1
|
Döring Y, van der Vorst EPC, Weber C. Targeting immune cell recruitment in atherosclerosis. Nat Rev Cardiol 2024; 21:824-840. [PMID: 38664575 DOI: 10.1038/s41569-024-01023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 10/17/2024]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction and stroke. Atherosclerotic cardiovascular disease is characterized by a chronic inflammatory reaction in medium-to-large-sized arteries, with its onset and perpetuation driven by leukocytes infiltrating the subendothelial space. Activation of endothelial cells triggered by hyperlipidaemia and lipoprotein retention in the arterial intima initiates the accumulation of pro-inflammatory leukocytes in the arterial wall, fostering the progression of atherosclerosis. This inflammatory response is coordinated by an array of soluble mediators, namely cytokines and chemokines, that amplify inflammation both locally and systemically and are complemented by tissue-specific molecules that regulate the homing, adhesion and transmigration of leukocytes. Despite abundant evidence from mouse models, only a few therapies targeting leukocytes in atherosclerosis have been assessed in humans. The major challenges for the clinical translation of these therapies include the lack of tissue specificity and insufficient selectivity of inhibition strategies. In this Review, we discuss the latest research on receptor-ligand pairs and interactors that regulate leukocyte influx into the inflamed artery wall, primarily focusing on studies that used pharmacological interventions. We also discuss mechanisms that promote the resolution of inflammation and highlight how major findings from these research areas hold promise as potential therapeutic strategies for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany.
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Wang C, Yang X, Guo Z, Zhu G, Fan L. Circadian gene CLOCK accelerates atherosclerosis by promoting endothelial autophagy. Biotechnol Genet Eng Rev 2024; 40:1230-1245. [PMID: 36946412 DOI: 10.1080/02648725.2023.2193061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease which gives rise to life-threatening complications like ischemic stroke. Rupture of carotid atherosclerotic plaque is the main cause of ischemic stroke. Emerging evidence has demonstrated that disturbed circadian rhythms could accelerate the progression of atherosclerosis by regulating endothelial function. Moreover, our previous study implicated the circadian gene circadian locomotor output cycles kaput (CLOCK) in the pathogenesis of unstable plaques. In this study, we explored the underlying mechanism that CLOCK mediates endothelial cell autophagy involved in the progression of AS. Circadian and autophagy gene expression was analyzed in the GSE41571 dataset and human carotid atherosclerotic plaque samples. Then we used ox-LDL to treat HUVECs, and analyzed CLOCK and autophagy gene in endothelial cells. Besides that, we comprehensively analyzed in vivo experiments to explore the function of CLOCK in autophagy and atherosclerosis using different staining including HE, MT and IF staining. In the dataset and patient samples, CLOCK expression and autophagy were decreased in the unstable plaque group compared with the stable group. Decreased Beclin1, ATG5, LC3, and CLOCK were also observed in HUVECs under oxidative stress condition which also enhances cell proliferation. In vivo, we also found decreasing level of CLOCK, Beclin1, LC3 and ATG5 in ApoE-/- mice compared with WT mice. Silencing of CLOCK in ApoE-/- mice may further aggravate atherosclerosis including decreased cap thickness and collagens. Our findings implicated that downregulation CLOCK would impair endothelial cell autophagy and accelerate atherosclerotic plaque, which provides a novel strategy for treatment of progression in AS.
Collapse
Affiliation(s)
- Chen Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohu Yang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhenyu Guo
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| | - Guanglang Zhu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| | - Longhua Fan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
3
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
4
|
Zhou S, Ma N, Meng M, Chang G, Shen X. Lentinan Ameliorates β-Hydroxybutyrate-Induced Lipid Metabolism Disorder in Bovine Hepatocytes by Upregulating the Expression of Acetyl-coenzyme A Acetyltransferase 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17392-17404. [PMID: 39056217 DOI: 10.1021/acs.jafc.4c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ketosis in dairy cows is often accompanied by the dysregulation of lipid homeostasis in the liver. Acetyl-coenzyme A acetyltransferase 2 (ACAT2) is specifically expressed in the liver and is important for regulating lipid homeostasis in ketotic cows. Lentinan (LNT) has a wide range of pharmacological activities, and this study investigates the protective effects of LNT on β-hydroxybutyrate (BHBA)-induced lipid metabolism disorder in bovine hepatocytes (BHECs) and elucidates the underlying mechanisms. BHECs were first pretreated with LNT to investigate the effect of LNT on BHBA-induced lipid metabolism disorder in BHECs. ACAT2 was then silenced or overexpressed to investigate whether this mediated the protective action of LNT against BHBA-induced lipid metabolism disorder in BHECs. Finally, BHECs were treated with LNT after silencing ACAT2 to investigate the interaction between LNT and ACAT2. LNT pretreatment effectively enhanced the synthesis and absorption of cholesterol, inhibited the synthesis of triglycerides, increased the expression of ACAT2, and elevated the contents of very low-density lipoprotein and low-density lipoprotein cholesterol, thereby ameliorating BHBA-induced lipid metabolism disorder in BHECs. The overexpression of ACAT2 achieved a comparable effect to LNT pretreatment, whereas the silencing of ACAT2 aggravated the effect of BHBA on inducing disorder in lipid metabolism in BHECs. Moreover, the protective effect of LNT against lipid metabolism disorder in BHBA-induced BHECs was abrogated upon silencing of ACAT2. Thus, LNT, as a natural protective agent, can enhance the regulatory capacity of BHECs in maintaining lipid homeostasis by upregulating ACAT2 expression, thereby ameliorating the BHBA-induced lipid metabolism disorder.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
5
|
Zeng Q, Oliva VM, Moro MÁ, Scheiermann C. Circadian Effects on Vascular Immunopathologies. Circ Res 2024; 134:791-809. [PMID: 38484032 DOI: 10.1161/circresaha.123.323619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Circadian rhythms exert a profound impact on most aspects of mammalian physiology, including the immune and cardiovascular systems. Leukocytes engage in time-of-day-dependent interactions with the vasculature, facilitating the emigration to and the immune surveillance of tissues. This review provides an overview of circadian control of immune-vascular interactions in both the steady state and cardiovascular diseases such as atherosclerosis and infarction. Circadian rhythms impact both the immune and vascular facets of these interactions, primarily through the regulation of chemoattractant and adhesion molecules on immune and endothelial cells. Misaligned light conditions disrupt this rhythm, generally exacerbating atherosclerosis and infarction. In cardiovascular diseases, distinct circadian clock genes, while functioning as part of an integrated circadian system, can have proinflammatory or anti-inflammatory effects on these immune-vascular interactions. Here, we discuss the mechanisms and relevance of circadian rhythms in vascular immunopathologies.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - Valeria Maria Oliva
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.Á.M.)
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
- Geneva Center for Inflammation Research, Switzerland (C.S.)
- Translational Research Centre in Oncohaematology, Geneva, Switzerland (C.S.)
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Germany (C.S.)
| |
Collapse
|
6
|
Jesse TG, Becer E, Kalkan R. Identification of the Relationship Between DNA Methylation of Circadian Rhythm Genes and Obesity. Biochem Genet 2024; 62:281-293. [PMID: 37329425 DOI: 10.1007/s10528-023-10415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
In children, teenagers, and young adults, environmental factors and genetic modifications have contributed to the development of obesity. There is a close relationship between obesity and circadian rhythm. To understand the role of CLOCK and BMAL1 in obesity, we analyzed the methylation status of CLOCK and BMAL1 in obese and control subjects. In this paper, we analyzed the methylation status of the CLOCK and BMAL1 genes by using MS-HRM in a total of 55 obese and 54 control subjects. In our study, we demonstrated that the level of fasting glucose and the level of HDL-cholesterol were associated with CLOCK methylation in obesity. We also showed a significant association between BMAL1 gene methylation and waist and hip circumference in obese subjects. This is the first study that shows the methylation of BMAL1 is associated with the obese phenotype. However, we could not show a direct association between CLOCK methylation and the obese phenotype. In this paper, a novel epigenetic interaction between circadian clock genes and obesity was demonstrated.
Collapse
Affiliation(s)
- Tirah Galaya Jesse
- Department of Medical Genetics, Faculty of Medicine, Near East University, Mersin 10, Nicosia, 99138, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Mersin 10, Famagusta, 99628, Turkey
| | - Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Mersin 10, Nicosia, 99138, Turkey.
- Department of Medical Genetics, Faculty of Medicine, Cyprus Health and Social Sciences University, Mersin 10, Guzelyurt, 99138, Turkey.
| |
Collapse
|
7
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
8
|
Costello HM, Sharma RK, McKee AR, Gumz ML. Circadian Disruption and the Molecular Clock in Atherosclerosis and Hypertension. Can J Cardiol 2023; 39:1757-1771. [PMID: 37355229 PMCID: PMC11446228 DOI: 10.1016/j.cjca.2023.06.416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Circadian rhythms are crucial for maintaining vascular function and disruption of these rhythms are associated with negative health outcomes including cardiovascular disease and hypertension. Circadian rhythms are regulated by the central clock within the suprachiasmatic nucleus of the hypothalamus and peripheral clocks located in nearly every cell type in the body, including cells within the heart and vasculature. In this review, we summarize the most recent preclinical and clinical research linking circadian disruption, with a focus on molecular circadian clock mechanisms, in atherosclerosis and hypertension. Furthermore, we provide insight into potential future chronotherapeutics for hypertension and vascular disease. A better understanding of the influence of daily rhythms in behaviour, such as sleep/wake cycles, feeding, and physical activity, as well as the endogenous circadian system on cardiovascular risk will help pave the way for targeted approaches in atherosclerosis and hypertension treatment/prevention.
Collapse
Affiliation(s)
- Hannah M Costello
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA.
| | - Ravindra K Sharma
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA
| | - Annalisse R McKee
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA; Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
He SK, Wang JH, Li T, Yin S, Cui JW, Xiao YF, Tang Y, Wang J, Bai YJ. Sleep and circadian rhythm disturbance in kidney stone disease: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1293685. [PMID: 38089624 PMCID: PMC10711275 DOI: 10.3389/fendo.2023.1293685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The circadian rhythm generated by circadian clock genes functions as an internal timing system. Since the circadian rhythm controls abundant physiological processes, the circadian rhythm evolved in organisms is salient for adaptation to environmental change. A disturbed circadian rhythm is a trigger for numerous pathological events. Recently, accumulated data have indicated that kidney stone disease (KSD) is related to circadian rhythm disturbance. However, the mechanism between them has not been fully elucidated. In this narrative review, we summarized existing evidence to illustrate the possible association between circadian rhythm disturbance and KSD based on the epidemiological studies and risk factors that are linked to circadian rhythm disturbance and discuss some chronotherapies for KSD. In summary, KSD is associated with systemic disorders. Metabolic syndrome, inflammatory bowel disease, and microbiome dysbiosis are the major risk factors supported by sufficient data to cause KSD in patients with circadian rhythm disturbance, while others including hypertension, vitamin D deficiency, parathyroid gland dysfunction, and renal tubular damage/dysfunction need further investigation. Then, some chronotherapies for KSD were confirmed to be effective, but the molecular mechanism is still unclear.
Collapse
Affiliation(s)
- Si-Ke He
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Hao Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Yin
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jian-Wei Cui
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei Xiao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Parente M, Tonini C, Segatto M, Pallottini V. Regulation of cholesterol metabolism: New players for an old physiological process. J Cell Biochem 2023; 124:1449-1465. [PMID: 37796135 DOI: 10.1002/jcb.30477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.
Collapse
Affiliation(s)
| | | | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano, Rome, Italy
| |
Collapse
|
11
|
Csoma B, Bikov A. The Role of the Circadian Rhythm in Dyslipidaemia and Vascular Inflammation Leading to Atherosclerosis. Int J Mol Sci 2023; 24:14145. [PMID: 37762448 PMCID: PMC10532147 DOI: 10.3390/ijms241814145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Many lines of evidence suggest that the disturbances in circadian rhythm are responsible for the development of CVDs; however, circadian misalignment is not yet a treatable trait in clinical practice. The circadian rhythm is controlled by the central clock located in the suprachiasmatic nucleus and clock genes (molecular clock) located in all cells. Dyslipidaemia and vascular inflammation are two hallmarks of atherosclerosis and numerous experimental studies conclude that they are under direct influence by both central and molecular clocks. This review will summarise the results of experimental studies on lipid metabolism, vascular inflammation and circadian rhythm, and translate them into the pathophysiology of atherosclerosis and cardiovascular disease. We discuss the effect of time-respected administration of medications in cardiovascular medicine. We review the evidence on the effect of bright light and melatonin on cardiovascular health, lipid metabolism and vascular inflammation. Finally, we suggest an agenda for future research and recommend on clinical practice.
Collapse
Affiliation(s)
- Balazs Csoma
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
12
|
Lu Z, Li X, Wang M, Zhang X, Zhuang R, Wu F, Li W, Zhu W, Zhang B. Liver-Specific Bmal1 Depletion Reverses the Beneficial Effects of Nobiletin on Liver Cholesterol Homeostasis in Mice Fed with High-Fat Diet. Nutrients 2023; 15:nu15112547. [PMID: 37299510 DOI: 10.3390/nu15112547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Nobiletin (NOB), a naturally occurring small-molecule compound abundant in citrus peels, has displayed potential lipid-lowering and circadian-enhancing properties in preclinical studies. However, the requirement of specific clock genes for the beneficial effects of NOB is not well understood. In the current study, mice with a liver-specific deletion of the core clock component, Bmal1-Bmal1LKO-were fed a high-fat diet (HFD) ad libitum for eight weeks, while NOB (200 mg/kg) was administered by daily oral gavage from the fifth week and throughout the last four weeks. NOB decreased liver triglyceride (TG) alongside the decreasing mRNA levels of de novo lipogenesis (DNL) genes in both Bmal1flox/flox and Bmal1LKO mice. NOB increased serum very low-density lipoprotein (VLDL) levels in Bmal1LKO mice, which was consistent with higher liver Shp and lower Mttp mRNA expression levels, the key genes that facilitate VLDL assembly and secretion. NOB decreased liver and serum cholesterol levels in the Bmal1flox/flox mice, consistent with lower Hmgcr and higher Cyp7a1, Cyp8b1, Gata4 and Abcg5 mRNA levels in the liver. In contrast, in the Bmal1LKO mice, NOB increased Hmgcr mRNA levels and had no effect on the above-mentioned genes related to bile acid synthesis and cholesterol excretion, which might contribute to the elevation of liver and serum cholesterol levels in NOB-treated Bmal1LKO mice. NOB inhibited hepatic DNL and decreased liver TG levels in HFD-fed mice independently of liver Bmal1, whereas liver-specific Bmal1 depletion reversed the beneficial effects of NOB on liver cholesterol homeostasis. The complex interactions between NOB, the circadian clock and lipid metabolism in the liver warrant further research.
Collapse
Affiliation(s)
- Zhitian Lu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xudong Li
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Min Wang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaojun Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Runxuan Zhuang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Fan Wu
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenxue Li
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wei Zhu
- Department of Toxicological and Biochemical Test, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Lu X, Huang L, Chen Y, Hu L, Zhong R, Chen L, Cheng W, Zheng B, Liang P. Effect of DHA-Enriched Phospholipids from Fish Roe on Rat Fecal Metabolites: Untargeted Metabolomic Analysis. Foods 2023; 12:foods12081687. [PMID: 37107484 PMCID: PMC10137559 DOI: 10.3390/foods12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid metabolism disorder has become an important hidden danger threatening human health, and various supplements to treat lipid metabolism disorder have been studied. Our previous studies have shown that DHA-enriched phospholipids from large yellow croaker (Larimichthys Crocea) roe (LYCRPLs) have lipid-regulating effects. To better explain the effect of LYCRPLs on lipid regulation in rats, the fecal metabolites of rats were analyzed from the level of metabolomics in this study, and GC/MS metabolomics measurements were performed to figure out the effect of LYCRPLs on fecal metabolites in rats. Compared with the control (K) group, 101 metabolites were identified in the model (M) group. There were 54, 47, and 57 metabolites in the low-dose (GA), medium-dose (GB), and high-dose (GC) groups that were significantly different from that of group M, respectively. Eighteen potential biomarkers closely related to lipid metabolism were screened after intervention with different doses of LYCRPLs on rats, which were classified into several metabolic pathways in rats, including pyrimidine metabolism, the citric acid cycle (TCA cycle), the metabolism of L-cysteine, carnitine synthesis, pantothenate and CoA biosynthesis, glycolysis, and bile secretion. L-cysteine was speculated to be a useful biomarker of LYCRPLs acting on rat fecal metabolites. Our findings indicated that LYCRPLs may regulate lipid metabolism disorders in SD rats by activating these metabolic pathways.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyao Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanjun Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Chalfant JM, Howatt DA, Johnson VB, Tannock LR, Daugherty A, Pendergast JS. Chronic environmental circadian disruption increases atherosclerosis and dyslipidemia in female, but not male, ApolipoproteinE-deficient mice. Front Physiol 2023; 14:1167858. [PMID: 37064902 PMCID: PMC10090465 DOI: 10.3389/fphys.2023.1167858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Shift work chronically disrupts circadian rhythms and increases the risk of developing cardiovascular disease. However, the mechanisms linking shift work and cardiovascular disease are largely unknown. The goal of this study was to investigate the effects of chronically shifting the light-dark (LD) cycle, which models the disordered exposure to light that may occur during shift work, on atherosclerosis. Atherosclerosis is the progressive accumulation of lipid-filled lesions within the artery wall and is the leading cause of cardiovascular disease. We studied ApolipoproteinE-deficient (ApoE -/- ) mice that are a well-established model of atherosclerosis. Male and female ApoE -/- mice were housed in control 12L:12D or chronic LD shift conditions for 12 weeks and fed low-fat diet. In the chronic LD shift condition, the light-dark cycle was advanced by 6 h every week. We found that chronic LD shifts exacerbated atherosclerosis in female, but not male, ApoE -/- mice. In females, chronic LD shifts increased total serum cholesterol concentrations with increased atherogenic VLDL/LDL particles. Chronic LD shifts did not affect food intake, activity, or body weight in male or female ApoE -/- mice. We also examined eating behavior in female ApoE -/- mice since aberrant meal timing has been linked to atherosclerosis. The phases of eating behavior rhythms, like locomotor activity rhythms, gradually shifted to the new LD cycle each week in the chronic LD shift group, but there was no effect of the LD shift on the amplitudes of the eating rhythms. Moreover, the duration of fasting intervals was not different in control 12L:12D compared to chronic LD shift conditions. Together these data demonstrate that female ApoE -/- mice have increased atherosclerosis when exposed to chronic LD shifts due to increased VLDL/LDL cholesterol, independent of changes in energy balance or feeding-fasting cycles.
Collapse
Affiliation(s)
- Jeffrey M. Chalfant
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | | | - Lisa R. Tannock
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Department of Veterans Affairs, Lexington, KY, United States
- Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, United States
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Julie S. Pendergast
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Fan XL, Song Y, Qin DX, Lin PY. Regulatory Effects of Clock and Bmal1 on Circadian Rhythmic TLR Expression. Int Rev Immunol 2023; 42:101-112. [PMID: 34544330 DOI: 10.1080/08830185.2021.1931170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circadian locomotor output cycles kaput (Clock) and brain and muscle ARNT-like 1 (Bmal1) are two core circadian clock genes. They form a heterodimer that can bind to the E-box element in the promoters of Period circadian protein (Per) and Cryptochrome (Cry) genes, thereby inducing the rhythmic expression of circadian clock control genes. Toll-like receptors (TLRs) are type I transmembrane proteins belonging to the pattern recognition receptor (PRR) family. They can recognize a variety of pathogens and play an important role in innate immunity and adaptive immune responses. Recent studies have found that the circadian clock is closely associated with the immune system. TLRs have a certain correlation with the circadian rhythms; Bmal1 seems to be the central mediator connecting the circadian clock and the immune system. Research on Bmal1 and TLRs has made some progress, but the specific relationship between TLRs and Bmal1 remains unclear. Understanding the relationship between TLRs and Clock/Bmal1 genes is increasingly important for basic research and clinical treatment.
Collapse
Affiliation(s)
- Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Dong-Xu Qin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| | - Pei-Yao Lin
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
16
|
Trebucq LL, Lamberti ML, Rota R, Aiello I, Borio C, Bilen M, Golombek DA, Plano SA, Chiesa JJ. Chronic circadian desynchronization of feeding-fasting rhythm generates alterations in daily glycemia, LDL cholesterolemia and microbiota composition in mice. Front Nutr 2023; 10:1154647. [PMID: 37125029 PMCID: PMC10145162 DOI: 10.3389/fnut.2023.1154647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The circadian system synchronizes behavior and physiology to the 24-h light- dark (LD) cycle. Timing of food intake and fasting periods provide strong signals for peripheral circadian clocks regulating nutrient assimilation, glucose, and lipid metabolism. Mice under 12 h light:12 h dark (LD) cycles exhibit behavioral activity and feeding during the dark period, while fasting occurs at rest during light. Disruption of energy metabolism, leading to an increase in body mass, was reported in experimental models of circadian desynchronization. In this work, the effects of chronic advances of the LD cycles (chronic jet-lag protocol, CJL) were studied on the daily homeostasis of energy metabolism and weight gain. Methods Male C57 mice were subjected to a CJL or LD schedule, measuring IPGTT, insulinemia, microbiome composition and lipidemia. Results Mice under CJL show behavioral desynchronization and feeding activity distributed similarly at the light and dark hours and, although feeding a similar daily amount of food as compared to controls, show an increase in weight gain. In addition, ad libitum glycemia rhythm was abolished in CJL-subjected mice, showing similar blood glucose values at light and dark. CJL also generated glucose intolerance at dark in an intraperitoneal glucose tolerance test (IPGTT), with increased insulin release at both light and dark periods. Low-density lipoprotein (LDL) cholesterolemia was increased under this condition, but no changes in HDL cholesterolemia were observed. Firmicutes/Bacteroidetes ratio was analyzed as a marker of circadian disruption of microbiota composition, showing opposite phases at the light and dark when comparing LD vs. CJL. Discussion Chronic misalignment of feeding/fasting rhythm leads to metabolic disturbances generating nocturnal hyperglycemia, glucose intolerance and hyperinsulinemia in a IPGTT, increased LDL cholesterolemia, and increased weight gain, underscoring the importance of the timing of food consumption with respect to the circadian system for metabolic health.
Collapse
Affiliation(s)
- Laura Lucía Trebucq
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Melisa Luciana Lamberti
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Rosana Rota
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Ignacio Aiello
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Cristina Borio
- Laboratorio de Ingeniería Genética, Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Marcos Bilen
- Laboratorio de Ingeniería Genética, Biología Celular y Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
| | - Diego Andrés Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
- Escuela de Educacion, Universidad de San Andrés, Victoria, Argentina
| | - Santiago Andrés Plano
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
- Institute for Biomedical Research (BIOMED), Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- *Correspondence: Santiago Andrés Plano,
| | - Juan José Chiesa
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes (UNQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Argentina
- Juan José Chiesa,
| |
Collapse
|
17
|
The Effect of Diet on the Cardiac Circadian Clock in Mice: A Systematic Review. Metabolites 2022; 12:metabo12121273. [PMID: 36557311 PMCID: PMC9786298 DOI: 10.3390/metabo12121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythms play important roles in regulating physiological and behavioral processes. These are adjusted by environmental cues, such as diet, which acts by synchronizing or attenuating the circadian rhythms of peripheral clocks, such as the liver, intestine, pancreas, white and brown adipose tissue, lungs, kidneys, as well as the heart. Some studies point to the influence of diet composition, feeding timing, and dietary restriction on metabolic homeostasis and circadian rhythms at various levels. Therefore, this systematic review aimed to discuss studies addressing the effect of diet on the heart clock in animal models and, additionally, the chronodisruption of the clock and its relation to the development of cardiovascular disorders in the last 15 years. A search was conducted in the PubMed, Scopus, and Embase databases. The PRISMA guide was used to construct the article. Nineteen studies met all inclusion and exclusion criteria. In summary, these studies have linked the circadian clock to cardiovascular health and suggested that maintaining a robust circadian system may reduce the risks of cardiometabolic and cardiovascular diseases. The effect of time-of-day-dependent eating on the modulation of circadian rhythms of the cardiac clock and energy homeostasis is notable, among its deleterious effects predominantly in the sleep (light) phase and/or at the end of the active phase.
Collapse
|
18
|
Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M, Zhang S, Zhang Y, Bi J, Yao J, He M. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17039-17051. [PMID: 36374530 DOI: 10.1021/acs.est.2c04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is associated with blood lipids in adults, but the underlying mechanisms remain unclear. This pilot study aimed to investigate the associations between PFOA or PFOS and epigenome-wide DNA methylation and assess the mediating effect of DNA methylation on the PFOA/PFOS-blood lipid association. We measured plasma PFOA/PFOS and leukocyte DNA methylation in 98 patients enrolled from the hospital between October 2018 and August 2019. The median plasma PFOA/PFOS levels were 0.85 and 2.29 ng/mL. Plasma PFOA and PFOS levels were significantly associated with elevated total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels. There were 63/87 CpG positions and 8/11 differentially methylated regions (DMRs) associated with plasma PFOA/PFOS levels, respectively. In addition, 5 CpG positions (annotated to AFF3, CREB5, NRG2, USF2, and intergenic region) and one DMR annotated to IRF6 may mediate the association between plasma PFOA/PFOS and LDL levels (mediated proportion from 7.29 to 46.77%); two CpG positions may mediate the association between plasma PFOA/PFOS and TC levels (annotated to CREB5 and USF2, mediated proportion is around 30%). The data suggest that PFOA/PFOS exposure alters DNA methylation. More importantly, the association of PFOA/PFOS with lipid indicators was partly mediated by DNA methylation changes in lipid metabolism-related genes.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Mulatibieke Keerman
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
19
|
Torres‐Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila‐Román J, Arola‐Arnal A, Salvadó MJ, Arola L, Bravo FI, Muguerza B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol Nutr Food Res 2022; 66:e2100990. [PMID: 35279936 PMCID: PMC9786928 DOI: 10.1002/mnfr.202100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.
Collapse
Affiliation(s)
- Cristina Torres‐Fuentes
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Manuel Suárez
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Gerard Aragonès
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Miquel Mulero
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Javier Ávila‐Román
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Maria Josepa Salvadó
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Lluís Arola
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| |
Collapse
|
20
|
Lecour S, Du Pré BC, Bøtker HE, Brundel BJJM, Daiber A, Davidson SM, Ferdinandy P, Girao H, Gollmann-Tepeköylü C, Gyöngyösi M, Hausenloy DJ, Madonna R, Marber M, Perrino C, Pesce M, Schulz R, Sluijter JPG, Steffens S, Van Linthout S, Young ME, Van Laake LW. Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovasc Res 2022; 118:2566-2581. [PMID: 34505881 DOI: 10.1093/cvr/cvab293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms are internal regulatory processes controlled by molecular clocks present in essentially every mammalian organ that temporally regulate major physiological functions. In the cardiovascular system, the circadian clock governs heart rate, blood pressure, cardiac metabolism, contractility, and coagulation. Recent experimental and clinical studies highlight the possible importance of circadian rhythms in the pathophysiology, outcome, or treatment success of cardiovascular disease, including ischaemic heart disease. Disturbances in circadian rhythms are associated with increased cardiovascular risk and worsen outcome. Therefore, it is important to consider circadian rhythms as a key research parameter to better understand cardiac physiology/pathology, and to improve the chances of translation and efficacy of cardiac therapies, including those for ischaemic heart disease. The aim of this Position Paper by the European Society of Cardiology Working Group Cellular Biology of the Heart is to highlight key aspects of circadian rhythms to consider for improvement of preclinical and translational studies related to ischaemic heart disease and cardioprotection. Applying these considerations to future studies may increase the potential for better translation of new treatments into successful clinical outcomes.
Collapse
Affiliation(s)
- Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Bastiaan C Du Pré
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andreas Daiber
- Department of Cardiology, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Henrique Girao
- Faculty of Medicine, Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Center for Innovative Biomedicine and Biotechnology (CIBB), Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | | | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, TX, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, London, UK
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies & Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin 10178, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Martin E Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Wang S, Jiang Q, Loor JJ, Gao C, Yang M, Tian Y, Fan W, Zhang B, Li M, Xu C, Yang W. Role of sortilin 1 (SORT1) on fatty acid–mediated cholesterol metabolism in primary calf hepatocytes. J Dairy Sci 2022; 105:7773-7786. [DOI: 10.3168/jds.2022-22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
|
22
|
Ilyas I, Little PJ, Liu Z, Xu Y, Kamato D, Berk BC, Weng J, Xu S. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci 2022; 43:920-939. [PMID: 35902281 DOI: 10.1016/j.tips.2022.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/21/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research.
Collapse
Affiliation(s)
- Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia; Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Australia
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
23
|
Pan X, Hussain MM. Bmal1 regulates production of larger lipoproteins by modulating cAMP-responsive element-binding protein H and apolipoprotein AIV. Hepatology 2022; 76:78-93. [PMID: 34626126 PMCID: PMC8993942 DOI: 10.1002/hep.32196] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High plasma lipid/lipoprotein levels are risk factors for various metabolic diseases. We previously showed that circadian rhythms regulate plasma lipids and deregulation of these rhythms causes hyperlipidemia and atherosclerosis in mice. Here, we show that global and liver-specific brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1)-deficient mice maintained on a chow or Western diet developed hyperlipidemia, denoted by the presence of higher amounts of triglyceride-rich and apolipoprotein AIV (ApoAIV)-rich larger chylomicron and VLDL due to overproduction. APPROACH AND RESULTS Bmal1 deficiency decreased small heterodimer partner (Shp) and increased microsomal triglyceride transfer protein (MTP), a key protein that facilitates primordial lipoprotein assembly and secretion. Moreover, we show that Bmal1 regulates cAMP-responsive element-binding protein H (Crebh) to modulate ApoAIV expression and the assembly of larger lipoproteins. This is supported by the observation that Crebh-deficient and ApoAIV-deficient mice, along with Bmal1-deficient mice with knockdown of Crebh, had smaller lipoproteins. Further, overexpression of Bmal1 in Crebh-deficient mice had no effect on ApoAIV expression and lipoprotein size. CONCLUSIONS These studies indicate that regulation of ApoAIV and assembly of larger lipoproteins by Bmal1 requires Crebh. Mechanistic studies showed that Bmal1 regulates Crebh expression by two mechanisms. First, Bmal1 interacts with the Crebh promoter to control circadian regulation. Second, Bmal1 increases Rev-erbα expression, and nuclear receptor subfamily 1 group D member 1 (Nr1D1, Rev-erbα) interacts with the Crebh promoter to repress expression. In short, Bmal1 modulates both the synthesis of primordial lipoproteins and their subsequent expansion into larger lipoproteins by regulating two different proteins, MTP and ApoAIV, through two different transcription factors, Shp and Crebh. It is likely that disruptions in circadian mechanisms contribute to hyperlipidemia and that avoiding disruptions in circadian rhythms may limit/prevent hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, USA
| |
Collapse
|
24
|
Circadian rhythm of lipid metabolism. Biochem Soc Trans 2022; 50:1191-1204. [PMID: 35604112 DOI: 10.1042/bst20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Lipids comprise a diverse group of metabolites that are indispensable as energy storage molecules, cellular membrane components and mediators of inter- and intra-cellular signaling processes. Lipid homeostasis plays a crucial role in maintaining metabolic health in mammals including human beings. A growing body of evidence suggests that the circadian clock system ensures temporal orchestration of lipid homeostasis, and that perturbation of such diurnal regulation leads to the development of metabolic disorders comprising obesity and type 2 diabetes. In view of the emerging role of circadian regulation in maintaining lipid homeostasis, in this review, we summarize the current knowledge on lipid metabolic pathways controlled by the mammalian circadian system. Furthermore, we review the emerging connection between the development of human metabolic diseases and changes in lipid metabolites that belong to major classes of lipids. Finally, we highlight the mechanisms underlying circadian organization of lipid metabolic rhythms upon the physiological situation, and the consequences of circadian clock dysfunction for dysregulation of lipid metabolism.
Collapse
|
25
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
26
|
Lin C, Xu L, Tang X, Li X, Lu C, Cheng Q, Jiang J, Shen Y, Yan D, Qian R, Fu W, Guo D. Clock Gene Bmal1 Disruption in Vascular Smooth Muscle Cells Worsens Carotid Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2022; 42:565-579. [PMID: 35236106 DOI: 10.1161/atvbaha.121.316480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Clock system disruptions are associated with cardiovascular diseases. We previously demonstrated Bmal1 (brain muscle aryl nuclear translocase like-1) expression is significantly attenuated in plaque-derived vascular smooth muscle cells (VSMCs). However, the influence of Bmal1 disruption in VSMCs and its molecular targets are still unclear. Here, we aim to define how Bmal1 disruption in VSMCs influences the atherosclerosis lesions. METHODS The relationship among Bmal1, neurological symptoms, and plaque stability was investigated. VSMC Bmal1-/- and VSMC Bmal1+/+mice were generated and injected with adeno associated virus encoding mutant proprotein convertase subtilisin/kexin type 9 to induce atherosclerosis. Carotid artery ligation and cuff placement were performed in these mice to confirm the role of Bmal1 in atherosclerosis progression. The relevant molecular mechanisms were then explored. RESULTS Bmal1 expression in the carotid plague was significantly lower in symptomatic patients as well as in unstable plaques. Moreover, Bmal1 reduction is an independent risk factor for neurological symptoms and plaque instability. Besides, VSMC Bmal1-/- mice exhibit aggravated atherosclerotic lesions. Further study demonstrated that Bmal1 downregulation in VSMCs increased VSMC migration, monocyte transmigration, reactive oxygen species levels, and VSMCs apoptosis. As for the mechanism, we revealed that Bmal1 suppresses VSMCs migration by inhibiting RAC1 activity in 2 ways: by activating the transcription of RhoGDIα and by interacting with RAC1. Besides, Bmal1 was shown to preserve antioxidant function in VSMCs by activating Nrf2 (nuclear factor erythroid 2-related factor 2) and Bcl-2 transcription. CONCLUSIONS Bmal1 disruption in VSMCs worsens atherosclerosis by promoting VSMC migration and monocyte transmigration and impairing antioxidant function. Therefore, Bmal1 may be a potential therapeutic target and biomarker of atherosclerosis in the future.
Collapse
Affiliation(s)
- Changpo Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Lirong Xu
- National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Xiaobo Li
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, China (L.X.).,Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Chao Lu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Dong Yan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, China (X.L., C.L., Q.C., R.Q.)
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,National Clinical Research Center for Interventional Medicine, Shanghai, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.).,Shanghai Clinical Research Center for Interventional Medicine, China (C.L., X.T., J.J., Y.S., D.Y., W.F., D.G.)
| |
Collapse
|
27
|
Smith HA, Betts JA. Nutrient timing and metabolic regulation symposium review from "Novel dietary approaches to appetite regulation, health and performance (2021)". J Physiol 2022; 600:1299-1312. [PMID: 35038774 PMCID: PMC9305539 DOI: 10.1113/jp280756] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Daily (circadian) rhythms coordinate our physiology and behaviour with regular environmental changes. Molecular clocks in peripheral tissues (e.g. liver, skeletal muscle and adipose) give rise to rhythms in macronutrient metabolism, appetite regulation and the components of energy balance such that our bodies can align the periodic delivery of nutrients with ongoing metabolic requirements. The timing of meals both in absolute terms (i.e. relative to clock time) and in relative terms (i.e. relative to other daily events) is therefore relevant to metabolism and health. Experimental manipulation of feeding–fasting cycles can advance understanding of the effect of absolute and relative timing of meals on metabolism and health. Such studies have extended the overnight fast by regular breakfast omission and revealed that morning fasting can alter the metabolic response to subsequent meals later in the day, whilst also eliciting compensatory behavioural responses (i.e. reduced physical activity). Similarly, restricting energy intake via alternate‐day fasting also has the potential to elicit a compensatory reduction in physical activity, and so can undermine weight‐loss efforts (i.e. to preserve body fat stores). Interrupting the usual overnight fast (and therefore also the usual sleep cycle) by nocturnal feeding has also been examined and further research is needed to understand the importance of this period for either nutritional intervention or nutritional withdrawal. In summary, it is important for dietary guidelines for human health to consider nutrient timing (i.e. when we eat) alongside the conventional focus on nutrient quantity and nutrient quality (i.e. how much we eat and what we eat).
![]()
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| | - James A Betts
- Centre for Nutrition Exercise and Metabolism, Department for Health, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
28
|
Pan X. Cholesterol Metabolism in Chronic Kidney Disease: Physiology, Pathologic Mechanisms, and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:119-143. [PMID: 35503178 PMCID: PMC11106795 DOI: 10.1007/978-981-19-0394-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High plasma levels of lipids and/or lipoproteins are risk factors for atherosclerosis, nonalcoholic fatty liver disease (NAFLD), obesity, and diabetes. These four conditions have also been identified as risk factors leading to the development of chronic kidney disease (CKD). Although many pathways that generate high plasma levels of these factors have been identified, most clinical and physiologic dysfunction results from aberrant assembly and secretion of lipoproteins. The results of several published studies suggest that elevated levels of low-density lipoprotein (LDL)-cholesterol are a risk factor for atherosclerosis, myocardial infarction, coronary artery calcification associated with type 2 diabetes, and NAFLD. Cholesterol metabolism has also been identified as an important pathway contributing to the development of CKD; clinical treatments designed to alter various steps of the cholesterol synthesis and metabolism pathway are currently under study. Cholesterol synthesis and catabolism contribute to a multistep process with pathways that are regulated at the cellular level in renal tissue. Cholesterol metabolism may also be regulated by the balance between the influx and efflux of cholesterol molecules that are capable of crossing the membrane of renal proximal tubular epithelial cells and podocytes. Cellular accumulation of cholesterol can result in lipotoxicity and ultimately kidney dysfunction and failure. Thus, further research focused on cholesterol metabolism pathways will be necessary to improve our understanding of the impact of cholesterol restriction, which is currently a primary intervention recommended for patients with dyslipidemia.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
29
|
Li T, Bai Y, Jiang Y, Jiang K, Tian Y, Wang Z, Ban Y, Liang X, Luo G, Sun F. Potential Effect of the Circadian Clock on Erectile Dysfunction. Aging Dis 2022; 13:8-23. [PMID: 35111358 PMCID: PMC8782551 DOI: 10.14336/ad.2021.0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/28/2021] [Indexed: 12/03/2022] Open
Abstract
The circadian rhythm is an internal timing system, which is generated by circadian clock genes. Because the circadian rhythm regulates numerous cellular, behavioral, and physiological processes, organisms have evolved with intrinsic biological rhythms to adapt the daily environmental changes. A variety of pathological events occur at specific times, while disturbed rhythms can lead to metabolic syndrome, vascular dysfunction, inflammatory disorders, and cancer. Therefore, the circadian clock is considered closely related to various diseases. Recently, accumulated data have shown that the penis is regulated by the circadian clock, while erectile function is impaired by an altered sleep-wake cycle. The circadian rhythm appears to be a novel therapeutic target for preventing and managing erectile dysfunction (ED), although research is still progressing. In this review, we briefly summarize the superficial interactions between the circadian clock and erectile function, while focusing on how disturbed rhythms contribute to risk factors of ED. These risk factors include NO/cGMP pathway, atherosclerosis, diabetes mellitus, lipid abnormalities, testosterone deficiency, as well as dysfunction of endothelial and smooth muscle cells. On the basis of recent findings, we discuss the potential role of the circadian clock for future therapeutic strategies on ED, although further relevant research needs to be performed.
Collapse
Affiliation(s)
- Tao Li
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yunjin Bai
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yiting Jiang
- Department of Otorhinolaryngology, The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ye Tian
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Zhen Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Yong Ban
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Xiangyi Liang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| | - Fa Sun
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China.
- Correspondence should be addressed to: Dr. Fa Sun, Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China. .
| |
Collapse
|
30
|
Role of circadian rhythm and impact of circadian rhythm disturbance on the metabolism and disease. J Cardiovasc Pharmacol 2021; 79:254-263. [PMID: 34840256 DOI: 10.1097/fjc.0000000000001178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Molecular circadian clocks exist in almost all cells of the organism and operate for approximately 24 h, maintain the normal physiological and behavioral body processes and regulate metabolism of many cells related to a variety of disease states. Circadian rhythms regulate metabolism, mainly including neurotransmitters, hormones, amino acids and lipids. Circadian misalignment is related to metabolic syndromes, such as obesity, diabetes and hypertension, which have reached an alarming level in modern society. We reviewed the mechanism of the circadian clock and the interaction between circadian rhythm and metabolism, as well as circadian rhythm disturbance on the metabolism of hypertension, obesity and diabetes. Finally, we discuss how to use the circadian rhythm to prevent diseases. Thus, this review is a micro to macro discussion from the perspective of circadian rhythm and aims to provide basic ideas for circadian rhythm research and disease therapies.
Collapse
|
31
|
Nikbakhtian S, Reed AB, Obika BD, Morelli D, Cunningham AC, Aral M, Plans D. Accelerometer-derived sleep onset timing and cardiovascular disease incidence: a UK Biobank cohort study. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:658-666. [PMID: 36713092 PMCID: PMC9708010 DOI: 10.1093/ehjdh/ztab088] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 02/01/2023]
Abstract
Aims Growing evidence suggests that poor sleep health is associated with cardiovascular risk. However, research in this area often relies upon recollection dependent questionnaires or diaries. Accelerometers provide an alternative tool for measuring sleep parameters objectively. This study examines the association between wrist-worn accelerometer-derived sleep onset timing and cardiovascular disease (CVD). Methods and results We derived sleep onset and waking up time from accelerometer data collected from 103 712 UK Biobank participants over a period of 7 days. From this, we examined the association between sleep onset timing and CVD incidence using a series of Cox proportional hazards models. A total of 3172 cases of CVD were reported during a mean follow-up period of 5.7 (±0.49) years. An age- and sex-controlled base analysis found that sleep onset time of 10:00 p.m.-10:59 p.m. was associated with the lowest CVD incidence. An additional model, controlling for sleep duration, sleep irregularity, and established CVD risk factors, did not attenuate this association, producing hazard ratios of 1.24 (95% confidence interval, 1.10-1.39; P < 0.005), 1.12 (1.01-1.25; P = 0.04), and 1.25 (1.02-1.52; P = 0.03) for sleep onset <10:00 p.m., 11:00 p.m.-11:59 p.m., and ≥12:00 a.m., respectively, compared to 10:00 p.m.-10:59 p.m. Importantly, sensitivity analyses revealed this association with increased CVD risk was stronger in females, with only sleep onset <10:00 p.m. significant for males. Conclusions Our findings suggest the possibility of a relationship between sleep onset timing and risk of developing CVD, particularly for women. We also demonstrate the potential utility of collecting information about sleep parameters via accelerometry-capable wearable devices, which may serve as novel cardiovascular risk indicators.
Collapse
Affiliation(s)
- Shahram Nikbakhtian
- Huma Therapeutics, 13-14th Floor, Millbank Tower, 21-24 Millbank, London SW1P 4QP, UK
| | - Angus B Reed
- Huma Therapeutics, 13-14th Floor, Millbank Tower, 21-24 Millbank, London SW1P 4QP, UK
| | - Bernard Dillon Obika
- Huma Therapeutics, 13-14th Floor, Millbank Tower, 21-24 Millbank, London SW1P 4QP, UK,Barking, Haveridge and Redbridge University Hospitals NHS Trust, London, UK
| | - Davide Morelli
- Huma Therapeutics, 13-14th Floor, Millbank Tower, 21-24 Millbank, London SW1P 4QP, UK,Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Adam C Cunningham
- Huma Therapeutics, 13-14th Floor, Millbank Tower, 21-24 Millbank, London SW1P 4QP, UK
| | - Mert Aral
- Huma Therapeutics, 13-14th Floor, Millbank Tower, 21-24 Millbank, London SW1P 4QP, UK
| | - David Plans
- Huma Therapeutics, 13-14th Floor, Millbank Tower, 21-24 Millbank, London SW1P 4QP, UK,Department of Science, Innovation, Technology and Entrepreneurship, University of Exeter, Rennes Drive, Exeter EX4 4PU, UK,Department of Experimental Psychology, University of Oxford, Anna Watts Building, Woodstock Rd, Oxford OX2 6GG, UK,Corresponding author. Tel: +44 7527 016574,
| |
Collapse
|
32
|
Casey T, Suarez-Trujillo AM, McCabe C, Beckett L, Klopp R, Brito L, Rocha Malacco VM, Hilger S, Donkin SS, Boerman J, Plaut K. Transcriptome analysis reveals disruption of circadian rhythms in late gestation dairy cows may increase risk for fatty liver and reduced mammary remodeling. Physiol Genomics 2021; 53:441-455. [PMID: 34643103 DOI: 10.1152/physiolgenomics.00028.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Circadian disruption increased insulin resistance and decreased mammary development in late gestation, nonlactating (dry) cows. The objective was to measure the effect of circadian disruption on transcriptomes of the liver and mammary gland. At 35 days before expected calving (BEC), multiparous dry cows were assigned to either control (CON) or phase-shifted treatments (PS). CON was exposed to 16-h light and 8-h dark. PS was exposed to 16-h light to 8-h dark, but phase of the light-dark cycle was shifted 6 h every 3 days. On day 21 BEC, liver and mammary were biopsied. RNA was isolated (n = 6 CON, n = 6 PS per tissue), and libraries were prepared and sequenced using paired-end reads. Reads mapping to bovine genome averaged 27 ± 2 million and aligned to 14,222 protein-coding genes in liver and 15,480 in mammary analysis. In the liver, 834 genes, and in the mammary gland, 862 genes were different (nominal P < 0.05) between PS and CON. In the liver, genes upregulated in PS functioned in cholesterol biosynthesis, endoplasmic reticulum stress, wound healing, and inflammation. Genes downregulated in liver function in cholesterol efflux. In the mammary gland, genes upregulated functioned in mRNA processing and transcription and downregulated genes encoded extracellular matrix proteins and proteases, cathepsins and lysosomal proteases, lipid transporters, and regulated oxidative phosphorylation. Increased cholesterol synthesis and decreased efflux suggest that circadian disruption potentially increases the risk of fatty liver in cows. Decreased remodeling and lipid transport in mammary may decrease milk production capacity during lactation.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Conor McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Linda Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Rebecca Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Luiz Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Susan Hilger
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
33
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
34
|
Yu F, Wang Z, Zhang T, Chen X, Xu H, Wang F, Guo L, Chen M, Liu K, Wu B. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat Commun 2021; 12:5323. [PMID: 34493722 PMCID: PMC8423749 DOI: 10.1038/s41467-021-25674-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
The role of intestine clock in energy homeostasis remains elusive. Here we show that mice with Bmal1 specifically deleted in the intestine (Bmal1iKO mice) have a normal phenotype on a chow diet. However, on a high-fat diet (HFD), Bmal1iKO mice are protected against development of obesity and related abnormalities such as hyperlipidemia and fatty livers. These metabolic phenotypes are attributed to impaired lipid resynthesis in the intestine and reduced fat secretion. Consistently, wild-type mice fed a HFD during nighttime (with a lower BMAL1 expression) show alleviated obesity compared to mice fed ad libitum. Mechanistic studies uncover that BMAL1 transactivates the Dgat2 gene (encoding the triacylglycerol synthesis enzyme DGAT2) via direct binding to an E-box in the promoter, thereby promoting dietary fat absorption. Supporting these findings, intestinal deficiency of Rev-erbα, a known BMAL1 repressor, enhances dietary fat absorption and exacerbates HFD-induced obesity and comorbidities. Moreover, small-molecule targeting of REV-ERBα/BMAL1 by SR9009 ameliorates HFD-induced obesity in mice. Altogether, intestine clock functions as an accelerator in dietary fat absorption and targeting intestinal BMAL1 may be a promising approach for management of metabolic diseases induced by excess fat intake.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- Animals
- Circadian Rhythm/genetics
- Diacylglycerol O-Acyltransferase/genetics
- Diacylglycerol O-Acyltransferase/metabolism
- Diet, High-Fat/adverse effects
- Dietary Fats/administration & dosage
- Dietary Fats/metabolism
- Fatty Liver/etiology
- Fatty Liver/genetics
- Fatty Liver/metabolism
- Fatty Liver/prevention & control
- Gene Expression Regulation
- Homeostasis/drug effects
- Homeostasis/genetics
- Hyperlipidemias/etiology
- Hyperlipidemias/genetics
- Hyperlipidemias/metabolism
- Hyperlipidemias/prevention & control
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Obesity/prevention & control
- Promoter Regions, Genetic
- Protein Binding
- Pyrrolidines/pharmacology
- Signal Transduction
- Thiophenes/pharmacology
- Triglycerides/biosynthesis
Collapse
Affiliation(s)
- Fangjun Yu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xun Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiman Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Fei Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
35
|
Xu L, Liu Y, Cheng Q, Shen Y, Yuan Y, Jiang X, Li X, Guo D, Jiang J, Lin C. Bmal1 Downregulation Worsens Critical Limb Ischemia by Promoting Inflammation and Impairing Angiogenesis. Front Cardiovasc Med 2021; 8:712903. [PMID: 34447794 PMCID: PMC8384109 DOI: 10.3389/fcvm.2021.712903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Critical limb ischemia (CLI) is the most advanced clinical stage of peripheral vascular disease with high mobility and mortality. CLI patients suffer from lower extremity rest pain, ulceration, and gangrene caused by insufficient blood and oxygen supply. Seeking for effective biomarkers and therapeutic targets is of great significance for improving the life quality of CLI patients. The circadian clock has been reported to be involved in the progression of kinds of cardiovascular diseases. Whether and how circadian genes play a role in CLI remains unknown. In this study, by collecting femoral artery and muscle specimens of CLI patients who underwent amputation, we confirmed that the circadian gene Bmal1 is downregulated in the CLI femoral artery and ischemic distal lower limb muscle. Furthermore, we verified that Bmal1 affects CLI by regulating lipid metabolism, inflammation, and angiogenesis. A hindlimb ischemia model performed in wild-type and Bmal1−/− mice confirmed that Bmal1 disruption would lead to impaired angiogenesis. In vitro experiments indicated that the decreased expression of Bmal1 would increase ox-LDL uptake and impair endothelial cell functions, including proliferation, migration, and tube formation. As for mechanisms, Bmal1 represses inflammation by inhibiting lipid uptake and by activating IL-10 transcription and promotes angiogenesis by transcriptionally regulating VEGF expression. In conclusion, we provide evidence that the circadian gene Bmal1 plays an important role in CLI by inhibiting inflammation and promoting angiogenesis. Thus, Bmal1 may be an effective biomarker and a potential therapeutic target in CLI.
Collapse
Affiliation(s)
- Lirong Xu
- Department of Pathology, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Physiology and Pathophysiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yutong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qianyun Cheng
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yang Shen
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaolang Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Jiang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changpo Lin
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Qin YS, Li H, Wang SZ, Wang ZB, Tang CK. Microtubule affinity regulating kinase 4: A promising target in the pathogenesis of atherosclerosis. J Cell Physiol 2021; 237:86-97. [PMID: 34289095 DOI: 10.1002/jcp.30530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Microtubule affinity regulating kinase 4 (MARK4), an important member of the serine/threonine kinase family, regulates the phosphorylation of microtubule-associated proteins and thus modulates microtubule dynamics. In human atherosclerotic lesions, the expression of MARK4 is significantly increased. Recently, accumulating evidence suggests that MARK4 exerts a proatherogenic effect via regulation of lipid metabolism (cholesterol, fatty acid, and triglyceride), inflammation, cell cycle progression and proliferation, insulin signaling, and glucose homeostasis, white adipocyte browning, and oxidative stress. In this review, we summarize the latest findings regarding the role of MARK4 in the pathogenesis of atherosclerosis to provide a rationale for future investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmacy; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province,Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, Medical Instrument and equipment technology laboratory of Hengyang medical college, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
37
|
Schober A, Blay RM, Saboor Maleki S, Zahedi F, Winklmaier AE, Kakar MY, Baatsch IM, Zhu M, Geißler C, Fusco AE, Eberlein A, Li N, Megens RTA, Banafsche R, Kumbrink J, Weber C, Nazari-Jahantigh M. MicroRNA-21 Controls Circadian Regulation of Apoptosis in Atherosclerotic Lesions. Circulation 2021; 144:1059-1073. [PMID: 34233454 DOI: 10.1161/circulationaha.120.051614] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The necrotic core partly formed by ineffective efferocytosis increases the risk of an atherosclerotic plaque rupture. microRNAs contribute to necrotic core formation by regulating efferocytosis and macrophage apoptosis. Atherosclerotic plaque rupture occurs at increased frequency in the early morning, indicating diurnal changes in plaque vulnerability. Although circadian rhythms play a role in atherosclerosis, the molecular clock output pathways that control plaque composition and rupture susceptibility are unclear. Methods: Circadian gene expression, necrotic core size, and apoptosis and efferocytosis in aortic lesions were investigated at different times of the day in Apoe-/-Mir21+/+ mice and Apoe-/- Mir21-/- mice after consumption of a high-fat diet for 12 weeks feeding. Genome-wide gene expression and lesion formation were analyzed in bone marrow (BM)-transplanted mice. Diurnal changes in apoptosis and clock gene expression were determined in human atherosclerotic lesions. Results: The expression of molecular clock genes, lesional apoptosis, and necrotic core size were diurnally regulated in Apoe-/- mice. Efferocytosis did not match the diurnal increase in apoptosis at the beginning of the active phase. However, in parallel with apoptosis, expression levels of oscillating Mir21 strands decreased in the mouse atherosclerotic aorta. Mir21 knockout abolished circadian regulation of apoptosis and reduced necrotic core size, but did not affect core clock gene expression. Further, Mir21 knockout upregulated expression of pro-apoptotic XIAP associated factor 1 (Xaf1) in the atherosclerotic aorta, which abolished circadian expression of Xaf1. The anti-apoptotic effect of Mir21 was mediated by non-canonical targeting of Xaf1 through both Mir21 strands. Mir21 knockout in BM cells also reduced atherosclerosis and necrotic core size. Circadian regulation of clock gene expression was confirmed in human atherosclerotic lesions. Apoptosis oscillated diurnally in phase with XAF1 expression, demonstrating an early morning peak anti-phase to that of the Mir21 strands. Conclusions: Our findings suggest that the molecular clock in atherosclerotic lesions induces a diurnal rhythm of apoptosis regulated by circadian Mir21 expression in macrophages that is not matched by efferocytosis, thus increasing the size of the necrotic core.
Collapse
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Richard M Blay
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Saffiyeh Saboor Maleki
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Farima Zahedi
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anja E Winklmaier
- Department of Vascular Surgery, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Mati Y Kakar
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Isabelle M Baatsch
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Mengyu Zhu
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Claudia Geißler
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anja E Fusco
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anna Eberlein
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Nan Li
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; Cardiovascular Research Institute Maastricht (CARIM), Department of Biomedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Ramin Banafsche
- Department of Vascular Surgery, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Jörg Kumbrink
- Institute for Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany; DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
38
|
Han Q, Bagi Z, Rudic RD. Review: Circadian clocks and rhythms in the vascular tree. Curr Opin Pharmacol 2021; 59:52-60. [PMID: 34111736 DOI: 10.1016/j.coph.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
The progression of vascular disease is influenced by many factors including aging, gender, diet, hypertension, and poor sleep. The intrinsic vascular circadian clock and the timing it imparts on the vasculature both conditions and is conditioned by all these variables. Circadian rhythms and their molecular components are rhythmically cycling in each endothelial cell, smooth muscle cell, in each artery, arteriole, vein, venule, and capillary. New research continues to tackle how circadian clocks act in the vasculature, describing influences in experimental and human disease, identifying potential target genes, compensatory molecules, that ultimately reveal a complexity that is vascular-bed-specific, cell-type-specific, and even single-cell-specific. Though we are yet to achieve a complete understanding, here we survey recent observations that are shedding more light on the nature of the interaction between circadian rhythms and the vascular system with implications for blood vessel disease.
Collapse
Affiliation(s)
- Qimei Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raducu Daniel Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
39
|
Abstract
Many molecular, physiological and behavioural processes display distinct 24-hour rhythms that are directed by the circadian system. The master clock, located in the suprachiasmatic nucleus region of the hypothalamus, is synchronized or entrained by the light-dark cycle and, in turn, synchronizes clocks present in peripheral tissues and organs. Other environmental cues, most importantly feeding time, also synchronize peripheral clocks. In this way, the circadian system can prepare the body for predictable environmental changes such as the availability of nutrients during the normal feeding period. This Review summarizes existing knowledge about the diurnal regulation of gastrointestinal processes by circadian clocks present in the digestive tract and its accessory organs. The circadian control of gastrointestinal digestion, motility, hormones and barrier function as well as of the gut microbiota are discussed. An overview is given of the interplay between different circadian clocks in the digestive system that regulate glucose homeostasis and lipid and bile acid metabolism. Additionally, the bidirectional interaction between the master clock and peripheral clocks in the digestive system, encompassing different entraining factors, is described. Finally, the possible behavioural adjustments or pharmacological strategies for the prevention and treatment of the adverse effects of chronodisruption are outlined.
Collapse
|
40
|
Pan X, Queiroz J, Hussain MM. Nonalcoholic fatty liver disease in CLOCK mutant mice. J Clin Invest 2021; 130:4282-4300. [PMID: 32396530 DOI: 10.1172/jci132765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a major health issue as obesity increases around the world. We studied the effect of a circadian locomotor output cycles kaput (CLOCK) mutant (ClkΔ19/Δ19) protein on hepatic lipid metabolism in C57BL/6 Clkwt/wt and apolipoprotein E-deficient (Apoe-/-) mice. Both ClkΔ19/Δ19 and ClkΔ19/Δ19 Apoe-/- mice developed a full spectrum of liver diseases (steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma) recognized in human NAFLD when challenged with a Western diet, lipopolysaccharide, or CoCl2. We identified induction of CD36 and hypoxia-inducible factor 1α (HIF1α) proteins as contributing factors for NAFLD. Mechanistic studies showed that WT CLOCK protein interacted with the E-box enhancer elements in the promoters of the proline hydroxylase domain (PHD) proteins to increase expression. In ClkΔ19/Δ19 mice, PHD levels were low, and HIF1α protein levels were increased. When its levels were high, HIF1α interacted with the Cd36 promoter to augment expression and enhance fatty acid uptake. Thus, these studies establish a regulatory link among circadian rhythms, hypoxia response, fatty acid uptake, and NAFLD. The mouse models described here may be useful for further mechanistic studies in the progression of liver diseases and in the discovery of drugs for the treatment of these disorders.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.,Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA
| | - Joyce Queiroz
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA.,Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, New York, USA.,VA New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
41
|
Soluble Receptors Affecting Stroke Outcomes: Potential Biomarkers and Therapeutic Tools. Int J Mol Sci 2021; 22:ijms22031108. [PMID: 33498620 PMCID: PMC7865279 DOI: 10.3390/ijms22031108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Soluble receptors are widely understood to be freestanding moieties formed via cleavage from their membrane-bound counterparts. They have unique structures, are found among various receptor families, and have intriguing mechanisms of generation and release. Soluble receptors’ ability to exhibit pleiotropic action by receptor modulation or by exhibiting a dual role in cytoprotection and neuroinflammation is concentration dependent and has continually mystified researchers. Here, we have compiled findings from preclinical and clinical studies to provide insights into the role of soluble/decoy receptors, focusing on the soluble cluster of differentiation 36, the soluble cluster of differentiation 163, and soluble lipoprotein-related protein 1 (sCD36, sCD163, and sLRP1, respectively) and the functions they could likely serve in the management of stroke, as they would notably regulate the bioavailability of the hemoglobin and heme after red blood cell lysis. The key roles that these soluble receptors play in inflammation, oxidative stress, and the related pharmacotherapeutic potential in improving stroke outcomes are described. The precise pleiotropic physiological functions of soluble receptors remain unclear, and further scientific investigation/validation is required to establish their respective role in diagnosis and therapy.
Collapse
|
42
|
Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int J Mol Sci 2021; 22:ijms22020676. [PMID: 33445491 PMCID: PMC7827891 DOI: 10.3390/ijms22020676] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.
Collapse
|
43
|
Lin Y, Tsai M, Hsieh I, Wen M, Wang C. Deficiency of circadian gene cryptochromes in bone marrow‐derived cells protects against atherosclerosis in
LDLR
−/−
mice. FASEB J 2021; 35:e21309. [DOI: 10.1096/fj.202001818rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Sheng Lin
- Healthcare Center Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Lung Tsai
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - I‐Chang Hsieh
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Shien Wen
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Chao‐Yung Wang
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Institute of Cellular and System Medicine National Health Research Institutes Zhunan Taiwan
- Department of Medical Science National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
44
|
Lu X, Zhong R, Hu L, Huang L, Chen L, Cheng W, Zheng B, Liang P. DHA-enriched phospholipids from large yellow croaker roe regulate lipid metabolic disorders and gut microbiota imbalance in SD rats with a high-fat diet. Food Funct 2021; 12:4825-4841. [PMID: 33949580 DOI: 10.1039/d1fo00747e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large yellow croaker roe phospholipids (LYCRPLs) have great nutritional value because they are rich in docosahexaenoic acid (DHA), which is an n-3 polyunsaturated fatty acid (n-3 PUFA). In previous research, we studied the effect of LYCRPLs on the inhibition of triglyceride accumulation at the cellular level. However, its lipid regulation effect in rats on a high-fat diet and its influence on the gut microbiota has not yet been clarified. In this study, a high-fat diet was used to induce the lipid metabolism disorder in SD rats, and simvastatin, low-dose, medium-dose and high-dose LYCRPLs were given by intragastric administration for 8 weeks. The rats' body weight, food intake, organ index, blood biochemical indicators, epididymal fat tissue and liver histopathology were compared and analyzed. High-throughput 16S rRNA gene sequencing technology and bioinformatics analysis technology were also used to analyze the diversity of gut microbiota in rats. We found that LYCRPLs can significantly regulate lipid metabolism, and improve the gut microbiota disorder induced in rats by a high-fat diet. These results can lay a foundation for the study of the regulation mechanism of LYCRPLs lipid metabolism, and also provide a theoretical basis for the development of LYCRPLs as functional food additives and excipients with hypolipidemic effects.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, P.R. China. and College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Ling Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Luyao Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, P.R. China. and College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China and Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, P.R. China. and College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, P.R. China
| |
Collapse
|
45
|
Xing C, Huang X, Zhang Y, Zhang C, Wang W, Wu L, Ding M, Zhang M, Song L. Sleep Disturbance Induces Increased Cholesterol Level by NR1D1 Mediated CYP7A1 Inhibition. Front Genet 2020; 11:610496. [PMID: 33424933 PMCID: PMC7793681 DOI: 10.3389/fgene.2020.610496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/03/2020] [Indexed: 01/02/2023] Open
Abstract
Disturbed sleep is closely associated with an increased risk of metabolic diseases. However, the underlying mechanisms of circadian clock genes linking sleep and lipid profile abnormalities have not been fully elucidated. This study aimed to explore the important role of the circadian clock in regulating impaired cholesterol metabolism at an early stage of sleep deprivation (SD). Sleep disturbance was conducted using an SD instrument. Our results showed that SD increased the serum cholesterol levels. Concentrations of serum leptin and resistin were much lower after SD, but other metabolic hormone concentrations (adiponectin, glucagon, insulin, thyroxine, norepinephrine, and epinephrine) were unchanged before and after SD. Warning signs of cardiovascular diseases [decreased high density lipoprotein (HDL)-cholesterol and increased corticosterone and 8-hydroxyguanosine levels] and hepatic cholestasis (elevated total bile acids and bilirubin levels) were observed after SD. Cholesterol accumulation was also observed in the liver after SD. The expression levels of HMGCR, the critical enzyme for cholesterol synthesis, remained unchanged in the liver. However, the expression levels of liver CYP7A1, the enzyme responsible for the conversion of cholesterol into bile acids, significantly reduced after SD. Furthermore, expression of NR1D1, a circadian oscillator and transcriptional regulator of CYP7A1, strikingly decreased after SD. Moreover, NR1D1 deficiency decreased liver CYP7A1 levels, and SD could exacerbate the reduction of CYP7A1 expression in NR1D1-/- mouse livers. Additionally, NR1D1 deficiency could further increase serum cholesterol levels under SD. These results suggest that sleep disturbance can induce increased serum cholesterol levels and liver cholesterol accumulation by NR1D1 mediated CYP7A1 inhibition.
Collapse
Affiliation(s)
- Chen Xing
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Xin Huang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Yifan Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Chongchong Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,School of Basic Medicine, Henan University, Kaifeng, China
| | - Wei Wang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Lin Wu
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Mengnan Ding
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Lun Song
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Tang H, Xue S, Zhao G, Fang C, Cai L, Shi Z, Fu W, Qian R, Zhang P, Tang X, Guo D. CLOCK disruption aggravates carotid artery stenosis through endoplasmic reticulum stress-induced endothelial-mesenchymal transition. Am J Transl Res 2020; 12:7885-7898. [PMID: 33437367 PMCID: PMC7791501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Carotid artery stenosis is a leading cause of ischemic stroke, but the underlying mechanism remains unclear. We aimed to determine the molecular mechanisms of carotid plaque progression. We analyzed the molecular and morphometric characteristics of carotid plaque samples obtained from 30 patients who underwent carotid endarterectomy. Additionally, we established a mouse model of carotid atherosclerosis by partially ligating the left common carotid arteries of male ClockΔ19/Δ19 (Clk) and wild-type (WT) C57BL/6J mice fed a high-fat diet. Clk and WT primary mouse aortic endothelial cells (pMAECs) were exposed to disturbed flow (DF) or undisturbed flow (UF) with or without treatment with the IRE-1α inhibitor STF-083010 or the PERK inhibitor GSK2606414. In human carotid artery plaques, CLOCK expression was lower in the lipid-rich necrotic core than in transitional regions, especially in the endothelium. Decreased CLOCK mRNA levels were associated with more extensive stenosis, intraplaque hemorrhage, and complex plaque in human carotid plaques. In mice, the ClockΔ19/Δ19 mutation significantly increased neointima formation and neovascularization but decreased collagen content and lumen area in partially ligated carotid arteries. In addition, ClockΔ19/Δ19 mutants exhibited significantly decreased Cdh5 expression and increased expression of endothelial-mesenchymal transition (EndMT) and endoplasmic reticulum (ER) stress markers in mice with partially ligated carotid arteries and pMAECs exposed to DF. Notably, inhibition of the IRE1α-XBP1 axis abrogated the increased EndMT caused by ClockΔ19/Δ19 mutation and DF in pMAECs. In conclusion, the disruption of CLOCK function aggravates EndMT via the IRE1α-XBP1 axis, contributing to carotid artery stenosis.
Collapse
Affiliation(s)
- Hanfei Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Song Xue
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Gefei Zhao
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing, Jiangsu, China
| | - Chao Fang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Liang Cai
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Weiguo Fu
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan UniversityShanghai, China
| | - Pengfei Zhang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjing, Jiangsu, China
| | - Xiao Tang
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Daqiao Guo
- Department of Vascular Surgery, Institute of Vascular Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
47
|
Schilperoort M, Rensen PCN, Kooijman S. Time for Novel Strategies to Mitigate Cardiometabolic Risk in Shift Workers. Trends Endocrinol Metab 2020; 31:952-964. [PMID: 33183967 DOI: 10.1016/j.tem.2020.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
Circadian disruption induced by shift work is robustly associated with obesity, diabetes, and cardiovascular disease in humans. Less well-known are the mechanisms underlying these associations, and the effectiveness of strategies to reduce cardiometabolic risk in the shift work population. In this review, the different ways in which shift work can deteriorate cardiometabolic health, and how to use this information to reflect on various risk-mitigating strategies, is discussed. While individual strategies appear promising in animal studies, the multifactorial disease risk in shift workers likely requires a multidisciplinary approach. Therefore, the need for individually-tailored combined lifestyle interventions, that could be essential in reducing cardiometabolic disorders in the large population of shift workers in our 24/7 society, is argued.
Collapse
Affiliation(s)
- Maaike Schilperoort
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Albinusdreef 2, 2333ZA Leiden, The Netherlands.
| |
Collapse
|
48
|
Does a high-fat diet affect the circadian clock, or is it the other way around? A systematic review. Nutr Res 2020; 84:1-13. [PMID: 33213889 DOI: 10.1016/j.nutres.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
This paper reviews studies that addressed the influence of diet on circadian rhythmicity in mice and, in turn, circadian clock chronodisruption and its role in the development of metabolic disorders. Studies from the past 14 years were selected via a systematic search conducted using the PubMed electronic database. After applying the inclusion and exclusion criteria, 291 studies were selected, of which 13 were chosen using the following inclusion criteria: use of a high-fat diet for mice, evaluation of clock gene expression, and the association between chronodisruption and lipid metabolism disorders. These studies reported changes in animals' biological clock when they developed metabolic disorders by consuming a high-fat diet. It was also evident that some clock gene mutations or deletions triggered metabolic changes. Disturbances of clock gene machinery may play important roles in lipid metabolism and the development of atherosclerotic processes. However, many metabolic processes also affect the function of clock genes and circadian systems. In summary, this review's results may provide new insights into the reciprocal regulation of energy homeostasis and the biological clock.
Collapse
|
49
|
Gao J, Xu Q, Wang M, Ouyang J, Tian W, Feng D, Liang Y, Jiang B, Loor JJ. Ruminal epithelial cell proliferation and short-chain fatty acid transporters in vitro are associated with abundance of period circadian regulator 2 (PER2). J Dairy Sci 2020; 103:12091-12103. [PMID: 33010914 DOI: 10.3168/jds.2020-18767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
The major circadian clock gene PER2 is closely related to cell proliferation and lipid metabolism in various nonruminant cell types. Objectives of the study were to evaluate circadian clock-related mRNA abundance in cultured goat ruminal epithelial cells (REC), and to determine effects of PER2 on cell proliferation and mRNA abundance of short-chain fatty acid (SCFA) transporters, genes associated with lipid metabolism, cell proliferation, and apoptosis. Ruminal epithelial cells were isolated from weaned Boer goats (n = 3; 2 mo old; ∼10 kg of body weight) by serial trypsin digestion and cultured at 37°C for 24 h. Abundance of CLOCK and PER2 proteins in cells was determined by immunofluorescence. The role of PER2 was assessed through the use of a knockout model with short interfering RNA, and sodium butyrate (15 mM) was used to assess the effect of upregulating PER2. Both CLOCK and PER2 were expressed in REC in vitro. Sodium butyrate stimulation increased mRNA and protein abundance of PER2 and PER3. Furthermore, PER2 gene silencing enhanced cell proliferation and reduced cellular apoptosis in isolated REC. In contrast, PER2 overexpression in response to sodium butyrate led to lower cellular proliferation and ratio of cells in the S phase along with greater ratio of cells in the G2/M phase. Those responses were accompanied by downregulated mRNA abundance of CCND1, CCNB1, CDK1, and CDK2. Among the SCFA transporters, PER2 silencing upregulated mRNA abundance of MCT1 and MCT4. However, it downregulated mRNA abundance of PPARA and PPARG. Overexpression of PER2 resulted in lower mRNA abundance of MCT1 and MCT4, and greater PPARA abundance. Overall, data suggest that CLOCK and PER2 might play a role in the control of cell proliferation, SCFA, and lipid metabolism. Further studies should be conducted to evaluate potential mechanistic relationships between circadian clock and SCFA absorption in vivo.
Collapse
Affiliation(s)
- Jian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Qiaoyun Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Jialiang Ouyang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Wen Tian
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Dan Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Yusheng Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Beibei Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P.R. China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
50
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|