1
|
Liu L, Henry J, Liu Y, Jouve C, Hulot JS, Georges A, Bouatia-Naji N. LRP1 Repression by SNAIL Results in ECM Remodeling in Genetic Risk for Vascular Diseases. Circ Res 2024; 135:1084-1097. [PMID: 39355906 PMCID: PMC11542979 DOI: 10.1161/circresaha.124.325269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Genome-wide association studies implicate common genetic variations in the LRP1 (low-density lipoprotein receptor-related protein 1 gene) locus at risk for multiple vascular diseases and traits. However, the underlying biological mechanisms are unknown. METHODS Fine mapping analyses included Bayesian colocalization to identify the most likely causal variant. Human induced pluripotent stem cells were genome-edited using CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated protein 9) to delete or modify candidate enhancer regions and generate LRP1 knockout cell lines. Cells were differentiated into smooth muscle cells through a mesodermal lineage. Transcription regulation was assessed using luciferase reporter assay, transcription factor knockdown, and chromatin immunoprecipitation. Phenotype changes in cells were conducted using cellular assays, bulk RNA sequencing, and mass spectrometry. RESULTS Multitrait colocalization analyses pointed at rs11172113 as the most likely causal variant in LRP1 for fibromuscular dysplasia, migraine, pulse pressure, and spontaneous coronary artery dissection. We found the rs11172113-T allele to associate with higher LRP1 expression. Genomic deletion in induced pluripotent stem cell-derived smooth muscle cells supported rs11172113 to locate in an enhancer region regulating LRP1 expression. We found transcription factors MECP2 (methyl CpG binding protein 2) and SNAIL (Zinc Finger Protein SNAI1) to repress LRP1 expression through an allele-specific mechanism, involving SNAIL interaction with disease risk allele. LRP1 knockout decreased induced pluripotent stem cell-derived smooth muscle cell proliferation and migration. Differentially expressed genes were enriched for collagen-containing extracellular matrix and connective tissue development. LRP1 knockout and deletion of rs11172113 enhancer showed potentiated canonical TGF-β (transforming growth factor beta) signaling through enhanced phosphorylation of SMAD2/3 (Mothers against decapentaplegic homolog 2/3). Analyses of the protein content of decellularized extracts indicated partial extracellular matrix remodeling involving enhanced secretion of CYR61 (cystein rich angiogenic protein 61), a known LRP1 ligand involved in vascular integrity and TIMP3 (Metalloproteinase inhibitor 3), implicated in extracellular matrix maintenance and also known to interact with LRP1. CONCLUSIONS Our findings support allele-specific LRP1 expression repression by the endothelial-to-mesenchymal transition regulator SNAIL. We propose decreased LRP1 expression in smooth muscle cells to remodel the extracellular matrix enhanced by TGF-β as a potential mechanism of this pleiotropic locus for vascular diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Yingwei Liu
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | | | | | | |
Collapse
|
2
|
Tuhy T, Coursen JC, Graves T, Patatanian M, Cherry C, Niedermeyer SE, Khan SL, Rosen DT, Croglio MP, Elnashar M, Kolb TM, Mathai SC, Damico RL, Hassoun PM, Shimoda LA, Suresh K, Aldred MA, Simpson CE. Single-cell transcriptomics reveal diverging pathobiology and opportunities for precision targeting in scleroderma-associated versus idiopathic pulmonary arterial hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620225. [PMID: 39484590 PMCID: PMC11527343 DOI: 10.1101/2024.10.25.620225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Introduction Pulmonary arterial hypertension (PAH) involves progressive cellular and molecular change within the pulmonary vasculature, leading to increased vascular resistance. Current therapies targeting nitric oxide (NO), endothelin, and prostacyclin pathways yield variable treatment responses. Patients with systemic sclerosis-associated PAH (SSc-PAH) often experience worse outcomes than those with idiopathic PAH (IPAH). Methods Lung tissue samples from four SSc-PAH, four IPAH, and four failed donor specimens were obtained from the Pulmonary Hypertension Breakthrough Initiative (PHBI) lung tissue bank. Single-cell RNA sequencing (scRNAseq) was performed using the 10X Genomics Chromium Flex platform. Data normalization, clustering, and differential expression analysis were conducted using Seurat. Additional analyses included gene set enrichment analysis (GSEA), transcription factor activity analysis, and ligand-receptor signaling. Pharmacotranscriptomic screening was performed using the Connectivity Map. Results SSc-PAH samples showed a higher proportion of fibroblasts and dendritic cells/macrophages compared to IPAH and donor samples. GSEA revealed enriched pathways related to epithelial-to-mesenchymal transition (EMT), apoptosis, and vascular remodeling in SSc-PAH samples. There was pronounced differential gene expression across diverse pulmonary vascular cell types and in various epithelial cell types in both IPAH and SSc-PAH, with epithelial to endothelial cell signaling observed. Macrophage to endothelial cell signaling was particularly pronounced in SSc-PAH. Pharmacotranscriptomic screening identified TIE2, GSK-3, and PKC inhibitors, among other compounds, as potential drug candidates for reversing SSc-PAH gene expression signatures. Discussion Overlapping and distinct gene expression patterns exist in SSc-PAH versus IPAH, with significant molecular differences suggesting unique pathogenic mechanisms in SSc-PAH. These findings highlight the potential for precision-targeted therapies to improve SSc-PAH patient outcomes. Future studies should validate these targets clinically and explore their therapeutic efficacy.
Collapse
|
3
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
4
|
Zhang Y, Dai D, Geng S, Rong C, Zou R, Leng X, Xiang J, Liu J, Ding J. PCSK9 expression in fibrous cap possesses a marker for rupture in advanced plaque. Vasc Med 2024; 29:483-495. [PMID: 38860436 DOI: 10.1177/1358863x241252370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
BACKGROUND To date, PCSK9 inhibitors are well known for eliminating cardiac and cerebral artery ischemia events by lowering the serum lipid level. However, the pathophysiological value of in-plaque PCSK9 expression is still unclear. METHODS Advanced plaques removed by carotid endarterectomy were sectioned and stained to identify the PCSK9 expression pattern and its co-expression with rupture-relevant markers. To investigate the correlation of PCSK9 expression with regional blood shear flow, hemodynamic characteristics were analyzed using computational fluid dynamics, and representative parameters were compared between PCSK9 positive and negative staining plaques. To explore this phenomenon in vitro, human aortic vascular smooth muscle cells were used to overexpress and knock down PCSK9. The impacts of PCSK9 modulations on mechanical sensor activity were testified by western blot and immunofluorescence. Real-time polymerase chain reaction was used to evaluate the transcription levels of downstream rupture-prone effectors. RESULTS PCSK9 distribution in plaque preferred cap and shoulder regions, residing predominantly in smooth muscle actin-positive cells. Cap PCSK9 expression correlated with fibrous cap thickness negatively and co-expressed with MMP-9, both pointing to the direction of plaque rupture. A hemodynamic profile indicated a rupture-prone feature of cap PCSK9 expression. In vitro, overexpression and knockdown of PCSK9 in human aortic vascular smooth muscle cells has positive modulation on mechanical sensor Yes-associated protein 1 (YAP) activity and transcription levels of its downstream rupture-prone effectors. Serial section staining verified in situ colocalization among PCSK9, YAP, and downstream effectors. CONCLUSIONS Cap PCSK9 possesses a biomarker for rupture risk, and its modulation may lead to a novel biomechanical angle for plaque interventions.
Collapse
MESH Headings
- Humans
- Plaque, Atherosclerotic
- Proprotein Convertase 9/genetics
- Proprotein Convertase 9/metabolism
- Rupture, Spontaneous
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/enzymology
- Fibrosis
- Cells, Cultured
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Male
- Endarterectomy, Carotid
- Carotid Arteries/pathology
- Carotid Arteries/surgery
- Carotid Arteries/enzymology
- Carotid Arteries/metabolism
- Aged
- Mechanotransduction, Cellular
- Female
- Regional Blood Flow
- Carotid Stenosis/pathology
- Carotid Stenosis/genetics
- Carotid Stenosis/surgery
- Carotid Stenosis/metabolism
- Carotid Stenosis/enzymology
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/pathology
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/surgery
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Neurology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Dongwei Dai
- Department of Neurovascular Center, Naval Medical University Changhai Hospital, Shanghai, China
- Department of Neurosurgery, Fudan University Huadong Hospital, Shanghai, China
| | | | | | - Rong Zou
- ArteryFlow Technology Co., Ltd, Hangzhou, China
| | | | | | - Jianmin Liu
- Department of Neurovascular Center, Naval Medical University Changhai Hospital, Shanghai, China
| | - Jing Ding
- Department of Neurology, Fudan University Zhongshan Hospital, Shanghai, China
| |
Collapse
|
5
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Fan L, Yao D, Fan Z, Zhang T, Shen Q, Tong F, Qian X, Xu L, Jiang C, Dong N. Beyond VICs: Shedding light on the overlooked VECs in calcific aortic valve disease. Biomed Pharmacother 2024; 178:117143. [PMID: 39024838 DOI: 10.1016/j.biopha.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Guo Y, Cheng X, Huang C, Gao J, Shen W. Frataxin Loss Promotes Angiotensin II-Induced Endothelial-to-Mesenchymal Transition. J Am Heart Assoc 2024; 13:e034316. [PMID: 39023059 DOI: 10.1161/jaha.124.034316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The metabolic flexibility of endothelial cells is linked to their phenotypic plasticity. Frataxin is critical in determining the iron metabolism and fate of endothelial cells. This study aimed to investigate frataxin-mediated metabolic remodeling during the endothelial-to-mesenchymal transition (EndoMT). METHODS AND RESULTS Endothelial cell-specific frataxin knockout and frataxin mutation mice were subjected to angiotensin II to induce hypertension. EndoMT and cardiac fibrosis were assessed using histological and protein expression analyses. Fatty acid oxidation (FAO) in microvascular endothelial cells was measured using a Seahorse XF96 analyzer. We showed that inhibition of FAO accompanies angiotensin II-induced EndoMT. Frataxin knockout mice promote EndoMT, associated with increased cardiac fibrosis following angiotensin II infusion. Angiotensin II reduces frataxin expression, which leads to mitochondrial iron overload and subsequent carbonylation of sirtuin 3. In turn, carbonylated sirtuin 3 contributes to the acetylated frataxin at lysine 189, making it more prone to degradation. The frataxin/sirtuin 3 feedback loop reduces hydroxyl-CoA dehydrogenase α subunit-mediated FAO. Additionally, silymarin is a scavenger of free radicals, restoring angiotensin II-induced reduction of FAO activity and sirtuin 3 and frataxin expression, improving EndoMT both in vitro and in vivo. Furthermore, frataxin mutation mice showed suppressed EndoMT and improved cardiac fibrosis. CONCLUSIONS The frataxin/sirtuin 3 feedback loop has the potential to attenuate angiotensin II-induced EndoMT by improving FAO.
Collapse
Affiliation(s)
- Yuetong Guo
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xingyi Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chenglin Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
8
|
Zhou Y, Tabib T, Huang M, Yuan K, Kim Y, Morse C, Sembrat J, Valenzi E, Lafyatis R. Molecular Changes Implicate Angiogenesis and Arterial Remodeling in Systemic Sclerosis-Associated and Idiopathic Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:e210-e225. [PMID: 38841857 PMCID: PMC11269037 DOI: 10.1161/atvbaha.123.320005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication of systemic sclerosis (SSc) and a leading cause of mortality among patients with this disease. PH can also occur as an idiopathic condition (idiopathic pulmonary arterial hypertension). Investigation of transcriptomic alterations in vascular populations is critical to elucidating cellular mechanisms underlying pathobiology of SSc-associated and idiopathic PH. METHODS We analyzed single-cell RNA sequencing profiles of endothelial and perivascular mesenchymal populations from explanted lung tissue of patients with SSc-associated PH (n=16), idiopathic pulmonary arterial hypertension (n=3), and healthy controls (n=15). Findings were validated by immunofluorescence staining of explanted human lung tissue. RESULTS Three disease-associated endothelial populations emerged. Two angiogenic endothelial cell (EC) subtypes markedly expanded in SSc-associated PH lungs: tip ECs expressing canonical tip markers PGF and APLN and phalanx ECs expressing genes associated with vascular development, endothelial barrier integrity, and Notch signaling. Gene regulatory network analysis suggested enrichment of Smad1 (SMAD family member 1) and PPAR-γ (peroxisome proliferator-activated receptor-γ) regulon activities in these 2 populations, respectively. Mapping of potential ligand-receptor interactions highlighted Notch, apelin-APJ (apelin receptor), and angiopoietin-Tie (tyrosine kinase with immunoglobulin-like and EGF-like domains 1) signaling pathways between angiogenic ECs and perivascular cells. Transitional cells, expressing both endothelial and pericyte/smooth muscle cell markers, provided evidence for the presence of endothelial-to-mesenchymal transition. Transcriptional programs associated with arterial endothelial dysfunction implicated VEGF-A (vascular endothelial growth factor-A), TGF-β1 (transforming growth factor beta-1), angiotensin, and TNFSF12 (tumor necrosis factor ligand superfamily member 12)/TWEAK (TNF-related weak inducer of apoptosis) in the injury/remodeling phenotype of PH arterial ECs. CONCLUSIONS These data provide high-resolution insights into the complexity and plasticity of the pulmonary endothelium in SSc-associated PH and idiopathic pulmonary arterial hypertension and provide direct molecular insights into soluble mediators and transcription factors driving PH vasculopathy.
Collapse
Affiliation(s)
- Yuechen Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
- School of Medicine, Tsinghua University; Beijing 100084, China
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Mengqi Huang
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Ribeuz HL, Willer ASM, Chevalier B, Sancho M, Masson B, Eyries M, Jung V, Guerrera IC, Dutheil M, Jekmek KE, Laubry L, Carpentier G, Perez-Vizcaino F, Tu L, Guignabert C, Chaumais MC, Péchoux C, Humbert M, Hinzpeter A, Mercier O, Capuano V, Montani D, Antigny F. Role of KCNK3 Dysfunction in Dasatinib-associated Pulmonary Arterial Hypertension and Endothelial Cell Dysfunction. Am J Respir Cell Mol Biol 2024; 71:95-109. [PMID: 38546978 DOI: 10.1165/rcmb.2023-0185oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/27/2024] [Indexed: 07/02/2024] Open
Abstract
Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.
Collapse
Affiliation(s)
- Hélène Le Ribeuz
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Anaïs Saint-Martin Willer
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Benoit Chevalier
- Paris Cité University, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, France
| | - Maria Sancho
- Department of Physiology and
- Department of Pharmacology, University of Vermont, Burlington, Vermont
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bastien Masson
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Mélanie Eyries
- Genetics Department, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vincent Jung
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, Université Paris Cité-Federative Research Structure Necker, Paris, France
| | - Ida Chiara Guerrera
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, Université Paris Cité-Federative Research Structure Necker, Paris, France
| | - Mary Dutheil
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Kristelle El Jekmek
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Loann Laubry
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Gilles Carpentier
- Gly-CRRET Research Unit 4397, Paris-Est Créteil University, Créteil, France
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ly Tu
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Christophe Guignabert
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Marie-Camille Chaumais
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Paris-Saclay University, Faculty of Pharmacy, Orsay, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Christine Péchoux
- Paris-Saclay University, INRAE, AgroparisTech, GABI, Jouy-en-Josas, France
| | - Marc Humbert
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Alexandre Hinzpeter
- Paris Cité University, CNRS, INSERM, Institut Necker Enfants Malades-INEM, Paris, France
| | - Olaf Mercier
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Groupe Hospitalier Paris Saint-Joseph-Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - Véronique Capuano
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| | - David Montani
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Paris-Saclay University, Faculty of Medecine, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Le Plessis-Robinson, France
| |
Collapse
|
10
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
11
|
Xu J, Li X, Lu Q, Li X, Shan H. HMGA1 regulates the mitochondrial apoptosis pathway in sepsis-induced cardiomyopathy. Cell Biochem Biophys 2024; 82:849-858. [PMID: 38430408 PMCID: PMC11344717 DOI: 10.1007/s12013-024-01236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
High mobility group protein AT-hook 1 (HMGA1), an architectural transcription factor, has previously been reportedto play an essential role in architectural remodeling processes. However, its effects on cardiovascular diseases, particularly sepsis-induced cardiomyopathy, have remained unclear. The study aimed to investigate the role of HMGA1 in lipopolysaccharide-induced cardiomyopathy. Mice subjected to lipopolysaccharide for 12 h resulted in cardiac dysfunction. We used an adeno-associated virus 9 delivery system to achieve cardiac-specific expression of the HMGA1 gene in the mice. H9c2 cardiomyocytes were infected with Ad-HMGA1 to overexpress HMGA1 or transfected with si-HMGA1 to knock down HMGA1. Echocardiography was applied to measure cardiac function. RT-PCR was used to detect the transcriptional level of inflammatory cytokines. CD45 and CD68 immunohistochemical staining were used to detect inflammatory cell infiltration and TUNEL staining to evaluate the cardiomyocyte apoptosis, MitoSox was used to detect mitochondrial reactive oxygen species, JC-1 was used todetect Mitochondrial membrane potential. Our findings revealed that the overexpression of HMGA1 exacerbated myocardial inflammation and apoptosis in response to lipopolysaccharide treatment. Additionally, we also observed that H9c2 cardiomyocytes with HMGA1 overexpression exhibited enhanced inflammation and apoptosis upon stimulation with lipopolysaccharide for 12 h. Conversely, HMGA1 knockdown in H9c2 cardiomyocytes attenuated lipopolysaccharide-induced cardiomyocyte inflammation and apoptosis. Further investigations into the molecular mechanisms underlying these effects showed that HMGA1 promoted lipopolysaccharide-induced mitochondrial-dependent cardiomyocyte apoptosis. The study reveals that HMGA1 worsens myocardial inflammation and apoptosis in response to lipopolysaccharide treatment. Mechanically, HMGA1 exerts its effects by regulating the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Jing Xu
- The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Xinwei Li
- Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Qianqian Lu
- The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Xiaohua Li
- Medical School of Shihezi University, Xinjiang, China
| | - Hongying Shan
- The First Affiliated Hospital of Shihezi University, Xinjiang, China.
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
12
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
13
|
Xing Y, Hou Y, Fan T, Gao R, Feng X, Li B, Pang J, Guo W, Shu T, Li J, Yang J, Mao Q, Luo Y, Qi X, Yang P, Liang C, Zhao H, Chen W, Wang J, Wang C. Endothelial phosphodiesterase 4B inactivation ameliorates endothelial-to-mesenchymal transition and pulmonary hypertension. Acta Pharm Sin B 2024; 14:1726-1741. [PMID: 38572107 PMCID: PMC10985131 DOI: 10.1016/j.apsb.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary hypertension (PH) is a fatal disorder characterized by pulmonary vascular remodeling and obstruction. The phosphodiesterase 4 (PDE4) family hydrolyzes cyclic AMP (cAMP) and is comprised of four subtypes (PDE4A-D). Previous studies have shown the beneficial effects of pan-PDE4 inhibitors in rodent PH; however, this class of drugs is associated with side effects owing to the broad inhibition of all four PDE4 isozymes. Here, we demonstrate that PDE4B is the predominant PDE isozyme in lungs and that it was upregulated in rodent and human PH lung tissues. We also confirmed that PDE4B is mainly expressed in the lung endothelial cells (ECs). Evaluation of PH in Pde4b wild type and knockout mice confirmed that Pde4b is important for the vascular remodeling associated with PH. In vivo EC lineage tracing demonstrated that Pde4b induces PH development by driving endothelial-to-mesenchymal transition (EndMT), and mechanistic studies showed that Pde4b regulates EndMT by antagonizing the cAMP-dependent PKA-CREB-BMPRII axis. Finally, treating PH rats with a PDE4B-specific inhibitor validated that PDE4B inhibition has a significant pharmacological effect in the alleviation of PH. Collectively, our findings indicate a critical role for PDE4B in EndMT and PH, prompting further studies of PDE4B-specific inhibitors as a therapeutic strategy for PH.
Collapse
Affiliation(s)
- Yanjiang Xing
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Yangfeng Hou
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Tianfei Fan
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Ran Gao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaohang Feng
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Bolun Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Wenjun Guo
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ting Shu
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Jinqiu Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jie Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qilong Mao
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ya Luo
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xianmei Qi
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Chaoyang Liang
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China–Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Hongmei Zhao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| | - Wenhui Chen
- Department of Lung Transplantation, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China–Japan Friendship Hospital, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300051, China
| | - Chen Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
14
|
Miao H, Hui H, Fan W, Lin Y, Li H, Li D, Luo M, Qiu F, Jiang B, Zhang Y. Overexpressed pigment epithelium-derived factor alleviates pulmonary hypertension in two rat models induced by monocrotaline and SU5416/hypoxia. Biomed Pharmacother 2024; 172:116303. [PMID: 38377738 DOI: 10.1016/j.biopha.2024.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive and fatal cardiopulmonary disease characterized by vascular remodeling and is associated with endothelial-to-mesenchymal transition (EndoMT). The pigment epithelium-derived factor (PEDF), a secretory protein widely distributed in multiple organs, has been shown to demonstrate anti-EndoMT activity in cardiovascular diseases. In the present study, the role of PEDF in PH was investigated. METHODS For PEDF overexpression, Sprague Dawley rats were infected with an adeno-associated virus through injection via the internal jugular vein. To establish PH models, the animals were subjected to monocrotaline or Sugen/hypoxia. Four weeks later, pulmonary artery angiography was performed, and hemodynamic parameters, right ventricular function, and vascular remodeling were evaluated. EndoMT and cell proliferation in the pulmonary arteries were assessed via immunofluorescence staining. Moreover, pulmonary artery endothelial cells (PAECs) isolated from experimental PH rats were cultured to investigate the underlying molecular mechanisms involved. RESULTS PEDF expression was significantly downregulated in PAECs from PH patients and PH model rats. Overexpressed PEDF alleviated the development of PH by improving pulmonary artery morphology and perfusion, reducing pulmonary artery pressure, improving right ventricular function, and alleviating vascular remodeling. PEDF inhibits EndoMT and reduces excessive PAEC proliferation. Moreover, PEDF overexpression reduced EndoMT in cultured PAECs by competitively inhibiting the binding of wnt to LRP6 and downregulating phosphorylation at the 1490 site of LRP6. CONCLUSIONS Our findings suggest that PEDF may be a potential therapeutic target for PH. We also found that PEDF can inhibit EndoMT in PAECs and may exert these effects by inhibiting the Wnt/LRP6/β-catenin pathway.
Collapse
Affiliation(s)
- Haoran Miao
- Department of Thoracic Cardiovascular Surgery, China
| | - Hongliang Hui
- Department of Thoracic Cardiovascular Surgery, China
| | - Wenbin Fan
- Department of Thoracic Cardiovascular Surgery, China
| | - Yangui Lin
- Department of Thoracic Cardiovascular Surgery, China
| | - Huaming Li
- Department of Thoracic Cardiovascular Surgery, China
| | - Dan Li
- Community Health Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Luo
- Department of Thoracic Cardiovascular Surgery, China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, China.
| | - Bo Jiang
- Department of Thoracic Cardiovascular Surgery, China.
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, China.
| |
Collapse
|
15
|
Piper B, Bogamuwa S, Hossain T, Farkas D, Rosas L, Green AC, Newcomb G, Sun N, Ovando-Ricardez JA, Horowitz JC, Bhagwani AR, Yang H, Kudryashova TV, Rojas M, Mora AL, Yan P, Mallampalli RK, Goncharova EA, Eckmann DM, Farkas L. RAB7 deficiency impairs pulmonary artery endothelial function and promotes pulmonary hypertension. J Clin Invest 2024; 134:e169441. [PMID: 38015641 PMCID: PMC10836802 DOI: 10.1172/jci169441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in the development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health, and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from patients with PAH. Endothelial haploinsufficiency of RAB7 caused spontaneous pulmonary hypertension (PH) in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA-Seq, and RAB7-silenced ECs showed impaired angiogenesis and expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, suggesting inhibition of autophagy at the predegradation level. Furthermore, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in rats with chronic hypoxia/SU5416. In conclusion, we demonstrate for the first time to our knowledge the fundamental impairment of EC function by loss of RAB7, causing PH, and show RAB7 activation to be a potential therapeutic strategy in a preclinical model of PH.
Collapse
Affiliation(s)
- Bryce Piper
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Srimathi Bogamuwa
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | | | - Daniela Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | | | - Geoffrey Newcomb
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Nuo Sun
- Davis Heart and Lung Research Institute
- Department of Cell Biology and Physiology, The Ohio State University (OSU), Columbus, Ohio, USA
| | - Jose A. Ovando-Ricardez
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Jeffrey C. Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Aneel R. Bhagwani
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
- Department of Physiology, Ziauddin University, Karachi, Pakistan
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Tatiana V. Kudryashova
- University of Pittsburgh, Heart, Blood, and Vascular Medicine Institute, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Ana L. Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Pearlly Yan
- Division of Hematology, Department of Internal Medicine and The James Cancer Center, OSU, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, California, USA
| | - David M. Eckmann
- Department of Anesthesiology, and
- Center for Medical and Engineering Innovation, OSU, Columbus, Ohio, USA
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine
- Davis Heart and Lung Research Institute
| |
Collapse
|
16
|
Ferrian S, Cao A, McCaffrey EF, Saito T, Greenwald NF, Nicolls MR, Bruce T, Zamanian RT, Del Rosario P, Rabinovitch M, Angelo M. Single-Cell Imaging Maps Inflammatory Cell Subsets to Pulmonary Arterial Hypertension Vasculopathy. Am J Respir Crit Care Med 2024; 209:206-218. [PMID: 37934691 PMCID: PMC10806425 DOI: 10.1164/rccm.202209-1761oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/07/2023] [Indexed: 11/09/2023] Open
Abstract
Rationale: Unraveling immune-driven vascular pathology in pulmonary arterial hypertension (PAH) requires a comprehensive understanding of the immune cell landscape. Although patients with hereditary (H)PAH and bone morphogenetic protein receptor type 2 (BMPR2) mutations have more severe pulmonary vascular pathology, it is not known whether this is related to specific immune cell subsets. Objectives: This study aims to elucidate immune-driven vascular pathology by identifying immune cell subtypes linked to severity of pulmonary arterial lesions in PAH. Methods: We used cutting-edge multiplexed ion beam imaging by time of flight to compare pulmonary arteries (PAs) and adjacent tissue in PAH lungs (idiopathic [I]PAH and HPAH) with unused donor lungs, as controls. Measurements and Main Results: We quantified immune cells' proximity and abundance, focusing on those features linked to vascular pathology, and evaluated their impact on pulmonary arterial smooth muscle cells (SMCs) and endothelial cells. Distinct immune infiltration patterns emerged between PAH subtypes, with intramural involvement independently linked to PA occlusive changes. Notably, we identified monocyte-derived dendritic cells within PA subendothelial and adventitial regions, influencing vascular remodeling by promoting SMC proliferation and suppressing endothelial gene expression across PAH subtypes. In patients with HPAH, pronounced immune dysregulation encircled PA walls, characterized by heightened perivascular inflammation involving T cell immunoglobulin and mucin domain-3 (TIM-3)+ T cells. This correlated with an expanded DC subset expressing indoleamine 2,3-dioxygenase 1, TIM-3, and SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1, alongside increased neutrophils, SMCs, and alpha-smooth muscle actin (ACTA2)+ endothelial cells, reinforcing the heightened severity of pulmonary vascular lesions. Conclusions: This study presents the first architectural map of PAH lungs, connecting immune subsets not only with specific PA lesions but also with heightened severity in HPAH compared with IPAH. Our findings emphasize the therapeutic potential of targeting monocyte-derived dendritic cells, neutrophils, cellular interactions, and immune responses to alleviate severe vascular pathology in IPAH and HPAH.
Collapse
Affiliation(s)
- Selena Ferrian
- Department of Pathology
- Early Clinical Development Informatics, Genentech Inc., South San Francisco, California
| | - Aiqin Cao
- Department of Pediatrics
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children’s Heart Center, Stanford, California
| | | | | | | | - Mark R. Nicolls
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California
| | | | - Roham T. Zamanian
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California
| | - Patricia Del Rosario
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Vera Moulton Wall Center for Pulmonary Vascular Disease
| | - Marlene Rabinovitch
- Department of Pediatrics
- Vera Moulton Wall Center for Pulmonary Vascular Disease
- Cardiovascular Institute, and
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children’s Heart Center, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California
| | | |
Collapse
|
17
|
Lee D, Lee H, Jo HN, Yun E, Kwon BS, Kim J, Lee A. Endothelial periostin regulates vascular remodeling by promoting endothelial dysfunction in pulmonary arterial hypertension. Anim Cells Syst (Seoul) 2024; 28:1-14. [PMID: 38186856 PMCID: PMC10769143 DOI: 10.1080/19768354.2023.2300437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling associated with extracellular matrix (ECM) deposition, vascular cell hyperproliferation, and neointima formation in the small pulmonary artery. Endothelial dysfunction is considered a key feature in the initiation of vascular remodeling. Although vasodilators have been used for the treatment of PAH, it remains a life-threatening disease. Therefore, it is necessary to identify novel therapeutic targets for PAH treatment. Periostin (POSTN) is a secretory ECM protein involved in physiological and pathological processes, such as tissue remodeling, cell adhesion, migration, and proliferation. Although POSTN has been proposed as a potential target for PAH treatment, its role in endothelial cells has not been fully elucidated. Here, we demonstrated that POSTN upregulation correlates with PAH by analyzing a public microarray conducted on the lung tissues of patients with PAH and biological experimental results from in vivo and in vitro models. Moreover, POSTN overexpression leads to ECM deposition and endothelial abnormalities such as migration. We found that PAH-associated endothelial dysfunction is mediated at least in part by the interaction between POSTN and integrin-linked protein kinase (ILK), followed by activation of nuclear factor-κB signaling. Silencing POSTN or ILK decreases PAH-related stimuli-induced ECM accumulation and attenuates endothelial abnormalities. In conclusion, our study suggests that POSTN serves as a critical regulator of PAH by regulating vascular remodeling, and targeting its role as a potential therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Dawn Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Heeyoung Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Ha-neul Jo
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Eunsik Yun
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Byung Su Kwon
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Aram Lee
- Division of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
- Research Institute for Women’s Health, Sookmyung Women’s University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Newcomb G, Farkas L. Endothelial cell clonality, heterogeneity and dysfunction in pulmonary arterial hypertension. Front Med (Lausanne) 2023; 10:1304766. [PMID: 38126077 PMCID: PMC10731016 DOI: 10.3389/fmed.2023.1304766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Our understanding of the pathophysiology of pulmonary arterial hypertension (PAH) has evolved over recent years, with the recognition that endothelial cell (EC) dysfunction and inflammation play an integral role in the development of this disease. ECs within the pulmonary vasculature play a unique role in maintaining vascular integrity and barrier function, regulating gas exchange, and contributing to vascular tone. Using single-cell transcriptomics, research has shown that there are multiple, unique EC subpopulations with different phenotypes. In response to injury or certain stressors such as hypoxia, there can be a dysregulated response with aberrant endothelial injury repair involving other pulmonary vascular cells and even immune cells. This aberrant signaling cascade is potentially a primary driver of pulmonary arterial remodeling in PAH. Recent studies have examined the role of EC clonal expansion, immune dysregulation, and genetic mutations in the pathogenesis of PAH. This review summarizes the existing literature on EC subpopulations and the intricate mechanisms through which ECs develop aberrant physiologic phenotypes and contribute to PAH. Our goal is to provide a framework for understanding the unique pulmonary EC biology and pathophysiology that is involved in the development of PAH.
Collapse
Affiliation(s)
- Geoffrey Newcomb
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Laszlo Farkas
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Isobe S, Nair RV, Kang HY, Wang L, Moonen JR, Shinohara T, Cao A, Taylor S, Otsuki S, Marciano DP, Harper RL, Adil MS, Zhang C, Lago-Docampo M, Körbelin J, Engreitz JM, Snyder MP, Rabinovitch M. Reduced FOXF1 links unrepaired DNA damage to pulmonary arterial hypertension. Nat Commun 2023; 14:7578. [PMID: 37989727 PMCID: PMC10663616 DOI: 10.1038/s41467-023-43039-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.
Collapse
Affiliation(s)
- Sarasa Isobe
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Helen Y Kang
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lingli Wang
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan-Renier Moonen
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsutomu Shinohara
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aiqin Cao
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shoichiro Otsuki
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Marciano
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca L Harper
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mir S Adil
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chongyang Zhang
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauro Lago-Docampo
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jesse M Engreitz
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Marlene Rabinovitch
- Basic Science and Engineering (BASE) Initiative at the Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pediatrics - Cardiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Wang J, Zhang X, Wang X, Li F, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Zhao L, Xu D, Cheng J, Li W, Zhou B, Lin C, Wang W. Polymorphism and expression of the HMGA1 gene and association with tail fat deposition in Hu sheep. Anim Biotechnol 2023; 34:1626-1634. [PMID: 34775926 DOI: 10.1080/10495398.2021.1998093] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hu sheep is an excellent short fat-tailed breed in China. Fat deposition in Hu sheep tail affects carcass quality and consumes a lot of energy, leading to an increase in feed cost. The objective of this study was to analyze the effects of HMGA1 polymorphism on tail fat weight in Hu sheep. Partial coding and non-coding sequences of HMGA1 were amplified with PCR and single nucleotide polymorphisms (SNP) of HMGA1 in 1163 Hu sheep were detected using DNA sequencing and KASPar technology. RT-qPCR analysis was performed to test HMGA1 expression in different tissues. The results showed that the expression of HMGA1 was higher in the duodenum, liver, spleen, kidney, and lung than in the heart, muscle, rumen, tail fat, and lymph. A mutation, g.5312 C > T, was detected in HMGA1; g.5312 C > T was significantly associated with tail fat weight, relative weight of tail fat (body weight), and relative weight of tail fat (carcass) (p < 0.05). The tail fat weight of the TT genotype was remarkably higher than that of the CC and TC genotypes. Therefore, HMGA1 can be used as a genetic marker for marker-assisted selection of tail fat weight in Hu sheep.
Collapse
Affiliation(s)
- Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Deyin Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qizhi Song
- Linze County Animal Disease Prevention and Control Center of Gansu Province, Linze, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Marinho Y, Villarreal ES, Aboagye SY, Williams DL, Sun J, Silva CLM, Lutz SE, Oliveira SD. Schistosomiasis-associated pulmonary hypertension unveils disrupted murine gut-lung microbiome and reduced endoprotective Caveolin-1/BMPR2 expression. Front Immunol 2023; 14:1254762. [PMID: 37908354 PMCID: PMC10613683 DOI: 10.3389/fimmu.2023.1254762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Schistosomiasis-associated Pulmonary Arterial Hypertension (Sch-PAH) is a life-threatening complication of chronic S. mansoni infection that can lead to heart failure and death. During PAH, the expansion of apoptosis-resistant endothelial cells (ECs) has been extensively reported; however, therapeutic approaches to prevent the progression or reversal of this pathological phenotype remain clinically challenging. Previously, we showed that depletion of the anti-apoptotic protein Caveolin-1 (Cav-1) by shedding extracellular vesicles contributes to shifting endoprotective bone morphogenetic protein receptor 2 (BMPR2) towards transforming growth factor beta (TGF-β)-mediated survival of an abnormal EC phenotype. However, the mechanism underlying the reduced endoprotection in PAH remains unclear. Interestingly, recent findings indicate that, similar to the gut, healthy human lungs are populated by diverse microbiota, and their composition depends significantly on intrinsic and extrinsic host factors, including infection. Despite the current knowledge that the disruption of the gut microbiome contributes to the development of PAH, the role of the lung microbiome remains unclear. Thus, using a preclinical animal model of Sch-PAH, we tested whether S. mansoni infection alters the gut-lung microbiome composition and causes EC injury, initiating the expansion of an abnormal EC phenotype observed in PAH. Indeed, in vivo stimulation with S. mansoni eggs significantly altered the gut-lung microbiome profile, in addition to promoting injury to the lung vasculature, characterized by increased apoptotic markers and loss of endoprotective expression of lung Cav-1 and BMPR2. Moreover, S. mansoni egg stimulus induced severe pulmonary vascular remodeling, leading to elevated right ventricular systolic pressure and hypertrophy, characteristic of PAH. In vitro, exposure to the immunodominant S. mansoni egg antigen p40 activated TLR4/CD14-mediated transient phosphorylation of Cav-1 at Tyr14 in human lung microvascular EC (HMVEC-L), culminating in a mild reduction of Cav-1 expression, but failed to promote death and shedding of extracellular vesicles observed in vivo. Altogether, these data suggest that disruption of the host-associated gut-lung microbiota may be essential for the emergence and expansion of the abnormal lung endothelial phenotype observed in PAH, in addition to S. mansoni eggs and antigens.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Elizabeth S. Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Sammy Y. Aboagye
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Claudia L. M. Silva
- Molecular and Biochemical Pharmacology Lab, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sarah E. Lutz
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Suellen D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Vascular Immunobiology Lab, Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Wang EL, Zhang JJ, Luo FM, Fu MY, Li D, Peng J, Liu B. Cerebellin-2 promotes endothelial-mesenchymal transition in hypoxic pulmonary hypertension rats by activating NF-κB/HIF-1α/Twist1 pathway. Life Sci 2023; 328:121879. [PMID: 37355224 DOI: 10.1016/j.lfs.2023.121879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
AIMS Endothelial-mesenchymal transition (EndMT) is one of the critical factors leading to vascular remodeling in pulmonary hypertension (PH). Recent studies found that the expression of Cerebellin-2 (CBLN2) is significantly increased in the lung tissue of patients with PH, suggesting that CBLN2 may be closely related to the development of PH. This study aims to investigate the role and potential mechanism of CBLN2 in the hypoxia-induced EndMT of PH rats. MATERIAL AND METHODS Hypoxia-induced PH rat model or EndMT cell model was constructed to investigate the role of CBLN2 in the process of endothelial mesenchymal transition during PH. The effects of CBLN2 siRNA, KC7F2 (HIF-1α inhibitor), and PDTC (NF-κB inhibitor) on hypoxia-induced EndMT were observed to evaluate the potential mechanism of CBLN2 in promoting EndMT. KEY FINDINGS The right ventricular systolic pressure and pulmonary vascular remodeling index in hypoxia-treated rats were significantly increased. The transformation of endothelial cells (marked by CD31) to mesenchymal cells (marked by α-SMA) can be observed in the pulmonary vessels of PH rats, and the expression of CBLN2 in the intima was also significantly up-regulated. In the hypoxia-induced HPAECs, endothelial cell markers such as VE-cadherin and CD31 expression were significantly down-regulated, while mesenchymal-like cell markers such as α-SMA and vimentin were increased considerably, along with the increased expressions of CBLN2, p-p65, HIF-1α, and Twist1; CBLN2 siRNA, PDTC, and KC7F2 could inhibit those phenomena. SIGNIFICANCE CBLN2 can promote EndMT by activating NF-κB/HIF-1α/Twist1 pathway. Therefore, CBLN2 may be a new therapeutic target for PH.
Collapse
Affiliation(s)
- E-Li Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jie-Jie Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fang-Mei Luo
- Department of Pharmacy, Hunan Children's Hospital, Changsha 410007, China
| | - Min-Yi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
23
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
24
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
25
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
26
|
Dougherty EJ, Chen LY, Awad KS, Ferreyra GA, Demirkale CY, Keshavarz A, Gairhe S, Johnston KA, Hicks ME, Sandler AB, Curran CS, Krack JM, Ding Y, Suffredini AF, Solomon MA, Elinoff JM, Danner RL. Inflammation and DKK1-induced AKT activation contribute to endothelial dysfunction following NR2F2 loss. Am J Physiol Lung Cell Mol Physiol 2023; 324:L783-L798. [PMID: 37039367 PMCID: PMC10202490 DOI: 10.1152/ajplung.00171.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
NR2F2 is expressed in endothelial cells (ECs) and Nr2f2 knockout produces lethal cardiovascular defects. In humans, reduced NR2F2 expression is associated with cardiovascular diseases including congenital heart disease and atherosclerosis. Here, NR2F2 silencing in human primary ECs led to inflammation, endothelial-to-mesenchymal transition (EndMT), proliferation, hypermigration, apoptosis-resistance, and increased production of reactive oxygen species. These changes were associated with STAT and AKT activation along with increased production of DKK1. Co-silencing DKK1 and NR2F2 prevented NR2F2-loss-induced STAT and AKT activation and reversed EndMT. Serum DKK1 concentrations were elevated in patients with pulmonary arterial hypertension (PAH) and DKK1 was secreted by ECs in response to in vitro loss of either BMPR2 or CAV1, which are genetic defects associated with the development of PAH. In human primary ECs, NR2F2 suppressed DKK1, whereas its loss conversely induced DKK1 and disrupted endothelial homeostasis, promoting phenotypic abnormalities associated with pathologic vascular remodeling. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating chronic vascular diseases associated with EC dysfunction.NEW & NOTEWORTHY NR2F2 loss in the endothelial lining of blood vessels is associated with cardiovascular disease. Here, NR2F2-silenced human endothelial cells were inflammatory, proliferative, hypermigratory, and apoptosis-resistant with increased oxidant stress and endothelial-to-mesenchymal transition. DKK1 was induced in NR2F2-silenced endothelial cells, while co-silencing NR2F2 and DKK1 prevented NR2F2-loss-associated abnormalities in endothelial signaling and phenotype. Activating NR2F2 or blocking DKK1 may be useful therapeutic targets for treating vascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Edward J Dougherty
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Li-Yuan Chen
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Keytam S Awad
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Gabriela A Ferreyra
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Cumhur Y Demirkale
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Ali Keshavarz
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Salina Gairhe
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Kathryn A Johnston
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Madelyn E Hicks
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Alexis B Sandler
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Colleen S Curran
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Janell M Krack
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Yi Ding
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Anthony F Suffredini
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Michael A Solomon
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Jason M Elinoff
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert L Danner
- Clinical Center/Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
27
|
Fayyaz AU, Sabbah MS, Dasari S, Griffiths LG, DuBrock HM, Wang Y, Charlesworth MC, Borlaug BA, Jenkins SM, Edwards WD, Redfield MM. Histologic and proteomic remodeling of the pulmonary veins and arteries in a porcine model of chronic pulmonary venous hypertension. Cardiovasc Res 2023; 119:268-282. [PMID: 35022664 PMCID: PMC10233294 DOI: 10.1093/cvr/cvac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS In heart failure (HF), pulmonary venous hypertension (PVH) produces pulmonary hypertension (PH) with remodeling of pulmonary veins (PV) and arteries (PA). In a porcine PVH model, we performed proteomic-based bioinformatics to investigate unique pathophysiologic mechanisms mediating PA and PV remodeling. METHODS AND RESULTS Large PV were banded (PVH, n = 10) or not (Sham, n = 9) in piglets. At sacrifice, PV and PA were perfusion labelled for vessel-specific histology and proteomics. The PA and PV were separately sampled with laser-capture micro-dissection for mass spectrometry. Pulmonary vascular resistance [Wood Units; 8.6 (95% confidence interval: 6.3, 12.3) vs. 2.0 (1.7, 2.3)] and PA [19.9 (standard error of mean, 1.1) vs. 10.3 (1.1)] and PV [14.2 (1.2) vs. 7.6 (1.1)] wall thickness/external diameter (%) were increased in PVH (P < 0.05 for all). Similar numbers of proteins were identified in PA (2093) and PV (2085) with 94% overlap, but biological processes differed. There were more differentially expressed proteins (287 vs. 161), altered canonical pathways (17 vs. 3), and predicted upstream regulators (PUSR; 22 vs. 6) in PV than PA. In PA and PV, bioinformatics indicated activation of the integrated stress response and mammalian target of rapamycin signalling with dysregulated growth. In PV, there was also activation of Rho/Rho-kinase signalling with decreased actin cytoskeletal signalling and altered tight and adherens junctions, ephrin B, and caveolae-mediated endocytosis signalling; all indicating disrupted endothelial barrier function. Indeed, protein biomarkers and the top PUSR in PV (transforming growth factor-beta) suggested endothelial to mesenchymal transition in PV. Findings were similar in human autopsy specimens. CONCLUSION These findings provide new therapeutic targets to oppose pulmonary vascular remodeling in HF-related PH.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael S Sabbah
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hilary M DuBrock
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - M Cristine Charlesworth
- Molecular Genome Facility Proteomics Core, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sarah M Jenkins
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - William D Edwards
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Margaret M Redfield
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Yang L, Wan N, Gong F, Wang X, Feng L, Liu G. Transcription factors and potential therapeutic targets for pulmonary hypertension. Front Cell Dev Biol 2023; 11:1132060. [PMID: 37009479 PMCID: PMC10064017 DOI: 10.3389/fcell.2023.1132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pulmonary hypertension (PH) is a refractory and fatal disease characterized by excessive pulmonary arterial cell remodeling. Uncontrolled proliferation and hypertrophy of pulmonary arterial smooth muscle cells (PASMCs), dysfunction of pulmonary arterial endothelial cells (PAECs), and abnormal perivascular infiltration of immune cells result in pulmonary arterial remodeling, followed by increased pulmonary vascular resistance and pulmonary pressure. Although various drugs targeting nitric oxide, endothelin-1 and prostacyclin pathways have been used in clinical settings, the mortality of pulmonary hypertension remains high. Multiple molecular abnormalities have been implicated in pulmonary hypertension, changes in numerous transcription factors have been identified as key regulators in pulmonary hypertension, and a role for pulmonary vascular remodeling has been highlighted. This review consolidates evidence linking transcription factors and their molecular mechanisms, from pulmonary vascular intima PAECs, vascular media PASMCs, and pulmonary arterial adventitia fibroblasts to pulmonary inflammatory cells. These findings will improve the understanding of particularly interactions between transcription factor-mediated cellular signaling pathways and identify novel therapies for pulmonary hypertension.
Collapse
Affiliation(s)
- Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanpeng Gong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Guizhu Liu,
| |
Collapse
|
29
|
Wang L, Moonen JR, Cao A, Isobe S, Li CG, Tojais NF, Taylor S, Marciano DP, Chen PI, Gu M, Li D, Harper RL, El-Bizri N, Kim Y, Stankunas K, Rabinovitch M. Dysregulated Smooth Muscle Cell BMPR2-ARRB2 Axis Causes Pulmonary Hypertension. Circ Res 2023; 132:545-564. [PMID: 36744494 PMCID: PMC10008520 DOI: 10.1161/circresaha.121.320541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (β-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (β-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.
Collapse
Affiliation(s)
- Lingli Wang
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Jan Renier Moonen
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Aiqin Cao
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Sarasa Isobe
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Caiyun G Li
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy F Tojais
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Shalina Taylor
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - David P Marciano
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pin-I Chen
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxia Gu
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Dan Li
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca L Harper
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Nesrine El-Bizri
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - YuMee Kim
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| | - Kryn Stankunas
- Departments of Pathology and of Developmental Biology, and Howard Hughes Medical Institute; Stanford University School of Medicine, Stanford, CA, USA
| | - Marlene Rabinovitch
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Upton PD, Dunmore BJ, Li W, Morrell NW. An emerging class of new therapeutics targeting TGF, Activin, and BMP ligands in pulmonary arterial hypertension. Dev Dyn 2023; 252:327-342. [PMID: 35434863 PMCID: PMC10952790 DOI: 10.1002/dvdy.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal condition, the primary pathology of which involves loss of pulmonary vascular perfusion due to progressive aberrant vessel remodeling. The reduced capacity of the pulmonary circulation places increasing strain on the right ventricle of the heart, leading to death by heart failure. Currently, licensed therapies are primarily vasodilators, which have increased the median post-diagnosis life expectancy from 2.8 to 7 years. Although this represents a substantial improvement, the search continues for transformative therapeutics that reverse established disease. The genetics of human PAH heavily implicates reduced endothelial bone morphogenetic protein (BMP) signaling as a causal role for the disease pathobiology. Recent approaches have focused on directly enhancing BMP signaling or removing the inhibitory influence of pathways that repress BMP signaling. In this critical commentary, we review the evidence underpinning the development of two approaches: BMP-based agonists and inhibition of activin/GDF signaling. We also address the key considerations and questions that remain regarding these approaches.
Collapse
Affiliation(s)
- Paul D. Upton
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Benjamin J. Dunmore
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Wei Li
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| | - Nicholas W. Morrell
- Department of MedicineUniversity of Cambridge School of Clinical Medicine, Addenbrooke's and Royal Papworth HospitalsCambridgeUK
| |
Collapse
|
31
|
Bhagwani AR, Ali M, Piper B, Liu M, Hudson J, Kelly N, Bogamuwa S, Yang H, Londino JD, Bednash JS, Farkas D, Mallampalli RK, Nicolls MR, Ryan JJ, Thompson AR, Chan SY, Gomez D, Goncharova EA, Farkas L. A p53-TLR3 axis ameliorates pulmonary hypertension by inducing BMPR2 via IRF3. iScience 2023; 26:105935. [PMID: 36685041 PMCID: PMC9852960 DOI: 10.1016/j.isci.2023.105935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) features pathogenic and abnormal endothelial cells (ECs), and one potential origin is clonal selection. We studied the role of p53 and toll-like receptor 3 (TLR3) in clonal expansion and pulmonary hypertension (PH) via regulation of bone morphogenetic protein (BMPR2) signaling. ECs of PAH patients had reduced p53 expression. EC-specific p53 knockout exaggerated PH, and clonal expansion reduced p53 and TLR3 expression in rat lung CD117+ ECs. Reduced p53 degradation (Nutlin 3a) abolished clonal EC expansion, induced TLR3 and BMPR2, and ameliorated PH. Polyinosinic/polycytidylic acid [Poly(I:C)] increased BMPR2 signaling in ECs via enhanced binding of interferon regulatory factor-3 (IRF3) to the BMPR2 promoter and reduced PH in p53-/- mice but not in mice with impaired TLR3 downstream signaling. Our data show that a p53/TLR3/IRF3 axis regulates BMPR2 expression and signaling in ECs. This link can be exploited for therapy of PH.
Collapse
Affiliation(s)
- Aneel R. Bhagwani
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mehboob Ali
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Bryce Piper
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mingjun Liu
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jaylen Hudson
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Neil Kelly
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Srimathi Bogamuwa
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Hu Yang
- Chemical & Biochemical Engineering, Missouri S&T, Rolla, MO 65409, USA
| | - James D. Londino
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Daniela Farkas
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mark R. Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John J. Ryan
- College of Humanities & Sciences, Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - A.A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield S10 2RX, UK
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA 95616, USA
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
32
|
Abstract
The endothelium is one of the largest organ systems in the body, and data continue to emerge regarding the importance of endothelial cell (EC) dysfunction in vascular aging and a range of cardiovascular diseases (CVDs). Over the last two decades and as a process intimately related to EC dysfunction, an increasing number of studies have also implicated endothelial to mesenchymal transition (EndMT) as a potentially disease-causal pathobiologic process that is involved in a multitude of differing CVDs. However, EndMT is also involved in physiologic processes (e.g., cardiac development), and transient EndMT may contribute to vascular regeneration in certain contexts. Given that EndMT involves a major alteration in the EC-specific molecular program, and that it potentially contributes to CVD pathobiology, the clinical translation opportunities are significant, but further molecular and translational research is needed to see these opportunities realized.
Collapse
Affiliation(s)
- Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; .,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
33
|
Inactivating the Uninhibited: The Tale of Activins and Inhibins in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24043332. [PMID: 36834742 PMCID: PMC9963072 DOI: 10.3390/ijms24043332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Advances in technology and biomedical knowledge have led to the effective diagnosis and treatment of an increasing number of rare diseases. Pulmonary arterial hypertension (PAH) is a rare disorder of the pulmonary vasculature that is associated with high mortality and morbidity rates. Although significant progress has been made in understanding PAH and its diagnosis and treatment, numerous unanswered questions remain regarding pulmonary vascular remodeling, a major factor contributing to the increase in pulmonary arterial pressure. Here, we discuss the role of activins and inhibins, both of which belong to the TGF-β superfamily, in PAH development. We examine how these relate to signaling pathways implicated in PAH pathogenesis. Furthermore, we discuss how activin/inhibin-targeting drugs, particularly sotatercep, affect pathophysiology, as these target the afore-mentioned specific pathway. We highlight activin/inhibin signaling as a critical mediator of PAH development that is to be targeted for therapeutic gain, potentially improving patient outcomes in the future.
Collapse
|
34
|
Körbelin J, Klein J, Matuszcak C, Runge J, Harbaum L, Klose H, Hennigs JK. Transcription factors in the pathogenesis of pulmonary arterial hypertension-Current knowledge and therapeutic potential. Front Cardiovasc Med 2023; 9:1036096. [PMID: 36684555 PMCID: PMC9853303 DOI: 10.3389/fcvm.2022.1036096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by elevated pulmonary vascular resistance and pulmonary artery pressure. Mortality remains high in severe cases despite significant advances in management and pharmacotherapy. Since currently approved PAH therapies are unable to significantly reverse pathological vessel remodeling, novel disease-modifying, targeted therapeutics are needed. Pathogenetically, PAH is characterized by vessel wall cell dysfunction with consecutive remodeling of the pulmonary vasculature and the right heart. Transcription factors (TFs) regulate the process of transcribing DNA into RNA and, in the pulmonary circulation, control the response of pulmonary vascular cells to macro- and microenvironmental stimuli. Often, TFs form complex protein interaction networks with other TFs or co-factors to allow for fine-tuning of gene expression. Therefore, identification of the underlying molecular mechanisms of TF (dys-)function is essential to develop tailored modulation strategies in PAH. This current review provides a compendium-style overview of TFs and TF complexes associated with PAH pathogenesis and highlights their potential as targets for vasculoregenerative or reverse remodeling therapies.
Collapse
Affiliation(s)
- Jakob Körbelin
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Jakob Körbelin,
| | - Julius Klein
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christiane Matuszcak
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Runge
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Harbaum
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Klose
- Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K. Hennigs
- ENDomics Lab, Department of Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Division of Pneumology and Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Jan K. Hennigs,
| |
Collapse
|
35
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Therapy for Pulmonary Hypertension: A Comprehensive Review of Preclinical Studies. J Interv Cardiol 2022; 2022:5451947. [PMID: 36419957 PMCID: PMC9652076 DOI: 10.1155/2022/5451947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Pulmonary hypertension (PH) is a type of clinical pathophysiological syndrome characterized by a progressive increase in pulmonary vascular resistance and subsequent progressive failure of the right heart function, and is a common complication of many diseases. Mesenchymal stem cells (MSCs) autonomously home to sites damaged by disease, repair damaged tissues, and participate in the regulation of systemic inflammation and immune responses, which have good clinical application prospects. Extracellular vesicles (EVs), such as exosomes and microvesicles, participate in various biological activities by regulating intercellular communication. Exosomes secreted into the extracellular environment also affect the host immune system. MSC-derived extracellular vesicles (MSC-EVs), as a mediator in the paracrine processes of MSCs, carry biologically active substances such as proteins, lipids, mRNA, and micro-RNA. MSC-EVs therapies, safer than cell-based treatments, have been shown to be effective in modulating macrophages to support anti-inflammatory phenotypes, which are strongly related to histological and functional benefits in preclinical models of pulmonary hypertension. The main effects of active substances and their potential medical value have attracted wide attention from researchers. This article reviews the role and relevant mechanisms of MSC-EVs in the treatment of pulmonary hypertension in recent studies and provides a basis for their future clinical applications.
Collapse
|
36
|
Cheng R, Xu X, Yang S, Mi Z, Zhao Y, Gao J, Yu F, Ren X. The underlying molecular mechanisms and biomarkers of plaque vulnerability based on bioinformatics analysis. Eur J Med Res 2022; 27:212. [PMID: 36303246 PMCID: PMC9615401 DOI: 10.1186/s40001-022-00840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aim The study aimed to identify the underlying differentially expressed genes (DEGs) and mechanism of unstable atherosclerotic plaque using bioinformatics methods. Methods GSE120521, which includes four unstable samples and four stable atherosclerotic samples, was downloaded from the GEO database. DEGs were identified using LIMMA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed using the Database for metascape Visualization online tool. Based on the STRING database, protein–protein interactions (PPIs) network among DEGs were constructed. Regulatory networks were visualized using Cytoscape. We use the xCell to analyze the different immune cell subtypes. Results A total of 1626 DEGs (1034 up-regulated and 592 down-regulated DEGs) were identified between unstable and stable samples. I pulled 62 transcription factors (34 up-regulated TFs and 28 down-regulated TFs) from the Trust database. The up-regulated TFs were mainly enrichment in positive regulation of myeloid leukocyte differentiation, and the down-regulated TFs were mainly enrichment in connective tissue development. In the PPI network, RB1, CEBPA, PPARG, BATF was the most significantly up-regulated gene in ruptured atherosclerotic samples. The immune cell composition enriched in CD cells and macrophages in the unstable carotid plaque. Conclusions Upregulated RB1, CEBPA, PPARG, BATF and down-regulated SRF, MYOCD, HEY2, GATA6 might perform critical promotional roles in atherosclerotic plaque rupture, furthermore, number and polarization of macrophages may play an important role in vulnerable plaques. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00840-7.
Collapse
Affiliation(s)
- Rui Cheng
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Department of Endocrinology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Xiaojiang Xu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Shurong Yang
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Zhongqian Mi
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Yong Zhao
- Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jinhua Gao
- Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feiyan Yu
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Xiuyun Ren
- Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China. .,Shanxi Medical University School and Hospital of Stomatology, 63# Xinjian South Road, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| |
Collapse
|
37
|
Crnkovic S, Valzano F, Fließer E, Gindlhuber J, Thekkekara Puthenparampil H, Basil M, Morley MP, Katzen J, Gschwandtner E, Klepetko W, Cantu E, Wolinski H, Olschewski H, Lindenmann J, Zhao YY, Morrisey EE, Marsh LM, Kwapiszewska G. Single-cell transcriptomics reveals skewed cellular communication and phenotypic shift in pulmonary artery remodeling. JCI Insight 2022; 7:153471. [PMID: 36099047 PMCID: PMC9714792 DOI: 10.1172/jci.insight.153471] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
A central feature of progressive vascular remodeling is altered smooth muscle cell (SMC) homeostasis; however, the understanding of how different cell populations contribute to this process is limited. Here, we utilized single-cell RNA sequencing to provide insight into cellular composition changes within isolated pulmonary arteries (PAs) from pulmonary arterial hypertension and donor lungs. Our results revealed that remodeling skewed the balanced communication network between immune and structural cells, in particular SMCs. Comparative analysis with murine PAs showed that human PAs harbored heterogeneous SMC populations with an abundant intermediary cluster displaying a gradient transition between SMCs and adventitial fibroblasts. Transcriptionally distinct SMC populations were enriched in specific biological processes and could be differentiated into 4 major clusters: oxygen sensing (enriched in pericytes), contractile, synthetic, and fibroblast-like. End-stage remodeling was associated with phenotypic shift of preexisting SMC populations and accumulation of synthetic SMCs in neointima. Distinctly regulated genes in clusters built nonredundant regulatory hubs encompassing stress response and differentiation regulators. The current study provides a blueprint of cellular and molecular changes on a single-cell level that are defining the pathological vascular remodeling process.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jürgen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | | | - Maria Basil
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mike P. Morley
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy Katzen
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisabeth Gschwandtner
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heimo Wolinski
- Institute of Molecular Biosciences and,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | | | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA.,Departments of Pediatrics, Pharmacology, and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Edward E. Morrisey
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and,Institute of Lung Health, German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
38
|
Blanchard N, Link PA, Farkas D, Harmon B, Hudson J, Bogamuwa S, Piper B, Authelet K, Cool CD, Heise RL, Freishtat R, Farkas L. Dichotomous role of integrin-β5 in lung endothelial cells. Pulm Circ 2022; 12:e12156. [PMID: 36438452 PMCID: PMC9684688 DOI: 10.1002/pul2.12156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-β5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-β5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-β5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανβ5 in vitro partially blocked transforming growth factor (TGF)-β1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανβ5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-β1. In vivo, blocking of integrin-ανβ5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανβ5 in lung endothelial survival and migration, but also a partial contribution to TGF-β1-induced EnMT gene expression. Our results suggest that integrin-ανβ5 is required for physiologic function of ECs and lung vascular homeostasis.
Collapse
Affiliation(s)
- Neil Blanchard
- Department of Orthopedic SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Patrick A. Link
- Departments of Physiology and Biomedical EngineeringMayo ClinicRochesterMichiganUSA
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Daniela Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Brennan Harmon
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Jaylen Hudson
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Srimathi Bogamuwa
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Bryce Piper
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kayla Authelet
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlyne D. Cool
- Department of PathologyUniversity of Colorado at DenverDenverColoradoUSA
| | - Rebecca L. Heise
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Laszlo Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Physiology and BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
39
|
Erewele EO, Castellon M, Loya O, Marshboom G, Schwartz A, Yerlioglu K, Callahan C, Chen J, Minshall RD, Oliveira SD. Hypoxia-induced pulmonary hypertension upregulates eNOS and TGF-β contributing to sex-linked differences in BMPR2 +/R899X mutant mice. Pulm Circ 2022; 12:e12163. [PMID: 36484056 PMCID: PMC9722973 DOI: 10.1002/pul2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Dysfunctional bone morphogenetic protein receptor 2 (BMPR2) and endothelial nitric oxide synthase (eNOS) have been largely implicated in the pathogenesis of pulmonary arterial hypertension (PAH); a life-threatening cardiopulmonary disease. Although the incident of PAH is about three times higher in females, males with PAH usually have a worse prognosis, which seems to be dependent on estrogen-associated cardiac and vascular protection. Here, we evaluated whether hypoxia-induced pulmonary hypertension (PH) in humanized BMPR2+/R899X loss-of-function mutant mice contributes to sex-associated differences observed in PAH by altering eNOS expression and inducing expansion of hyperactivated TGF-β-producing pulmonary myofibroblasts. To test this hypothesis, male and female wild-type (WT) and BMPR2+/R899X mutant mice were kept under hypoxic or normoxic conditions for 4 weeks, and then right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) were measured. Chronic hypoxia exposure elevated RVSP, inducing RVH in both groups, with a greater effect in BMPR2+/R899X female mice. Lung histology revealed no differences in vessel thickness/area between sexes, suggesting RVSP differences in this model are unlikely to be in response to sex-dependent vascular narrowing. On the other hand, hypoxia exposure increased vascular collagen deposition, the number of TGF-β-associated α-SMA-positive microvessels, and eNOS expression, whereas it also reduced caveolin-1 expression in the lungs of BMPR2+/R899X females compared to males. Taken together, this brief report reveals elevated myofibroblast-derived TGF-β and eNOS-derived oxidants contribute to pulmonary microvascular muscularization and sex-linked differences in incidence, severity, and outcome of PAH.
Collapse
Affiliation(s)
- Ejehi O Erewele
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Maricela Castellon
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Omar Loya
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Glenn Marshboom
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Andrew Schwartz
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Kayla Yerlioglu
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Christopher Callahan
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Jiwang Chen
- Cardiovascular Research Center, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Richard D Minshall
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Pharmacology and Regenerative Medicine, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| | - Suellen D Oliveira
- Department of Anesthesiology, College of Medicine University of Illinois at Chicago Chicago Illinois USA
- Department of Physiology & Biophysics, College of Medicine University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
40
|
Liu Y, Liang W, Chang Y, He Z, Wu M, Zheng H, Ke X, Lv M, Liu Q, Liu Q, Tang W, Huang Q, Lu Y, He M, Yang Q, Mo C, Wang J, Peng K, Min Z, Su H, Chen J. CEP192 is a novel prognostic marker and correlates with the immune microenvironment in hepatocellular carcinoma. Front Immunol 2022; 13:950884. [PMID: 36238304 PMCID: PMC9551108 DOI: 10.3389/fimmu.2022.950884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) responds poorly to standard chemotherapy or targeted therapy; hence, exploration for novel therapeutic targets is urgently needed. CEP192 protein is indispensable for centrosome amplification, which has been extensively characterized in both hematological malignancies and solid tumors. Here, we combined bioinformatics and experimental approaches to assess the potential of CEP192 as a prognostic and therapeutic target in HCC. CEP192 expression increased with tumor stage and was associated with poor clinicopathologic features, frequent recurrence, and higher mortality. Upon single-cell RNA sequencing, CEP192 was found to be involved in the proliferation and self-renewal of hepatic progenitor-like cells. This observation was further evidenced using CEP192 silencing, which prevented tumor cell proliferation and self-renewal by arresting cells in the G0/G1 phase of the cell cycle. Notably, CEP192 was highly correlated with multiple tumor-associated cytokine ligand–receptor axes, including IL11–IL11RA, IL6–IL6R, and IL13–IL13RA1, which could promote interactions between hepatic progenitor-like cells, PLVAP+ endothelial cells, tumor-associated macrophages, and CD4+ T cells. Consequently, CEP192 expression was closely associated with an immunosuppressive tumor microenvironment and low immunophenoscores, making it a potential predictor of response to immune checkpoint inhibitors. Taken together, our results unravel a novel onco-immunological role of CEP192 in establishing the immunosuppressive tumor microenvironment and provide a novel biomarker, as well as a potential target for therapeutic intervention of HCC.
Collapse
Affiliation(s)
- Yanli Liu
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wanmei Liang
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yabin Chang
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zehui He
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meijian Wu
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haozhi Zheng
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinrong Ke
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Minjia Lv
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingqian Liu
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qinyu Liu
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Waner Tang
- Department of Gynecology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoling Huang
- Department of Gynecology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu Lu
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Min He
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qijun Yang
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunpan Mo
- The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Jiefan Wang
- The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Kunwei Peng
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiqun Min
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hang Su
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingqi Chen
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy and Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology and Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jingqi Chen,
| |
Collapse
|
41
|
Redel-Traub G, Sampson KJ, Kass RS, Bohnen MS. Potassium Channels as Therapeutic Targets in Pulmonary Arterial Hypertension. Biomolecules 2022; 12:1341. [PMID: 36291551 PMCID: PMC9599705 DOI: 10.3390/biom12101341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/08/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.
Collapse
Affiliation(s)
- Gabriel Redel-Traub
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kevin J. Sampson
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert S. Kass
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michael S. Bohnen
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
42
|
Kyi P, Hendee K, Hunyenyiwa T, Matus K, Mammoto T, Mammoto A. Endothelial senescence mediates hypoxia-induced vascular remodeling by modulating PDGFB expression. Front Med (Lausanne) 2022; 9:908639. [PMID: 36203755 PMCID: PMC9530050 DOI: 10.3389/fmed.2022.908639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Uncontrolled accumulation of pulmonary artery smooth muscle cells (PASMCs) to the distal pulmonary arterioles (PAs) is one of the major characteristics of pulmonary hypertension (PH). Cellular senescence contributes to aging and lung diseases associated with PH and links to PH progression. However, the mechanism by which cellular senescence controls vascular remodeling in PH is not fully understood. The levels of senescence marker, p16INK4A and senescence-associated β-galactosidase (SA-β-gal) activity are higher in PA endothelial cells (ECs) isolated from idiopathic pulmonary arterial hypertension (IPAH) patients compared to those from healthy individuals. Hypoxia-induced accumulation of α-smooth muscle actin (αSMA)-positive cells to the PAs is attenuated in p16fl/fl-Cdh5(PAC)-CreERT2 (p16iΔEC) mice after tamoxifen induction. We have reported that endothelial TWIST1 mediates hypoxia-induced vascular remodeling by increasing platelet-derived growth factor (PDGFB) expression. Transcriptomic analyses of IPAH patient lungs or hypoxia-induced mouse lung ECs reveal the alteration of senescence-related gene expression and their interaction with TWIST1. Knockdown of p16INK4A attenuates the expression of PDGFB and TWIST1 in IPAH patient PAECs or hypoxia-treated mouse lungs and suppresses accumulation of αSMA–positive cells to the supplemented ECs in the gel implanted on the mouse lungs. Hypoxia-treated mouse lung EC-derived exosomes stimulate DNA synthesis and migration of PASMCs in vitro and in the gel implanted on the mouse lungs, while p16iΔEC mouse lung EC-derived exosomes inhibit the effects. These results suggest that endothelial senescence modulates TWIST1-PDGFB signaling and controls vascular remodeling in PH.
Collapse
Affiliation(s)
- Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
- Tadanori Mammoto
| |
Collapse
|
43
|
Molecular Pathways in Pulmonary Arterial Hypertension. Int J Mol Sci 2022; 23:ijms231710001. [PMID: 36077398 PMCID: PMC9456336 DOI: 10.3390/ijms231710001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension is a multifactorial, chronic disease process that leads to pulmonary arterial endothelial dysfunction and smooth muscular hypertrophy, resulting in impaired pliability and hemodynamics of the pulmonary vascular system, and consequent right ventricular dysfunction. Existing treatments target limited pathways with only modest improvement in disease morbidity, and little or no improvement in mortality. Ongoing research has focused on the molecular basis of pulmonary arterial hypertension and is going to be important in the discovery of new treatments and genetic pathways involved. This review focuses on the molecular pathogenesis of pulmonary arterial hypertension.
Collapse
|
44
|
Jiao Q, Zou F, Li S, Wang J, Xiao Y, Guan Z, Dong L, Tian J, Li S, Wang R, Zhang J, Li H. Dexlansoprazole prevents pulmonary artery hypertension by inhibiting pulmonary artery smooth muscle cell to fibroblast transition. Am J Transl Res 2022; 14:5466-5479. [PMID: 36105026 PMCID: PMC9452313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To validate that dexlansoprazole, an anti-acid drug, can prevent pulmonary artery hypertension (PAH) in preclinical animal models and find the possible mechanism of action of dexlansoprazole for this new indication. METHODS The efficacy of dexlansoprazole to attenuate PAH in vivo was evaluated in PAH animal models. Plasma guanosine 3', 5'-cyclic phosphate (cGMP) in PAH rats was measured by enzyme linked immunosorbent assay (ELISA). To investigate the anti-PAH effect of dexlansoprazole in vitro, proliferation and migration assays of primary cultured pulmonary artery smooth muscle cells (PASMCs) were performed. Furthermore, dexlansoprazole's function on fibroblast transition of vascular smooth muscle cells (VSMC) was explored by single cell ribonucleic acid (RNA) sequencing and RNAscope. RESULTS Dexlansoprazole could attenuate the pathologic process in monocrotaline (MCT)-, hypoxia-induced PAH rats and SU5416/hypoxia (SuHy)-induced PAH mice. The intervention with dexlansoprazole significantly inhibited elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy, and pulmonary vascular wall thickness. Furthermore, plasma cGMP in MCT-induced PAH rats was restored after receiving dexlansoprazole. In vitro, dexlansoprazole could inhibit PASMCs' proliferation and migration stimulated by platelet derived growth factor-BB (PDGF-BB). Moreover, dexlansoprazole significantly ameliorated pulmonary vascular remodeling by inhibiting VSMC phenotypic transition to fibroblast-like cells in a VSMC-specific multispectral lineage-tracing mouse. CONCLUSIONS Dexlansoprazole can prevent PAH through promoting cGMP generation and inhibiting pulmonary vascular remodeling through restraining PASMCs' proliferation, migration, and phenotypic transition to fibroblast-like cells. Consequently, PAH might be a new indication for dexlansoprazole.
Collapse
Affiliation(s)
- Qian Jiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Fangdi Zou
- School of Basic Medical Sciences, Tianjin Medical UniversityTianjin 200000, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jiawen Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Yunping Xiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Zhihua Guan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan UniversityShanghai 200000, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital, Key Laboratory of Myocardial Ischemia, Harbin Medical UniversityHarbin 200000, Heilongjiang, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan UniversityShanghai 200000, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
- School of Basic Medical Sciences, Tianjin Medical UniversityTianjin 200000, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & TechnologyShanghai 200237, China
| |
Collapse
|
45
|
Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed Pharmacother 2022; 151:113191. [PMID: 35643068 DOI: 10.1016/j.biopha.2022.113191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Pulmonary hypertension (PH) is a chronic and fatal disease, for which new therapeutic drugs and approaches are needed urgently. Baicalein and baicalin, the active compounds of the traditional Chinese medicine, Scutellaria baicalensis Georgi, exhibit a wide range of pharmacological activities. Numerous studies involving in vitro and in vivo models of PH have revealed that the treatment with baicalin and baicalein may be effective. This review summarizes the potential mechanisms driving the beneficial effects of baicalin and baicalein treatment on PH, including anti-inflammatory response, inhibition of pulmonary smooth muscle cell proliferation and endothelial-to-mesenchymal transformation, stabilization of the extracellular matrix, and mitigation of oxidative stress. The pharmacokinetics of these compounds have also been reviewed. The therapeutic potential of baicalin and baicalein warrants their continued study as natural treatments for PH.
Collapse
|
46
|
Hu Y, Jin L, Pan Y, Zou J, Wang Z. Apela gene therapy alleviates pulmonary hypertension in rats. FASEB J 2022; 36:e22431. [PMID: 35747913 DOI: 10.1096/fj.202200266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Pulmonary artery hypertension (PAH) is a common disease that threatens human health. At present, no treatment can cure PAH, and the prognosis is poor. Therefore, it is important to determine new targets for PAH treatment. Recently, a novel endogenous ligand Apela (ELABELA/Toddler/ELA32) of apelin peptide jejunum (APJ) receptor was identified as a possible PAH target. This study explored the potential effect of Apela gene therapy on rats with PAH. An AAV-ELA32 recombinant expression vector was constructed by molecular cloning. Purified adeno-associated virus (AAV) was injected into monocrotaline (MCT)-induced PAH rats via tail vein 1 and 2 weeks after modeling. Apela gene therapy significantly reduced the increased right ventricular systolic pressure and N-terminal pro-brain natriuretic peptide (NT-proBNP) in PAH rats. The results of histopathology and immunofluorescence showed that Apela gene therapy not only reduced the rate of pulmonary arteriole muscularization and media thickening in PAH rats but also inhibited the endothelial-to-mesenchymal transition of the pulmonary arteriole. Western blotting showed that Apela gene therapy up-regulated the expression of KLF2/eNOs and BMPRII/SMAD4 in pulmonary arterioles of PAH rats. Overall, the results show that Apela gene therapy can inhibit pulmonary arteriolar vascular remodeling and reduce pulmonary artery pressure in PAH rats. These effects may be related to KLF2/eNOs and BMPRII/SMAD4 signaling pathways. The apelinergic system may be a potential new target for the prevention and treatment of PAH.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Liangli Jin
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
High Mobility Group A 1 Expression as a Poor Prognostic Marker Associated with Tumor Invasiveness in Gastric Cancer. Life (Basel) 2022; 12:life12050709. [PMID: 35629376 PMCID: PMC9146826 DOI: 10.3390/life12050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
The prognosis of advanced gastric cancer remains poor. Overexpression of high mobility group A 1 (HMGA1) in breast cancer and neuroblastoma indicates a poor prognosis. However, the relationship between HMGA1 expression and gastric cancer development remains unclear. Treatment strategies can be developed by identifying potential markers associated with gastric cancer. We used a constructed tissue array and performed hematoxylin and eosin and immunohistochemical staining. We quantified the staining results and performed statistical analysis to evaluate the relationship between HMGA1 expression and prognosis. HMGA1 expression was related to the expression of Ki-67, caspase3, CD31, N-cadherin, fibronectin, pAkt, and pErk. In the Kaplan–Meier graph, higher HMGA1 expression levels were associated with a relatively poor survival rate (p = 0.04). High expression of HMGA1 leads to a low survival rate, which is associated with HMGA1, proliferation, apoptosis, angiogenesis, epithelial-mesenchymal transition, and tyrosine kinase.
Collapse
|
48
|
Oliveira SD. Insights on the Gut-Mesentery-Lung Axis in Pulmonary Arterial Hypertension: A Poorly Investigated Crossroad. Arterioscler Thromb Vasc Biol 2022; 42:516-526. [PMID: 35296152 PMCID: PMC9050827 DOI: 10.1161/atvbaha.121.316236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the hyperproliferation of vascular cells, including smooth muscle and endothelial cells. Hyperproliferative cells eventually obstruct the lung vasculature, leading to irreversible lesions that collectively drive pulmonary pressure to life-threatening levels. Although the primary cause of PAH is not fully understood, several studies have indicated it results from chronic pulmonary inflammation, such as observed in response to pathogens' infection. Curiously, infection by the intravascular parasite Schistosoma mansoni recapitulates several aspects of the widespread pulmonary inflammation that leads to development of chronic PAH. Globally, >200 million people are currently infected by Schistosoma spp., with about 5% developing PAH (Sch-PAH) in response to the parasite egg-induced obliteration and remodeling of the lung vasculature. Before their settling into the lungs, Schistosoma eggs are released inside the mesenteric veins, where they either cross the intestinal wall and disturb the gut microbiome or migrate to other organs, including the lungs and liver, increasing pressure. Spontaneous or surgical liver bypass via collateral circulation alleviates the pressure in the portal system; however, it also allows the translocation of pathogens, toxins, and antigens into the lungs, ultimately causing PAH. This brief review provides an overview of the gut-mesentery-lung axis during PAH, with a particular focus on Sch-PAH, and attempts to delineate the mechanism by which pathogen translocation might contribute to the onset of chronic pulmonary vascular diseases.
Collapse
Affiliation(s)
- Suellen Darc Oliveira
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago
| |
Collapse
|
49
|
Sánchez-Gloria JL, Carbó R, Buelna-Chontal M, Osorio-Alonso H, Henández-Díazcouder A, de la Fuente-León RL, Sandoval J, Sánchez F, Rubio-Gayosso I, Sánchez-Muñoz F. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-α, IL-1β, and IL-6. Life Sci 2021; 287:120091. [PMID: 34717910 DOI: 10.1016/j.lfs.2021.120091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cold temperatures can aggravate pulmonary diseases and promote pulmonary arterial hypertension (PAH); however, the underlying mechanism has not been fully explored. AIM To explore the effect of chronic cold exposure on the production of inflammatory cytokines and microRNAs (miRNAs) in a monocrotaline (MCT)-induced PAH model. METHODS Male Sprague Dawley rats were divided into a Control (23.5 ± 2 °C), Cold (5.0 ± 1 °C for ten days), MCT (60 mg/kg body weight i.p.), and MCT + Cold (ten days of cold exposure after 3 weeks of MCT injection). Hemodynamic parameters, right ventricle (RV) hypertrophy, and pulmonary arterial medial wall thickness were determined. IL-1β, IL-6, and TNF-α levels were determined using western blotting. miR-21-5p and -3p, miR-146a-5p and -3p, and miR-155-5p and -3p and plasma extracellular vesicles (EVs) and mRNA expression of Cd68, Cd163, Bmpr2, Smad5, Tgfbr2, and Smad3 were determined using RT-qPCR. RESULTS The MCT + Cold group had aggravated RV hypertrophy hemodynamic parameters, and pulmonary arterial medial wall thickness. In lungs of the MCT + Cold, group the protein levels of TNF-α, IL-1β, and IL-6 were higher than those in the MCT group. The mRNA expression of Cd68 and Cd163 were higher in the MCT + Cold group. miR-146a-5p and miR-155-5p levels were higher in the plasma EVs and lungs of the MCT + Cold group. Cold exposure promoted a greater decrease in miR-21-5p, Bmpr2, Smad5, Tgfbr2, and Smad3 mRNA expression in lungs of the MCT + Cold group. CONCLUSION Cold exposure aggravates MCT-induced PAH with an increase in inflammatory marker and miRNA levels in the plasma EVs and lungs.
Collapse
Affiliation(s)
- José L Sánchez-Gloria
- Sección de Estudios de posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Adrián Henández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico city 09340, Mexico
| | | | - Julio Sandoval
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Fausto Sánchez
- DPAA, Universidad Autónoma Metropolitana-Xochimilco, Mexico city 04960, Mexico
| | - I Rubio-Gayosso
- Sección de Estudios de posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| |
Collapse
|
50
|
The role of immune cells in pulmonary hypertension: Focusing on macrophages. Hum Immunol 2021; 83:153-163. [PMID: 34844784 DOI: 10.1016/j.humimm.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
Pulmonary hypertension (PH) is a life-threatening pathological state with elevated pulmonary arterial pressure, resulting in right ventricular failure and heart functional failure. Analyses of human samples and rodent models of pH support the infiltration of various immune cells, including neutrophils, mast cells, dendritic cells, B-cells, T-cells, and natural killer cells, to the lungs and pulmonary perivascular regions and their involvement in the PH development. There is evidence that macrophages are presented in the pulmonary lesions of pH patients as first-line myeloid leucocytes. Macrophage accumulation and presence, both M1 and M2 phenotypes, is a distinctive hallmark of pH which plays a pivotal role in pulmonary artery remodeling through various cellular and molecular interactions and mechanisms, including CCL2 and CX3CL1 chemokines, adventitial fibroblasts, glucocorticoid-regulated kinase 1 (SGK1), crosstalk with other immune cells, leukotriene B4 (LTB4), bone morphogenetic protein receptor 2 (BMPR2), macrophage migration inhibitory factor (MIF), and thrombospondin-1 (TSP-1). In this paper, we reviewed the molecular mechanisms and the role of immune cells and responses are involved in PH development. We also summarized the polarization of macrophages in response to different stimuli and their pathological role and their infiltration in the lung of pH patients and animal models.
Collapse
|