. It is found that anti-CTLA-4 m2a antibody increases cardiac fibroblast-derived C-X-C motif chemokine ligand 1 (Cxcl1), which promots neutrophil infiltration to the myocarditic zones (MZs) of EAM mice via enhanced Cxcl1-Cxcr2 chemotaxis. It is identified that the C-C motif chemokine ligand 5 (Ccl5)-neutrophil subpopulation is responsible for high activity of cytokine production, adaptive immune response, NF-κB signaling, and cellular response to interferon-gamma and that the Ccl5-neutrophil subpopulation and its-associated proinflammatory cytokines/chemokines promoted macrophage (Mφ) polarization to M1 Mφ. These altered infiltrating landscape and phenotypic switch of immune cells, and proinflammatory factors synergistically aggravated anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. Neutralizing neutrophils, Cxcl1, and applying Cxcr2 antagonist dramatically alleviates anti-CTLA-4 m2a antibody-induced leukocyte infiltration, cardiac fibrosis, and dysfunction. It is suggested that Ccl5-neutrophil subpopulation plays a critical role in aggravating anti-CTLA-4 m2a antibody-induced cardiac injury in EAM mice. This data may provide a strategic rational for preventing/curing ICIs-associated myocarditis.
Collapse
Affiliation(s)
- Ming-Ming Wu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
| | - Yan-Chao Yang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Yong-Xu Cai
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Shuai Jiang
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Han Xiao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Chang Miao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Xi-Yun Jin
- School of Interdisciplinary Medicine and Engineering, HMU, Harbin, 150081, China
| | - Yu Sun
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Xin Bi
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Zi Hong
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Di Zhu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Miao Yu
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Jian-Jun Mao
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Chang-Jiang Yu
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Chen Liang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Liang-Liang Tang
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Qiu-Shi Wang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
| | - Qun Shao
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
| | - Qing-Hua Jiang
- School of Interdisciplinary Medicine and Engineering, HMU, Harbin, 150081, China
| | - Zhen-Wei Pan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), HMU, Harbin, 150081, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University (HMU), NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, 150001, China
- Departments of Cardiology and Pharmacy, HMU Cancer Hospital, Insitute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, Harbin, 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), HMU, Harbin, 150081, China
| |
Collapse
|
9
|
Belli S, Amann M, Hutchinson L, Pousse L, Abdolzade-Bavil A, Justies N, Jacobsen B, Ploix C, Tselempi E, Tosevski V, Koll H, Schnetzler G, Boetsch C, Marrer-Berger E. Optimizing Early Clinical Investigations in Cancer Immunotherapy: The Translational Journey of RG6292, a Novel, Selective Treg-Depleting Antibody. Clin Pharmacol Ther 2024; 116:834-846. [PMID: 38769868 DOI: 10.1002/cpt.3303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted IL-2/IL-2R biology and its modulation by promising therapeutic agents are highly relevant topics in the cancer immunotherapy field. A novel CD25-Treg-depleting antibody (Vopikitug, RG6292) has been engineered to preserve IL-2 signaling on effector T cells to enhance effector activation and antitumor immunity, and is currently being evaluated in the clinic. The Entry into Human-enabling framework described here investigated the characteristics of RG6292, from in vitro quantification of CD25 and RG6292 pharmacology using human tissues to in vivo assessment of PK/PD/safety relationships in cynomolgus monkeys as non-human primate species (NHP). Fundamental knowledge on CD25 and Treg biology in healthy and diseased tissues across NHP and human highlighted the commonalities between these species in regard to the target biology and demonstrated the conservation of RG6292 properties between NHP and human. The integration of in vitro and in vivo PK/PD/safety data from these species enabled the identification of human relevant safety risks, the selection of the most appropriate safe starting dose and the projection of the pharmacologically-relevant dose range. The first clinical data obtained for RG6292 in patients verified the appropriateness of the described approaches as well as validated the full clinical relevance of the projected safety, PK, and PD profiles from animal to man. This work shows how the integration of mechanistic non-clinical data increases the predictive value for human, allowing efficient transition of drug candidates and optimizations of early clinical investigations.
Collapse
Affiliation(s)
- Sara Belli
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Lucy Hutchinson
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Laurène Pousse
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Afsaneh Abdolzade-Bavil
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Development (pRED), Penzberg, Germany
| | - Nicole Justies
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Bjoern Jacobsen
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Corinne Ploix
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Eleni Tselempi
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Vinko Tosevski
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Hans Koll
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Development (pRED), Penzberg, Germany
| | - Gabriel Schnetzler
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Christophe Boetsch
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Estelle Marrer-Berger
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| |
Collapse
|
10
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
11
|
Wang H, Gong L, Huang X, White SD, Chung HT, Vesprini D, Petchiny TN, Fokas E, He H, Kerbel RS, Liu SK. Potentiating Salvage Radiotherapy in Radiorecurrent Prostate Cancer Through Anti-CTLA4 Therapy: Implications from a Syngeneic Model. Cancers (Basel) 2024; 16:2839. [PMID: 39199612 PMCID: PMC11352774 DOI: 10.3390/cancers16162839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
High-risk prostate cancer (PCa) is a leading cause in cancer death and can elicit significant morbidity and mortality. Currently, the salvage of local disease recurrence after radiation therapy (RT) is a major clinical problem. Immune checkpoint inhibitors (ICIs), which enhance immune activation, have demonstrated clinical therapeutic promise in combination with ionizing radiation (IR) in certain advanced cancers. We generated the TRAMP-C2 HF radiorecurrent syngeneic mouse model to evaluate the therapeutic efficacy of ICIs in combination with RT. The administration of anti-PDL1 and/or anti-CTLA4 did not achieve a significant tumor growth delay compared to the control. The combination of IR and anti-PDL1 did not yield additional a growth delay compared to IR and the isotype control. Strikingly, a significant tumor growth delay and complete cure in one-third of the mice were seen with the combination of IR and anti-CTLA4. Immune cells in tumor-draining lymph nodes and tumor-infiltrating lymphocytes from mice treated with IR and anti-CTLA4 demonstrated an upregulation of genes in T-cell functions and enrichment in both CD4+ and CD8+ T-cell populations compared to mice given IR and the isotype control. Taken together, these results indicate enhancement of T-cell response in radiorecurrent PCa by IR and anti-CTLA4.
Collapse
Affiliation(s)
- Hanzhi Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Linsey Gong
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stephanie D. White
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Hans T. Chung
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Danny Vesprini
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| | - Tera N. Petchiny
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Emmanouil Fokas
- Department of Radiation Oncology, CyberKnife and Radiation Therapy, Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Robert S. Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
| | - Stanley K. Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1L7, Canada; (L.G.); (S.D.W.); (H.H.); (R.S.K.); (S.K.L.)
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (X.H.); (D.V.); (T.N.P.)
- Sunnybrook Health Sciences Centre, Odette Cancer Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1P5, Canada
| |
Collapse
|
12
|
Gavil NV, Cheng K, Masopust D. Resident memory T cells and cancer. Immunity 2024; 57:1734-1751. [PMID: 39142275 PMCID: PMC11529779 DOI: 10.1016/j.immuni.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
Tissue-resident memory T (TRM) cells positively correlate with cancer survival, but the anti-tumor mechanisms underlying this relationship are not understood. This review reconciles these observations, summarizing concepts of T cell immunosurveillance, fundamental TRM cell biology, and clinical observations on the role of TRM cells in cancer and immunotherapy outcomes. We also discuss emerging strategies that utilize TRM-phenotype cells for patient diagnostics, staging, and therapy. Current challenges are highlighted, including a lack of standardized T cell nomenclature and our limited understanding of relationships between T cell markers and underlying tumor biology. Existing findings are integrated into a summary of the field while emphasizing opportunities for future research.
Collapse
Affiliation(s)
- Noah Veis Gavil
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Katarina Cheng
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Kim KS, Habashy K, Gould A, Zhao J, Najem H, Amidei C, Saganty R, Arrieta VA, Dmello C, Chen L, Zhang DY, Castro B, Billingham L, Levey D, Huber O, Marques M, Savitsky DA, Morin BM, Muzzio M, Canney M, Horbinski C, Zhang P, Miska J, Padney S, Zhang B, Rabadan R, Phillips JJ, Butowski N, Heimberger AB, Hu J, Stupp R, Chand D, Lee-Chang C, Sonabend AM. Fc-enhanced anti-CTLA-4, anti-PD-1, doxorubicin, and ultrasound-mediated BBB opening: A novel combinatorial immunotherapy regimen for gliomas. Neuro Oncol 2024:noae135. [PMID: 39028616 DOI: 10.1093/neuonc/noae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive brain cancer that is resistant to conventional immunotherapy strategies. Botensilimab, an Fc-enhanced anti-CTLA-4 antibody (FcE-aCTLA-4), has shown durable activity in "cold" and immunotherapy-refractory cancers. METHOD We evaluated the efficacy and immune microenvironment phenotype of a mouse analogue of FcE-aCTLA-4 in treatment-refractory preclinical models of glioblastoma, both as a monotherapy and in combination with doxorubicin delivered via low-intensity pulsed ultrasound and microbubbles (LIPU/MB). Additionally, we studied 4 glioblastoma patients treated with doxorubicin, anti-PD-1 with concomitant LIPU/MB to investigate the novel effect of doxorubicin modulating FcγR expressions in tumor associated macrophages/microglia (TAMs). RESULTS FcE-aCTLA-4 demonstrated high-affinity binding to FcγRIV, the mouse ortholog of human FcγRIIIA, which was highly expressed in TAMs in human glioblastoma, most robustly at diagnosis. Notably, FcE-aCTLA-4 mediated selective depletion of intra-tumoral regulatory T cells (Tregs) via TAM-mediated phagocytosis, while sparing peripheral Tregs. Doxorubicin, a chemotherapeutic drug with immunomodulatory functions, was found to upregulate FcγRIIIA on TAMs in glioblastoma patients who received doxorubicin and anti-PD-1 with concomitant LIPU/MB. In murine models of immunotherapy-resistant gliomas, a combinatorial regimen of FcE-aCTLA-4, anti-PD-1, and doxorubicin with LIPU/MB, achieved a 90% cure rate, that was associated robust infiltration of activated CD8+ T cells and establishment of immunological memory as evidenced by rejection upon tumor rechallenge. CONCLUSION Our findings demonstrate that FcE-aCTLA-4 promotes robust immunomodulatory and anti-tumor effects in murine gliomas and is significantly enhanced when combined with anti-PD-1, doxorubicin, and LIPU/MB. We are currently investigating this combinatory strategy in a clinical trial (clinicaltrials.gov NCT05864534).
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Karl Habashy
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Andrew Gould
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Christina Amidei
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Ruth Saganty
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Víctor A Arrieta
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Li Chen
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Daniel Y Zhang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Leah Billingham
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | | | | | | | | | | | - Miguel Muzzio
- Life Science Group, IIT Research Institute (IITRI), Chicago, IL, USA
| | | | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Surya Padney
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Medicine, Division of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Jian Hu
- Department of Cancer Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago IL, USA
| |
Collapse
|
14
|
Fu J, Mao L, Jiao Y, Mei D, Chen Y. Elucidating CTLA-4's role in tumor immunity: a comprehensive overview of targeted antibody therapies and clinical developments. Mol Divers 2024:10.1007/s11030-024-10917-6. [PMID: 38985379 DOI: 10.1007/s11030-024-10917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) emerges as a key single-chain transmembrane glycoprotein predominantly expressed in effector T cells and regulatory T cells. It plays a crucial role in tumor immunity by modulating T cell responses. Specifically, CTLA-4 dampens T cell activation and proliferation while bolstering the survival of regulatory T cell through its competitive interaction with B7 family molecules, thereby aiding tumor cells in eluding immune detection. Given CTLA-4's significant influence on tumor immune dynamics, an array of anti-CTLA-4 antibody therapeutics have been clinically developed to combat various malignancies, including melanoma, renal cell carcinoma, colorectal carcinoma, hepatocellular carcinoma, non-small cell lung carcinoma, and pleural mesothelioma, demonstrating notable clinical therapeutic effects. This paper aims to delve into CTLA-4's integral role in tumor immunity and to encapsulate the latest advancements in the clinical research of anti-CTLA-4 antibody.
Collapse
Affiliation(s)
- Juan Fu
- Suzhou Guo Kuang Pharmaceutical Technology Co, Sichuan, China
- College of Science, China Pharmaceutical University, Nanjing, China
| | - Lin Mao
- College of Science, China Pharmaceutical University, Nanjing, China
| | - Yu Jiao
- College of Science, China Pharmaceutical University, Nanjing, China
| | - Desheng Mei
- Suzhou Guo Kuang Pharmaceutical Technology Co, Sichuan, China.
| | - Yadong Chen
- College of Science, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
Willoughby JE, Dou L, Bhattacharya S, Jackson H, Seestaller-Wehr L, Kilian D, Bover L, Voo KS, Cox KL, Murray T, John M, Shi H, Bojczuk P, Jing J, Niederer H, Shepherd AJ, Hook L, Hopley S, Inzhelevskaya T, Penfold CA, Mockridge CI, English V, Brett SJ, Srinivasan R, Hopson C, Smothers J, Hoos A, Paul E, Martin SL, Morley PJ, Yanamandra N, Cragg MS. Impact of isotype on the mechanism of action of agonist anti-OX40 antibodies in cancer: implications for therapeutic combinations. J Immunother Cancer 2024; 12:e008677. [PMID: 38964788 PMCID: PMC11227834 DOI: 10.1136/jitc-2023-008677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND OX40 has been widely studied as a target for immunotherapy with agonist antibodies taken forward into clinical trials for cancer where they are yet to show substantial efficacy. Here, we investigated potential mechanisms of action of anti-mouse (m) OX40 and anti-human (h) OX40 antibodies, including a clinically relevant monoclonal antibody (mAb) (GSK3174998) and evaluated how isotype can alter those mechanisms with the aim to develop improved antibodies for use in rational combination treatments for cancer. METHODS Anti-mOX40 and anti-hOX40 mAbs were evaluated in a number of in vivo models, including an OT-I adoptive transfer immunization model in hOX40 knock-in (KI) mice and syngeneic tumor models. The impact of FcγR engagement was evaluated in hOX40 KI mice deficient for Fc gamma receptors (FcγR). Additionally, combination studies using anti-mouse programmed cell death protein-1 (mPD-1) were assessed. In vitro experiments using peripheral blood mononuclear cells (PBMCs) examining possible anti-hOX40 mAb mechanisms of action were also performed. RESULTS Isotype variants of the clinically relevant mAb GSK3174998 showed immunomodulatory effects that differed in mechanism; mIgG1 mediated direct T-cell agonism while mIgG2a acted indirectly, likely through depletion of regulatory T cells (Tregs) via activating FcγRs. In both the OT-I and EG.7-OVA models, hIgG1 was the most effective human isotype, capable of acting both directly and through Treg depletion. The anti-hOX40 hIgG1 synergized with anti-mPD-1 to improve therapeutic outcomes in the EG.7-OVA model. Finally, in vitro assays with human peripheral blood mononuclear cells (hPBMCs), anti-hOX40 hIgG1 also showed the potential for T-cell stimulation and Treg depletion. CONCLUSIONS These findings underline the importance of understanding the role of isotype in the mechanism of action of therapeutic mAbs. As an hIgG1, the anti-hOX40 mAb can elicit multiple mechanisms of action that could aid or hinder therapeutic outcomes, dependent on the microenvironment. This should be considered when designing potential combinatorial partners and their FcγR requirements to achieve maximal benefit and improvement of patient outcomes.
Collapse
Affiliation(s)
- Jane E Willoughby
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lang Dou
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Heather Jackson
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laura Seestaller-Wehr
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - David Kilian
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Laura Bover
- Immunology Department/ Genomics Medicine Department, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kui S Voo
- ORBIT, Institute of Applied Cancer Science, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tom Murray
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mel John
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hong Shi
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Paul Bojczuk
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Junping Jing
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Heather Niederer
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Andrew J Shepherd
- Protein, Cellular and Structural Sciences, GlaxoSmithKline Research & Development Limited, Gunnels Wood Road, Stevenage, UK
| | - Laura Hook
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Stephanie Hopley
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Chris A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Vikki English
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sara J Brett
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Roopa Srinivasan
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Christopher Hopson
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - James Smothers
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Axel Hoos
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Elaine Paul
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
- GlaxoSmithKline, Durham, North Carolina, USA
| | - Stephen L Martin
- Biopharm Discovery, GlaxoSmithKline Research & Development Limited, Stevenage, UK
| | - Peter J Morley
- Immunology Research Unit, GlaxoSmithKline Research & Development Limited, Gunnels Wood Road, Stevenage, UK
| | - Niranjan Yanamandra
- Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
Knight AD, Luke JJ. Beyond Immune Checkpoint Inhibitors: Emerging Targets in Melanoma Therapy. Curr Oncol Rep 2024; 26:826-839. [PMID: 38789670 DOI: 10.1007/s11912-024-01551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW This review provides a comprehensive update on recent advancements in melanoma treatment by highlighting promising therapeutics with an aim to increase awareness of novel interventions currently in development. RECENT FINDINGS Over the last decade there has been considerable expansion of the previously available treatment options for patients with melanoma. In particular, novel immunotherapeutics have been developed to expand on the clinical advancements brought by BRAF targeting and immune checkpoint inhibitors. Despite the success of checkpoint inhibitors there remains an unmet need for patients that do not respond to treatment. This review delves into the latest advancements in novel checkpoint inhibitors, cytokines, oncolytic viruses, vaccines, bispecific antibodies, and adoptive cell therapy. Preclinical experiments and early-stage clinical trials studies have demonstrated promising results for these therapies, many of which have moved into pivotal, phase 3 studies.
Collapse
Affiliation(s)
- Andrew D Knight
- University of Pittsburgh Medical Center, 3459 Fifth Ave. Room W-927, Pittsburgh, PA, 15213, USA
| | - Jason J Luke
- UPMC Hillman Cancer Center and the University of Pittsburgh, 5150 Centre Ave. Room 1.27C, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
17
|
Pires da Silva I, Li I, Ugurel S, Serra-Bellver P, Andhale A, Burnette H, Aya F, Conway JW, Braden J, Carlino MS, Menzies AM, Weichenthal M, Mohr P, Gutzmer R, Arance AM, Johnson DB, Lorigan P, Schadendorf D, Lo SN, Long GV. Anti-PD-1 alone or in combination with anti-CTLA-4 for advanced melanoma patients with liver metastases. Eur J Cancer 2024; 205:114101. [PMID: 38735161 DOI: 10.1016/j.ejca.2024.114101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND The combination of anti-PD-1 and anti-CTLA-4 has been associated with improvement in response and survival over anti-PD-1 monotherapy in unselected patients with advanced melanoma. Whether patients with liver metastases also benefit from the combination of anti-PD-1 and anti-CTLA-4 over anti-PD-1, is unclear. In this study, we sought to assess whether the combination of anti-PD-1 and anti-CTLA-4 leads to better response, progression-free survival and overall survival, compared with anti-PD-1 monotherapy for patients with liver metastases. METHODS We have conducted an international multicentre retrospective study. Patients with advanced melanoma with liver metastases treated with 1st line anti-PD1 monotherapy or with anti-CTLA-4 were included. The endpoints of this study were: objective response rate, progression-free survival and overall survival. RESULTS With a median follow-up from commencement of anti-PD-1 monotherapy or in combination with anti-CTLA-4 of 47 months (95% CI, 42-51), objective response rate was higher with combination therapy (47%) versus anti-PD-1 monotherapy (35%) (p = 0.0027), while progression-free survival and overall survival were not statistically different between both treatment groups. However, on multivariable analysis with multiple imputation for missing values and adjusting for predefined variables, combination of anti-PD1 and anti-CTLA-4 was associated with higher objective response (OR 2.21, 1.46 - 3.36; p < 0.001), progression-free survival (HR 0.73, 0.57 - 0.92; p = 0.009) and overall survival (HR 0.71, 0.54 - 0.94; p = 0.018) compared to anti-PD1 monotherapy. CONCLUSIONS Findings from this study will help guide treatment selection for patients who present with liver metastases, suggesting that combination therapy should be considered for this group of patients.
Collapse
Affiliation(s)
- Ines Pires da Silva
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine & Health, The University of Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, NSW, Australia; Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, Australia.
| | - Isabel Li
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | | | | | - Hannah Burnette
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francisco Aya
- Department of Medical Oncology, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Jordan W Conway
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine & Health, The University of Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jorja Braden
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine & Health, The University of Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Crown Princess Mary Cancer Centre Westmead, Blacktown Hospital, Sydney, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine & Health, The University of Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Michael Weichenthal
- University Skin Cancer Center Kiel, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Peter Mohr
- Elbe-Klinikum Buxtehude, Buxtehude, Germany
| | - Ralf Gutzmer
- Ruhr University Bochum Campus Minden, Minden, Germany
| | - Ana M Arance
- Department of Medical Oncology, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | | | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, UK
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany; Westdeutsches Tumorzentrum (WTZ) & National Center for Tumor Diseases (NCT-West), Campus Essen & University Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Serigne N Lo
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine & Health, The University of Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia; Faculty of Medicine & Health, The University of Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia.
| |
Collapse
|
18
|
Gampa G, Spinosa P, Getz J, Zhong Y, Halpern W, Esen E, Davies J, Chou C, Kwong M, Wang Y, Arenzana TL, Shivva V, Huseni M, Hsieh R, Schartner J, Koerber JT, Rutz S, Hosseini I. Preclinical and translational pharmacology of afucosylated anti-CCR8 antibody for depletion of tumour-infiltrating regulatory T cells. Br J Pharmacol 2024; 181:2033-2052. [PMID: 38486310 DOI: 10.1111/bph.16326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND AND PURPOSE RO7502175 is an afucosylated antibody designed to eliminate C-C motif chemokine receptor 8 (CCR8)+ Treg cells in the tumour microenvironment through enhanced antibody-dependent cellular cytotoxicity (ADCC). EXPERIMENTAL APPROACH We report findings from preclinical studies characterizing pharmacology, pharmacokinetics (PK)/pharmacodynamics (PD) and safety profile of RO7502175 and discuss the translational PK/PD approach used to inform first-in-human (FiH) dosing strategy and clinical development in solid tumour indications. KEY RESULTS RO7502175 demonstrated selective ADCC against human CCR8+ Treg cells from dissociated tumours in vitro. In cynomolgus monkeys, RO7502175 exhibited a biphasic concentration-time profile consistent with immunoglobulin G1 (IgG1) antibodies, reduced CCR8+ Treg cells in the blood, induced minimal and transient cytokine secretion, and was well tolerated with a no-observed-adverse-effect level (NOAEL) of 100 mg·kg-1. Moreover, RO7502175 caused minimal cytokine release from peripheral blood mononuclear cells (PBMCs) in vitro. A quantitative model was developed to capture surrogate anti-murine CCR8 antibody PK/PD and tumour dynamics in mice and RO7502175 PK/PD in cynomolgus monkeys. Subsequently, the model was used to project RO7502175 human PK and receptor occupancy (RO) in patients. Because traditional approaches resulted in a low FiH dose for this molecule, even with its superior preclinical safety profile, an integrated approach based on the totality of preclinical data and modelling insights was used for starting dose selection. CONCLUSION AND IMPLICATIONS This work demonstrates a translational research strategy for collecting and utilizing relevant nonclinical data, developing a mechanistic PK/PD model and using a comprehensive approach to inform clinical study design for RO7502175.
Collapse
Affiliation(s)
- Gautham Gampa
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| | - Phillip Spinosa
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| | - Jennifer Getz
- Department of Bioanalytical Sciences, Genentech, Inc., South San Francisco, California, USA
| | - Yu Zhong
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Wendy Halpern
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Emel Esen
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - John Davies
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Cassie Chou
- Department of Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Mandy Kwong
- Department of Biochemical Cellular Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Yingyun Wang
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Teresita L Arenzana
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Vittal Shivva
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| | - Mahrukh Huseni
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Robert Hsieh
- Department of Early Clinical Development, Genentech, Inc., South San Francisco, California, USA
| | - Jill Schartner
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, California, USA
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Iraj Hosseini
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
19
|
Lu Y, Houson HA, Gallegos CA, Mascioni A, Jia F, Aivazian A, Song PN, Lynch SE, Napier TS, Mansur A, Larimer BM, Lapi SE, Hanker AB, Sorace AG. Evaluating the immunologically "cold" tumor microenvironment after treatment with immune checkpoint inhibitors utilizing PET imaging of CD4 + and CD8 + T cells in breast cancer mouse models. Breast Cancer Res 2024; 26:104. [PMID: 38918836 PMCID: PMC11201779 DOI: 10.1186/s13058-024-01844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Immune-positron emission tomography (PET) imaging with tracers that target CD8 and granzyme B has shown promise in predicting the therapeutic response following immune checkpoint blockade (ICB) in immunologically "hot" tumors. However, immune dynamics in the low T-cell infiltrating "cold" tumor immune microenvironment during ICB remain poorly understood. This study uses molecular imaging to evaluate changes in CD4 + T cells and CD8 + T cells during ICB in breast cancer models and examines biomarkers of response. METHODS [89Zr]Zr-DFO-CD4 and [89Zr]Zr-DFO-CD8 radiotracers were used to quantify changes in intratumoral and splenic CD4 T cells and CD8 T cells in response to ICB treatment in 4T1 and MMTV-HER2 mouse models, which represent immunologically "cold" tumors. A correlation between PET quantification metrics and long-term anti-tumor response was observed. Further biological validation was obtained by autoradiography and immunofluorescence. RESULTS Following ICB treatment, an increase in the CD8-specific PET signal was observed within 6 days, and an increase in the CD4-specific PET signal was observed within 2 days in tumors that eventually responded to immunotherapy, while no significant differences in CD4 or CD8 were found at the baseline of treatment that differentiated responders from nonresponders. Furthermore, mice whose tumors responded to ICB had a lower CD8 PET signal in the spleen and a higher CD4 PET signal in the spleen compared to non-responders. Intratumoral spatial heterogeneity of the CD8 and CD4-specific PET signals was lower in responders compared to non-responders. Finally, PET imaging, autoradiography, and immunofluorescence signals were correlated when comparing in vivo imaging to ex vivo validations. CONCLUSIONS CD4- and CD8-specific immuno-PET imaging can be used to characterize the in vivo distribution of CD4 + and CD8 + T cells in response to immune checkpoint blockade. Imaging metrics that describe the overall levels and distribution of CD8 + T cells and CD4 + T cells can provide insight into immunological alterations, predict biomarkers of response to immunotherapy, and guide clinical decision-making in those tumors where the kinetics of the response differ.
Collapse
Affiliation(s)
- Yun Lu
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Hailey A Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carlos A Gallegos
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | - Fang Jia
- ImaginAb, Inc, Inglewood, CA, 90301, USA
| | | | - Patrick N Song
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shannon E Lynch
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Tiara S Napier
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ameer Mansur
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Benjamin M Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Departments of Radiology and Biomedical Engineering, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Small Animal Imaging Facility, 1670 University Blvd, Birmingham, USA.
| |
Collapse
|
20
|
Piovesan D, de Groot AE, Cho S, Anderson AE, Ray RD, Patnaik A, Foster PG, Mitchell CG, Lopez Espinoza AY, Zhu WS, Stagnaro CE, Singh H, Zhao X, Seitz L, Walker NP, Walters MJ, Sivick KE. Fc-Silent Anti-TIGIT Antibodies Potentiate Antitumor Immunity without Depleting Regulatory T Cells. Cancer Res 2024; 84:1978-1995. [PMID: 38635895 DOI: 10.1158/0008-5472.can-23-2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is an inhibitory receptor on immune cells that outcompetes an activating receptor, CD226, for shared ligands. Tumor-infiltrating lymphocytes express TIGIT and CD226 on regulatory T cells (Treg) and on CD8+ T cells with tumor-reactive or exhausted phenotypes, supporting the potential of therapeutically targeting TIGIT to enhance antitumor immunity. To optimize the efficacy of therapeutic antibodies against TIGIT, it is necessary to understand IgG Fc (Fcγ) receptor binding for therapeutic benefit. In this study, we showed that combining Fc-enabled (Fce) or Fc-silent (Fcs) anti-TIGIT with antiprogrammed cell death protein 1 in mice resulted in enhanced control of tumors by differential mechanisms: Fce anti-TIGIT promoted the depletion of intratumoral Treg, whereas Fcs anti-TIGIT did not. Despite leaving Treg numbers intact, Fcs anti-TIGIT potentiated the activation of tumor-specific exhausted CD8+ populations in a lymph node-dependent manner. Fce anti-TIGIT induced antibody-dependent cell-mediated cytotoxicity against human Treg in vitro, and significant decreases in Treg were measured in the peripheral blood of patients with phase I solid tumor cancer treated with Fce anti-TIGIT. In contrast, Fcs anti-TIGIT did not deplete human Treg in vitro and was associated with anecdotal objective clinical responses in two patients with phase I solid tumor cancer whose peripheral Treg frequencies remained stable on treatment. Collectively, these data provide evidence for pharmacologic activity and antitumor efficacy of anti-TIGIT antibodies lacking the ability to engage Fcγ receptor. SIGNIFICANCE Fcs-silent anti-TIGIT antibodies enhance the activation of tumor-specific pre-exhausted T cells and promote antitumor efficacy without depleting T regulatory cells.
Collapse
|
21
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Konen JM, Wu H, Gibbons DL. Immune checkpoint blockade resistance in lung cancer: emerging mechanisms and therapeutic opportunities. Trends Pharmacol Sci 2024; 45:520-536. [PMID: 38744552 PMCID: PMC11189143 DOI: 10.1016/j.tips.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Immune checkpoint blockade (ICB) therapy works by inhibiting suppressive checkpoints that become upregulated after T cell activation, like PD-1/PD-L1 and CTLA-4. While the initial FDA approvals of ICB have revolutionized cancer therapies and fueled a burgeoning immuno-oncology field, more recent clinical development of new agents has been slow. Here, focusing on lung cancer, we review the latest research uncovering tumor cell intrinsic and extrinsic ICB resistance mechanisms as major hurdles to treatment efficacy and clinical progress. These include genomic and non-genomic tumor cell alterations, along with host and microenvironmental factors like the microbiome, metabolite accumulation, and hypoxia. Together, these factors can cooperate to promote immunosuppression and ICB resistance. Opportunities to prevent resistance are constantly evolving in this rapidly expanding field, with the goal of moving toward personalized immunotherapeutic regimens.
Collapse
Affiliation(s)
- Jessica M Konen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Haoyi Wu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Melero I, Yau T, Kang YK, Kim TY, Santoro A, Sangro B, Kudo M, Hou MM, Matilla A, Tovoli F, Knox J, He AR, El-Rayes B, Acosta-Rivera M, Lim HY, Soleymani S, Yao J, Neely J, Tschaika M, Hsu C, El-Khoueiry AB. Nivolumab plus ipilimumab combination therapy in patients with advanced hepatocellular carcinoma previously treated with sorafenib: 5-year results from CheckMate 040. Ann Oncol 2024; 35:537-548. [PMID: 38844309 DOI: 10.1016/j.annonc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Nivolumab plus ipilimumab demonstrated promising clinical activity and durable responses in sorafenib-treated patients with advanced hepatocellular carcinoma (HCC) in the CheckMate 040 study at 30.7-month median follow-up. Here, we present 5-year results from this cohort. PATIENTS AND METHODS Patients were randomized 1 : 1 : 1 to arm A [nivolumab 1 mg/kg plus ipilimumab 3 mg/kg Q3W (four doses)] or arm B [nivolumab 3 mg/kg plus ipilimumab 1 mg/kg Q3W (four doses)], each followed by nivolumab 240 mg Q2W, or arm C (nivolumab 3 mg/kg Q2W plus ipilimumab 1 mg/kg Q6W). The primary objectives were safety, tolerability, investigator-assessed objective response rate (ORR), and duration of response (DOR) per RECIST version 1.1. RESULTS A total of 148 patients were randomized across treatment arms. At 60-month minimum follow-up (62.6-month median follow-up), the ORR was 34% (n = 17), 27% (n = 13), and 29% (n = 14) in arms A, B, and C, respectively. The median DOR was 51.2 months [95% confidence interval (CI) 12.6 months-not estimable (NE)], 15.2 months (95% CI 7.1 months-NE), and 21.7 months (95% CI 4.2 months-NE), respectively. The median overall survival (OS) was 22.2 months (34/50; 95% CI 9.4-54.8 months) in arm A, 12.5 months (38/49; 95% CI 7.6-16.4 months) in arm B, and 12.7 months (40/49; 95% CI 7.4-30.5 months) in arm C; 60-month OS rates were 29%, 19%, and 21%, respectively. In an exploratory analysis of OS by response (6-month landmark), the median OS was meaningfully longer for responders versus nonresponders for all arms. No new safety signals were identified with longer follow-up. There were no new discontinuations due to immune-mediated adverse events since the primary analysis. CONCLUSIONS Consistent with the primary analysis, the arm A regimen of nivolumab plus ipilimumab continued to demonstrate clinically meaningful responses and long-term survival benefit, with no new safety signals in patients with advanced HCC following sorafenib treatment, further supporting its use as a second-line treatment in these patients.
Collapse
Affiliation(s)
- I Melero
- Department of Immunology, Clinica Universidad de Navarra and CIBERONC, Pamplona, Spain.
| | - T Yau
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Y-K Kang
- Department of Oncology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - T-Y Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - A Santoro
- Humanitas University and IRCCS Humanitas Research Hospital - Humanitas Cancer Center, Rozzano, Italy
| | - B Sangro
- Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - M Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - M-M Hou
- Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - A Matilla
- Hospital General Universitario Gregorio Marañón CIBEREHD, Madrid, Spain
| | - F Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - J Knox
- Princess Margaret Cancer Centre, Toronto, Canada
| | - A R He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - B El-Rayes
- Department of Hematology and Medical Oncology, University of Alabama at Birmingham, Birmingham, USA
| | | | - H Y Lim
- School of Medicine, Sungkyunkwan University, Seoul, Korea
| | | | - J Yao
- Informatics and Predictive Sciences, Bristol Myers Squibb, Princeton, USA
| | - J Neely
- Translational Medicine, Bristol Myers Squibb, Princeton, USA
| | - M Tschaika
- Oncology Clinical Development, Bristol Myers Squibb, Princeton, USA
| | - C Hsu
- National Taiwan University Hospital, Taipei, Taiwan; National Taiwan University Cancer Center, Taipei, Taiwan
| | | |
Collapse
|
24
|
Lopez-Bujanda ZA, Hadavi SH, Ruiz De Porras V, Martínez-Balibrea E, Dallos MC. Chemotactic signaling pathways in prostate cancer: Implications in the tumor microenvironment and as potential therapeutic targets. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:162-205. [PMID: 39260936 DOI: 10.1016/bs.ircmb.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, United States.
| | - Shawn H Hadavi
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Vicenç Ruiz De Porras
- Badalona Applied Research Group of Oncology (B-ARGO), Catalan Institute of Oncology, Badalona, BCN, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain
| | - Eva Martínez-Balibrea
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain; ProCURE Program, Catalan Institute of Oncology, Badalona, BCN, Spain
| | - Matthew C Dallos
- Memorial Solid Tumor Group, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
25
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
26
|
Dobrin A, Lindenbergh PL, Shi Y, Perica K, Xie H, Jain N, Chow A, Wolchok JD, Merghoub T, Sadelain M, Hamieh M. Synthetic dual co-stimulation increases the potency of HIT and TCR-targeted cell therapies. NATURE CANCER 2024; 5:760-773. [PMID: 38503896 DOI: 10.1038/s43018-024-00744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/12/2024] [Indexed: 03/21/2024]
Abstract
Chimeric antigen receptor T cells have dramatically improved the treatment of hematologic malignancies. T cell antigen receptor (TCR)-based cell therapies are yet to achieve comparable outcomes. Importantly, chimeric antigen receptors not only target selected antigens but also reprogram T cell functions through the co-stimulatory pathways that they engage upon antigen recognition. We show here that a fusion receptor comprising the CD80 ectodomain and the 4-1BB cytoplasmic domain, termed 80BB, acts as both a ligand and a receptor to engage the CD28 and 4-1BB pathways, thereby increasing the antitumor potency of human leukocyte antigen-independent TCR (HIT) receptor- or TCR-engineered T cells and tumor-infiltrating lymphocytes. Furthermore, 80BB serves as a switch receptor that provides agonistic 4-1BB co-stimulation upon its ligation by the inhibitory CTLA4 molecule. By combining multiple co-stimulatory features in a single antigen-agnostic synthetic receptor, 80BB is a promising tool to sustain CD3-dependent T cell responses in a wide range of targeted immunotherapies.
Collapse
Affiliation(s)
- Anton Dobrin
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pieter L Lindenbergh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuzhe Shi
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hongyao Xie
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nayan Jain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Thoracic Oncology Service, Division of Solid Tumour Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Mohamad Hamieh
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
27
|
Lu Z, Yin Y, Rao T, Xu X, Zhao K, Liu Z, Qin C, Tang M. Interaction of immune cells with renal cancer development: Mendelian randomization (MR) study. BMC Cancer 2024; 24:439. [PMID: 38594655 PMCID: PMC11005164 DOI: 10.1186/s12885-024-12196-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a prevalent and extensively immune-infiltrated malignancy of the urinary system. Immune cells play a crucial role in both the progression and therapeutic interventions targeting RCC. Nevertheless, the interplay between RCC and immune cells remains understudied, lacking substantial evidence supporting their causal relationship. METHODS For the purpose of investigating the causal connection between RCC and immune cell characteristics, a two-way two-sample Mendelian randomization (MR) analysis was carried out in this study. The aim was to determine whether specific immune cell traits have a causal impact on the risk of RCC. In order to achieve this, publicly accessible genetic data was utilized to examine and establish the potential relationship between 731 immune cell characteristics and the likelihood of developing RCC. Additionally, various techniques were applied to verify the reliability, variability, and presence of horizontal pleiotropy in the outcomes. RESULTS We found a bidirectional causal relationship between RCC and immune cells according to the MR analysis results. It should be noted that CD4-CD8-T cells (OR = 1.61, 95%CI = 1.02-2.55, P = 4.07 × 10-2) pose a risk for RCC, whereas BAFF-R (OR = 0.69, 95%CI = 0.53-0.89, P = 5.74 × 10-3) and CD19 (OR = 0.59, 95%CI = 1.02-2.55, P = 4.07 × 10-2) on B cells act as protective factors. Furthermore, the presence of RCC reduces the levels of B cells (OR = 1.05, 95%CI = 1.01-1.09, P = 1.19 × 10-2) and CD8 + T cells (OR = 1.04, 95%CI = 1.00-1.08, P = 2.83 × 10-2). CONCLUSIONS Our research illustrates the intricate correlation between immune cells and RCC, presenting novel insights for the prospective safeguarding against RCC risk and the exploration of fresh therapeutic targets.
Collapse
Affiliation(s)
- Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Yu Yin
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Tian Rao
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Xinchi Xu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Kai Zhao
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Zhanpeng Liu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China.
| | - Min Tang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
28
|
Weng KQ, Liu JY, Li H, She LL, Qiu JL, Qi H, Qi HY, Li YS, Dai YB. Identification of Treg-related prognostic molecular subtypes and individualized characteristics in clear cell renal cell carcinoma through single-cell transcriptomes and bulk RNA sequencing. Int Immunopharmacol 2024; 130:111746. [PMID: 38442575 DOI: 10.1016/j.intimp.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND In clear cell renal cell carcinoma (ccRCC), the role of Regulatory T cells (Treg cells) as prognostic and immunotherapy response predictors is not fully explored. METHODS Analyzing renal clear cell carcinoma datasets from TISCH, TCGA, and GEO, we focused on 8 prognostic Treg genes to study patient subtypes in ccRCC. We assessed Treg subtypes in relation to patient prognosis, tumor microenvironment, metabolism. Using Cox regression and principal component analysis, we devised Treg scores for individual patient characterization and explored the molecular role of C1QL1, a critical gene in the Treg model, through in vivo and in vitro studies. RESULTS Eight Treg-associated prognostic genes were identified, classifying ccRCC patients into cluster A and B. Cluster A patients showed poorer prognosis with distinct clinical and molecular profiles, potentially benefiting more from immunotherapy. Low Treg scores correlated with worse outcomes and clinical progression. Low scores also suggested that patients might respond better to immunotherapy and targeted therapies. In ccRCC, C1QL1 knockdown reduced tumor proliferation and invasion via NF-kb-EMT pathways and decreased Treg cell infiltration, enhancing immune efficacy. CONCLUSIONS The molecular subtype and Treg score in ccRCC, based on Treg cell marker genes, are crucial in personalizing ccRCC treatment and underscore C1QL1's potential as a tumor biomarker and target for immunotherapy.
Collapse
Affiliation(s)
- Kang Qiang Weng
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Jin Yu Liu
- The Affiliated Hospital of Putian University, 999 DongZhen East Rd, Putian 351100, Fujian, China.
| | - Hu Li
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Lin Lu She
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Jun Liang Qiu
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Hao Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Hui Yue Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Yong Sheng Li
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xin-quan Road, Fuzhou, China.
| | - Ying Bo Dai
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
29
|
Franken A, Bila M, Mechels A, Kint S, Van Dessel J, Pomella V, Vanuytven S, Philips G, Bricard O, Xiong J, Boeckx B, Hatse S, Van Brussel T, Schepers R, Van Aerde C, Geurs S, Vandecaveye V, Hauben E, Vander Poorten V, Verbandt S, Vandereyken K, Qian J, Tejpar S, Voet T, Clement PM, Lambrechts D. CD4 + T cell activation distinguishes response to anti-PD-L1+anti-CTLA4 therapy from anti-PD-L1 monotherapy. Immunity 2024; 57:541-558.e7. [PMID: 38442708 DOI: 10.1016/j.immuni.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Cancer patients often receive a combination of antibodies targeting programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA4). We conducted a window-of-opportunity study in head and neck squamous cell carcinoma (HNSCC) to examine the contribution of anti-CTLA4 to anti-PD-L1 therapy. Single-cell profiling of on- versus pre-treatment biopsies identified T cell expansion as an early response marker. In tumors, anti-PD-L1 triggered the expansion of mostly CD8+ T cells, whereas combination therapy expanded both CD4+ and CD8+ T cells. Such CD4+ T cells exhibited an activated T helper 1 (Th1) phenotype. CD4+ and CD8+ T cells co-localized with and were surrounded by dendritic cells expressing T cell homing factors or antibody-producing plasma cells. T cell receptor tracing suggests that anti-CTLA4, but not anti-PD-L1, triggers the trafficking of CD4+ naive/central-memory T cells from tumor-draining lymph nodes (tdLNs), via blood, to the tumor wherein T cells acquire a Th1 phenotype. Thus, CD4+ T cell activation and recruitment from tdLNs are hallmarks of early response to anti-PD-L1 plus anti-CTLA4 in HNSCC.
Collapse
Affiliation(s)
- Amelie Franken
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Michel Bila
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, 3000 Leuven, Belgium; Department of Oral and Maxillofacial Surgery, UZ Leuven, Leuven 3000, Belgium
| | - Aurelie Mechels
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Sam Kint
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Jeroen Van Dessel
- Department of Oral and Maxillofacial Surgery, UZ Leuven, Leuven 3000, Belgium
| | | | - Sebastiaan Vanuytven
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Gino Philips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Orian Bricard
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Jieyi Xiong
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, 3000 Leuven, Belgium
| | - Thomas Van Brussel
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Rogier Schepers
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium
| | - Cedric Van Aerde
- Department of Imaging and Pathology, KU Leuven, UZ Leuven, Leuven 3000, Belgium
| | - Sarah Geurs
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium; Department of Biomolecular Medicine, UZ Ghent, Ghent 9052, Belgium
| | | | - Esther Hauben
- Otorhinolaryngology, Head and Neck Surgery, Leuven 3000, Belgium
| | - Vincent Vander Poorten
- Otorhinolaryngology, Head and Neck Surgery, Leuven 3000, Belgium; Department of Oncology, Section Head and Neck Oncology, Leuven 3000, Belgium
| | - Sara Verbandt
- Digestive Oncology, KU Leuven, UZ Leuven, Leuven 3000, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sabine Tejpar
- Digestive Oncology, KU Leuven, UZ Leuven, Leuven 3000, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium
| | - Paul M Clement
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, 3000 Leuven, Belgium.
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; VIB Center for Cancer Biology, Leuven 3000, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), Leuven 3000, Belgium.
| |
Collapse
|
30
|
Ding R, Yu X, Hu Z, Dong Y, Huang H, Zhang Y, Han Q, Ni ZY, Zhao R, Ye Y, Zou Q. Lactate modulates RNA splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells. Immunity 2024; 57:528-540.e6. [PMID: 38417442 DOI: 10.1016/j.immuni.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
RNA splicing is involved in cancer initiation and progression, but how it influences host antitumor immunity in the metabolically abnormal tumor microenvironment (TME) remains unclear. Here, we demonstrate that lactate modulates Foxp3-dependent RNA splicing to maintain the phenotypic and functional status of tumor-infiltrating regulatory T (Treg) cells via CTLA-4. RNA splicing in Treg cells was correlated with the Treg cell signatures in the TME. Ubiquitin-specific peptidase 39 (USP39), a component of the RNA splicing machinery, maintained RNA-splicing-mediated CTLA-4 expression to control Treg cell function. Mechanistically, lactate promoted USP39-mediated RNA splicing to facilitate CTLA-4 expression in a Foxp3-dependent manner. Moreover, the efficiency of CTLA-4 RNA splicing was increased in tumor-infiltrating Treg cells from patients with colorectal cancer. These findings highlight the immunological relevance of RNA splicing in Treg cells and provide important insights into the environmental mechanism governing CTLA-4 expression in Treg cells.
Collapse
Affiliation(s)
- Rui Ding
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyan Yu
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhilin Hu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, the School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu Dong
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuerong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiaoqiao Han
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Yu Ni
- Clinical Medical College, Hebei University of Engineering, Handan 056038, Hebei, China; Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China; Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Youqiong Ye
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qiang Zou
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
31
|
Qin D, Zhang Y, Shu P, Lei Y, Li X, Wang Y. Targeting tumor-infiltrating tregs for improved antitumor responses. Front Immunol 2024; 15:1325946. [PMID: 38500876 PMCID: PMC10944859 DOI: 10.3389/fimmu.2024.1325946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
Collapse
Affiliation(s)
- Diyuan Qin
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yugu Zhang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pei Shu
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanna Lei
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Li
- Cancer Center, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Cancer Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Knorr DA, Blanchard L, Leidner RS, Jensen SM, Meng R, Jones A, Ballesteros-Merino C, Bell RB, Baez M, Marino A, Sprott D, Bifulco CB, Piening B, Dahan R, Osorio JC, Fox BA, Ravetch JV. FcγRIIB Is an Immune Checkpoint Limiting the Activity of Treg-Targeting Antibodies in the Tumor Microenvironment. Cancer Immunol Res 2024; 12:322-333. [PMID: 38147316 PMCID: PMC10911703 DOI: 10.1158/2326-6066.cir-23-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Preclinical murine data indicate that fragment crystallizable (Fc)-dependent depletion of intratumoral regulatory T cells (Treg) is a major mechanism of action of anti-CTLA-4. However, the two main antibodies administered to patients (ipilimumab and tremelimumab) do not recapitulate these effects. Here, we investigate the underlying mechanisms responsible for the limited Treg depletion observed with these therapies. Using an immunocompetent murine model humanized for CTLA-4 and Fcγ receptors (FcγR), we show that ipilimumab and tremelimumab exhibit limited Treg depletion in tumors. Immune profiling of the tumor microenvironment (TME) in both humanized mice and humans revealed high expression of the inhibitory Fc receptor, FcγRIIB, which limits antibody-dependent cellular cytotoxicity/phagocytosis. Blocking FcγRIIB in humanized mice rescued the Treg-depleting capacity and antitumor activity of ipilimumab. Furthermore, Fc engineering of antibodies targeting Treg-associated targets (CTLA-4 or CCR8) to minimize FcγRIIB binding significantly enhanced Treg depletion, resulting in increased antitumor activity across various tumor models. Our results define the inhibitory FcγRIIB as an immune checkpoint limiting antibody-mediated Treg depletion in the TME, and demonstrate Fc engineering as an effective strategy to overcome this limitation and improve the efficacy of Treg-targeting antibodies.
Collapse
Affiliation(s)
- David A. Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lucas Blanchard
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - Rom S. Leidner
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Shawn M. Jensen
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Ryan Meng
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Andrew Jones
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | | | - Richard B. Bell
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Maria Baez
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - Alessandra Marino
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - David Sprott
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Carlo B. Bifulco
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Brian Piening
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Juan C. Osorio
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard A. Fox
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| |
Collapse
|
33
|
Uchi H. Optimal strategy in managing advanced melanoma. J Dermatol 2024; 51:324-334. [PMID: 38087810 PMCID: PMC11483965 DOI: 10.1111/1346-8138.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
The advent of immune checkpoint inhibitors and combination therapy with BRAF inhibitors and MEK inhibitors has dramatically improved the prognosis of advanced melanoma. However, since acral melanoma and mucosal melanoma, which are rare in Western countries but are major subtypes of melanoma in East Asia, including Japan, have a low frequency of BRAF mutations, there are currently no treatment options other than immune checkpoint inhibitors in most such cases. Furthermore, owing to a lower tumor mutation burden, immune checkpoint inhibitors are less effective in acral and mucosal melanoma than in cutaneous melanoma. The aim of this review was to summarize the current status and future prospects for the treatment of advanced melanoma, comparing cutaneous melanoma, acral melanoma, and mucosal melanoma.
Collapse
Affiliation(s)
- Hiroshi Uchi
- Department of Dermato‐OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| |
Collapse
|
34
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Attias M, Piccirillo CA. The impact of Foxp3 + regulatory T-cells on CD8 + T-cell dysfunction in tumour microenvironments and responses to immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38325330 DOI: 10.1111/bph.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a breakthrough in cancer therapy, inducing durable remissions in responding patients. However, they are associated with variable outcomes, spanning from disease hyperprogression to complete responses with the onset of immune-related adverse events. The consequences of checkpoint inhibition on Foxp3+ regulatory T (Treg ) cells remain unclear but could provide key insights into these variable outcomes. In this review, we first cover the mechanisms that underlie the development of hot and cold tumour microenvironments, which determine the efficacy of immunotherapy. We then outline how differences in tumour-intrinsic immunogenicity, T-cell trafficking, local metabolic environments and inhibitory checkpoint signalling differentially impair CD8+ T-cell function in tumour microenvironments, all the while promoting Treg -cell suppressive activity. Finally, we focus on the mechanisms that enable the induction of polyfunctional CD8+ T-cells upon checkpoint blockade and discuss the role of ICI-induced Treg -cell reactivation in acquired resistance to treatment.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| |
Collapse
|
36
|
Kennedy PT, Saulters EL, Duckworth AD, Lim YJ, Woolley JF, Slupsky JR, Cragg MS, Ward FJ, Dahal LN. Soluble CTLA-4 attenuates T cell activation and modulates anti-tumor immunity. Mol Ther 2024; 32:457-468. [PMID: 38053333 PMCID: PMC10861965 DOI: 10.1016/j.ymthe.2023.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
CTLA-4 is a crucial immune checkpoint receptor involved in the maintenance of immune homeostasis, tolerance, and tumor control. Antibodies targeting CTLA-4 have been promising treatments for numerous cancers, but the mechanistic basis of their anti-tumoral immune-boosting effects is poorly understood. Although the ctla4 gene also encodes an alternatively spliced soluble variant (sCTLA-4), preclinical/clinical evaluation of anti-CTLA-4-based immunotherapies have not considered the contribution of this isoform. Here, we explore the functional properties of sCTLA-4 and evaluate the efficacy of isoform-specific anti-sCTLA-4 antibody targeting in a murine cancer model. We show that expression of sCTLA-4 by tumor cells suppresses CD8+ T cells in vitro and accelerates growth and experimental metastasis of murine tumors in vivo. These effects were accompanied by modification of the immune infiltrate, notably restraining CD8+ T cells in a non-cytotoxic state. sCTLA-4 blockade with isoform-specific antibody reversed this restraint, enhancing intratumoral CD8+ T cell activation and cytolytic potential, correlating with therapeutic efficacy and tumor control. This previously unappreciated role of sCTLA-4 suggests that the biology and function of multi-gene products of immune checkpoint receptors need to be fully elucidated for improved mechanistic understanding of cancer immunotherapies.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK
| | - Emma L Saulters
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK
| | - Andrew D Duckworth
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Yeong Jer Lim
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - John F Woolley
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L69 3GE Liverpool, UK
| | - Mark S Cragg
- Centre for Cancer Immunology, University of Southampton, SO16 6YD Southampton, UK
| | - Frank J Ward
- Department of Immunology, University of Aberdeen, AB25 2ZD Aberdeen, UK
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE Liverpool, UK.
| |
Collapse
|
37
|
Di Giacomo AM, Lahn M, Eggermont AM, Fox B, Ibrahim R, Sharma P, Allison JP, Maio M. The future of targeting cytotoxic T-lymphocyte-associated protein-4: Is there a role? Eur J Cancer 2024; 198:113501. [PMID: 38169219 DOI: 10.1016/j.ejca.2023.113501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The 2022 yearly Think Tank Meeting in Siena, Tuscany (Italy), organized by the Italian Network for Tumor Biotherapy (NIBIT) Foundation, the Parker Institute for Cancer Immunotherapy and the World Immunotherapy Council, included a focus on the future of integrating and expanding the use of targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). The conference members exchanged their views on the lessons from targeting CTLA-4 and compared the effect to the impact of blocking Programmed cell death protein 1 (PD1) or its ligand (PDL1). The increasing experience with both therapeutic approaches and their combination suggests that targeting CTLA-4 may lead to more durable responses for a sizeable proportion of patients, though the specific mechanism is not entirely understood. Overcoming toxicity of blocking CTLA-4 is currently being addressed with different doses and dose regimens, especially when combined with PD1/PDL1 blocking antibodies. Novel therapeutics targeting CTLA-4 hold the promise to reduce toxicities and thus allow different combination strategies in the future. On the whole, the consent was that targeting CTLA-4 remains an important strategy to improve the efficacy of cancer immunotherapies.
Collapse
Affiliation(s)
- Anna Maria Di Giacomo
- University of Siena, Siena, Italy; Center for Immuno-Oncology. University Hospital of Siena, Viale Bracci, 16, Siena, Italy; NIBIT Foundation Onlus, Italy
| | - Michael Lahn
- IOnctura SA, Avenue Secheron 15, Geneva, Switzerland
| | - Alexander Mm Eggermont
- Princess Máxima Center and the University Medical Center Utrecht, Heidelberglaan 25, 3584 Utrecht, the Netherlands; Comprehensive Cancer Center Munich of the Technical University Munich and the Ludwig Maximiliaan University, Munich, Germany
| | - Bernard Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, 4805 NE Glisan St. Suite 2N35 Portland, OR 97213, USA
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, D3500, San Francisco, CA, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson, 1515 Holcombe Blvd, Houston, Texas 77030, USA
| | - James P Allison
- James P Allison Institute, MD Anderson, 1515 Holcombe Blvd, Texas 77030, USA
| | - Michele Maio
- University of Siena, Siena, Italy; Center for Immuno-Oncology. University Hospital of Siena, Viale Bracci, 16, Siena, Italy; NIBIT Foundation Onlus, Italy.
| |
Collapse
|
38
|
Yoneda H, Mitsuhashi A, Yoshida A, Ogino H, Itakura S, Nguyen NT, Nokihara H, Sato S, Shinohara T, Hanibuchi M, Abe S, Kaneko MK, Kato Y, Nishioka Y. Antipodoplanin antibody enhances the antitumor effects of CTLA-4 blockade against malignant mesothelioma by natural killer cells. Cancer Sci 2024; 115:357-368. [PMID: 38148492 PMCID: PMC10859607 DOI: 10.1111/cas.16046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023] Open
Abstract
Combination immunotherapy with multiple immune checkpoint inhibitors (ICIs) has been approved for various types of malignancies, including malignant pleural mesothelioma (MPM). Podoplanin (PDPN), a transmembrane sialomucin-like glycoprotein, has been investigated as a diagnostic marker and therapeutic target for MPM. We previously generated and developed a PDPN-targeting Ab reagent with high Ab-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, the effects of anti-PDPN Abs on various tumor-infiltrating immune cells and their synergistic effects with ICIs have remained unclear. In the present study, we established a novel rat-mouse chimeric anti-mouse PDPN IgG2a mAb (PMab-1-mG2a ) and its core-fucose-deficient Ab (PMab-1-mG2a -f) to address these limitations. We identified the ADCC and CDC activity of PMab-1-mG2a -f against the PDPN-expressing mesothelioma cell line AB1-HA. The antitumor effect of monotherapy with PMab-1-mG2a -f was not sufficient to overcome tumor progression in AB1-HA-bearing immunocompetent mice. However, PMab-1-mG2a -f enhanced the antitumor effects of CTLA-4 blockade. Combination therapy with anti-PDPN Ab and anti-CTLA-4 Ab increased tumor-infiltrating natural killer (NK) cells. The depletion of NK cells inhibited the synergistic effects of PMab-1-mG2a -f and CTLA-4 blockade in vivo. These findings indicated the essential role of NK cells in novel combination immunotherapy targeting PDPN and shed light on the therapeutic strategy in advanced MPM.
Collapse
Affiliation(s)
- Hiroto Yoneda
- Department of Respiratory Medicine and RheumatologyTokushima UniversityTokushimaJapan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and RheumatologyTokushima UniversityTokushimaJapan
| | - Aito Yoshida
- Department of Clinical Pharmacy Practice PedagogyTokushima UniversityTokushimaJapan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and RheumatologyTokushima UniversityTokushimaJapan
| | - Satoshi Itakura
- Department of Clinical Pharmacy Practice PedagogyTokushima UniversityTokushimaJapan
| | - Na Thi Nguyen
- Department of Respiratory Medicine and RheumatologyTokushima UniversityTokushimaJapan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and RheumatologyTokushima UniversityTokushimaJapan
| | - Seidai Sato
- Department of Respiratory Medicine and RheumatologyTokushima UniversityTokushimaJapan
| | - Tsutomu Shinohara
- Department of Community Medicine for RespirologyTokushima UniversityTokushimaJapan
| | - Masaki Hanibuchi
- Department of Community Medicine for Respirology, Hematology and Metabolism, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Shinji Abe
- Department of Clinical Pharmacy Practice PedagogyTokushima UniversityTokushimaJapan
| | - Mika K. Kaneko
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiJapan
| | - Yukinari Kato
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiJapan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and RheumatologyTokushima UniversityTokushimaJapan
- Department of Community Medicine for Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
39
|
Singh R, Srivastava P, Manna PP. Evaluation of regulatory T-cells in cancer immunotherapy: therapeutic relevance of immune checkpoint inhibition. Med Oncol 2024; 41:59. [PMID: 38238513 DOI: 10.1007/s12032-023-02289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The evolution of the complex immune system is equipped to defend against perilous intruders and concurrently negatively regulate the deleterious effect of immune-mediated inflammation caused by self and nonself antigens. Regulatory T-cells (Tregs) are specialized cells that minimize immune-mediated inflammation, but in malignancies, this feature has been exploited toward cancer progression by keeping the antitumor immune response in check. The modulation of Treg cell infiltration and their induction in the TME (tumor microenvironment) alongside associated inhibitory molecules, both soluble or membranes tethered in the TME, have proven clinically beneficial in boosting the tumoricidal activity of the immune system. Moreover, Treg-associated immune checkpoints pose a greater obstruction in cancer immunotherapy. Inhibiting or blocking active immune checkpoint signaling in combination with other therapies has proven clinically beneficial. This review summarizes the ontogeny of Treg cells and their migration, stability, and function in the TME. We also elucidate the Treg-associated checkpoint moieties that impede effective antitumor activity and harness these molecules for effective and targeted immunotherapy against cancer nuisance.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
40
|
Spiliopoulou P, Kaur P, Hammett T, Di Conza G, Lahn M. Targeting T regulatory (T reg) cells in immunotherapy-resistant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:2. [PMID: 38318526 PMCID: PMC10838381 DOI: 10.20517/cdr.2023.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Primary or secondary (i.e., acquired) resistance is a common occurrence in cancer patients and is often associated with high numbers of T regulatory (Treg) cells (CD4+CD25+FOXP3+). The approval of ipilimumab and the development of similar pharmacological agents targeting cell surface proteins on Treg cells demonstrates that such intervention may overcome resistance in cancer patients. Hence, the clinical development and subsequent approval of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) targeting agents can serve as a prototype for similar agents. Such new agents aspire to be highly specific and have a reduced toxicity profile while increasing effector T cell function or effector T/T regulatory (Teff/Treg) ratio. While clinical development with large molecules has shown the greatest advancement, small molecule inhibitors that target immunomodulation are increasingly entering early clinical investigation. These new small molecule inhibitors often target specific intracellular signaling pathways [e.g., phosphoinositide-3-kinase delta (PI3K-δ)] that play an important role in regulating the function of Treg cells. This review will summarize the lessons currently applied to develop novel clinical agents that target Treg cells.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Department of Drug Development Program, Phase I Unit, Beatson West of Scotland Cancer Center, Glasgow G12 0YN, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Paramjit Kaur
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Tracey Hammett
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Giusy Di Conza
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| | - Michael Lahn
- Department of Oncology Clinical Development, iOnctura SA, Geneva 1202, Switzerland
| |
Collapse
|
41
|
Sun Y, Chen S, Lu Y, Xu Z, Fu W, Yan W. Single-cell transcriptomic analyses of tumor microenvironment and molecular reprograming landscape of metastatic laryngeal squamous cell carcinoma. Commun Biol 2024; 7:63. [PMID: 38191598 PMCID: PMC10774275 DOI: 10.1038/s42003-024-05765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a malignant tumor with a high probability of metastasis. The tumor microenvironment (TME) plays a critical role in cancer metastasis. To gain insights into the TME of LSCC, we conducted single-cell RNA-seq (scRNA-seq) on samples collected from LSCC patients with or without lymphatic metastasis. The stem and immune cell signatures in LSCC suggest their roles in tumor invasion and metastasis. Infiltration of a large number of regulatory T cells, dysplastic plasma cells, and macrophages that are at the early development stage in the cancerous tissue indicates an immunosuppressive state. Abundant neutrophils detected at the cancer margins reflect the inflammatory microenvironment. In addition to dynamic ligand-receptor interactions between the stromal and myeloid cells, the enhanced autophagy in endothelial cells and fibroblasts implies a role in nutrient supply. Taken together, the comprehensive atlas of LSCC obtained allowed us to identify a complex yet unique TME of LSCC, which may help identify potential diagnostic biomarkers and therapeutic targets for LSCC.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, 110122, China
| | - Sheng Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, 110122, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics, Shenyang, 110122, China
| | - Zhenming Xu
- Department of Otolaryngology, the Fourth People's Hospital of Shenyang City, Shenyang, 110031, China.
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang, 110122, China.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA.
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Lo BC, Kryczek I, Yu J, Vatan L, Caruso R, Matsumoto M, Sato Y, Shaw MH, Inohara N, Xie Y, Lei YL, Zou W, Núñez G. Microbiota-dependent activation of CD4 + T cells induces CTLA-4 blockade-associated colitis via Fcγ receptors. Science 2024; 383:62-70. [PMID: 38175892 DOI: 10.1126/science.adh8342] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024]
Abstract
Immune checkpoint inhibitors can stimulate antitumor immunity but can also induce toxicities termed immune-related adverse events (irAEs). Colitis is a common and severe irAE that can lead to treatment discontinuation. Mechanistic understanding of gut irAEs has been hampered because robust colitis is not observed in laboratory mice treated with checkpoint inhibitors. We report here that this limitation can be overcome by using mice harboring the microbiota of wild-caught mice, which develop overt colitis following treatment with anti-CTLA-4 antibodies. Intestinal inflammation is driven by unrestrained activation of IFNγ-producing CD4+ T cells and depletion of peripherally induced regulatory T cells through Fcγ receptor signaling. Accordingly, anti-CTLA-4 nanobodies that lack an Fc domain can promote antitumor responses without triggering colitis. This work suggests a strategy for mitigating gut irAEs while preserving antitumor stimulating effects of CTLA-4 blockade.
Collapse
Affiliation(s)
- Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linda Vatan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masanori Matsumoto
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yosuke Sato
- Takeda Pharmaceuticals International Co., Cambridge, MA 02139 USA
| | - Michael H Shaw
- Takeda Pharmaceuticals International Co., Cambridge, MA 02139 USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48104, USA
| | - Weiping Zou
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Excellence for Cancer Immunology and Immunotherapy, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
44
|
Stockem CF, Galsky MD, van der Heijden MS. Turning up the heat: CTLA4 blockade in urothelial cancer. Nat Rev Urol 2024; 21:22-34. [PMID: 37608154 DOI: 10.1038/s41585-023-00801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/24/2023]
Abstract
Anti-PD1 and anti-PDL1 monotherapies have shown clinical efficacy in stage IV urothelial cancer and are integrated into current clinical practice. However, only a small number of the patients treated with single-agent checkpoint blockade experience an antitumour response. Insufficient priming or inhibitory factors in the tumour immune microenvironment might have a role in the lack of response. CTLA4 is an inhibitory checkpoint on activated T cells that is being studied as a therapeutic target in combination with anti-PD1 or anti-PDL1 therapies in advanced urothelial cancer. In locally advanced urothelial cancer, this combination approach has shown encouraging antitumour effects when administered pre-operatively. We believe that the presence of pre-existing intratumoural T cell immunity is not a prerequisite for response to combination therapy and that the additional value of CTLA4 blockade might involve the broadening of peripheral T cell priming, thereby transforming immunologically cold tumours into hot tumours.
Collapse
Affiliation(s)
- Chantal F Stockem
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Matthew D Galsky
- Department of Genitourinary Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
45
|
Spasevska I, Sharma A, Steen CB, Josefsson SE, Blaker YN, Kolstad A, Rustad EH, Meyer S, Isaksen K, Chellappa S, Kushekhar K, Beiske K, Førsund MS, Spetalen S, Holte H, Østenstad B, Brodtkorb M, Kimby E, Olweus J, Taskén K, Newman AM, Lorenz S, Smeland EB, Alizadeh AA, Huse K, Myklebust JH. Diversity of intratumoral regulatory T cells in B-cell non-Hodgkin lymphoma. Blood Adv 2023; 7:7216-7230. [PMID: 37695745 PMCID: PMC10698546 DOI: 10.1182/bloodadvances.2023010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor-infiltrating regulatory T cells (Tregs) contribute to an immunosuppressive tumor microenvironment. Despite extensive studies, the prognostic impact of tumor-infiltrating Tregs in B-cell non-Hodgkin lymphomas (B-NHLs) remains unclear. Emerging studies suggest substantial heterogeneity in the phenotypes and suppressive capacities of Tregs, emphasizing the importance of understanding Treg diversity and the need for additional markers to identify highly suppressive Tregs. Here, we applied single-cell RNA sequencing and T-cell receptor sequencing combined with high-dimensional cytometry to decipher the heterogeneity of intratumoral Tregs in diffuse large B-cell lymphoma and follicular lymphoma (FL), compared with that in nonmalignant tonsillar tissue. We identified 3 distinct transcriptional states of Tregs: resting, activated, and unconventional LAG3+FOXP3- Tregs. Activated Tregs were enriched in B-NHL tumors, coexpressed several checkpoint receptors, and had stronger immunosuppressive activity compared with resting Tregs. In FL, activated Tregs were found in closer proximity to CD4+ and CD8+ T cells than other cell types. Furthermore, we used a computational approach to develop unique gene signature matrices, which were used to enumerate each Treg subset in cohorts with bulk gene expression data. In 2 independent FL cohorts, activated Tregs was the major subset, and high abundance was associated with adverse outcome. This study demonstrates that Tregs infiltrating B-NHL tumors are transcriptionally and functionally diverse. Highly immunosuppressive activated Tregs were enriched in tumor tissue but absent in the peripheral blood. Our data suggest that a deeper understanding of Treg heterogeneity in B-NHL could open new paths for rational drug design, facilitating selective targeting to improve antitumor immunity.
Collapse
Affiliation(s)
- Ivana Spasevska
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Chloé B. Steen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Division of Oncology, Stanford University School of Medicine, Stanford, CA
| | - Sarah E. Josefsson
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Yngvild N. Blaker
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Arne Kolstad
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Department of Oncology, Innlandet Hospital Trust, Lillehammer, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Even H. Rustad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Saskia Meyer
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Kathrine Isaksen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Stalin Chellappa
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kushi Kushekhar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Klaus Beiske
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Mette S. Førsund
- Division of Cancer Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Signe Spetalen
- Division of Cancer Medicine, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Harald Holte
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Bjørn Østenstad
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Marianne Brodtkorb
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Division of Cancer Medicine, Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Eva Kimby
- Department of Hematology, Karolinska Institute, Stockholm, Sweden
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
| | - Aaron M. Newman
- Division of Oncology, Stanford University School of Medicine, Stanford, CA
- Divisions of Hematology & Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Susanne Lorenz
- Department of Core Facilities, Geonomics Core Facility, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Erlend B. Smeland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Ash A. Alizadeh
- Division of Oncology, Stanford University School of Medicine, Stanford, CA
- Divisions of Hematology & Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute of Clinical Medicine, University of Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| |
Collapse
|
46
|
Ramapriyan R, Sun J, Curry A, Richardson LG, Ramesh T, Gaffey MA, Gedeon PC, Gerstner ER, Curry WT, Choi BD. The Role of Antibody-Based Therapies in Neuro-Oncology. Antibodies (Basel) 2023; 12:74. [PMID: 37987252 PMCID: PMC10660525 DOI: 10.3390/antib12040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
This review explores the evolving landscape of antibody-based therapies in neuro-oncology, in particular, immune checkpoint inhibitors and immunomodulatory antibodies. We discuss their mechanisms of action, blood-brain barrier (BBB) penetration, and experience in neuro-oncological conditions. Evidence from recent trials indicates that while these therapies can modulate the tumor immune microenvironment, their clinical benefits remain uncertain, largely due to challenges with BBB penetration and tumor-derived immunosuppression. This review also examines emerging targets such as TIGIT and LAG3, the potential of antibodies in modulating the myeloid compartment, and tumor-specific targets for monoclonal antibody therapy. We further delve into advanced strategies such as antibody-drug conjugates and bispecific T cell engagers. Lastly, we explore innovative techniques being investigated to enhance antibody delivery, including CAR T cell therapy. Despite current limitations, these therapies hold significant therapeutic potential for neuro-oncology. Future research should focus on optimizing antibody delivery to the CNS, identifying novel biological targets, and discovering combination therapies to address the hostile tumor microenvironment.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Jing Sun
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Annabel Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Leland G. Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Tarun Ramesh
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Matthew A. Gaffey
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
| | - Patrick C. Gedeon
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Elizabeth R. Gerstner
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William T. Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA (A.C.); (L.G.R.); (W.T.C.)
- Harvard Medical School, Boston, MA 02115, USA (E.R.G.)
| |
Collapse
|
47
|
Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer 2023; 9:911-927. [PMID: 37598003 DOI: 10.1016/j.trecan.2023.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Immunosuppressive regulatory T cells (Tregs) provide a main mechanism of tumor immune evasion. Targeting Tregs, especially in the tumor microenvironment (TME), continues to be investigated to improve cancer immunotherapy. Recent studies have unveiled intratumoral Treg heterogeneity and plasticity, furthering the complexity of the role of Tregs in tumor immunity and immunotherapy response. The phenotypic and functional diversity of intratumoral Tregs can impact their response to therapy and may offer new targets to modulate specific Treg subsets. In this review we provide a unifying framework of critical factors contributing to Treg heterogeneity and plasticity in the TME, and we discuss how this information can guide the development of more specific Treg-targeting therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jee Hye Kang
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA
| | - Roberta Zappasodi
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA.
| |
Collapse
|
48
|
Riaz F, Huang Z, Pan F. Targeting post-translational modifications of Foxp3: a new paradigm for regulatory T cell-specific therapy. Front Immunol 2023; 14:1280741. [PMID: 37936703 PMCID: PMC10626496 DOI: 10.3389/fimmu.2023.1280741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
A healthy immune system is pivotal for the hosts to resist external pathogens and maintain homeostasis; however, the immunosuppressive tumor microenvironment (TME) damages the anti-tumor immunity and promotes tumor progression, invasion, and metastasis. Recently, many studies have found that Foxp3+ regulatory T (Treg) cells are the major immunosuppressive cells that facilitate the formation of TME by promoting the development of various tumor-associated cells and suppressing the activity of effector immune cells. Considering the role of Tregs in tumor progression, it is pivotal to identify new therapeutic drugs to target and deplete Tregs in tumors. Although several studies have developed strategies for targeted deletion of Treg to reduce the TME and support the accumulation of effector T cells in tumors, Treg-targeted therapy systematically affects the Treg population and may lead to the progression of autoimmune diseases. It has been understood that, nevertheless, in disease conditions, Foxp3 undergoes several definite post-translational modifications (PTMs), including acetylation, glycosylation, phosphorylation, ubiquitylation, and methylation. These PTMs not only elevate or mitigate the transcriptional activity of Foxp3 but also affect the stability and immunosuppressive function of Tregs. Various studies have shown that pharmacological targeting of enzymes involved in PTMs can significantly influence the PTMs of Foxp3; thus, it may influence the progression of cancers and/or autoimmune diseases. Overall, this review will help researchers to understand the advances in the immune-suppressive mechanisms of Tregs, the post-translational regulations of Foxp3, and the potential therapeutic targets and strategies to target the Tregs in TME to improve anti-tumor immunity.
Collapse
Affiliation(s)
| | | | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
49
|
Conway JW, Braden J, Lo SN, Scolyer RA, Carlino MS, Menzies AM, Long GV, da Silva IP. VEGF Inhibitors Improve Survival Outcomes in Patients with Liver Metastases across Cancer Types-A Meta-Analysis. Cancers (Basel) 2023; 15:5012. [PMID: 37894379 PMCID: PMC10605052 DOI: 10.3390/cancers15205012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Liver metastases are associated with poor prognosis across cancers. Novel treatment strategies to treat patients with liver metastases are needed. This meta-analysis aimed to assess the efficacy of vascular endothelial growth factor inhibitors in patients with liver metastases across cancers. METHODS A systematic search of PubMed, Cochrane CENTRAL, and Embase was performed between January 2000 and April 2023. Randomized controlled trials of patients with liver metastases comparing standard of care (systemic therapy or best supportive care) with or without vascular endothelial growth factor inhibitors were included in the study. Outcomes reported included progression-free survival and overall survival. RESULTS A total of 4445 patients with liver metastases from 25 randomized controlled trials were included in this analysis. The addition of vascular endothelial growth factor inhibitors to standard systemic therapy or best supportive care was associated with superior progression-free survival (HR = 0.49; 95% CI, 0.40-0.61) and overall survival (HR = 0.83; 95% CI, 0.74-0.93) in patients with liver metastases. In a subgroup analysis of patients with versus patients without liver metastases, the benefit with vascular endothelial growth factor inhibitors was more pronounced in the group with liver metastases (HR = 0.44) versus without (HR = 0.57) for progression-free survival, but not for overall survival. CONCLUSION The addition of vascular endothelial growth factor inhibitors to standard management improved survival outcomes in patients with liver metastasis across cancers.
Collapse
Affiliation(s)
- Jordan W. Conway
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jorja Braden
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Serigne N. Lo
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
- NSW Health Pathology, Sydney, NSW 2099, Australia
| | - Matteo S. Carlino
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2148, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Mater Hospital, Sydney, NSW 2060, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Mater Hospital, Sydney, NSW 2060, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, 40 Rocklands Rd, North Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW 2148, Australia
| |
Collapse
|
50
|
Cina ML, Venegas J, Young A. Stocking the toolbox-Using preclinical models to understand the development and treatment of immune checkpoint inhibitor-induced immune-related adverse events. Immunol Rev 2023; 318:110-137. [PMID: 37565407 PMCID: PMC10529261 DOI: 10.1111/imr.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/12/2023]
Abstract
Cancer patients treated with immune checkpoint inhibitors (ICIs) are susceptible to a broad and variable array of immune-related adverse events (irAEs). With increasing clinical use of ICIs, defining the mechanism for irAE development is more critical than ever. However, it currently remains challenging to predict when these irAEs occur and which organ may be affected, and for many of the more severe irAEs, inaccessibility to the tissue site hampers mechanistic insight. This lack of understanding of irAE development in the clinical setting emphasizes the need for greater use of preclinical models that allow for improved prediction of biomarkers for ICI-initiated irAEs or that validate treatment options that inhibit irAEs without hampering the anti-tumor immune response. Here, we discuss the utility of preclinical models, ranging from exploring databases to in vivo animal models, focusing on where they are most useful and where they could be improved.
Collapse
Affiliation(s)
- Morgan L Cina
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jessica Venegas
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Arabella Young
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|