1
|
Guo F, Zhang P, Do V, Runge J, Zhang K, Han Z, Deng S, Lin H, Ali ST, Chen R, Guo Y, Tian L. Ozone as an environmental driver of influenza. Nat Commun 2024; 15:3763. [PMID: 38704386 PMCID: PMC11069565 DOI: 10.1038/s41467-024-48199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Under long-standing threat of seasonal influenza outbreaks, it remains imperative to understand the drivers of influenza dynamics which can guide mitigation measures. While the role of absolute humidity and temperature is extensively studied, the possibility of ambient ozone (O3) as an environmental driver of influenza has received scant attention. Here, using state-level data in the USA during 2010-2015, we examined such research hypothesis. For rigorous causal inference by evidence triangulation, we applied 3 distinct methods for data analysis: Convergent Cross Mapping from state-space reconstruction theory, Peter-Clark-momentary-conditional-independence plus as graphical modeling algorithms, and regression-based Generalised Linear Model. The negative impact of ambient O3 on influenza activity at 1-week lag is consistently demonstrated by those 3 methods. With O3 commonly known as air pollutant, the novel findings here on the inhibition effect of O3 on influenza activity warrant further investigations to inform environmental management and public health protection.
Collapse
Affiliation(s)
- Fang Guo
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China
| | - Pei Zhang
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China
| | - Vivian Do
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jakob Runge
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Datenwissenschaften, Jena, Germany
- Technische Universität Berlin, Berlin, Germany
| | - Kun Zhang
- Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
- Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
| | - Zheshen Han
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China
| | - Shenxi Deng
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China
| | - Hongli Lin
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China
| | - Sheikh Taslim Ali
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science Park, New Territories, Hong Kong SAR, PR China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, PR China.
| |
Collapse
|
2
|
Nouri HR, Schaunaman N, Kraft M, Li L, Numata M, Chu HW. Tollip deficiency exaggerates airway type 2 inflammation in mice exposed to allergen and influenza A virus: role of the ATP/IL-33 signaling axis. Front Immunol 2023; 14:1304758. [PMID: 38124753 PMCID: PMC10731025 DOI: 10.3389/fimmu.2023.1304758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.
Collapse
Affiliation(s)
- Hamid Reza Nouri
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | | | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Liwu Li
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
3
|
Griffith JW, Faustino LD, Cottrell VI, Nepal K, Hariri LP, Chiu RSY, Jones MC, Julé A, Gabay C, Luster AD. Regulatory T cell-derived IL-1Ra suppresses the innate response to respiratory viral infection. Nat Immunol 2023; 24:2091-2107. [PMID: 37945820 DOI: 10.1038/s41590-023-01655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Regulatory T (Treg) cell modulation of adaptive immunity and tissue homeostasis is well described; however, less is known about Treg cell-mediated regulation of the innate immune response. Here we show that deletion of ST2, the receptor for interleukin (IL)-33, on Treg cells increased granulocyte influx into the lung and increased cytokine production by innate lymphoid and γδ T cells without alteration of adaptive immunity to influenza. IL-33 induced high levels of the interleukin-1 receptor antagonist (IL-1Ra) in ST2+ Treg cells and deletion of IL-1Ra in Treg cells increased granulocyte influx into the lung. Treg cell-specific deletion of ST2 or IL-1Ra improved survival to influenza, which was dependent on IL-1. Adventitial fibroblasts in the lung expressed high levels of the IL-1 receptor and their chemokine production was suppressed by Treg cell-produced IL-1Ra. Thus, we define a new pathway where IL-33-induced IL-1Ra production by tissue Treg cells suppresses IL-1-mediated innate immune responses to respiratory viral infection.
Collapse
Affiliation(s)
- Jason W Griffith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas D Faustino
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria I Cottrell
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keshav Nepal
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca Suet-Yan Chiu
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael C Jones
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amélie Julé
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cem Gabay
- Division of Rheumatology, University Hospitals of Geneva and University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Alvarez F, Istomine R, Da Silva Lira Filho A, Al-Aubodah TA, Huang D, Okde R, Olivier M, Fritz JH, Piccirillo CA. IL-18 is required for the T H1-adaptation of T REG cells and the selective suppression of T H17 responses in acute and chronic infections. Mucosal Immunol 2023; 16:462-475. [PMID: 37182738 DOI: 10.1016/j.mucimm.2023.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Interleukin (IL)-18, a member of the IL-1 family of alarmins, is abundantly released in the lungs following influenza A (IAV) infections yet its role in orchestrating the local adaptive immune response remains ill defined. Through genetic disruption of the IL-18 receptor, we demonstrate that IL-18 not only promotes pulmonary TH1 responses but also influences regulatory T cells (TREG) function in the infected lungs. As the response unfolds, TREG cells accumulating in the lungs express Helios, T-bet, CXCR3, and IL-18R1 and produce interferon γ in the presence of IL-12. During IAV, IL-18R1 is required for TREG cells to control TH17, but not TH1, responses and promote a return to lung homeostasis, revealing a novel mechanism of selective suppression. Moreover, this observation was not limited to the lungs, as skin-localized TREG cells require an IL-18 signal to specifically suppress IL-17A production by TH17 and γδ T cells in a model of chronic cutaneous Leishmania major infection. Overall, these results uncover how IL-18 orchestrates the tissue adaptation of TREG cells to selectively favor TH1 over TH17 responses during TH1-driven immune responses and provide a novel perspective into how IL-18 dictates the immune response during viral and parasitic infections.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | | | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Daniel Huang
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Rakan Okde
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada; McGill University Research Centre on Complex Traits (MRCCT), Montréal, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada; McGill University Research Centre on Complex Traits (MRCCT), Montréal, Canada.
| |
Collapse
|
5
|
Miller RAJ, Williams AP, Kovats S. Sex chromosome complement and sex steroid signaling underlie sex differences in immunity to respiratory virus infection. Front Pharmacol 2023; 14:1150282. [PMID: 37063266 PMCID: PMC10097973 DOI: 10.3389/fphar.2023.1150282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Epidemiological studies have revealed sex differences in the incidence and morbidity of respiratory virus infection in the human population, and often these observations are correlated with sex differences in the quality or magnitude of the immune response. Sex differences in immunity and morbidity also are observed in animal models of respiratory virus infection, suggesting differential dominance of specific immune mechanisms. Emerging research shows intrinsic sex differences in immune cell transcriptomes, epigenomes, and proteomes that may regulate human immunity when challenged by viral infection. Here, we highlight recent research into the role(s) of sex steroids and X chromosome complement in immune cells and describe how these findings provide insight into immunity during respiratory virus infection. We focus on the regulation of innate and adaptive immune cells by receptors for androgen and estrogens, as well as genes with a propensity to escape X chromosome inactivation. A deeper mechanistic knowledge of these pathways will help us to understand the often significant sex differences in immunity to endemic or pandemic respiratory pathogens such as influenza viruses, respiratory syncytial viruses and pathogenic coronaviruses.
Collapse
Affiliation(s)
- Reegan A. J. Miller
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Abigael P. Williams
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Stephenson KE, Porte J, Kelly A, Wallace WA, Huntington CE, Overed-Sayer CL, Cohen ES, Jenkins RG, John AE. The IL-33:ST2 axis is unlikely to play a central fibrogenic role in idiopathic pulmonary fibrosis. Respir Res 2023; 24:89. [PMID: 36949463 PMCID: PMC10035257 DOI: 10.1186/s12931-023-02334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/18/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease (ILD) with limited treatment options. Interleukin-33 (IL-33) is proposed to play a role in the development of IPF however the exclusive use of prophylactic dosing regimens means that the therapeutic benefit of targeting this cytokine in IPF is unclear. METHODS IL-33 expression was assessed in ILD lung sections and human lung fibroblasts (HLFs) by immunohistochemistry and gene/protein expression and responses of HLFs to IL-33 stimulation measured by qPCR. In vivo, the fibrotic potential of IL-33:ST2 signalling was assessed using a murine model of bleomycin (BLM)-induced pulmonary fibrosis and therapeutic dosing with an ST2-Fc fusion protein. Lung and bronchoalveolar lavage fluid were collected for measurement of inflammatory and fibrotic endpoints. Human precision-cut lung slices (PCLS) were stimulated with transforming growth factor-β (TGFβ) or IL-33 and fibrotic readouts assessed. RESULTS IL-33 was expressed by fibrotic fibroblasts in situ and was increased by TGFβ treatment in vitro. IL-33 treatment of HLFs did not induce IL6, CXCL8, ACTA2 and COL1A1 mRNA expression with these cells found to lack the IL-33 receptor ST2. Similarly, IL-33 stimulation had no effect on ACTA2, COL1A1, FN1 and fibronectin expression by PCLS. Despite having effects on inflammation suggestive of target engagement, therapeutic dosing with the ST2-Fc fusion protein failed to reduce BLM-induced fibrosis measured by hydroxyproline content or Ashcroft score. CONCLUSIONS Together these findings suggest the IL-33:ST2 axis does not play a central fibrogenic role in the lungs with therapeutic blockade of this pathway unlikely to surpass the current standard of care for IPF.
Collapse
Affiliation(s)
- Katherine E Stephenson
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK.
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| | - Joanne Porte
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK
| | - Aoife Kelly
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Catherine L Overed-Sayer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, Imperial College London, London, UK
- Interstitial lung disease unit, Royal Brompton Hospital, London, UK
| | - Alison E John
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, Imperial College London, London, UK
| |
Collapse
|
7
|
Xiong X, Wei Y, Lam HCY, Wong CKH, Lau SYF, Zhao S, Ran J, Li C, Jiang X, Yue Q, Cheng W, Wang H, Wang Y, Chong KC. Association between cold weather, influenza infection, and asthma exacerbation in adults in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159362. [PMID: 36240934 DOI: 10.1016/j.scitotenv.2022.159362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Despite a conspicuous exacerbation of asthma among patients hospitalized due to influenza infection, no study has attempted previously to elucidate the relationship between environmental factors, influenza activity, and asthma simultaneously in adults. In this study, we examined this relationship using population-based hospitalization records over 22 years. Daily numbers of hospitalizations due to asthma in adults of 41 public hospitals in Hong Kong during 1998-2019 were obtained. The data were matched with meteorological records and air pollutant concentrations. We used type-specific and all-type influenza-like illness plus (ILI+) rates as proxies for seasonal influenza activity. Quasi-Poisson generalized additive models together with distributed-lag non-linear models were used to examine the association. A total of 212,075 hospitalization episodes due to asthma were reported over 22 years. The cumulative adjusted relative risk (ARR) of asthma hospitalizations reached 1.15 (95 % confidence interval [CI], 1.12-1.18) when the ILI+ total rate increased from zero to 20.01 per 1000 consultations. Compared with the median temperature, a significantly increased risk of asthma hospitalization (cumulative ARR = 1.10, 95 % CI, 1.05-1.15) was observed at the 5th percentile of temperature (i.e., 14.6 °C). Of the air pollutants, oxidant gas was significantly associated with asthma, but only at its extreme level of concentrations. In conclusion, cold conditions and influenza activities are risk factors to asthma exacerbation in adult population. Influenza-related asthma exacerbation that appeared to be more common in the warm and hot season, is likely to be attributable to influenza A/H3N2. The heavy influence of both determinants on asthma activity implies that climate change may complicate the asthma burden.
Collapse
Affiliation(s)
- Xi Xiong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong
| | - Holly Ching Yu Lam
- National Heart & Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong; Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong
| | - Steven Yuk Fai Lau
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Shi Zhao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Qianying Yue
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang province, China
| | - Huwen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong; Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong; Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
8
|
IL-33 Induces an Antiviral Signature in Mast Cells but Enhances Their Permissiveness for Human Rhinovirus Infection. Viruses 2022; 14:v14112430. [PMID: 36366528 PMCID: PMC9699625 DOI: 10.3390/v14112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) are classically associated with allergic asthma but their role in antiviral immunity is unclear. Human rhinoviruses (HRVs) are a major cause of asthma exacerbations and can infect and replicate within MCs. The primary site of HRV infection is the airway epithelium and MCs localise to this site with increasing asthma severity. The asthma susceptibility gene, IL-33, encodes an epithelial-derived cytokine released following HRV infection but its impact on MC antiviral responses has yet to be determined. In this study we investigated the global response of LAD2 MCs to IL-33 stimulation using RNA sequencing and identified genes involved in antiviral immunity. In spite of this, IL-33 treatment increased permissiveness of MCs to HRV16 infection which, from the RNA-Seq data, we attributed to upregulation of ICAM1. Flow cytometric analysis confirmed an IL-33-dependent increase in ICAM1 surface expression as well as LDLR, the receptors used by major and minor group HRVs for cellular entry. Neutralisation of ICAM1 reduced the IL-33-dependent enhancement in HRV16 replication and release in both LAD2 MCs and cord blood derived MCs. These findings demonstrate that although IL-33 induces an antiviral signature in MCs, it also upregulates the receptors for HRV entry to enhance infection. This highlights the potential for a gene-environment interaction involving IL33 and HRV in MCs to contribute to virus-induced asthma exacerbations.
Collapse
|
9
|
Combined IgE neutralization and Bifidobacterium longum supplementation reduces the allergic response in models of food allergy. Nat Commun 2022; 13:5669. [PMID: 36167830 PMCID: PMC9515155 DOI: 10.1038/s41467-022-33176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
IgE is central to the development of allergic diseases, and its neutralization alleviates allergic symptoms. However, most of these antibodies are based on IgG1, which is associated with an increased risk of fragment crystallizable-mediated side effects. Moreover, omalizumab, an anti-IgE antibody approved for therapeutic use, has limited benefits for patients with high IgE levels. Here, we assess a fusion protein with extracellular domain of high affinity IgE receptor, FcεRIα, linked to a IgD/IgG4 hybrid Fc domain we term IgETRAP, to reduce the risk of IgG1 Fc-mediated side effects. IgETRAP shows enhanced IgE binding affinity compared to omalizumab. We also see an enhanced therapeutic effect of IgETRAP in food allergy models when combined with Bifidobacterium longum, which results in mast cell number and free IgE levels. The combination of IgETRAP and B. longum may therefore represent a potent treatment for allergic patients with high IgE levels. IgE is a critical component of the allergic response and therapeutic targeting can alleviate symptomology. Here the authors propose the combined use of Bifidobacterium longum and a FcεRIα extracellular domain linked to a IgD/IgG4 hybrid Fc domain fusion protein called IgETRAP and show reduction of mast cell and IgE levels in models of food allergy.
Collapse
|
10
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
11
|
Mahooti M, Abdolalipour E, Farahmand B, Shirian S, Ghaemi A. Immunomodulatory effects of probiotic Lactobacillus casei on GM-CSF-adjuvanted influenza DNA vaccine. Future Virol 2022. [DOI: 10.2217/fvl-2021-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study investigates the protective efficacy of influenza DNA vaccine combined with a granulocyte macrophage-colony stimulating factor (GM-CSF) adjuvant, and probiotic Lactobacillus casei, an oral immunomodulator, in a BALB/c mice. Materials & methods: The mice were immunized with HA1 DNA vaccine along with GM-CSF and probiotic twice within a one-week interval. Results: The results showed that both adjuvants exert a synergistic effect in enhancing the humoral and cellular immune responses of the DNA vaccine. This combination also deceased IL-6 and IL-17A levels in the lung homogenates. The protection patterns were closely associated with influenza virus-specific splenocyte proliferative and serum IgG antibody (Ab) responses. Conclusion: The Findings demonstrate L. casei modulate balanced Th1/Th2 immune responses toward HA1 DNA vaccine adjuvanted by GM-CSF.
Collapse
Affiliation(s)
- Mehran Mahooti
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
- Department of Biotechnology, Iranian Research Organization for Science & Technology, Tehran, Iran
| | - Elahe Abdolalipour
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrokh Farahmand
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Amir Ghaemi
- Department of Influenza & other respiratory viruses, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
12
|
Schaunaman N, Dimasuay KG, Cervantes D, Li L, Numata M, Kraft M, Chu HW. Tollip Inhibits IL-33 Release and Inflammation in Influenza A Virus-Infected Mouse Airways. J Innate Immun 2022; 15:67-77. [PMID: 35760043 PMCID: PMC10643888 DOI: 10.1159/000525315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Respiratory influenza A virus (IAV) infection continues to pose significant challenges in healthcare of human diseases including asthma. IAV infection in mice was shown to increase IL-33, a key cytokine in driving airway inflammation in asthma, but how IL-33 is regulated during viral infection remains unclear. We previously found that a genetic mutation in Toll-interacting protein (Tollip) was linked to less airway epithelial Tollip expression, increased neutrophil chemokines, and lower lung function in asthma patients. As Tollip is involved in maintaining mitochondrial function, and mitochondrial stress may contribute to extracellular ATP release and IL-33 secretion, we hypothesized that Tollip downregulates IL-33 secretion via inhibiting ATP release during IAV infection. Wild-type and Tollip knockout (KO) mice were infected with IAV and treated with either an ATP converter apyrase or an IL-33 decoy receptor soluble ST2 (sST2). KO mice significantly lost more body weight and had increased extracellular ATP, IL-33 release, and neutrophilic inflammation. Apyrase treatment reduced extracellular ATP levels, IL-33 release, and neutrophilic inflammation in Tollip KO mice. Excessive lung neutrophilic inflammation in IAV-infected Tollip KO mice was reduced by sST2, which was coupled with less IL-33 release. Our data suggest that Tollip inhibits IAV infection, potentially by inhibiting extracellular ATP release and reducing IL-33 activation and lung inflammation. In addition, sST2 may serve as a potential therapeutic approach to mitigate respiratory viral infection in human subjects with Tollip deficiency.
Collapse
Affiliation(s)
| | | | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Monica Kraft
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
13
|
Murdaca G, Paladin F, Tonacci A, Borro M, Greco M, Gerosa A, Isola S, Allegra A, Gangemi S. Involvement of IL-33 in the Pathogenesis and Prognosis of Major Respiratory Viral Infections: Future Perspectives for Personalized Therapy. Biomedicines 2022; 10:biomedicines10030715. [PMID: 35327516 PMCID: PMC8944994 DOI: 10.3390/biomedicines10030715] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-33 is a key cytokine involved in type-2 immunity and allergic airway disease. At the level of lung epithelial cells, where it is clearly expressed, IL-33 plays an important role in both innate and adaptive immune responses in mucosal organs. It has been widely demonstrated that in the course of respiratory virus infections, the release of IL-33 increases, with consequent pro-inflammatory effects and consequent exacerbation of the clinical symptoms of chronic respiratory diseases. In our work, we analyzed the pathogenetic and prognostic involvement of IL-33 during the main respiratory viral infections, with particular interest in the recent SARS-CoV-2 virus pandemic and the aim of determining a possible connection point on which to act with a targeted therapy that is able to improve the clinical outcome of patients.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
- Correspondence:
| | - Francesca Paladin
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Matteo Borro
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.B.); (M.G.)
| | - Monica Greco
- Internal Medicine Department, San Paolo Hospital, 17100 Savona, Italy; (M.B.); (M.G.)
| | - Alessandra Gerosa
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.P.); (A.G.)
| | - Stefania Isola
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (S.I.); (S.G.)
| |
Collapse
|
14
|
Wu X, Kasmani MY, Zheng S, Khatun A, Chen Y, Winkler W, Zander R, Burns R, Taparowsky EJ, Sun J, Cui W. BATF promotes group 2 innate lymphoid cell-mediated lung tissue protection during acute respiratory virus infection. Sci Immunol 2022; 7:eabc9934. [PMID: 35030033 DOI: 10.1126/sciimmunol.abc9934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy Winkler
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
16
|
Chavez J, Hai R. Effects of Cigarette Smoking on Influenza Virus/Host Interplay. Pathogens 2021; 10:pathogens10121636. [PMID: 34959590 PMCID: PMC8704216 DOI: 10.3390/pathogens10121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoking has been shown to increase the risk of respiratory infection, resulting in the exacerbation of infectious disease outcomes. Influenza viruses are a major respiratory viral pathogen, which are responsible for yearly epidemics that result in between 20,000 and 50,000 deaths in the US alone. However, there are limited general summaries on the impact of cigarette smoking on influenza pathogenic outcomes. Here, we will provide a systematic summarization of the current understanding of the interplay of smoking and influenza viral infection with a focus on examining how cigarette smoking affects innate and adaptive immune responses, inflammation levels, tissues that contribute to systemic chronic inflammation, and how this affects influenza A virus (IAV) disease outcomes. This summarization will: (1) help to clarify the conflict in the reports on viral pathogenicity; (2) fill knowledge gaps regarding critical anti-viral defenses such as antibody responses to IAV; and (3) provide an updated understanding of the underlying mechanism behind how cigarette smoking influences IAV pathogenicity.
Collapse
|
17
|
Rozario C, Martínez-Sobrido L, McSorley HJ, Chauché C. Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses 2021; 13:2519. [PMID: 34960788 PMCID: PMC8704309 DOI: 10.3390/v13122519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.
Collapse
Affiliation(s)
- Christoforos Rozario
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| | | | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Wellcome Trust Building, Dow Street, Dundee DD1 5EH, UK;
| | - Caroline Chauché
- Centre for Inflammation Research, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4TJ, UK;
| |
Collapse
|
18
|
Vu LD, Phan ATQ, Hijano DR, Siefker DT, Tillman H, Cormier SA. IL-1β Promotes Expansion of IL-33+ Lung Epithelial Stem Cells Following RSV Infection During Infancy. Am J Respir Cell Mol Biol 2021; 66:312-322. [PMID: 34861136 DOI: 10.1165/rcmb.2021-0313oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV)-induced immunopathogenesis and disease severity in neonatal mice and human infants have been related to elevated pulmonary IL-33. Thus, targeting IL-33 has been suggested as a potential therapy for respiratory viral infections. Yet, the regulatory mechanisms on IL-33 during early life remain unclear. Here, using a neonatal mouse model of RSV, we demonstrate that IL-1β positively regulates but is not required for RSV-induced expression of pulmonary IL-33 in neonatal mice early after the initial infection. Exogenous IL-1β upregulates RSV-induced IL-33 expression by promoting the proliferation of IL-33pos lung epithelial stem/progenitor cells (EpiSPC). These cells are exclusively detected in RSV-infected neonatal rather than adult mice, partially explaining the IL-1β-independent IL-33 expression in RSV-infected adult mice. Furthermore, IL-1β aggravates IL-33 mediated Th2 biased immunopathogenesis upon reinfection. Collectively, our study demonstrates that IL-1β exacerbates IL-33 mediated RSV immunopathogenesis by promoting the proliferation of IL-33pos EpiSPC in early life.
Collapse
Affiliation(s)
- Luan D Vu
- Louisiana State University College of Science, 124525, Biological Sciences, Baton Rouge, Louisiana, United States
| | - Anh T Q Phan
- Louisiana State University College of Science, 124525, Biological Sciences, Baton Rouge, Louisiana, United States
| | - Diego R Hijano
- St Jude Children's Research Hospital, 5417, Department of Infectious Diseases,, Memphis, Tennessee, United States
| | - David T Siefker
- Louisiana State University, 5779, Department of Biological Sciences, Baton Rouge, Louisiana, United States
| | - Heather Tillman
- St Jude Children's Research Hospital, 5417, Department of Infectious Diseases,, Memphis, Tennessee, United States
| | - Stephania A Cormier
- Louisiana State University and A&M College, 5779, Biological Sciences, Baton Rouge, Louisiana, United States;
| |
Collapse
|
19
|
Li C, Yu T, Shi X, Yu J. Interleukin-33 Reinvigorates Antiviral Function of Viral-Specific CD8 + T Cells in Chronic Hepatitis B Virus Infection. Viral Immunol 2021; 35:41-49. [PMID: 34818081 DOI: 10.1089/vim.2021.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Restoration of exhausted hepatitis B virus (HBV)-specific CD8+ T cells is one of the important strategies for inhibition of viral replication. The role of interleukin (IL)-33 to recovery of CD8+ T cell activity is not fully elucidated. We investigated the effect of IL-33 on viral-specific CD8+ T cell responses in chronic hepatitis B (CHB) patients in vitro by both phenotypic and functional analysis. Plasma IL-33 was downregulated in CHB patients, while effective antiviral therapy rescued IL-33 expression. There was no significant difference of IL-33 receptor mRNA relative level in CD8+ T cells between CHB patients and controls. IL-33 induced the proliferation of HBV-specific CD8+ T cells, and reduced programmed death-1 expression on HBV-specific CD8+ T cells. IL-33 promoted the direct cytolytic activity of CD8+ T cells against HepG2.2.15 cells through boosting perforin and granzyme B production. Furthermore, IL-33 administration increased HBV-specific CD8+ T cell-mediated HBV replication and HBV antigen secretion mainly via enhancement of interferon-γ and tumor necrosis factor-α. IL-33 reinvigorated antiviral activity of HBV-specific CD8+ T cells, revealing that IL-33 might contribute to viral clearance in persistent HBV infection.
Collapse
Affiliation(s)
- Chao Li
- The First Operating Room, First Hospital of Jilin University, Changchun, China
| | - Tao Yu
- Neurosurgical Intensive Care Unit, First Hospital of Jilin University, Changchun, China
| | - Xiaoju Shi
- Hepatobiliary Pancreatic Department, First Hospital of Jilin University, Changchun, China
| | - Jing Yu
- The First Operating Room, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
The Interleukin-33-Group 2 Innate Lymphoid Cell Axis Represents a Potential Adjuvant Target To Increase the Cross-Protective Efficacy of Influenza Vaccine. J Virol 2021; 95:e0059821. [PMID: 34468174 DOI: 10.1128/jvi.00598-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interleukin-33 (IL-33) is a multifunctional cytokine that mediates type 2-dominated immune responses. In contrast, the role of IL-33 during viral vaccination, which often aims to induce type 1 immunity, has not been fully investigated. Here, we examined the effects of IL-33 on influenza vaccine responses. We found that intranasal coadministration of IL-33 with an inactivated influenza virus vaccine increases vaccine efficacy against influenza virus infection, not only with the homologous strain but also with heterologous strains, including the 2009 H1N1 influenza virus pandemic strain. Cross-protection was dependent on group 2 innate lymphoid cells (ILC2s), as the beneficial effect of IL-33 on vaccine efficacy was abrogated in ILC2-deficient C57BL/6 Il7rCre/+ Rorafl/fl mice. Furthermore, mechanistic studies revealed that IL-33-activated ILC2s potentiate vaccine efficacy by enhancing mucosal humoral immunity, particularly IgA responses, potentially in a Th2 cytokine-dependent manner. Our results demonstrate that IL-33-mediated activation of ILC2s is a critical early event that is important for the induction of mucosal humoral immunity, which in turn is responsible for cross-strain protection against influenza. Thus, we reveal a previously unrecognized role for the IL-33-ILC2 axis in establishing broadly protective and long-lasting humoral mucosal immunity against influenza, knowledge that may help in the development of a universal influenza vaccine. IMPORTANCE Current influenza vaccines, although capable of protecting against predicted viruses/strains included in the vaccine, are inept at providing cross-protection against emerging/novel strains. Thus, we are in critical need of a universal vaccine that can protect against a wide range of influenza viruses. Our novel findings show that a mucosal vaccination strategy involving the activation of lung ILC2s is highly effective in eliciting cross-protective humoral immunity in the lungs. This suggests that the biology of lung ILC2s can be exploited to increase the cross-reactivity of commercially available influenza subunit vaccines.
Collapse
|
21
|
Sánchez-Marteles M, Rubio-Gracia J, Peña-Fresneda N, Garcés-Horna V, Gracia-Tello B, Martínez-Lostao L, Crespo-Aznárez S, Pérez-Calvo JI, Giménez-López I. Early Measurement of Blood sST2 Is a Good Predictor of Death and Poor Outcomes in Patients Admitted for COVID-19 Infection. J Clin Med 2021; 10:3534. [PMID: 34441830 PMCID: PMC8396994 DOI: 10.3390/jcm10163534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 01/08/2023] Open
Abstract
Although several biomarkers have shown correlation to prognosis in COVID-19 patients, their clinical value is limited because of lack of specificity, suboptimal sensibility or poor dynamic behavior. We hypothesized that circulating soluble ST2 (sST2) could be associated to a worse outcome in COVID-19. In total, 152 patients admitted for confirmed COVID-19 were included in a prospective non-interventional, observational study. Blood samples were drawn at admission, 48-72 h later and at discharge. sST2 concentrations and routine blood laboratory were analyzed. Primary endpoints were admission at intensive care unit (ICU) and mortality. Median age was 57.5 years [Standard Deviation (SD: 12.8)], 60.4% males. 10% of patients (n = 15) were derived to ICU and/or died during admission. Median (IQR) sST2 serum concentration (ng/mL) rose to 53.1 (30.9) at admission, peaked at 48-72 h (79.5(64)) and returned to admission levels at discharge (44.9[36.7]). A concentration of sST2 above 58.9 ng/mL was identified patients progressing to ICU admission or death. Results remained significant after multivariable analysis. The area under the receiver operating characteristics curve (AUC) of sST2 for endpoints was 0.776 (p = 0.001). In patients admitted for COVID-19 infection, early measurement of sST2 was able to identify patients at risk of severe complications or death.
Collapse
Affiliation(s)
- Marta Sánchez-Marteles
- Department of Internal Medicine, Hospital Clínico Universitario, Lozano Blesa, 50009 Zaragoza, Spain; (J.R.-G.); (V.G.-H.); (B.G.-T.); (S.C.-A.); (J.I.P.-C.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
| | - Jorge Rubio-Gracia
- Department of Internal Medicine, Hospital Clínico Universitario, Lozano Blesa, 50009 Zaragoza, Spain; (J.R.-G.); (V.G.-H.); (B.G.-T.); (S.C.-A.); (J.I.P.-C.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
| | - Natacha Peña-Fresneda
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
- Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
| | - Vanesa Garcés-Horna
- Department of Internal Medicine, Hospital Clínico Universitario, Lozano Blesa, 50009 Zaragoza, Spain; (J.R.-G.); (V.G.-H.); (B.G.-T.); (S.C.-A.); (J.I.P.-C.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
| | - Borja Gracia-Tello
- Department of Internal Medicine, Hospital Clínico Universitario, Lozano Blesa, 50009 Zaragoza, Spain; (J.R.-G.); (V.G.-H.); (B.G.-T.); (S.C.-A.); (J.I.P.-C.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
- Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
- Department of Immunology, Hospital Clínico Universitario, Lozano Blesa, 50009 Zaragoza, Spain
| | - Silvia Crespo-Aznárez
- Department of Internal Medicine, Hospital Clínico Universitario, Lozano Blesa, 50009 Zaragoza, Spain; (J.R.-G.); (V.G.-H.); (B.G.-T.); (S.C.-A.); (J.I.P.-C.)
| | - Juan Ignacio Pérez-Calvo
- Department of Internal Medicine, Hospital Clínico Universitario, Lozano Blesa, 50009 Zaragoza, Spain; (J.R.-G.); (V.G.-H.); (B.G.-T.); (S.C.-A.); (J.I.P.-C.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
- Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
| | - Ignacio Giménez-López
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (N.P.-F.); (L.M.-L.); (I.G.-L.)
- Facultad de Medicina, University of Zaragoza, 50009 Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| |
Collapse
|
22
|
Shastri MD, Allam VSRR, Shukla SD, Jha NK, Paudel KR, Peterson GM, Patel RP, Hansbro PM, Chellappan DK, Dua K. Interleukin-13: A pivotal target against influenza-induced exacerbation of chronic lung diseases. Life Sci 2021; 283:119871. [PMID: 34352260 DOI: 10.1016/j.lfs.2021.119871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/17/2022]
Abstract
Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia.
| | | | - Shakti D Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, UP, India
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
23
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
24
|
Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, Theess W, Yang X, Staton TL, Choy DF, Fong A, Dash A, Dolton M, Pappu R, Brightling CE. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J Allergy Clin Immunol 2021; 148:790-798. [PMID: 33872652 DOI: 10.1016/j.jaci.2021.03.044] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The IL-33/ST2 pathway is linked with asthma susceptibility. Inhaled allergens, pollutants, and respiratory viruses, which trigger asthma exacerbations, induce release of IL-33, an epithelial-derived "alarmin." Astegolimab, a human IgG2 mAb, selectively inhibits the IL-33 receptor, ST2. Approved biologic therapies for severe asthma mainly benefit patients with elevated blood eosinophils (type 2-high), but limited options are available for patients with low blood eosinophils (type 2-low). Inhibiting IL-33 signaling may target pathogenic pathways in a wider spectrum of asthmatics. OBJECTIVES This study evaluated astegolimab efficacy and safety in patients with severe asthma. METHODS This double-blind, placebo-controlled, dose-ranging study (ZENYATTA [A Study to Assess the Efficacy and Safety of MSTT1041A in Participants With Uncontrolled Severe Asthma]) randomized 502 adults with severe asthma to subcutaneous placebo or 70-mg, 210-mg, or 490-mg doses of astegolimab every 4 weeks. The primary endpoint was the annualized asthma exacerbation rate (AER) at week 54. Enrollment caps ensured ∼30 patients who were eosinophil-high (≥300 cells/μL) and ∼95 patients who were eosinophil-low (<300 cells/μL) per arm. RESULTS Overall, adjusted AER reductions relative to placebo were 43% (P = .005), 22% (P = .18), and 37% (P = .01) for 490-mg, 210-mg, and 70-mg doses of astegolimab, respectively. Adjusted AER reductions for patients who were eosinophil-low were comparable to reductions in the overall population: 54% (P = .002), 14% (P = .48), and 35% (P = .05) for 490-mg, 210-mg, and 70-mg doses of astegolimab. Adverse events were similar in astegolimab- and placebo-treated groups. CONCLUSIONS Astegolimab reduced AER in a broad population of patients, including those who were eosinophil-low, with inadequately controlled, severe asthma. Astegolimab was safe and well tolerated.
Collapse
Affiliation(s)
- Steven G Kelsen
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pa
| | - Ioana O Agache
- Allergy and Clinical Immunology, Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Weily Soong
- Alabama Allergy and Asthma Center and Clinical Research Center of Alabama, Birmingham, Ala
| | - Elliot Israel
- Divisions of Pulmonary and Critical Care Medicine and Allergy and Immunology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Mass
| | - Geoffrey L Chupp
- Division of Pulmonary and Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Conn
| | | | | | | | | | | | - Alice Fong
- Genentech, Inc., South San Francisco, Calif
| | - Ajit Dash
- Genentech, Inc., South San Francisco, Calif
| | | | | | | |
Collapse
|
25
|
Hu P, Ming B, Wu X, Cai S, Tang J, Dong Y, Zhou T, Tan Z, Zhong J, Zheng F, Dong L. Intratracheal Poly(I:C) Exposure Accelerates the Immunological Disorder of Salivary Glands in Sjogren's-Like NOD/ShiLtJ Mice. Front Med (Lausanne) 2021; 8:645816. [PMID: 33928105 PMCID: PMC8076562 DOI: 10.3389/fmed.2021.645816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/22/2021] [Indexed: 12/02/2022] Open
Abstract
Evidences have suggested that Sjogren's syndrome (SS) is associated with viral infection. The aim of this study was to investigate the involvement of respiratory viral poly(I:C) in the pathogenesis of SS and potential mechanisms using a SS-like NOD/ShiLtJ (NOD) mouse model. 5-week female NOD mice were intratracheally administered poly(I:C) every other day for 5 times to mimic viral infection. Pilocarpine induced saliva secretion was determined every 8 days. Submandibular glands (SMG) and lungs were harvested for the detection of pathological changes. We found that intratracheal administration of poly(I:C) significantly advanced and enhanced the reduction of saliva flow rate in NOD mice. Furthermore, poly(I:C) treatment aggravated the histopathological lesions and inflammatory cells infiltration in SMG. Accompanied by elevated expression of IFN cytokines and IL-33, Th1 activation was enhanced in SMG of poly(I:C)-treated NOD mice, but Th17 cells activation was unchanged among the groups. In addition, intratracheal poly(I:C) exposure promoted the expression of IL-33 and increased T cells proportion in the lung, which were consistent with the change in SMG. Therefore, intratracheal poly(I:C) exposure aggravated the immunological and function disorder of SMG in NOD mice.
Collapse
Affiliation(s)
- Peng Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungen Tang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Zhou
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
A possible role for ST2 as prognostic biomarker for COVID-19. Vascul Pharmacol 2021; 138:106857. [PMID: 33746068 PMCID: PMC7970796 DOI: 10.1016/j.vph.2021.106857] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 is a pandemic illness caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2). It has been estimated that 80% of subject infected are asymptomatic or have mild to moderate symptoms. Differently, in severe cases of COVID-19, cytokine storm, acute respiratory distress syndrome (ARDS), severe systemic inflammatory response and cardiovascular diseases were observed Even if all molecular mechanisms leading to cardiovascular dysfunction in COVID-19 patients remain to be clarified, the evaluation of biomarkers of cardiac injury, stress and inflammation proved to be an excellent tool to identify the COVID-19 patients with worse outcome. However, the number of biomarkers used to manage COVID-19 patients is expected to increase with the increasing knowledge of the pathophysiology of the disease. It is our view that soluble suppressor of tumorigenicity 2 (sST2) can be used as biomarker in COVID-19. sST2 is routinely used as prognostic biomarker in patients with HF. Moreover, high circulating levels of sST2 have also been found in subjects with ARDS, pulmonary fibrosis and sepsis. Keeping in mind these considerations, in this review the possible mechanisms through which the SARS-CoV2 infection could damage the cardiovascular system were summarized and the possible role of sST2 in COVID-19 patients with CVD was discussed.
Collapse
|
27
|
Kumar V. Innate Lymphoid Cells and Adaptive Immune Cells Cross-Talk: A Secret Talk Revealed in Immune Homeostasis and Different Inflammatory Conditions. Int Rev Immunol 2021; 40:217-251. [PMID: 33733998 DOI: 10.1080/08830185.2021.1895145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inflammatory immune response has evolved to protect the host from different pathogens, allergens, and endogenous death or damage-associated molecular patterns. Both innate and adaptive immune components are crucial in inducing an inflammatory immune response depending on the stimulus type and its duration of exposure or the activation of the primary innate immune response. As the source of inflammation is removed, the aggravated immune response comes to its homeostatic level. However, the failure of the inflammatory immune response to subside to its normal level generates chronic inflammatory conditions, including autoimmune diseases and cancer. Innate lymphoid cells (ILCs) are newly discovered innate immune cells, which are present in abundance at mucosal surfaces, including lungs, gastrointestinal tract, and reproductive tract. Also, they are present in peripheral blood circulation, skin, and lymph nodes. They play a crucial role in generating the pro-inflammatory immune response during diverse conditions. On the other hand, adaptive immune cells, including different types of T and B cells are major players in the pathogenesis of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, etc.) and cancers. Thus the article is designed to discuss the immunological role of different ILCs and their interaction with adaptive immune cells in maintaining the immune homeostasis, and during inflammatory autoimmune diseases along with other inflammatory conditions (excluding pathogen-induced inflammation), including cancer, graft-versus-host diseases, and human pregnancy.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Scadding GK, Scadding GW. Innate and Adaptive Immunity: ILC2 and Th2 Cells in Upper and Lower Airway Allergic Diseases. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1851-1857. [PMID: 33618052 DOI: 10.1016/j.jaip.2021.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Advances in our understanding of the immune system, with the recent discovery of a parallel set of innate T lymphocytes, the innate lymphocytes (ILCs), have led to a reassessment of the pathogenesis of allergic and eosinophilic airway disorders, including allergic rhinitis (AR), asthma, and chronic rhinosinusitis with nasal polyps. We review current understanding of both elements of type-2 inflammatory responses and their relative influence in these common conditions and consider possible impacts of this on treatment selection.
Collapse
|
29
|
Zeng Z, Hong XY, Li Y, Chen W, Ye G, Li Y, Luo Y. Serum-soluble ST2 as a novel biomarker reflecting inflammatory status and illness severity in patients with COVID-19. Biomark Med 2020; 14:1619-1629. [PMID: 33336592 DOI: 10.2217/bmm-2020-0410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: The authors studied the role of soluble ST2 (sST2) in COVID-19 and its relationship with inflammatory status and disease severity. Materials & methods: Serum levels of sST2 and interleukin (IL)-33, C-reactive protein (CRP), serum amyloid protein (SAA), IL-6 and procalcitonin (PCT), and T lymphocyte subsets from 80 subjects diagnosed with COVID-19 including 36 mild, 41 severe and three asymptomatic cases were tested. Results: Serum sST2 levels were significantly increased in COVID-19 patients, which were positively correlated with CRP, but negatively correlated with CD4+ and CD8+ T lymphocyte counts. Serum sST2 levels in nonsurviving severe cases were persistently high during disease progression. Conclusion: Serum sST2 level test is helpful for reflecting inflammatory status and illness severity of COVID-19.
Collapse
Affiliation(s)
- Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, 430071, China
| | - Xiao-Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, 430071, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, 430071, China
| | - Guangming Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, 430071, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, 430071, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Hubei, Wuhan, 430071, China
| |
Collapse
|
30
|
Liu S, Li H, Wang Y, Li H, Du S, Zou X, Zhang X, Cao B. High Expression of IL-36γ in Influenza Patients Regulates Interferon Signaling Pathway and Causes Programmed Cell Death During Influenza Virus Infection. Front Immunol 2020; 11:552606. [PMID: 33193319 PMCID: PMC7642405 DOI: 10.3389/fimmu.2020.552606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
As a severe complication of influenza infection, acute respiratory distress syndrome (ARDS) has higher morbidity and mortality. Although IL-36γ has been proven to promote inflammation at epithelial sites and protect against specific pathogen infection, the detailed roles in severe influenza infection remain poorly understood. In this study, we have found that the expression of IL-36γ is higher in influenza-induced ARDS patients than healthy individuals. IL-36γ was induced in human lung epithelial cells and peripheral blood mononuclear cells by Influenza A virus (IAV) infection, and its induction was synergistically correlated with initiation of the cyclooxygenase-2 (COX-2)/Prostaglandin E2 (PGE2) axis. We also have found that expression of superficial IL-36R was elevated in severe influenza patients and in IAV-stimulated cells. Furthermore, although IL-36γ enhanced the induction of type I and III interferons (IFNs), which promoted IAV-mediated IFN-stimulated STAT1 and STAT2 phosphorylated inhibition in lung epithelial cells, the downstream interferon-stimulated genes (ISGs) were not affected. Finally, we have revealed that IL-36γ treatment could promote apoptosis and inhibit autophagy in the early stages of IAV infection. Overall, these findings demonstrated IL-36γ is a critical host immune factor in response to IAV infection. It has potential activity in the regulation of the interferon signaling pathway and was involved in different types of programmed cell death in human airway epithelial cells as well.
Collapse
Affiliation(s)
- Shuai Liu
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yeming Wang
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haibo Li
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Sisi Du
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaohui Zou
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Cao
- China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
LeMessurier KS, Rooney R, Ghoneim HE, Liu B, Li K, Smallwood HS, Samarasinghe AE. Influenza A virus directly modulates mouse eosinophil responses. J Leukoc Biol 2020; 108:151-168. [PMID: 32386457 DOI: 10.1002/jlb.4ma0320-343r] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rαhi CD62Llo ). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8+ T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Robert Rooney
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Genetics, Genomics & Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Hazem E Ghoneim
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Baoming Liu
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kui Li
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Wu Y, Lai AC, Chi P, Thio CL, Chen W, Tsai C, Lee YL, Lukacs NW, Chang Y. Pulmonary IL-33 orchestrates innate immune cells to mediate respiratory syncytial virus-evoked airway hyperreactivity and eosinophilia. Allergy 2020; 75:818-830. [PMID: 31622507 DOI: 10.1111/all.14091] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is epidemiologically linked to asthma. During RSV infection, IL-33 is elevated and promotes immune cell activation, leading to the development of asthma. However, which immune cells are responsible for triggering airway hyperreactivity (AHR), inflammation and eosinophilia remained to be clarified. We aimed to elucidate the individual roles of IL-33-activated innate immune cells, including ILC2s and ST2+ myeloid cells, in RSV infection-triggered pathophysiology. METHODS The role of IL-33/ILC2 axis in RSV-induced AHR inflammation and eosinophilia were evaluated in the IL-33-deficient and YetCre-13 Rosa-DTA mice. Myeloid-specific, IL-33-deficient or ST2-deficient mice were employed to examine the role of IL-33 and ST2 signaling in myeloid cells. RESULTS We found that IL-33-activated ILC2s were crucial for the development of AHR and airway inflammation, during RSV infection. ILC2-derived IL-13 was sufficient for RSV-driven AHR, since reconstitution of wild-type ILC2 rescued RSV-driven AHR in IL-13-deficient mice. Meanwhile, myeloid cell-derived IL-33 was required for airway inflammation, ST2+ myeloid cells contributed to exacerbation of airway inflammation, suggesting the importance of IL-33 signaling in these cells. Local and peripheral eosinophilia is linked to both ILC2 and myeloid IL-33 signaling. CONCLUSIONS This study highlights the importance of IL-33-activated ILC2s in mediating RSV-triggered AHR and eosinophilia. In addition, IL-33 signaling in myeloid cells is crucial for airway inflammation.
Collapse
Affiliation(s)
- Yi‐Hsiu Wu
- Taiwan International Graduate Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | | | - Po‐Yu Chi
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | | | - Wei‐Yu Chen
- Institute for Translational Research in Biomedicine Chang Gung Memorial Hospital Kaohsiung Taiwan
| | - Ching‐Hui Tsai
- Institute of Epidemiology and Preventive Medicine National Taiwan University Taipei Taiwan
| | - Yungling Leo Lee
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Institute of Epidemiology and Preventive Medicine National Taiwan University Taipei Taiwan
| | | | - Ya‐Jen Chang
- Taiwan International Graduate Program in Molecular Medicine National Yang‐Ming University and Academia Sinica Taipei Taiwan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| |
Collapse
|
33
|
Portugal CAA, de Araújo Castro Í, Prates MCM, Gagliardi TB, Martins RB, de Jesus BLS, de Souza Cardoso R, da Silva MVG, Aragon DC, Arruda Neto E, Alves Filho JCF, Cunha FDQ, Carlotti APDCP. IL-33 and ST2 as predictors of disease severity in children with viral acute lower respiratory infection. Cytokine 2020; 127:154965. [PMID: 31901762 PMCID: PMC7129023 DOI: 10.1016/j.cyto.2019.154965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mechanisms influencing severity of acute lower respiratory infection (ALRI) in children are not established. We aimed to assess the role of inflammatory markers and respiratory viruses in ALRI severity. METHODS Concentrations of interleukin(IL)-33, soluble suppression of tumorigenicity (sST)2, IL-1ß, tumor necrosis factor α, IL-4, IL-6 and IL- 8 and types of respiratory viruses were evaluated in children at the first and fifth days after hospital admission. Disease severity was defined as need for mechanical ventilation. RESULTS Seventy-nine children <5 years-old were included; 33(41.8%) received mechanical ventilation. No associations between virus type, viral load or co-detections and severity of disease were observed. Detection of IL-33 and sST2 in nasopharyngeal aspirates (NPA) on admission were associated with higher risk for mechanical ventilation (RR = 2.89 and RR = 4.57, respectively). IL-6 and IL-8 concentrations were higher on Day 5 in mechanically ventilated children. IL-6 NPA concentrations decreased from Day 1 to Day 5 in children who did not receive mechanical ventilation. Increase in sST2 NPA concentrations from Day 1 to Day 5 was associated with longer hospital length of stay (p < 0.01). CONCLUSIONS An exacerbated local activation of the IL-33/ST2 axis and persistently high sST2 concentrations over time were associated with severity of viral ALRI in children.
Collapse
Affiliation(s)
| | - Ítalo de Araújo Castro
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mirela Cristina Moreira Prates
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Talita Bianca Gagliardi
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ronaldo Bragança Martins
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruna Laís Santos de Jesus
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo de Souza Cardoso
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcus Vinícius Gomes da Silva
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Davi Casale Aragon
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda Neto
- Department of Cell Biology and Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Fernando de Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
34
|
The Role of Innate Leukocytes during Influenza Virus Infection. J Immunol Res 2019; 2019:8028725. [PMID: 31612153 PMCID: PMC6757286 DOI: 10.1155/2019/8028725] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza virus infection is a serious threat to humans and animals, with the potential to cause severe pneumonia and death. Annual vaccination strategies are a mainstay to prevent complications related to influenza. However, protection from the emerging subtypes of influenza A viruses (IAV) even in vaccinated individuals is challenging. Innate immune cells are the first cells to respond to IAV infection in the respiratory tract. Virus replication-induced production of cytokines from airway epithelium recruits innate immune cells to the site of infection. These leukocytes, namely, neutrophils, monocytes, macrophages, dendritic cells, eosinophils, natural killer cells, innate lymphoid cells, and γδ T cells, become activated in response to IAV, to contain the virus and protect the airway epithelium while triggering the adaptive arm of the immune system. This review addresses different anti-influenza virus schemes of innate immune cells and how these cells fine-tune the balance between immunoprotection and immunopathology during IAV infection. Detailed understanding on how these innate responders execute anti-influenza activity will help to identify novel therapeutic targets to halt IAV replication and associated immunopathology.
Collapse
|
35
|
Kim CW, Yoo HJ, Park JH, Oh JE, Lee HK. Exogenous Interleukin-33 Contributes to Protective Immunity via Cytotoxic T-Cell Priming against Mucosal Influenza Viral Infection. Viruses 2019; 11:v11090840. [PMID: 31509992 PMCID: PMC6783873 DOI: 10.3390/v11090840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 09/08/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza is an infectious respiratory illness caused by the influenza virus. Though vaccines against influenza exist, they have limited efficacy. To additionally develop effective treatments, there is a need to study the mechanisms of host defenses from influenza viral infections. To date, the mechanism by which interleukin (IL)-33 modulates the antiviral immune response post-influenza infection is unclear. In this study, we demonstrate that exogenous IL-33 enhanced antiviral protection against influenza virus infection. Exogenous IL-33 induced the recruitment of dendritic cells, increased the secretion of pro-inflammatory cytokine IL-12, and promoted cytotoxic T-cell responses in the local microenvironment. Thus, our findings suggest a role of exogenous IL-33 in the antiviral immune response against influenza infection.
Collapse
Affiliation(s)
- Chae Won Kim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Hye Jee Yoo
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Jang Hyun Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea.
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
36
|
Lan F, Zhang N, Holtappels G, De Ruyck N, Krysko O, Van Crombruggen K, Braun H, Johnston SL, Papadopoulos NG, Zhang L, Bachert C. Staphylococcus aureus Induces a Mucosal Type 2 Immune Response via Epithelial Cell-derived Cytokines. Am J Respir Crit Care Med 2019; 198:452-463. [PMID: 29768034 DOI: 10.1164/rccm.201710-2112oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RATIONALE Chronic rhinosinusitis with nasal polyps is characterized by a T-helper cell type 2-skewed upper airway inflammation. Mucosal Staphylococcus aureus colonization is found in the majority of patients with nasal polyps. S. aureus is known to induce type 2 cytokine release via enterotoxins. OBJECTIVES To investigate the impact of non-enterotoxin-producing S. aureus on type 2 cytokine release. METHODS TSLP (thymic stromal lymphopoietin), IL-33, and type 2 cytokines were assessed in a human mucosal tissue model upon S. aureus infection. MEASUREMENTS AND MAIN RESULTS S. aureus exposure increased the expression of IL-33, TSLP, IL-5, and IL-13 in nasal polyp tissue, accompanied by elevated expression levels of TSLP and IL-33 receptors, predominantly on CD3+ T cells. S. aureus infection led to the release of TSLP, but not IL-33, IL-5, or IL-13, from healthy inferior turbinate tissue. In contrast, S. epidermidis did not induce any epithelial cell-derived cytokines in nasal polyp or healthy tissue. S. aureus infection also increased the release of IL-33 and TSLP in BEAS-2B epithelial cells, accompanied by activation of NF-κB (nuclear factor κB) pathways. Incubation with CU-CPT22, a specific Toll-like receptor 2 antagonist, significantly reduced the S. aureus-induced release of TSLP and IL-33, and the activity of the NF-κB signal in BEAS-2B cells. CONCLUSIONS This study demonstrates for the first time that S. aureus can directly induce epithelial cell-derived cytokine release via binding to Toll-like receptor 2, and may thereby propagate type 2 cytokine expression in nasal polyp tissue.
Collapse
Affiliation(s)
- Feng Lan
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Nan Zhang
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Gabriele Holtappels
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Natalie De Ruyck
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Olga Krysko
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Koen Van Crombruggen
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Harald Braun
- 3 VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Sebastian L Johnston
- 4 Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nikos G Papadopoulos
- 5 Centre for Pediatrics and Child Health, Institute of Human Development, University of Manchester, Manchester, United Kingdom; and
| | - Luo Zhang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Institute of Otolaryngology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Claus Bachert
- 2 Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium.,6 Division of ENT Diseases, Clintec, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
37
|
Fiege JK, Stone IA, Fay EJ, Markman MW, Wijeyesinghe S, Macchietto MG, Shen S, Masopust D, Langlois RA. The Impact of TCR Signal Strength on Resident Memory T Cell Formation during Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:936-945. [PMID: 31235552 DOI: 10.4049/jimmunol.1900093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/08/2019] [Indexed: 02/01/2023]
Abstract
Resident memory T cells (TRM) in the lung are vital for heterologous protection against influenza A virus (IAV). Environmental factors are necessary to establish lung TRM; however, the role of T cell-intrinsic factors like TCR signal strength have not been elucidated. In this study, we investigated the impact of TCR signal strength on the generation and maintenance of lung TRM after IAV infection. We inserted high- and low-affinity OT-I epitopes into IAV and infected mice after transfer of OT-I T cells. We uncovered a bias in TRM formation in the lung elicited by lower affinity TCR stimulation. TCR affinity did not impact the overall phenotype or long-term maintenance of lung TRM Overall, these findings demonstrate that TRM formation is negatively correlated with increased TCR signal strength. Lower affinity cells may have an advantage in forming TRM to ensure diversity in the Ag-specific repertoire in tissues.
Collapse
Affiliation(s)
- Jessica K Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ian A Stone
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Elizabeth J Fay
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| | - Matthew W Markman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Marissa G Macchietto
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455; and
| |
Collapse
|
38
|
Different intensity of autophagy regulate interleukin-33 to control the uncontrolled inflammation of acute lung injury. Inflamm Res 2019; 68:665-675. [PMID: 31147742 DOI: 10.1007/s00011-019-01250-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Cytokines participate in the progression of acute respiratory distress syndrome (ARDS), and uncontrolled inflammation is a central issue of acute lung injury (ALI). Interleukin (IL)-33 is a nuclear protein that has been reported to have a proinflammatory role in ARDS. Studies have shown that excessive autophagy may lead to the increased mortality of patients with ARDS, while several investigations indicated that IL-33 and autophagy interact with one another. The present study sought to clarify the relation between autophagy and IL-33's proinflammatory role in ARDS. METHODS We built a lipopolysaccharide (LPS)-induced lung injury mouse model. To study the relationship between IL-33 and autophagy, mice were pretreated with rapamycin (RAPA; a promoter of autophagy) and 3-methyladenine (3-MA; an inhibitor of autophagy) prior to LPS administration. The expression of IL-33 in serum and bronchoalveolar lavage fluid (BALF) was measured. Immunohistochemistry of IL-33 in lung tissue was examined. Th1,Th2 cytokines/chemokine levels in serum and BALF were tested. Further, the severity of lung injury was evaluated. And the nuclear factor-kappa B (NF-κB)'s nuclear translocation in lung tissue was detected. RESULTS In comparison with the control group, the levels of IL-33 in serum and BALF were increased after LPS injection. Th1 cytokines/chemokine levels were significantly increased in serum and BALF, while Th2 cytokine levels changed only a little. The levels of IL-33 in serum and BALF of the RAPA group was significantly increased after LPS was injected as compared with the LPS group; additionally, the levels of IL-33 in serum and BALF of the 3-MA group was significantly reduced after LPS was injected as compared with the LPS group, and that lung injury was ameliorated after 3-MA pretreatment. Th1 cytokines and chemokines in both serum and BALF were also decreased in the 3-MA group. Furthermore, we found that the nuclear translocation of NF-κB increased after LPS administration, and NF-κB's nuclear translocation was significantly increased in comparison with the LPS group after RAPA pretreatment. In contrast, NF-κB's nuclear translocation decreased after 3-MA pretreatment as compared with the LPS group. CONCLUSIONS These findings showed that autophagy might regulate IL-33 by activating or inhibiting NF-κB to control the uncontrolled inflammation of acute lung injury.
Collapse
|
39
|
The alarmins IL-1 and IL-33 differentially regulate the functional specialisation of Foxp3 + regulatory T cells during mucosal inflammation. Mucosal Immunol 2019; 12:746-760. [PMID: 30872761 DOI: 10.1038/s41385-019-0153-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 02/04/2023]
Abstract
CD4+Foxp3+ regulatory T (TREG) cells are critical mediators of peripheral tolerance and modulators of immune responses. Functional adaptation of TREG cells, through acquisition of secondary transcription factors is critical for their effector differentiation towards local inflammatory stimuli including infections. The drivers and consequences of this adaptation of TREG cell function remain largely unknown. Using an unbiased screen, we identified receptors of the IL-1 family controlling the adaptation of TREG cells. Through respiratory infection models, we show that the IL-33 receptor (ST2) and the IL-1 receptor (IL1R1) selectively identify stable and unstable TREG cells at mucosal surfaces, respectively. IL-33, not IL-1, is specifically required for maintaining the suppressive function of TREG cells. In the absence of ST2, TREG cells are prone to lose Foxp3 expression and acquire RORγT and IL1R1, while, in the absence of IL-1R1, they maintain Foxp3 expression and resist the acquisition of a Th17 phenotype. Finally, lack of IL-1 signalling enhances the accumulation of ST2+ TREG over pro-inflammatory TREG cells in a Cryptococcus neoformans infection. These observations show that IL-1 and IL-33 exert opposing functions in controlling the functional adaptation of TREG cells, ultimately dictating the dynamics of adaptive immunity to pathogens.
Collapse
|
40
|
Li Q, Hu Y, Chen Y, Lv Z, Wang J, An G, Du X, Wang H, Corrigan CJ, Wang W, Ying S. IL-33 induces production of autoantibody against autologous respiratory epithelial cells: a potential mechanism for the pathogenesis of COPD. Immunology 2019; 157:137-150. [PMID: 30801682 DOI: 10.1111/imm.13054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanisms underlying the chronic, progressive airways inflammation, remodelling and alveolar structural damage characteristic of human chronic obstructive pulmonary disease (COPD) remain unclear. In the present study, we address the hypothesis that these changes are at least in part mediated by respiratory epithelial alarmin (IL-33)-induced production of autoantibodies against airways epithelial cells. Mice immunized with homologous, syngeneic lung tissue lysate along with IL-33 administered directly to the respiratory tract or systemically produced IgG autoantibodies binding predominantly to their own alveolar type II epithelial cells, along with increased percentages of Tfh cells and B2 B-cells in their local, mediastinal lymph nodes. Consistent with its specificity for respiratory epithelial cells, this autoimmune inflammation was confined principally to the lung and not other organs such as the liver and kidney. Furthermore, the serum autoantibodies produced by the mice bound not only to murine, but also to human alveolar type II epithelial cells, suggesting specificity for common, cross-species determinants. Finally, concentrations of antibodies against both human and murine alveolar epithelial cells were significantly elevated in the serum of patients with COPD compared with those of control subjects. These data are consistent with the hypothesis that IL-33 contributes to the chronic, progressive airways obstruction, inflammation and alveolar destruction characteristic of phenotypes of COPD/emphysema through induction of autoantibodies against lung tissue, and particularly alveolar type II epithelial cells.
Collapse
Affiliation(s)
- Qin Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Gao An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huating Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Alvarez F, Fritz JH, Piccirillo CA. Pleiotropic Effects of IL-33 on CD4 + T Cell Differentiation and Effector Functions. Front Immunol 2019; 10:522. [PMID: 30949175 PMCID: PMC6435597 DOI: 10.3389/fimmu.2019.00522] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
IL-33, a member of the IL-1 family of cytokines, was originally described in 2005 as a promoter of type 2 immune responses. However, recent evidence reveals a more complex picture. This cytokine is released locally as an alarmin upon cellular damage where innate cell types respond to IL-33 by modulating their differentiation and influencing the polarizing signals they provide to T cells at the time of antigen presentation. Moreover, the prominent expression of the IL-33 receptor, ST2, on GATA3+ T helper 2 cells (TH2) demonstrated that IL-33 could have a direct impact on T cells. Recent observations reveal that T-bet+ TH1 cells and Foxp3+ regulatory T (TREG) cells can also express the ST2 receptor, either transiently or permanently. As such, IL-33 can have a direct effect on the dynamics of T cell populations. As IL-33 release was shown to play both an inflammatory and a suppressive role, understanding the complex effect of this cytokine on T cell homeostasis is paramount. In this review, we will focus on the factors that modulate ST2 expression on T cells, the effect of IL-33 on helper T cell responses and the role of IL-33 on TREG cell function.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| |
Collapse
|
42
|
McLaren JE, Clement M, Marsden M, Miners KL, Llewellyn-Lacey S, Grant EJ, Rubina A, Gimeno Brias S, Gostick E, Stacey MA, Orr SJ, Stanton RJ, Ladell K, Price DA, Humphreys IR. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:943-955. [PMID: 30635396 PMCID: PMC6341181 DOI: 10.4049/jimmunol.1701757] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
Candidate vaccines designed to generate T cell-based immunity are typically vectored by nonpersistent viruses, which largely fail to elicit durable effector memory T cell responses. This limitation can be overcome using recombinant strains of CMV. Proof-of-principle studies have demonstrated the potential benefits of this approach, most notably in the SIV model, but safety concerns require the development of nonreplicating alternatives with comparable immunogenicity. In this study, we show that IL-33 promotes the accumulation and recall kinetics of circulating and tissue-resident memory T cells in mice infected with murine CMV. Using a replication-deficient murine CMV vector, we further show that exogenous IL-33 boosts vaccine-induced memory T cell responses, which protect against subsequent heterologous viral challenge. These data suggest that IL-33 could serve as a useful adjuvant to improve the efficacy of vaccines based on attenuated derivatives of CMV.
Collapse
Affiliation(s)
- James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Emma J Grant
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; and
| | - Anzelika Rubina
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Silvia Gimeno Brias
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Maria A Stacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Richard J Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
43
|
CD8+ T cell/IL-33/ILC2 axis exacerbates the liver injury in Con A-induced hepatitis in T cell-transferred Rag2-deficient mice. Inflamm Res 2018; 68:75-91. [DOI: 10.1007/s00011-018-1197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/14/2018] [Accepted: 11/02/2018] [Indexed: 01/16/2023] Open
|
44
|
Zarnegar B, Westin A, Evangelidou S, Hallgren J. Innate Immunity Induces the Accumulation of Lung Mast Cells During Influenza Infection. Front Immunol 2018; 9:2288. [PMID: 30337928 PMCID: PMC6180200 DOI: 10.3389/fimmu.2018.02288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Mast cells release disease-causing mediators and accumulate in the lung of asthmatics. The most common cause of exacerbations of asthma is respiratory virus infections such as influenza. Recently, we demonstrated that influenza infection in mice triggers the recruitment of mast cell progenitors to the lung. This process starts early after infection and leads to the accumulation of mast cells. Previous studies showed that an adaptive immune response was required to trigger the recruitment of mast cell progenitors to the lung in a mouse model of allergic lung inflammation. Therefore, we set out to determine whether an adaptive immune response against the virus is needed to cause the influenza-induced recruitment of mast cell progenitors to the lung. We found that influenza-induced recruitment of mast cell progenitors to the lung was intact in Rag2 -/- mice and mice depleted of CD4+ cells, implicating the involvement of innate immune signals in this process. Seven weeks after the primary infection, the influenza-exposed mice harbored more lung mast cells than unexposed mice. As innate immunity was implicated in stimulating the recruitment process, several compounds known to trigger innate immune responses were administrated intranasally to test their ability to cause an increase in lung mast cell progenitors. Poly I:C, a synthetic analog of viral dsRNA, induced a TLR3-dependent increase in lung mast cell progenitors. In addition, IL-33 induced an ST2-dependent increase in lung mast cell progenitors. In contrast, the influenza-induced recruitment of mast cell progenitors to the lung occurred independently of either TLR3 or ST2, as demonstrated using Tlr3 -/- or Il1rl1 -/- mice. Furthermore, neutralization of IL-33 in Tlr3 -/- mice could not abrogate the influenza-induced influx of mast cell progenitors to the lung. These results suggest that other innate receptor(s) contribute to mount the influx of mast cell progenitors to the lung upon influenza infection. Our study establishes that mast cell progenitors can be rapidly recruited to the lung by innate immune signals. This indicates that during life various innate stimuli of the respiratory tract trigger increases in the mast cell population within the lung. The expanded mast cell population may contribute to the exacerbations of symptoms which occurs when asthmatics are exposed to respiratory infections.
Collapse
Affiliation(s)
- Behdad Zarnegar
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Annika Westin
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Syrmoula Evangelidou
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Watanabe M, Nakamoto K, Inui T, Sada M, Honda K, Tamura M, Ogawa Y, Yokoyama T, Saraya T, Kurai D, Ishii H, Takizawa H. Serum sST2 levels predict severe exacerbation of asthma. Respir Res 2018; 19:169. [PMID: 30176857 PMCID: PMC6126416 DOI: 10.1186/s12931-018-0872-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Neutrophilic inflammation is associated with poorly controlled asthma. Serum levels of sST2, a soluble IL-33 receptor, increase in neutrophilic lung diseases. We hypothesized that high serum sST2 levels in stable asthmatics are a predictor for exacerbation within a short duration. METHODS This prospective observational study evaluated the serum sST2 levels of 104 asthmatic patients who were treated by a lung disease specialist with follow-ups for 3 months. RESULTS High serum sST2 levels (> 18 ng/ml) predicted severe asthma exacerbation within 3 months. Serum sST2 levels correlated positively with asthma severity (treatment step), airway H2O2 levels, and serum IL-8 levels. High serum sST2 levels and blood neutrophilia (> 6000 /μl) were independent predictors of exacerbation. We defined a post-hoc exacerbation-risk score combining high serum sST2 level and blood neutrophilia, which stratified patients into four groups. The score predicted exacerbation-risk with an area under curve of 0.91 in the receiver operating characteristic curve analysis. Patients with the highest scores had the most severe phenotype, with 85.7% showing exacerbation, airflow limitation, and corticosteroid-insensitivity. CONCLUSIONS High serum sST2 levels predicted exacerbation within the general asthmatic population and, when combined with blood neutrophil levels, provided an exacerbation-risk score that was an accurate predictor of exacerbation occurring within 3 months.
Collapse
Affiliation(s)
- Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan.
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Toshiya Inui
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Masaki Tamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Yukari Ogawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Takuma Yokoyama
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, 6-20-3 Sinkawa, Mitaka-city, Tokyo, 181-8612, Japan
| |
Collapse
|
46
|
Guo XZJ, Dash P, Crawford JC, Allen EK, Zamora AE, Boyd DF, Duan S, Bajracharya R, Awad WA, Apiwattanakul N, Vogel P, Kanneganti TD, Thomas PG. Lung γδ T Cells Mediate Protective Responses during Neonatal Influenza Infection that Are Associated with Type 2 Immunity. Immunity 2018; 49:531-544.e6. [PMID: 30170813 DOI: 10.1016/j.immuni.2018.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 04/25/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022]
Abstract
Compared to adults, infants suffer higher rates of hospitalization, severe clinical complications, and mortality due to influenza infection. We found that γδ T cells protected neonatal mice against mortality during influenza infection. γδ T cell deficiency did not alter viral clearance or interferon-γ production. Instead, neonatal influenza infection induced the accumulation of interleukin-17A (IL-17A)-producing γδ T cells, which was associated with IL-33 production by lung epithelial cells. Neonates lacking IL-17A-expressing γδ T cells or Il33 had higher mortality upon influenza infection. γδ T cells and IL-33 promoted lung infiltration of group 2 innate lymphoid cells and regulatory T cells, resulting in increased amphiregulin secretion and tissue repair. In influenza-infected children, IL-17A, IL-33, and amphiregulin expression were correlated, and increased IL-17A levels in nasal aspirates were associated with better clinical outcomes. Our results indicate that γδ T cells are required in influenza-infected neonates to initiate protective immunity and mediate lung homeostasis.
Collapse
Affiliation(s)
- Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Resha Bajracharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid A Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nopporn Apiwattanakul
- Division of Infectious Diseases, Department of Pediatrics Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
47
|
Jurak LM, Xi Y, Landgraf M, Carroll ML, Murray L, Upham JW. Interleukin 33 Selectively Augments Rhinovirus-Induced Type 2 Immune Responses in Asthmatic but not Healthy People. Front Immunol 2018; 9:1895. [PMID: 30174671 PMCID: PMC6108046 DOI: 10.3389/fimmu.2018.01895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Interleukin- 33 (IL-33) is an epithelial-derived cytokine that initiates type 2 immune responses to allergens, though whether IL-33 has the ability to modify responses to respiratory viral infections remains unclear. This study aimed to investigate the effects of IL-33 on rhinovirus (RV)-induced immune responses by circulating leukocytes from people with allergic asthma, and how this response may differ from non-allergic controls. Our experimental approach involved co-exposing peripheral blood mononuclear cells to IL-33 and RV in order to model how the functions of virus-responsive lymphocytes could be modified after recruitment to an airway environment enriched in IL-33. In the current study, IL-33 enhanced RV-induced IL-5 and IL-13 release by cells from people with allergic asthma, but had no effect on IL-5 and IL-13 production by cells from healthy donors. In asthmatic individuals, IL-33 also enhanced mRNA and surface protein expression of ST2 (the IL-33 receptor IL1RL1), while soluble ST2 concentrations were low. In contrast, IL-33 had no effect on mRNA and surface expression of ST2 in healthy individuals. In people with allergic asthma, RV-activated ST2+ innate lymphoid cells (ST2+ILC) were the predominant source of IL-33 augmented IL-13 release. In contrast, RV-activated natural killer cells (NK cells) were the predominant source of IL-33 augmented IFNγ release in healthy individuals. This suggests that the effects of IL-33 on the cellular immune response to RV differ between asthmatic and healthy individuals. These findings provide a mechanism by which RV infections and IL-33 might interact in asthmatic individuals to exacerbate type 2 immune responses and allergic airway inflammation.
Collapse
Affiliation(s)
- Lisa M Jurak
- Lung and Allergy Research Centre, Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Yang Xi
- Lung and Allergy Research Centre, Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Megan Landgraf
- Lung and Allergy Research Centre, Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Melanie L Carroll
- Lung and Allergy Research Centre, Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Liisa Murray
- Lung and Allergy Research Centre, Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - John W Upham
- Lung and Allergy Research Centre, Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia.,Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
49
|
Novel protective mechanism for interleukin-33 at the mucosal barrier during influenza-associated bacterial superinfection. Mucosal Immunol 2018; 11:199-208. [PMID: 28401938 PMCID: PMC5638662 DOI: 10.1038/mi.2017.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/01/2017] [Indexed: 02/04/2023]
Abstract
Influenza A is a highly contagious respiratory virus that causes seasonal epidemics and occasional worldwide pandemics. The primary cause of influenza-related mortality is bacterial superinfection. There are numerous mechanisms by which preceding influenza infection attenuates host defense, allowing for increased susceptibility to bacterial pneumonia. Herein, we demonstrate that influenza inhibits Staphylococcus aureus-induced production of interleukin-33 (IL-33). Restoration of IL-33 during influenza A and methicillin-resistant S. aureus superinfection enhanced bacterial clearance and improved mortality. Innate lymphoid Type 2 cells and alternatively activated macrophages are not required for IL-33-mediated protection during superinfection. We show that IL-33 treatment resulted in neutrophil recruitment to the lung, associated with improved bacterial clearance. These findings identify a novel role for IL-33 in antibacterial host defense at the mucosal barrier.
Collapse
|
50
|
Han X, Chai R, Qi F, Bai S, Cui Y, Teng Y, Liu B. Natural helper cells mediate respiratory syncytial virus-induced airway inflammation by producing type 2 cytokines in an IL-33-dependent manner. Immunotherapy 2017; 9:715-722. [PMID: 28771101 DOI: 10.2217/imt-2017-0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Type 2 cytokine production during respiratory virus infection is considered to be linked with asthma exacerbation. As potent Th2 cytokine producers, natural helper (NH) cells play a key role in influenza virus-induced airway hyper-responsiveness. However, it is unclear whether NH cells contribute to respiratory syncytial virus (RSV)-induced airway inflammation, and how the cytokine profile in NH cells is changed during RSV infection. METHODS BALB/c mice were infected intranasally with RSV. The number of NH cells in lungs was detected by flow cytometry. The expression of cytokine mRNAs was performed by real-time RT-PCR. Cytokines levels were determined by ELISA. RESULTS Following intranasal infection with RSV, BALB/c mice showed an increase in the expression of mRNAs for Th2-like cytokines in NH cells. Furthermore, adoptive transfer of pulmonary NH cells resulted in a massive infiltration of mononuclear cells, in particular eosinophils and neutrophils in lungs, in parallel with an augmented production of Th2-associated cytokines, such as IL-4, IL-5 and IL-10 in bronchoalveolar lavage fluids, providing convincing evidence that NH cells contribute to RSV-induced lung pathogenesis by producing type 2 cytokines. It should be noted that blocking IL-33 with antibody can diminish the absolute number of pulmonary NH cells and the relative expression of mRNAs for type 2 cytokines in pulmonary NH cells, suggesting that IL-33 is necessary for activating Th2-type NH cells. CONCLUSION These results reveal that pulmonary NH cells might participate in RSV-induced airway inflammation by producing large quality of type 2 cytokines in an IL-33-dependent manner.
Collapse
Affiliation(s)
- Xu Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, PR China
| | - Ruonan Chai
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Feifei Qi
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Song Bai
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Yulin Cui
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| | - Yuee Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, PR China
| | - Beixing Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang, PR China
| |
Collapse
|