1
|
Făgărășan A, Săsăran MO, Gozar L, Toma D, Șuteu C, Ghiragosian-Rusu S, Al-Akel FC, Szabo B, Huțanu A. Circulating Matrix Metalloproteinases for Prediction of Aortic Dilatation in Children with Bicuspid Aortic Valve: A Single-Center, Observational Study. Int J Mol Sci 2024; 25:10538. [PMID: 39408865 PMCID: PMC11476682 DOI: 10.3390/ijms251910538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Circulating biomarkers have been proposed for early identification of aortic dilatation progression associated with bicuspid aortic valve (BAV), but matrix metalloproteinases (MMPs) are distinguished as signatures of increased extracellular matrix degradation, a landmark of aneurysm formation. The current study aims to identify the role of MMP-1, MMP-2, MMP-9, and the MMP inhibitor, TIMP-1, in identifying aortic dilation in children with BAV. We conducted a study on 73 children divided into two study groups, depending on the presence of aortic dilatation (group 1-43 BAV controls and group 2-30 children with BAV and aortic dilatation). Each patient underwent a cardiac ultrasound and, in each case, serum MMP-1, MMP-2, MMP-9, and TIMP-1 were quantified using xMAP technology. Comparison of the MMPs between the two study groups revealed significantly higher values only in the case of TIMP-1, among BAV controls. Moreover, the same TIMP-1 inversely correlated with aortic annulus absolute size and z score, as well as with ascending aorta z score. No particular correlation between the aortic phenotype and the presence of aortic dilatation was found. Future longitudinal research starting at pediatric ages could show the significance of MMPs screening in BAV individuals as predictors of aortic aneurysm formation.
Collapse
Affiliation(s)
- Amalia Făgărășan
- Department of Pediatrics III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.F.); (L.G.); (D.T.); (C.Ș.); (S.G.-R.)
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, Gheorghe Marinescu Street No 50, 540136 Târgu Mureș, Romania; (F.C.A.-A.); (B.S.)
| | - Maria Oana Săsăran
- Department of Pediatrics III, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540142 Târgu Mureș, Romania
| | - Liliana Gozar
- Department of Pediatrics III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.F.); (L.G.); (D.T.); (C.Ș.); (S.G.-R.)
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, Gheorghe Marinescu Street No 50, 540136 Târgu Mureș, Romania; (F.C.A.-A.); (B.S.)
| | - Daniela Toma
- Department of Pediatrics III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.F.); (L.G.); (D.T.); (C.Ș.); (S.G.-R.)
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, Gheorghe Marinescu Street No 50, 540136 Târgu Mureș, Romania; (F.C.A.-A.); (B.S.)
| | - Carmen Șuteu
- Department of Pediatrics III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.F.); (L.G.); (D.T.); (C.Ș.); (S.G.-R.)
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, Gheorghe Marinescu Street No 50, 540136 Târgu Mureș, Romania; (F.C.A.-A.); (B.S.)
| | - Simina Ghiragosian-Rusu
- Department of Pediatrics III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.F.); (L.G.); (D.T.); (C.Ș.); (S.G.-R.)
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, Gheorghe Marinescu Street No 50, 540136 Târgu Mureș, Romania; (F.C.A.-A.); (B.S.)
| | - Flavia Cristina Al-Akel
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, Gheorghe Marinescu Street No 50, 540136 Târgu Mureș, Romania; (F.C.A.-A.); (B.S.)
- Pathophysiology Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Boglarka Szabo
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Transplantation of Târgu Mureș, Gheorghe Marinescu Street No 50, 540136 Târgu Mureș, Romania; (F.C.A.-A.); (B.S.)
| | - Adina Huțanu
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Zhu J, Meganathan I, MacAruthur R, Kassiri Z. Inflammation in Abdominal Aortic Aneurysm: Cause or Comorbidity? Can J Cardiol 2024:S0828-282X(24)00926-7. [PMID: 39181326 DOI: 10.1016/j.cjca.2024.08.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Aortic aneurysm is a potentially deadly disease. It is chronic degeneration of the aortic wall that involves an inflammatory response and the immune system, aberrant remodelling of the extracellular matrix, and maladaptive transformation of the aortic cells. This review article focuses on the role of the inflammatory cells in abdominal aortic aneurysm. Studies in human aneurysmal specimens and animal models have identified various inflammatory cell types that could contribute to formation or expansion of aneurysms. These include the commonly studied leukocytes (neutrophils and macrophages) as well as the less commonly explored natural killer cells, dendritic cells, T cells, and B cells. Despite the well-demonstrated contribution of inflammatory cells and the related signalling pathways to development and expansion of aneurysms, anti-inflammatory therapy approaches have demonstrated limitations and may require additional considerations such as a combinational approach in targeting multiple pathways for significant beneficial outcomes.
Collapse
Affiliation(s)
- Jiechun Zhu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ilamaran Meganathan
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacAruthur
- Department of Cardiac Surgery, Mazankowski Alberta Heart Institute, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Klessinger D, Mamazhakypov A, Glaeser S, Emig R, Peyronnet R, Meier L, Proelss K, Marenne K, Smolka C, Grundmann S, Pankratz F, Esser PR, Moser M, Zhou Q, Esser JS. Divergent and Compensatory Effects of BMP2 and BMP4 on the VSMC Phenotype and BMP4's Role in Thoracic Aortic Aneurysm Development. Cells 2024; 13:735. [PMID: 38727271 PMCID: PMC11083443 DOI: 10.3390/cells13090735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Angiotensin II/pharmacology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Apoptosis/drug effects
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 4/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Daniel Klessinger
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany;
| | - Sophie Glaeser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (R.E.); (R.P.)
- CIBSS Centre for Integrative Biological Signalling Studies, Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Remi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany; (R.E.); (R.P.)
| | - Lena Meier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Kora Proelss
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Katia Marenne
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Christian Smolka
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Sebastian Grundmann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Franziska Pankratz
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Philipp R. Esser
- Allergy Research Group, Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany;
| | - Martin Moser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| | - Qian Zhou
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
- Division of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Jennifer S. Esser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg im Breisgau, Germany (C.S.); (S.G.); (F.P.); (M.M.); (Q.Z.)
| |
Collapse
|
4
|
Gao JP, Zhang HP, Wei R, Guo W. A Novel Method for the Rat Model of Abdominal Aortic Aneurysm Induced by Retroperitoneal Implantation of an Osmotic Pump System With Lipopolysaccharide. Ann Vasc Surg 2024; 101:41-52. [PMID: 38154490 DOI: 10.1016/j.avsg.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Few methods can cocurrently mimic the pathological characteristics and nature history of human abdominal aortic aneurysms (AAAs), especially for the exist of the self-healing tendency of rodents. This study tested a novel method for the AAA rat model induced by retroperitoneal implantation of an osmotic pump system with lipopolysaccharide (LPS) based on the hypothesis that chronic inflammation of perivascular adipose tissue directly influenced the development and progression of AAAs. METHODS 20 male Sprague-Dawley rats (10-month-old) fed with the Paigen diet were randomly divided into 4 groups: the blank group ×2, the sham group ×4, the empty capsule group ×4, and the LPS capsule group ×10. The LPS capsule group received implantations of the ALZET® osmotic pump capsule with LPS (3.6 μg/day) parallel to the abdominal aorta through a retroperitoneal approach. Two weeks later, 6 rats were randomly selected from the LPS capsule group to form the anti-inflammatory group and received implantations of another osmotic pump capsule with interleukin (IL)-10 (75 ng/day) through the same approach. The changes in abdominal aortic diameter were observed by ultrasound every 2 weeks, and samples were harvested for histopathologic and immunohistochemical analysis 6 weeks later. RESULTS Within the 6 weeks after modeling, the LPS capsule group showed sustained and significant aortic dilatation (P < 0.01), while the anti-inflammatory group showed a rapid and obvious shrinkage 2 weeks after the IL-10 osmotic pump capsule implantation (P < 0.01). The LPS capsule group presented excellent pathological mimicking of human AAAs and showed severe medial degeneration with the least elastic content among the 5 groups at the end of the sixth week (P < 0.05). Notably, the anti-inflammatory group showed perfect medial preservation with the most elastic content (P < 0.05) and the highest elastin/collagen ratio (P < 0.01) at the end of the study. Matrix metalloproteinases (MMP) 2 and 9 and toll-like receptor 2 showed strong expression in the LPS capsule group at the end of the sixth week, which was significantly higher than that in the blank group and sham group. Interestingly, the anti-inflammatory group showed a slightly higher MMP9 expression than the LPS capsule group though there was no statistical difference between them. CONCLUSIONS This novel method for the rat AAA model induced by retroperitoneal implantation of an osmotic pump capsule with LPS can concurrently mimic the histological characteristics and natural history of human AAAs. Further studies were needed to improve the osmotic pump system.
Collapse
Affiliation(s)
- Jiang-Ping Gao
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Hong-Peng Zhang
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Ren Wei
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China
| | - Wei Guo
- Department of Vascular Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
6
|
Liu Y, Gong Y, Xu G. The role of mononuclear phagocyte system in IgA nephropathy: pathogenesis and prognosis. Front Immunol 2023; 14:1192941. [PMID: 37529043 PMCID: PMC10390225 DOI: 10.3389/fimmu.2023.1192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Although the "multiple hits" theory is a widely accepted pathogenesis in IgA nephropathy (IgAN), increasing evidence suggests that the mononuclear/macrophage system plays important roles in the progression of IgAN; however, the exact mechanism is unclear. In the present study, we explored 1,067 patients in 15 studies and found that the number of macrophages per glomerulus was positively related with the degree of hematuria, and the macrophages in the glomeruli were mainly related to mesangial proliferation (M) in renal biopsy. In the tubulointerstitium, macrophages were significantly paralleled to tubulointerstitial α-SMA and NF-kB expression, tubulointerstitial lesion, tubule atrophy/interstitial fibrosis (T), and segmental glomerulosclerosis (S). In the glomeruli and tubulointerstitium, M1 accounted for 85.41% in the M classification according to the Oxford MEST-C, while in the blood, M1 accounted for 100%, and the patients with low CD89+ monocyte mean fluorescence intensity displayed more severe pathological characteristics (S1 and T1-2) and clinical symptoms. M1 (CD80+) macrophages were associated with proinflammation in the acute phase; however, M2 (CD163+) macrophages participated in tissue repair and remodeling, which correlated with chronic inflammation. In the glomeruli, M2 macrophages activated glomerular matrix expansion by secreting cytokines such as IL-10 and tumor necrosis factor-β (TGF-β), and M0 (CD68+) macrophages stimulated glomerular hypercellularity. In the tubulointerstitium, M2 macrophages played pivotal roles in renal fibrosis and sclerosis. It is assumed that macrophages acted as antigen-presenting cells to activate T cells and released diverse cytokines to stimulate an inflammatory response. Macrophages infiltrating glomeruli destroy the integrity of podocytes through the mesangio-podocytic-tubular crosstalk as well as the injury of the tubule.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Yamanouchi D. Unpacking the Complexities of a Silent Killer. Int J Mol Sci 2023; 24:ijms24087125. [PMID: 37108288 PMCID: PMC10139038 DOI: 10.3390/ijms24087125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
An abdominal aortic aneurysm (AAA) is a life-threatening condition that affects millions of people worldwide [...].
Collapse
Affiliation(s)
- Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
8
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
9
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
10
|
Griepke S, Grupe E, Lindholt JS, Fuglsang EH, Steffensen LB, Beck HC, Larsen MD, Bang-Møller SK, Overgaard M, Rasmussen LM, Lambertsen KL, Stubbe J. Selective inhibition of soluble tumor necrosis factor signaling reduces abdominal aortic aneurysm progression. Front Cardiovasc Med 2022; 9:942342. [PMID: 36186984 PMCID: PMC9523116 DOI: 10.3389/fcvm.2022.942342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tumor necrosis factor (TNF) is pathologically elevated in human abdominal aortic aneurysms (AAA). Non-selective TNF inhibition-based therapeutics are approved for human use but have been linked to several side effects. Compounds that target the proinflammatory soluble form of TNF (solTNF) but preserve the immunomodulatory capabilities of the transmembrane form of TNF (tmTNF) may prevent these side effects. We hypothesize that inhibition of solTNF signaling prevents AAA expansion. Methods The effect of the selective solTNF inhibitor, XPro1595, and the non-selective TNF inhibitor, Etanercept (ETN) was examined in porcine pancreatic elastase (PPE) induced AAA mice, and findings with XPro1595 was confirmed in angiotensin II (ANGII) induced AAA in hyperlipidemic apolipoprotein E (Apoe) -/- mice. Results XPro1595 treatment significantly reduced AAA expansion in both models, and a similar trend (p = 0.06) was observed in PPE-induced AAA in ETN-treated mice. In the PPE aneurysm wall, XPro1595 improved elastin integrity scores. In aneurysms, mean TNFR1 levels reduced non-significantly (p = 0.07) by 50% after TNF inhibition, but the histological location in murine AAAs was unaffected and similar to that in human AAAs. Semi-quantification of infiltrating leucocytes, macrophages, T-cells, and neutrophils in the aneurysm wall were unaffected by TNF inhibition. XPro1595 increased systemic TNF levels, while ETN increased systemic IL-10 levels. In ANGII-induced AAA mice, XPro1595 increased systemic TNF and IL-5 levels. In early AAA development, proteomic analyses revealed that XPro1595 significantly upregulated ontology terms including "platelet aggregation" and "coagulation" related to the fibrinogen complex, from which several proteins were among the top regulated proteins. Downregulated ontology terms were associated with metabolic processes. Conclusion In conclusion, selective inhibition of solTNF signaling reduced aneurysm expansion in mice, supporting its potential as an attractive treatment option for AAA patients.
Collapse
Affiliation(s)
- Silke Griepke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Emilie Grupe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jes Sanddal Lindholt
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Elizabeth Hvitfeldt Fuglsang
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lasse Bach Steffensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mia Dupont Larsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sissel Karoline Bang-Møller
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Overgaard
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Elite Research Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark
| |
Collapse
|
11
|
Kiema M, Sarin JK, Kauhanen SP, Torniainen J, Matikka H, Luoto ES, Jaakkola P, Saari P, Liimatainen T, Vanninen R, Ylä-Herttuala S, Hedman M, Laakkonen JP. Wall Shear Stress Predicts Media Degeneration and Biomechanical Changes in Thoracic Aorta. Front Physiol 2022; 13:934941. [PMID: 35874533 PMCID: PMC9301078 DOI: 10.3389/fphys.2022.934941] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives: In thoracic aortic aneurysm (TAA) of the ascending aorta (AA), AA is progressively dilating due to the weakening of the aortic wall. Predicting and preventing aortic dissections and ruptures in TAA continues to be challenging, and more accurate assessment of the AA dilatation, identification of high-risk patients, and timing of repair surgery are required. We investigated whether wall shear stress (WSS) predicts pathological and biomechanical changes in the aortic wall in TAA. Methods: The study included 12 patients with bicuspid (BAV) and 20 patients with the tricuspid aortic valve (TAV). 4D flow magnetic resonance imaging (MRI) was performed a day before aortic replacement surgery. Biomechanical and histological parameters, including assessing of wall strength, media degeneration, elastin, and cell content were analyzed from the resected AA samples. Results: WSSs were greater in the outer curves of the AA compared to the inner curves in all TAA patients. WSSs correlated with media degeneration of the aortic wall (ρ = -0.48, p < 0.01), elastin content (ρ = 0.47, p < 0.01), and aortic wall strength (ρ = -0.49, p = 0.029). Subsequently, the media of the outer curves was thinner, more rigid, and tolerated lower failure strains. Failure values were shown to correlate with smooth muscle cell (SMC) density (ρ = -0.45, p < 0.02), and indicated the more MYH10+ SMCs the lower the strength of the aortic wall structure. More macrophages were detected in patients with severe media degeneration and the areas with lower WSSs. Conclusion: The findings indicate that MRI-derived WSS predicts pathological and biomechanical changes in the aortic wall in patients with TAA and could be used for identification of high-risk patients.
Collapse
Affiliation(s)
- Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jaakko K. Sarin
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Medical Physics, Medical Imaging Center, Pirkanmaa Hospital District, Tampere, Finland
| | - S. Petteri Kauhanen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Jari Torniainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Hanna Matikka
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Emma-Sofia Luoto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Jaakkola
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
| | - Petri Saari
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Timo Liimatainen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, Oulu University Hospital, Oulu, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Marja Hedman
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
- Department of Heart and Thoracic Surgery, Kuopio University Hospital, Heart Center, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johanna P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- *Correspondence: Johanna P. Laakkonen,
| |
Collapse
|
12
|
The Detrimental Role of Intraluminal Thrombus Outweighs Protective Advantage in Abdominal Aortic Aneurysm Pathogenesis: The Implications for the Anti-Platelet Therapy. Biomolecules 2022; 12:biom12070942. [PMID: 35883500 PMCID: PMC9313225 DOI: 10.3390/biom12070942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common cardiovascular disease resulting in morbidity and mortality in older adults due to rupture. Currently, AAA treatment relies entirely on invasive surgical treatments, including open repair and endovascular, which carry risks for small aneurysms (diameter < 55 mm). There is an increasing need for the development of pharmacological intervention for early AAA. Over the last decade, it has been increasingly recognized that intraluminal thrombus (ILT) is involved in the growth, remodeling, and rupture of AAA. ILT has been described as having both biomechanically protective and biochemically destructive properties. Platelets are the second most abundant cells in blood circulation and play an integral role in the formation, expansion, and proteolytic activity of ILT. However, the role of platelets in the ILT-potentiated AAA progression/rupture remains unclear. Researchers are seeking pharmaceutical treatment strategies (e.g., anti-thrombotic/anti-platelet therapies) to prevent ILT formation or expansion in early AAA. In this review, we mainly focus on the following: (a) the formation/deposition of ILT in the progression of AAA; (b) the dual role of ILT in the progression of AAA (protective or detrimental); (c) the function of platelet activity in ILT formation; (d) the application of anti-platelet drugs in AAA. Herein, we present challenges and future work, which may motivate researchers to better explain the potential role of ILT in the pathogenesis of AAA and develop anti-platelet drugs for early AAA.
Collapse
|
13
|
The Role of Obesity, Inflammation and Sphingolipids in the Development of an Abdominal Aortic Aneurysm. Nutrients 2022; 14:nu14122438. [PMID: 35745168 PMCID: PMC9229568 DOI: 10.3390/nu14122438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the vessel equal to or exceeding 3 cm. It is a disease with a long preclinical period commonly without any symptoms in its initial stage. Undiagnosed for years, aneurysm often leads to death due to vessel rupture. The basis of AAA pathogenesis is inflammation, which is often associated with the excess of adipose tissue, especially perivascular adipose tissue, which synthesizes adipocytokines that exert a significant influence on the formation of aneurysms. Pro-inflammatory cytokines such as resistin, leptin, and TNFα have been shown to induce changes leading to the formation of aneurysms, while adiponectin is the only known compound that is secreted by adipose tissue and limits the development of aneurysms. However, in obesity, adiponectin levels decline. Moreover, inflammation is associated with an increase in the amount of macrophages infiltrating adipose tissue, which are the source of matrix metalloproteinases (MMP) involved in the degradation of the extracellular matrix, which are an important factor in the formation of aneurysms. In addition, an excess of body fat is associated with altered sphingolipid metabolism. It has been shown that among sphingolipids, there are compounds that play an opposite role in the cell: ceramide is a pro-apoptotic compound that mediates the development of inflammation, while sphingosine-1-phosphate exerts pro-proliferative and anti-inflammatory effects. It has been shown that the increase in the level of ceramide is associated with a decrease in the concentration of adiponectin, an increase in the concentration of TNFα, MMP-9 and reactive oxygen species (which contribute to the apoptosis of vascular smooth muscle cell). The available data indicate a potential relationship between obesity, inflammation and disturbed sphingolipid metabolism with the formation of aneurysms; therefore, the aim of this study was to systematize the current knowledge on the role of these factors in the pathogenesis of abdominal aortic aneurysm.
Collapse
|
14
|
Făgărășan A, Săsăran MO. The Predictive Role of Plasma Biomarkers in the Evolution of Aortopathies Associated with Congenital Heart Malformations. Int J Mol Sci 2022; 23:ijms23094993. [PMID: 35563383 PMCID: PMC9102091 DOI: 10.3390/ijms23094993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Dilatation of the aorta is a constantly evolving condition that can lead to the ultimate life-threatening event, acute aortic dissection. Recent research has tried to identify quantifiable biomarkers, with both diagnostic and prognostic roles in different aortopathies. Most studies have focused on the bicuspid aortic valve, the most frequent congenital heart disease (CHD), and majorly evolved around matrix metalloproteinases (MMPs). Other candidate biomarkers, such as asymmetric dimethylarginine, soluble receptor for advanced glycation end-products or transforming growth factor beta have also gained a lot of attention recently. Most of the aortic anomalies and dilatation-related studies have reported expression variation of tissular biomarkers. The ultimate goal remains, though, the identification of biomarkers among the serum plasma, with the upregulation of circulating MMP-1, MMP-2, MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), asymmetric dimethylarginine (ADMA), soluble receptor for advanced glycation end-products (sRAGE) and transforming growth factor beta (TGF-β) being reported in association to several aortopathies and related complications in recent research. These molecules are apparently quantifiable from the early ages and have been linked to several CHDs and hereditary aortopathies. Pediatric data on the matter is still limited, and further studies are warranted to elucidate the role of plasmatic biomarkers in the long term follow-up of potentially evolving congenital aortopathies.
Collapse
Affiliation(s)
- Amalia Făgărășan
- Department of Pediatrics III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Târgu Mureș, Romania;
| | - Maria Oana Săsăran
- Department of Pediatrics III, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-720-332-503
| |
Collapse
|
15
|
Rastogi V, Stefens SJM, Houwaart J, Verhagen HJM, de Bruin JL, van der Pluijm I, Essers J. Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne) 2022; 9:814123. [PMID: 35492343 PMCID: PMC9051391 DOI: 10.3389/fmed.2022.814123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.
Collapse
Affiliation(s)
- Vinamr Rastogi
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Houwaart
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hence J. M. Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jorg L. de Bruin
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Jeroen Essers
| |
Collapse
|
16
|
Li B, Song X, Guo W, Hou Y, Hu H, Ge W, Fan T, Han Z, Li Z, Yang P, Gao R, Zhao H, Wang J. Single-Cell Transcriptome Profiles Reveal Fibrocytes as Potential Targets of Cell Therapies for Abdominal Aortic Aneurysm. Front Cardiovasc Med 2021; 8:753711. [PMID: 34901214 PMCID: PMC8652037 DOI: 10.3389/fcvm.2021.753711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is potentially life-threatening in aging population due to the risk of aortic rupture and a lack of optimal treatment. The roles of different vascular and immune cells in AAA formation and pathogenesis remain to be future characterized. Single-cell RNA sequencing was performed on an angiotensin (Ang) II-induced mouse model of AAA. Macrophages, B cells, T cells, fibroblasts, smooth muscle cells and endothelial cells were identified through bioinformatic analyses. The discovery of multiple subtypes of macrophages, such as the re-polarization of Trem2+Acp5+ osteoclast-like and M2-like macrophages toward the M1 type macrophages, indicates the heterogenous nature of macrophages during AAA development. More interestingly, we defined CD45+COL1+ fibrocytes, which was further validated by flow cytometry and immunostaining in mouse and human AAA tissues. We then reconstituted these fibrocytes into mice with Ang II-induced AAA and found the recruitment of these fibrocytes in mouse AAA. More importantly, the fibrocyte treatment exhibited a protective effect against AAA development, perhaps through modulating extracellular matrix production and thus enhancing aortic stability. Our study reveals the heterogeneity of macrophages and the involvement of a novel cell type, fibrocyte, in AAA. Fibrocyte may represent a potential cell therapy target for AAA.
Collapse
Affiliation(s)
- Bolun Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaomin Song
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yangfeng Hou
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huiyuan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,First Clinical College, Xi'an Jiaotong University, ShaanXi, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhifa Han
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhiwei Li
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Pilecki B, de Carvalho PVSD, Kirketerp-Møller KL, Schlosser A, Kejling K, Dubik M, Madsen NP, Stubbe J, Hansen PBL, Andersen TL, Moeller JB, Marcussen N, Azevedo V, Hvidsten S, Baun C, Shi GP, Lindholt JS, Sorensen GL. MFAP4 Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation Through Regulation of Macrophage Infiltration and Activity. Front Cardiovasc Med 2021; 8:764337. [PMID: 34805319 PMCID: PMC8602692 DOI: 10.3389/fcvm.2021.764337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 01/14/2023] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein involved in the induction of vascular remodeling. This study aimed to investigate if MFAP4 facilitates the development of AAA and characterize the underlying MFAP4-mediated mechanisms. Approach and Results: Double apolipoprotein E- and Mfap4-deficient (ApoE−/−Mfap4−/−) and control apolipoprotein E-deficient (ApoE−/−) mice were infused subcutaneously with angiotensin II (Ang II) for 28 days. Mfap4 expression was localized within the adventitial and medial layers and was upregulated after Ang II treatment. While Ang II-induced blood pressure increase was independent of Mfap4 genotype, ApoE−/−Mfap4−/− mice exhibited significantly lower AAA incidence and reduced maximal aortic diameter compared to ApoE−/− littermates. The ApoE−/−Mfap4−/− AAAs were further characterized by reduced macrophage infiltration, matrix metalloproteinase (MMP)-2 and MMP-9 activity, proliferative activity, collagen content, and elastic membrane disruption. MFAP4 deficiency also attenuated activation of integrin- and TGF-β-related signaling within the adventitial layer of AAA tissues. Finally, MFAP4 stimulation promoted human monocyte migration and significantly upregulated MMP-9 activity in macrophage-like THP-1 cells. Conclusion: This study demonstrates that MFAP4 induces macrophage-rich inflammation, MMP activity, and maladaptive remodeling of the ECM within the vessel wall, leading to an acceleration of AAA development and progression. Collectively, our findings suggest that MFAP4 is an essential aggravator of AAA pathology that acts through regulation of monocyte influx and MMP production.
Collapse
Affiliation(s)
- Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Paulo V S D de Carvalho
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Mathematics and Informatics, University of Southern Denmark, Odense, Denmark
| | - Katrine L Kirketerp-Møller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anders Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karin Kejling
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Magdalena Dubik
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nicklas P Madsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pernille B L Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Cardiovascular, Renal and Metabolism, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Pathology Research Unit, Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jesper B Moeller
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Niels Marcussen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Vasco Azevedo
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Svend Hvidsten
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jes S Lindholt
- Department of Thoracic, Heart and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Grith L Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Pisano C, Gammazza AM, Rappa F, Barone R, Allegro R, Pitruzzella A, Tagliavia A, Agostara V, Ruvolo G, Cappello F, Argano V. Medial tunica degeneration of the ascending aortic wall is associated with specific microRNA changes in bicuspid aortic valve disease. Mol Med Rep 2021; 24:876. [PMID: 34726256 PMCID: PMC8569523 DOI: 10.3892/mmr.2021.12516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
Ascending aortic diameter is not an accurate parameter for surgical indication in patients with bicuspid aortic valve (BAV). Thus, the present study aimed to identify specific microRNAs (miRNAs/miRs) and their expression levels in aortic wall aneurysm associated with BAV according to severity of medial degeneration and to elucidate the association between the tissue expression levels of the miRNAs with their expression in plasma. Aortic wall and blood specimens were obtained from 38 patients: 12 controls and 26 patients with BAV with ascending aortic aneurysm. Of the patients with BAV, 19 had cusp fusions of right and left, 5 of right and non-coronary, and 2 of left and non-coronary. Two groups of patients were identified according to the grade of medial degeneration (MD): Low-grade D group (LGMD) and high-grade MD group (HGMD). Expression level of miR-122, miR-130, miR-718 and miR-486 were validated by reverse transcription-quantitative PCR in plasma and tissue samples. MD grade was found to be independent from the BAV phenotype. The HGD group showed increased expression levels of MMP-9 and MMP-2, and an increase in the number of apoptotic cells. Tissue expression levels of miR-718 and miR-122 were lower in the LGMD and HGD groups compared with expression in the control group; the HGD group showed increased levels of miR-486. Plasma expression levels of miR-122 were decreased in the LGMD and HGD groups, and miR-718 was only reduced in the HGD group. On the contrary, expression of miR-486 was increased in the LGMD and HGD groups. The data suggested that miR-486 may be considered as a non-invasive biomarker of aortic wall degeneration. Dysregulation of this putative biomarker may be associated with high risk of dissection and rupture in patients with BAV.
Collapse
Affiliation(s)
- Calogera Pisano
- Cardiac Surgery Unit, Tor Vergata University Hospital, I‑00133 Rome, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, I‑90100 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, I‑90100 Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, I‑90100 Palermo, Italy
| | - Rosalinda Allegro
- Department of Statistics, University of Palermo, I‑90100 Palermo, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, I‑90100 Palermo, Italy
| | | | - Virginia Agostara
- Department of Cardiac Surgery, University of Palermo, I‑90100 Palermo, Italy
| | - Giovanni Ruvolo
- Cardiac Surgery Unit, Tor Vergata University Hospital, I‑00133 Rome, Italy
| | - Francesco Cappello
- Cardiac Surgery Unit, Tor Vergata University Hospital, I‑00133 Rome, Italy
| | - Vincenzo Argano
- Department of Cardiac Surgery, University of Palermo, I‑90100 Palermo, Italy
| |
Collapse
|
19
|
Cai D, Sun C, Zhang G, Que X, Fujise K, Weintraub NL, Chen SY. A Novel Mechanism Underlying Inflammatory Smooth Muscle Phenotype in Abdominal Aortic Aneurysm. Circ Res 2021; 129:e202-e214. [PMID: 34551587 PMCID: PMC8575453 DOI: 10.1161/circresaha.121.319374] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Gui Zhang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Ken Fujise
- Harborview Medical Center, Department of Medicine, University of Washington, Seattle, WA
| | - Neal L Weintraub
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
20
|
Boyd AJ. Intraluminal thrombus: Innocent bystander or factor in abdominal aortic aneurysm pathogenesis? JVS Vasc Sci 2021; 2:159-169. [PMID: 34617066 PMCID: PMC8489244 DOI: 10.1016/j.jvssci.2021.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/20/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) represent a complex multifactorial hemodynamic, thrombotic, and inflammatory process that can ultimately result in aortic rupture and death. Despite improved screening and surgical management of AAAs, the mortality rates have remained high after rupture, and little progress has occurred in the development of nonoperative treatments. Intraluminal thrombus (ILT) is present in most AAAs and might be involved in AAA pathogenesis. The present review examined the latest clinical and experimental evidence for possible involvement of the ILT in AAA growth and rupture. METHODS A literature review was performed after a search of the PubMed database from 2012 to June 2020 using the terms "abdominal aortic aneurysm" and "intraluminal thrombus." RESULTS The structure, composition, and hemodynamics of ILT formation and propagation were reviewed in relation to the hemostatic and proteolytic factors favoring ILT deposition. The potential effects of the ILT on AAA wall degeneration and rupture, including a review of the current controversies regarding the position, thickness, and composition of ILT, are presented. Although initially potentially protective against increased wall stress, increasing evidence has shown that an increased volume and greater age of the ILT have direct detrimental effects on aortic wall integrity, which might predispose to an increased rupture risk. CONCLUSIONS ILT does not appear to be an innocent bystander in AAA pathophysiology. However, its exact role remains elusive and controversial. Despite computational evidence of a possible protective role of the ILT in reducing wall stress, increasing evidence has shown that the ILT promotes AAA wall degeneration in humans and in animal models. Further research, with large animal models and with more chronic ILT is crucial for a better understanding of the role of the ILT in AAAs and for the potential development of targeted therapies to slow or halt AAA progression.
Collapse
Affiliation(s)
- April J. Boyd
- Department of Vascular Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Paghdar S, Khan TM, Patel NP, Chandrasekaran S, De Sousa JFM, Tsouklidis N. Doxycycline Therapy for Abdominal Aortic Aneurysm: Inhibitory Effect on Matrix Metalloproteinases. Cureus 2021; 13:e14966. [PMID: 34123662 PMCID: PMC8191685 DOI: 10.7759/cureus.14966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening condition associated with smoking, aging, atherosclerosis, and destruction of the connective tissue in the abdominal aortic wall. Disturbances in the synthesis and degradation of matrix metalloproteinase (MMP) have been known to contribute to the development of AAAs. The only available treatment of AAA is surgical repair. Doxycycline, a tetracycline analog, is thought to have an inhibitory effect on MMPs. Knowing the effect of doxycycline, there may be some favorable effects of the drug to reduce the growth of small AAAs and avoid the need for invasive treatment. This article aims to determine the relationship between doxycycline and the MMPs to prevent the growth of small AAAs. We conducted our review using online resources such as PubMed, Google Scholar, The Journal of Vascular Surgery, and ResearchGate. The result of our study supports the effect of doxycycline in preventing the growth of small AAAs. We conclude that therapeutic treatment with doxycycline in patients with small AAAs can prevent the growth of aneurysms, life-threatening aneurysm rupture, and reduce the need for expensive, invasive treatment.
Collapse
Affiliation(s)
- Smit Paghdar
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Surat Municipal Institute of Medical Education and Research (SMIMER), Surat, IND
| | - Taheseen M Khan
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nishant P Patel
- Internal Medicine, Government Medical College, Surat, Surat, IND.,Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Savitri Chandrasekaran
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Joaquim Francisco Maria De Sousa
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Surgery, S.S. Institute of Medical Sciences and Research Centre, Davangere, IND.,Emergency Medicine, Healthway Hospital, Panaji, IND
| | - Nicholas Tsouklidis
- Health Care Administration, University of Cincinnati Health, Cincinnati, USA.,Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Medicine, Atlantic University School of Medicine, Gros Islet, LCA
| |
Collapse
|
22
|
Sohn EH, Han IC, Roos BR, Faga B, Luse MA, Binkley EM, Boldt HC, Folk JC, Russell SR, Mullins RF, Fingert JH, Stone EM, Scheetz TE. Genetic Association between MMP9 and Choroidal Neovascularization in Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2021; 1:100002. [PMID: 37672224 PMCID: PMC9560657 DOI: 10.1016/j.xops.2020.100002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
Purpose To evaluate the first association specific to exudative age-related macular degeneration (AMD) located near the matrix metalloproteinase 9 (MMP9) gene. Design Genetic association study. Participants One thousand seven hundred twelve patients with AMD (672 nonexudative, 1040 exudative) of predominantly northern European descent seeking treatment at the University of Iowa Hospitals and Clinics. Methods We reanalyzed the International AMD Genetics Consortium (IAMDGC) data to validate the association of polymorphisms near MMP9 with exudative AMD and to identify additional associated single nucleotide polymorphisms (SNPs), especially MMP9 coding sequence SNPs. We genotyped a cohort of 1712 AMD patients from Iowa with 3 SNPs identified with our analysis of the IAMDGC cohort using commercially available real-time quantitative polymerase chain reaction (PCR) assays. Firth regression was used to measure the association between MMP9 SNP genotypes and exudative AMD in our cohort of patients from Iowa. In addition, we developed a PCR-based assay to genotype the Iowa cohort at a short tandem repeat polymorphism (STRP) at the MMP9 locus. Main Outcome Measures Odds ratios and P values for exudative compared with nonexudative AMD patients in the Iowa cohort for MMP9 SNPs (rs4810482, rs17576, and rs17577) and STRP. Results We identified 3 SNPs in the MMP9 locus (rs4810482, rs17576, and rs17577) that are highly associated with exudative AMD in patient cohorts of the IAMDGC. These MMP9 SNPs also are associated with exudative AMD in the cohort of 1712 AMD patients from Iowa (rs4810482: odds ratio [OR], 0.82; P = 0.010; rs17576: OR, 0.86; P = 0.046; and rs17577: OR, 0.80; P = 0.041). We also genotyped the cohort of AMD patients from Iowa at rs142450006, another MMP9 polymorphism that previously was associated with exudative AMD. We detected a 4bp STRP, (TTTC)n, at the rs142450006 locus that is highly polymorphic and associated significantly with exudative AMD (OR, 0.78; P = 0.016). Conclusions This study independently confirms and expands an association between the MMP9 locus and exudative AMD, further implicating a role for extracellular matrix abnormalities in choroidal neovascularization.
Collapse
Affiliation(s)
- Elliott H. Sohn
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Ian C. Han
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Benjamin R. Roos
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Benjamin Faga
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Meagan A. Luse
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Elaine M. Binkley
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - H. Culver Boldt
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - James C. Folk
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Stephen R. Russell
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Robert F. Mullins
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - John H. Fingert
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Edwin M. Stone
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| | - Todd E. Scheetz
- Department of Ophthalmology, The University of Iowa, Iowa City, Iowa
- Institute for Vision Research, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
23
|
Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Taruya A, Furuta M, Mukaida N, Kondo T. Prevention of CaCl 2-induced aortic inflammation and subsequent aneurysm formation by the CCL3-CCR5 axis. Nat Commun 2020; 11:5994. [PMID: 33239616 PMCID: PMC7688638 DOI: 10.1038/s41467-020-19763-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
Inflammatory mediators such as cytokines and chemokines are crucially involved in the development of abdominal aortic aneurysm (AAA). Here we report that CaCl2 application into abdominal aorta induces AAA with intra-aortic infiltration of macrophages as well as enhanced expression of chemokine (C-C motif) ligand 3 (CCL3) and MMP-9. Moreover, infiltrating macrophages express C-C chemokine receptor 5 (CCR5, a specific receptor for CCL3) and MMP-9. Both Ccl3−/− mice and Ccr5−/− but not Ccr1−/− mice exhibit exaggerated CaCl2-inducced AAA with augmented macrophage infiltration and MMP-9 expression. Similar observations are also obtained on an angiotensin II-induced AAA model. Immunoneutralization of CCL3 mimics the phenotypes observed in CaCl2-treated Ccl3−/− mice. On the contrary, CCL3 treatment attenuates CaCl2-induced AAA in both wild-type and Ccl3−/− mice. Consistently, we find that the CCL3–CCR5 axis suppresses PMA-induced enhancement of MMP-9 expression in macrophages. Thus, CCL3 can be effective to prevent the development of CaCl2-induced AAA by suppressing MMP-9 expression. Inflammatory cytokines and chemokines are involved in the development of abdominal aortic aneurysm (AAA). Here the authors show that CCL3 prevents the development of CaCl2-induced AAA by suppressing MMP-9 expression.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
24
|
Zhu S, Zhu K, Li J, Lai H, Wang C. Nano-Biomaterials for the Delivery of Therapeutic and Monitoring Cues for Aortic Diseases. Front Bioeng Biotechnol 2020; 8:583879. [PMID: 33224934 PMCID: PMC7674648 DOI: 10.3389/fbioe.2020.583879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/07/2020] [Indexed: 01/09/2023] Open
Abstract
The aorta is the largest artery in the body, so any diseases or conditions which could cause damage to the aorta would put patients at considerable and life-threatening risk. In the management of aortic diseases, the major treatments include drug therapy, endovascular treatment, and surgical treatment, which are of great danger or with a poor prognosis. The delivery of nano-biomaterials provides a potential development trend and an emerging field where we could monitor patients’ conditions and responses to the nanotherapeutics. One of the putative applications of nanotechnology is ultrasensitive monitoring of cardiovascular markers by detecting and identifying aneurysms. Moreover, the use of nanosystems for targeted drug delivery can minimize the systemic side effects and enhance drug positioning and efficacy compared to conventional drug therapies. This review shows some examples of utilizing nano-biomaterials in in vitro organ and cell culture experiments and explains some developing technologies in delivering and monitoring regenerative therapeutics.
Collapse
Affiliation(s)
- Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
25
|
Liu WL, Chiang FT, Kao JTW, Chiou SH, Lin HL. GSK3 modulation in acute lung injury, myocarditis and polycystic kidney disease-related aneurysm. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118798. [PMID: 32693109 PMCID: PMC7368652 DOI: 10.1016/j.bbamcr.2020.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
GSK3 are involved in different physical and pathological conditions and inflammatory regulated by macrophages contribute to significant mechanism. Infection stimuli may modulate GSK3 activity and influence host cell adaption, immune cells infiltration or cytokine expressions. To further address the role of GSK3 modulation in macrophages, the signal transduction of three major organs challenged by endotoxin, virus and genetic inherited factors are briefly introduced (lung injury, myocarditis and autosomal dominant polycystic kidney disease). As a result of pro-inflammatory and anti-inflammatory functions of GSK3 in different microenvironments and stages of macrophages (M1/M2), the rational resolution should be considered by adequately GSK3.
Collapse
Affiliation(s)
- Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Heng-Liang Lin
- Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Fund Managing, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
26
|
Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production. Biosci Rep 2020; 39:220754. [PMID: 31651935 PMCID: PMC6851509 DOI: 10.1042/bsr20191252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is often clinically silent before rupture characterized by extensive vascular inflammation and degenerative elasticity of aortic wall. Monocyte chemotactic protein-induced protein-1 (MCPIP1) exhibits anti-infllammatory and pro-apoptotic effects involved in atherogenesis. However, little is known about the expression and the contribution of MCPIP1 in AAA. In the present study, we collected clinical AAA specimens and constructed AAA mice model through Ang-II infusion, and found apparently increased MCPIP1 expression and severe inflammatory infiltration in AAA aortic membrane as evidenced by elevated levels of monocyte chemotactic protein 1 (MCP-1), interleukin 1 β (IL-1β) and NF-κB, as well as HE staining. The elasticity of aortic tunica media was impaired along with multiple apoptosis of vascular smooth muscle cells (VSMCs) in Ang-II-induced aneurysmal mouse. In vitro Ang-II administration of VSMCs induced MCPIP1 expression, accompanied by up-regulation of matrix metalloproteinase (MMP) 2 (MMP-2) and MMP-9, as well as enhancement of VSMCs proliferation and apoptosis, which may cause damage of intima–media elasticity. Silencing MCPIP1 reversed above effects to further restore the balance of proliferation and apoptosis in VSMCs. Overall, our data indicated that up-regulation of MCPIP1 may become a promising candidate for the diagnosis of AAA, and specific knockdown of MCPIP1 in VSMCs could inhibit VSMCs apoptosis and down-regulate MMPs to maintain vascular wall elasticity. Therefore, knockdown of MCPIP1 may serve as a potential target for gene therapy of AAA.
Collapse
|
27
|
Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020; 21:ijms21176334. [PMID: 32878347 PMCID: PMC7504666 DOI: 10.3390/ijms21176334] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) refers to the localized dilatation of the infra-renal aorta, in which the diameter exceeds 3.0 cm. Loss of vascular smooth muscle cells, degradation of the extracellular matrix (ECM), vascular inflammation, and oxidative stress are hallmarks of AAA pathogenesis and contribute to the progressive thinning of the media and adventitia of the aortic wall. With increasing AAA diameter, and left untreated, aortic rupture ensues with high mortality. Collective evidence of recent genetic and epigenetic studies has shown that phenotypic modulation of smooth muscle cells (SMCs) towards dedifferentiation and proliferative state, which associate with the ECM remodeling of the vascular wall and accompanied with increased cell senescence and inflammation, is seen in in vitro and in vivo models of the disease. This review critically analyses existing publications on the genetic and epigenetic mechanisms implicated in the complex role of SMCs within the aortic wall in AAA formation and reflects the importance of SMCs plasticity in AAA formation. Although evidence from the wide variety of mouse models is convincing, how this knowledge is applied to human biology needs to be addressed urgently leveraging modern in vitro and in vivo experimental technology.
Collapse
Affiliation(s)
- Rijan Gurung
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Andrew Mark Choong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
| | - Chin Cheng Woo
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
| | - Roger Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore; (R.G.); (R.F.)
- Genome Institute of Singapore, A*STAR, 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore; (A.M.C.); (C.C.W.)
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-6779-5555
| |
Collapse
|
28
|
Miyata T, Minami M, Kataoka H, Hayashi K, Ikedo T, Yang T, Yamamoto Y, Yokode M, Miyamoto S. Osteoprotegerin Prevents Intracranial Aneurysm Progression by Promoting Collagen Biosynthesis and Vascular Smooth Muscle Cell Proliferation. J Am Heart Assoc 2020; 9:e015731. [PMID: 32856519 PMCID: PMC7660769 DOI: 10.1161/jaha.119.015731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Decreased extracellular matrix formation and few vascular smooth muscle cells (VSMCs) in cerebral vascular walls are the main characteristics of intracranial aneurysm (IA) pathogenesis. Recently, osteoprotegerin was reported to activate collagen biosynthesis and VSMC proliferation via the TGF-β1 (transforming growth factor-β1) signaling. This study aimed to investigate whether osteoprotegerin can prevent IA progression in rats through enhanced collagen expression and VSMC proliferation. Methods and Results IAs were surgically induced in 7-week-old male Sprague-Dawley rats; at 1-week post-operation, recombinant mouse osteoprotegerin or vehicle control was continuously infused for 4 weeks into the lateral ventricle using an osmotic pump. In the osteoprotegerin-treatment group, the aneurysmal size was significantly smaller (37.5 μm versus 60.0 μm; P<0.01) and the media of IA walls was thicker (57.1% versus 36.0%; P<0.01) than in the vehicle-control group. Type-I and type-III collagen, TGF-β1, phosphorylated Smad2/3, and proliferating cell nuclear antigen were significantly upregulated in the IA walls of the osteoprotegerin group than that in the control group. No significant difference was found in the expression of proinflammatory genes between the groups. In mouse VSMC cultures, osteoprotegerin treatment upregulated the expression of collagen and TGF-β1 genes, and activated VSMC proliferation; the inhibition of TGF-β1 signaling nullified this effect. Conclusions Osteoprotegerin suppressed the IA progression by a unique mechanism whereby collagen biosynthesis and VSMC proliferation were activated via TGF-β1 without altering proinflammatory gene expression. Osteoprotegerin may represent a novel therapeutic target for IAs.
Collapse
Affiliation(s)
- Takeshi Miyata
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Manabu Minami
- Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kosuke Hayashi
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Taichi Ikedo
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| | - Tao Yang
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Yu Yamamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan.,Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Masayuki Yokode
- Department of Clinical Innovative Medicine Kyoto University Graduate School of Medicine Kyoto Japan
| | - Susumu Miyamoto
- Department of Neurosurgery Kyoto University Graduate School of Medicine Kyoto Japan
| |
Collapse
|
29
|
Mangarova DB, Brangsch J, Mohtashamdolatshahi A, Kosch O, Paysen H, Wiekhorst F, Klopfleisch R, Buchholz R, Karst U, Taupitz M, Schnorr J, Hamm B, Makowski MR. Ex vivo magnetic particle imaging of vascular inflammation in abdominal aortic aneurysm in a murine model. Sci Rep 2020; 10:12410. [PMID: 32709967 PMCID: PMC7381631 DOI: 10.1038/s41598-020-69299-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are currently one of the leading causes of death in developed countries. Inflammation is crucial in the disease progression, having a substantial impact on various determinants in AAAs development. Magnetic particle imaging (MPI) is an innovative imaging modality, enabling the highly sensitive detection of magnetic nanoparticles (MNPs), suitable as surrogate marker for molecular targeting of vascular inflammation. For this study, Apolipoprotein E-deficient-mice underwent surgical implantation of osmotic minipumps with constant Angiotensin II infusion. After 3 and 4 weeks respectively, in-vivo-magnetic resonance imaging (MRI), ex-vivo-MPI and ex-vivo-magnetic particle spectroscopy (MPS) were performed. The results were validated by histological analysis, immunohistology and laser ablation-inductively coupled plasma-mass spectrometry. MR-angiography enabled the visualization of aneurysmal development and dilatation in the experimental group. A close correlation (R = 0.87) with histological area assessment was measured. Ex-vivo-MPS revealed abundant iron deposits in AAA samples and ex-vivo histopathology measurements were in good agreement (R = 0.76). Ex-vivo-MPI and MPS results correlated greatly (R = 0.99). CD68-immunohistology stain and Perls’-Prussian-Blue-stain confirmed the colocalization of macrophages and MNPs. This study demonstrates the feasibility of ex-vivo-MPI for detecting inflammation in AAA. The quantitative ability for mapping MNPs establishes MPI as a promising tool for monitoring inflammatory progression in AAA in an experimental setting.
Collapse
Affiliation(s)
- Dilyana B Mangarova
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163, Berlin, Germany.
| | - Julia Brangsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Building 21, 14163, Berlin, Germany
| | - Azadeh Mohtashamdolatshahi
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Olaf Kosch
- Department 8.2-Biosignals, Physikalisch-Technische Bundesanstalt Berlin, Abbestrasse 2-12, 10587, Berlin, Germany
| | - Hendrik Paysen
- Department 8.2-Biosignals, Physikalisch-Technische Bundesanstalt Berlin, Abbestrasse 2-12, 10587, Berlin, Germany
| | - Frank Wiekhorst
- Department 8.2-Biosignals, Physikalisch-Technische Bundesanstalt Berlin, Abbestrasse 2-12, 10587, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163, Berlin, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Diagnostic and Interventional Radiology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
30
|
Yoshioka S, Miyamoto T, Satomi J, Tada Y, Yagi K, Shimada K, Naruishi K, Shikata E, Yamaguchi I, Yamaguchi T, Korai M, Okayama Y, Harada M, Kitazato KT, Kanematsu Y, Nagahiro S, Takagi Y. Disequilibrium of Plasma Protease/Anti-Protease Due to Severe Periodontal Disease Contributes to Human Subarachnoid Hemorrhage. NEUROSURGERY OPEN 2020. [DOI: 10.1093/neuopn/okaa007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
BACKGROUND
The pathophysiology of subarachnoid hemorrhages (SAHs) due to ruptured intracranial aneurysms (IAs) remains unclear. Although a relationship between SAHs and periodontal disease (PD) has been suggested, the mechanism requires clarification.
OBJECTIVE
To evaluate the relationship between PD and SAHs and to identify periodontal pathogens associated with SAHs.
METHODS
This prospective study included consecutive patients with ruptured (n = 11) and unruptured (n = 14) IAs and healthy controls (n = 8). The plasma and plaque subgingival bacterial deoxyribonucleic acid (DNA) levels in PD were evaluated by a dentist using the Community Periodontal Index of Treatment Needs (CPITN). Plasma levels of matrix metalloproteinase (MMP-9), tissue inhibitors of matrix metalloproteinase (TIMP2), and procollagen I were analyzed.
RESULTS
Patients with ruptured IAs, had significantly higher CPITN scores than the controls, suggesting that ruptured IAs were associated with severe PD. Although no rupture-specific bacteria were identified, the positive rate of plaque subgingival bacterial DNA was significantly higher in patients with severe PD than in those without severe PD. Multivariate logistic regression analysis indicated that bleeding on probing (BOP) was associated with ruptured IAs (odds ratio, 1.10; 95% confidence interval 1.04–1.20; P = .0001). BOP was positively associated with plasma MMP-9 levels and a disequilibrium in the MMP-9/TIMP2 ratio. BOP was negatively correlated with plasma procollagen I levels (P < .05, for each). This suggested that local inflammation with severe PD might have systemic effects and lead to ruptured IAs.
CONCLUSION
Disequilibrium of plasma protease/anti-protease associated with a high BOP rate in severe PD may be attributable to IA rupture.
Collapse
Affiliation(s)
- Shotaro Yoshioka
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Miyamoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junichiro Satomi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshiteru Tada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Yagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Koji Naruishi
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Eiji Shikata
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Izumi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tadashi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masaaki Korai
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshihiro Okayama
- Clinical Trial Center, Tokushima University and Tokushima University Hospital, Tokushima, Japan
| | - Masafumi Harada
- Department of Radiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Keiko T Kitazato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhisa Kanematsu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shinji Nagahiro
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
31
|
Tan X, Li T, Zhu S, Zhong W, Li F, Wang Y. Induction of SPARC on Oxidative Stress, Inflammatory Phenotype Transformation, and Apoptosis of Human Brain Smooth Muscle Cells Via TGF-β1-NOX4 Pathway. J Mol Neurosci 2020; 70:1728-1741. [PMID: 32495004 DOI: 10.1007/s12031-020-01566-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/22/2020] [Indexed: 11/30/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) has a close association with inflammatory response and oxidative stress in tissues and is widely expressed in intracranial aneurysms (IAs), especially in smooth muscle cells. Therefore, it is inferred that SPARC might be involved in the formation and development of IAs through the inflammatory response pathway or oxidative stress pathway. The aim of this study is to investigate the pathological mechanism of SPARC in oxidative stress, inflammation, and apoptosis during the formation of IAs, as well as the involvement of TGF-β1 and NOX4 molecules. Human brain vascular smooth muscle cells (HBVSMCs) were selected as experimental objects. After the cells were stimulated by recombinant human SPARC protein in vitro, the ROS level in the cells was measured using an ID/ROS fluorescence analysis kit combined with fluorescence microscope and flow cytometry. The related protein expression in HBVSMCs was measured using western blotting. The mitochondrial membrane potential change was detected using a mitochondrial membrane potential kit and laser confocal microscope. The mechanism was explored by intervention with reactive oxygen scavengers N-acetylcysteine (NAC), TGF-β1 inhibitor (SD-208), and siRNA knockout. The results showed that SPARC upregulated the expression of NOX4 through the TGF-β1-dependent signaling pathway, leading to oxidative stress and pro-inflammatory matrix behavior and apoptosis in HBVSMCs. These findings demonstrated that SPARC may promote the progression of IAs.
Collapse
Affiliation(s)
- Xianjun Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, People's Hospital of Chiping City, Liaocheng City, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Tao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.,Department of Neurosurgery, the No.4 People's Hospital of Jinan, Jinan City, Shandong Province, China
| | - Shaowei Zhu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China
| | - Feng Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China.
| |
Collapse
|
32
|
Wang KT, Liu YY, Sung KT, Liu CC, Su CH, Hung TC, Hung CL, Chien CY, Yeh HI. Circulating Monocyte Count as a Surrogate Marker for Ventricular-Arterial Remodeling and Incident Heart Failure with Preserved Ejection Fraction. Diagnostics (Basel) 2020; 10:diagnostics10050287. [PMID: 32397256 PMCID: PMC7277943 DOI: 10.3390/diagnostics10050287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Among 2085 asymptomatic subjects (age: 51.0 ± 10.7 years, 41.3% female) with data available on common carotid artery diameter (CCAD) and circulating total white blood cell (WBC) counts, higher circulating leukocytes positively correlated with higher high sensitivity C-reactive protein (hs-CRP). Higher WBC/segmented cells and monocyte counts were independently associated with greater relative wall thicknesses and larger CCADs, which in general were more pronounced in men and obese subjects (body mass index ≥ 25 kg/m2) (all P interaction: < 0.05). Using multivariate adjusting models, only the monocyte count independently predicted the left ventricular mass index (LVMi) (ß-Coef: 0.06, p = 0.01). Higher circulating WBC, segmented, and monocyte counts and a greater CCAD were all independently associated with a higher risk of heart failure (HF)/all-cause death during a median of 12.1 years of follow-up in fully adjusted models, with individuals manifesting both higher CCADs and monocyte counts incurring the highest risk of HF/death (adjusted hazard ratio: 2.81, 95% CI: 1.57. −5.03, p < 0.001; P interaction, 0.035; lower CCAD/lower monocyte as reference). We conclude that a higher monocyte count is associated with cardiac remodeling and carotid artery dilation. Both an elevated monocyte count and a larger CCAD may indicate a specific phenotype that confers the highest risk of HF, which likely signifies the role of circulating monocytes in the pathophysiology of heart failure with preserved ejection fraction (HFpEF).
Collapse
Affiliation(s)
- Kuang-Te Wang
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taitung Branch, Taitung 95054, Taiwan;
| | - Yen-Yu Liu
- Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Tamsui Branch, Tamsui 25160, Taiwan;
| | - Kuo-Tzu Sung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, Taipei 10449, Taiwan; (K.-T.S.); (C.-H.S.); (T.-C.H.); (H.-I.Y.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chuan-Chuan Liu
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan;
- Health Evaluation Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Cheng-Huang Su
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, Taipei 10449, Taiwan; (K.-T.S.); (C.-H.S.); (T.-C.H.); (H.-I.Y.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Ta-Chuan Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, Taipei 10449, Taiwan; (K.-T.S.); (C.-H.S.); (T.-C.H.); (H.-I.Y.)
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 11260, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, Taipei 10449, Taiwan; (K.-T.S.); (C.-H.S.); (T.-C.H.); (H.-I.Y.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Graduate Institute of Health Care Organization Administration, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
- Correspondence: (C.-L.H.); (C.-Y.C.); Tel.: +886-2-2543-3535 (C.-L.H. & C.-Y.C.); Fax: +886-2-2543-3642 (ext. 3121) (C.-L.H. & C.-Y.C.)
| | - Chen-Yen Chien
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City 11260, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Correspondence: (C.-L.H.); (C.-Y.C.); Tel.: +886-2-2543-3535 (C.-L.H. & C.-Y.C.); Fax: +886-2-2543-3642 (ext. 3121) (C.-L.H. & C.-Y.C.)
| | - Hung-I Yeh
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei Branch, Taipei 10449, Taiwan; (K.-T.S.); (C.-H.S.); (T.-C.H.); (H.-I.Y.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Graduate Institute of Health Care Organization Administration, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
| |
Collapse
|
33
|
Nishiyama T, Kondo Y, Okamoto S, Terasaki M, Toko H, Yagishita M, Takahashi H, Yokosawa M, Tsuboi H, Matsumoto I, Sumida T. Aortic Arch Aneurysm in Behçet Disease Successfully Treated with Infliximab. Intern Med 2020; 59:1087-1091. [PMID: 31915317 PMCID: PMC7205534 DOI: 10.2169/internalmedicine.3946-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aortic arch aneurysm (AAA) is a rare involvement in Behçet disease (BD). It is often life-threatening, yet few reports related to the treatment of AAA have been published. We herein report a 27-year-old woman with AAA caused by vascular BD. She was initially treated with prednisolone 1 mg/kg/d. However, the inflammation had not subsided after three weeks, so infliximab (IFX) was added for relief. After IFX administration, the C-reactive protein level normalized, and computed tomography at three months after therapeutic intervention revealed that the aneurysm had disappeared. This case suggests that early induction of IFX might be effective for aortic aneurysm in BD.
Collapse
Affiliation(s)
- Taihei Nishiyama
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Shota Okamoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Mayu Terasaki
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Hirofumi Toko
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Mizuki Yagishita
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Hiroyuki Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Masahiro Yokosawa
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
34
|
Zhang C, Wang H, Yang B. miR-146a regulates inflammation and development in patients with abdominal aortic aneurysms by targeting CARD10. INT ANGIOL 2020; 39:314-322. [PMID: 32138469 DOI: 10.23736/s0392-9590.20.04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We present the expression of miR-146a in abdominal aortic aneurysms (AAA) patients, and its mechanism for regulating inflammation and development in AAA patients. METHODS The expression of miR-146a in serum, PBMC, and abdominal aorta tissues was measured in AAA patients. RESULTS We found that level of miR-146a in the serum and its expression in AAA tissues were significantly higher than that in healthy people or normal abdominal aorta tissues. Pearson's method analysis showed that miRNA-146a in the serum of AAA patients was negatively correlated with serum TNF-α, IFN-γ and CRP, and was positively correlated with serum IL-10. The luciferase reporter gene system confirmed that miR-146a targeted inhibition of CARD10 expression in THP-1 and human umbilical vein endothelial cells (HUVECs), and miR-146a was negatively correlated with the expression of CARD10 in the tissues/PBMC of AAA patients. In PBMC of healthy people, over-expression of miR-146a by transferring miR-146a-mimic could increase the expression of SIRT1 but decreased the expression of p65 and the level of TNF-α secretion. Moreover, HUVECs cellular activity change by TNF-α in a dose-dependent manner. CONCLUSIONS These results suggested that miR-146a suppressed the inflammation of peripheral blood in AAA patients by targeting CARD10, and miR-146a blocked the progression of AAA through CARD10/SIRT1/p65 pathway.
Collapse
Affiliation(s)
- Chenglei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Haohua Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Bin Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China -
| |
Collapse
|
35
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
The role of IL-1β in aortic aneurysm. Clin Chim Acta 2020; 504:7-14. [PMID: 31945339 DOI: 10.1016/j.cca.2020.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β) is a vital cytokine that plays an important role in regulating immune responses to infectious challenges and sterile insults. In addition, two endogenous inhibitors of functional receptor binding, IL-1 receptor antagonist (IL-1Ra), complete the family. To gain biological activity, IL-1β requires processing by the protease caspase-1 and activation of inflammasomes. Numerous clinical association studies and experimental approaches have implicated members of the IL-1 family, their receptors, or components of the processing machinery in the underlying processes of cardiovascular diseases. Here, we summarize the current state of knowledge regarding the pro-inflammatory and disease-modulating role of the IL-1 family in aneurysm. We discuss clinical evidence, signalling pathway, and mechanism of action and last, lend a perspective on currently developing therapeutic strategies involving IL-1β in aneurysm.
Collapse
|
37
|
Abstract
Dissections or ruptures of aortic aneurysms remain a leading cause of death in the developed world, with the majority of deaths being preventable if individuals at risk are identified and properly managed. Genetic variants predispose individuals to these aortic diseases. In the case of thoracic aortic aneurysm and dissections (thoracic aortic disease), genetic data can be used to identify some at-risk individuals and dictate management of the associated vascular disease. For abdominal aortic aneurysms, genetic associations have been identified, which provide insight on the molecular pathogenesis but cannot be used clinically yet to identify individuals at risk for abdominal aortic aneurysms. This compendium will discuss our current understanding of the genetic basis of thoracic aortic disease and abdominal aortic aneurysm disease. Although both diseases share several pathogenic similarities, including proteolytic elastic tissue degeneration and smooth muscle dysfunction, they also have several distinct differences, including population prevalence and modes of inheritance.
Collapse
Affiliation(s)
- Amélie Pinard
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| | - Gregory T Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand (G.T.J.)
| | - Dianna M Milewicz
- From the Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School; University of Texas Health Science Center at Houston (A.P., D.M.M.)
| |
Collapse
|
38
|
Abstract
Aortic aneurysms are a common vascular disease in Western populations that can involve virtually any portion of the aorta. Abdominal aortic aneurysms are much more common than thoracic aortic aneurysms and combined they account for >25 000 deaths in the United States annually. Although thoracic and abdominal aortic aneurysms share some common characteristics, including the gross anatomic appearance, alterations in extracellular matrix, and loss of smooth muscle cells, they are distinct diseases. In recent years, advances in genetic analysis, robust molecular tools, and increased availability of animal models have greatly enhanced our knowledge of the pathophysiology of aortic aneurysms. This review examines the various proposed cellular mechanisms responsible for aortic aneurysm formation and identifies opportunities for future studies.
Collapse
Affiliation(s)
- Raymundo Alain Quintana
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA
| | - W Robert Taylor
- From the Division of Cardiology, Department of Medicine (R.A.Q., W.R.T.), Emory University School of Medicine, Atlanta, GA.,Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology (W.R.T.), Emory University School of Medicine, Atlanta, GA.,Division of Cardiology, Atlanta VA Medical Center, Decatur, GA (W.R.T.)
| |
Collapse
|
39
|
Nogi M, Satoh K, Sunamura S, Kikuchi N, Satoh T, Kurosawa R, Omura J, Elias-Al-Mamun M, Abdul Hai Siddique M, Numano K, Kudo S, Miyata S, Akiyama M, Kumagai K, Kawamoto S, Saiki Y, Shimokawa H. Small GTP-Binding Protein GDP Dissociation Stimulator Prevents Thoracic Aortic Aneurysm Formation and Rupture by Phenotypic Preservation of Aortic Smooth Muscle Cells. Circulation 2019; 138:2413-2433. [PMID: 29921611 DOI: 10.1161/circulationaha.118.035648] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) and dissection are fatal diseases that cause aortic rupture and sudden death. The small GTP-binding protein GDP dissociation stimulator (SmgGDS) is a crucial mediator of the pleiotropic effects of statins. Previous studies revealed that reduced force generation in aortic smooth muscle cells (AoSMCs) causes TAA and thoracic aortic dissection. METHODS To examine the role of SmgGDS in TAA formation, we used an angiotensin II (1000 ng·min-1·kg-1, 4 weeks)-induced TAA model. RESULTS We found that 33% of Apoe-/- SmgGDS+/- mice died suddenly as a result of TAA rupture, whereas there was no TAA rupture in Apoe-/- control mice. In contrast, there was no significant difference in the ratio of abdominal aortic aneurysm rupture between the 2 genotypes. We performed ultrasound imaging every week to follow up the serial changes in aortic diameters. The diameter of the ascending aorta progressively increased in Apoe-/- SmgGDS+/- mice compared with Apoe-/- mice, whereas that of the abdominal aorta remained comparable between the 2 genotypes. Histological analysis of Apoe-/- SmgGDS+/- mice showed dissections of major thoracic aorta in the early phase of angiotensin II infusion (day 3 to 5) and more severe elastin degradation compared with Apoe-/- mice. Mechanistically, Apoe-/- SmgGDS+/- mice showed significantly higher levels of oxidative stress, matrix metalloproteinases, and inflammatory cell migration in the ascending aorta compared with Apoe-/- mice. For mechanistic analyses, we primary cultured AoSMCs from the 2 genotypes. After angiotensin II (100 nmol/L) treatment for 24 hours, Apoe-/- SmgGDS+/- AoSMCs showed significantly increased matrix metalloproteinase activity and oxidative stress levels compared with Apoe-/- AoSMCs. In addition, SmgGDS deficiency increased cytokines/chemokines and growth factors in AoSMCs. Moreover, expressions of fibrillin-1 ( FBN1), α-smooth muscle actin ( ACTA2), myosin-11 ( MYH11), MYLLK, and PRKG1, which are force generation genes, were significantly reduced in Apoe-/- SmgGDS+/- AoSMCs compared with Apoe-/- AoSMCs. A similar tendency was noted in AoSMCs from patients with TAA compared with those from control subjects. Finally, local delivery of the SmgGDS gene construct reversed the dilation of the ascending aorta in Apoe-/- SmgGDS+/- mice. CONCLUSIONS These results suggest that SmgGDS is a novel therapeutic target for the prevention and treatment of TAA.
Collapse
Affiliation(s)
- Masamichi Nogi
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kimio Satoh
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichiro Sunamura
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Kikuchi
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taijyu Satoh
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Kurosawa
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junichi Omura
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Md Elias-Al-Mamun
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohammad Abdul Hai Siddique
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Numano
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Kudo
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatoshi Akiyama
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiichiro Kumagai
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Kawamoto
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saiki
- Cardiovascular Surgery (M.A., K.K., S. Kawamoto, Y.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Departments of Cardiovascular Medicine (M.N., K.S., S.S., N.K., T.S., R.K., J.O., M.E.-A.-M., M.A.H.S., K.N., S. Kudo, S.M., H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
40
|
Kelly MJ, Igari K, Yamanouchi D. Osteoclast-Like Cells in Aneurysmal Disease Exhibit an Enhanced Proteolytic Phenotype. Int J Mol Sci 2019; 20:ijms20194689. [PMID: 31546645 PMCID: PMC6801460 DOI: 10.3390/ijms20194689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is among the top 20 causes of death in the United States. Surgical repair is the gold standard for AAA treatment, therefore, there is a need for non-invasive therapeutic interventions. Aneurysms are more closely associated with the osteoclast-like catabolic degradation of the artery, rather than the osteoblast-like anabolic processes of arterial calcification. We have reported the presence of osteoclast-like cells (OLCs) in human and mouse aneurysmal tissues. The aim of this study was to examine OLCs from aneurysmal tissues as a source of degenerative proteases. Aneurysmal and control tissues from humans, and from the mouse CaPO4 and angiotensin II (AngII) disease models, were analyzed via flow cytometry and immunofluorescence for the expression of osteoclast markers. We found higher expression of the osteoclast markers tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP-9), and cathepsin K, and the signaling molecule, hypoxia-inducible factor-1α (HIF-1α), in aneurysmal tissue compared to controls. Aneurysmal tissues also contained more OLCs than controls. Additionally, more OLCs from aneurysms express HIF-1α, and produce more MMP-9 and cathepsin K, than myeloid cells from the same tissue. These data indicate that OLCs are a significant source of proteases known to be involved in aortic degradation, in which the HIF-1α signaling pathway may play an important role. Our findings suggest that OLCs may be an attractive target for non-surgical suppression of aneurysm formation due to their expression of degradative proteases.
Collapse
Affiliation(s)
- Matthew J Kelly
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Kimihiro Igari
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Division of Vascular and Endovascular Surgery, Department of Surgery, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
41
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|
42
|
Yan H, Hu Y, Akk A, Ye K, Bacon J, Pham CTN. Interleukin-12 and -23 blockade mitigates elastase-induced abdominal aortic aneurysm. Sci Rep 2019; 9:10447. [PMID: 31320700 PMCID: PMC6639297 DOI: 10.1038/s41598-019-46909-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the inflammatory process that contributes to the development of abdominal aortic aneurysm (AAA). Studies of human and mouse AAA tissue reveal expanded populations of macrophages producing an abundance of pro-inflammatory cytokines, including TNF-α, IL-12p40 and high level of metalloprotease 9 (MMP-9) at the late stages of disease. Herein, we show that blockade of IL-12p40 in the early phase of aneurysm development suppresses macrophage expansion, inflammatory cytokine and MMP-9 production and mitigates AAA development. Since IL-12 and IL-23 are related cytokines that share the common p40 subunit, we also evaluate the effect of direct IL-23 blockade on the development of AAA. Specific IL-23p19 blockade prevents AAA progression with the same efficiency as IL-12p40 antagonism, suggesting that the efficacy of anti-IL-12p40 treatment may reflect IL-23 blockade. IL-12p40 and IL-23p19 are also abundantly expressed in human AAA tissue. Our findings have potential translational value since IL-12p40 and IL-23p19 antagonists already exist as FDA-approved therapeutics for various chronic inflammatory conditions.
Collapse
Affiliation(s)
- Huimin Yan
- John Cochran VA Medical Center, Saint Louis, Missouri, USA.,Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ying Hu
- John Cochran VA Medical Center, Saint Louis, Missouri, USA.,Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Antonina Akk
- John Cochran VA Medical Center, Saint Louis, Missouri, USA.,Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Karen Ye
- John Cochran VA Medical Center, Saint Louis, Missouri, USA.,Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - John Bacon
- John Cochran VA Medical Center, Saint Louis, Missouri, USA.,Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christine T N Pham
- John Cochran VA Medical Center, Saint Louis, Missouri, USA. .,Department of Medicine, Division of Rheumatology, Washington University School of Medicine, Saint Louis, Missouri, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
43
|
Yao F, Yao Z, Zhong T, Zhang J, Wang T, Zhang B, He Q, Ding L, Yang B. Imatinib prevents elastase-induced abdominal aortic aneurysm progression by regulating macrophage-derived MMP9. Eur J Pharmacol 2019; 860:172559. [PMID: 31325435 DOI: 10.1016/j.ejphar.2019.172559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023]
Abstract
Abdominal aortic aneurysm (AAA) is characterized with progressive weakening and considerable dilation of the aortic wall. Despite the high risk of mortality in the elderly population, there are still no clinical pharmacological therapies to alleviate AAA progression. Macrophage-derived MMP9 acts as a key factor in extracellular matrix degradation and is crucial for aortic aneurysm development and aortic rupture. Here, we demonstrated that the transcription level of MMP9 was suppressed with a concentration-dependent manner in macrophages after Imatinib treatment, which was accompanied by the down-regulation of MMP9 protein expression and reduced MMP9 secretion in vitro. Imatinib administration (50 mg/kg/d, i.g.) was carried out one week after the establishment of elastase-induced AAA in rats, stabilizing aneurysm progression and improving survival rate via decreasing the aortic diameter and preventing elastin degradation. Expression and activity of MMP9 in the artery tissues were significantly suppressed after Imatinib treatment via in situ assessment like immunohistochemistry and zymography, although macrophage infiltration was not affected. Furthermore, we found that Imatinib inhibited MMP9 transcription through reduction of STAT3 phosphorylation and translocation from nucleus to cytoplasm. These observations indicated that Imatinib prevents aneurysm progression by inhibiting STAT3-mediated MMP9 expression and activation, suggesting a new application of Imatinib on AAA clinical therapy.
Collapse
Affiliation(s)
- Fengqi Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Zhangting Yao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Tiecheng Zhong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jieqiong Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Tingting Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Bo Zhang
- Translational Medicine Research Center, Nanjing Medical University, Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou, Zhejiang, 310006, PR China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
44
|
Gu BH, Sprouse ML, Madison MC, Hong MJ, Yuan X, Tung HY, Landers CT, Song LZ, Corry DB, Bettini M, Kheradmand F. A Novel Animal Model of Emphysema Induced by Anti-Elastin Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:349-359. [PMID: 31182478 PMCID: PMC6688643 DOI: 10.4049/jimmunol.1900113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Loss of immune tolerance to self-antigens can promote chronic inflammation and disrupt the normal function of multiple organs, including the lungs. Degradation of elastin, a highly insoluble protein and a significant component of the lung structural matrix, generates proinflammatory molecules. Elastin fragments (EFs) have been detected in the serum of smokers with emphysema, and elastin-specific T cells have also been detected in the peripheral blood of smokers with emphysema. However, an animal model that could recapitulate T cell-specific autoimmune responses by initiating and sustaining inflammation in the lungs is lacking. In this study, we report an animal model of autoimmune emphysema mediated by the loss of tolerance to elastin. Mice immunized with a combination of human EFs plus rat EFs but not mouse EFs showed increased infiltration of innate and adaptive immune cells to the lungs and developed emphysema. We cloned and expanded mouse elastin-specific CD4+ T cells from the lung and spleen of immunized mice. Finally, we identified TCR sequences from the autoreactive T cell clones, suggesting possible pathogenic TCRs that can cause loss of immune tolerance against elastin. This new autoimmune model of emphysema provides a useful tool to examine the immunological factors that promote loss of immune tolerance to self.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Maran L Sprouse
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030
| | - Matthew C Madison
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Monica J Hong
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Xiaoyi Yuan
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Hui-Ying Tung
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Cameron T Landers
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - Li-Zhen Song
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
| | - David B Corry
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Maria Bettini
- Section of Diabetes and Endocrinology, Department of Pediatrics, McNair Medical Institute, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030;
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| | - Farrah Kheradmand
- Department of Medicine, Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX 77030;
- Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX 77030
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
45
|
Wang X, Lane BA, Eberth JF, Lessner SM, Vyavahare NR. Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an AngII mediated mouse model of abdominal aortic aneurysm. Theranostics 2019; 9:4156-4167. [PMID: 31281538 PMCID: PMC6592177 DOI: 10.7150/thno.34441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Abdominal aortic aneurysms (AAA) are characterized by a progressive disruption and weakening of the extracellular matrix (ECM) leading to dilation of the aorta which can be fatal if not treated. Current diagnostic imaging modalities provides little insight on the varying degree of ECM degeneration that precedes rupture in AAAs. Targeted delivery of contrast agents such as gold nanoparticles (GNPs) that bind to degraded matrix could prove useful when combined with computed tomography (CT) to provide a non-invasive surrogate marker of AAA rupture potential. Methods: AAAs were induced by chronic infusion of angiotensin II (AngII) into low density-lipoprotein receptor-deficient (LDLr -/-) mice in combination with a high-fat diet. Abdominal ultrasound was used to monitor disease progression and to assess the circumferential strain throughout the cardiac cycle. At six weeks, GNPs conjugated with an elastin antibody (EL-GNP) were injected retro-orbitally. Mice were euthanized 24 hours after EL-GNP injection, and aortas were explanted and scanned ex-vivo with a micro-CT system. Histological assessment and 3D models of the aneurysms with micro-CT were used to determine the EL-GNPs distribution. Isolated vessel burst pressure testing was performed on each aneurysmal aorta to quantify rupture strength and to assess rupture location. Results: Aneurysms were found along the suprarenal aorta in AngII infused mice. Darkfield microscopy indicated EL-GNPs accumulation around the site of degraded elastin while avoiding the healthy and intact elastin fibers. Using nonlinear regression, the micro-CT signal intensity of EL-GNPs along the suprarenal aortas correlated strongly with burst pressures (R2=0.9415) but not the dilation as assessed by ultrasound measurements. Conclusions: Using an established mouse model of AAA, we successfully demonstrated in vivo targeting of EL-GNPs to damaged aortic elastin and correlated micro-CT-based signal intensities with burst pressures. Thus, we show that this novel targeting technique can be used as a diagnostic tool to predict the degree of elastin damage and therefore rupture potential in AAAs better than the extent of dilation.
Collapse
|
46
|
Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction. Redox Biol 2019; 24:101185. [PMID: 30954686 PMCID: PMC6451172 DOI: 10.1016/j.redox.2019.101185] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension and abdominal aortic aneurysm (AAA) are severe cardiovascular diseases with incompletely defined molecular mechanisms. In the current study we generated dihydrofolate reductase (DHFR) knockout mice for the first time to examine its potential contribution to the development of hypertension and AAA, as well as the underlying molecular mechanisms. Whereas the homozygote knockout mice were embryonically lethal, the heterozygote knockout mice had global reduction in DHFR protein expression and activity. Angiotensin II infusion into these animals resulted in substantially exaggerated elevation in blood pressure and development of AAA, which was accompanied by excessive eNOS uncoupling activity (featured by significantly impaired tetrahydrobiopterin and nitric oxide bioavailability), vascular remodeling (MMP2 activation, medial elastin breakdown and adventitial fibrosis) and inflammation (macrophage infiltration). Importantly, scavenging of mitochondrial reactive oxygen species with Mito-Tempo in vivo completely abrogated development of hypertension and AAA in DHFR knockout mice, indicating a novel role of mitochondria in mediating hypertension and AAA downstream of DHFR deficiency-dependent eNOS uncoupling. These data for the first time demonstrate that targeting DHFR-deficiency driven mitochondrial dysfunction may represent an innovative therapeutic option for the treatment of AAA and hypertension.
Collapse
|
47
|
Cui JZ, Lee L, Sheng X, Chu F, Gibson CP, Aydinian T, Walker DC, Sandor GGS, Bernatchez P, Tibbits GF, van Breemen C, Esfandiarei M. In vivo characterization of doxycycline-mediated protection of aortic function and structure in a mouse model of Marfan syndrome-associated aortic aneurysm. Sci Rep 2019; 9:2071. [PMID: 30765726 PMCID: PMC6376062 DOI: 10.1038/s41598-018-38235-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Aortic aneurysm is the most life-threatening complication in Marfan syndrome (MFS) patients. Doxycycline, a nonselective matrix metalloproteinases inhibitor, was reported to improve the contractile function and elastic fiber structure and organization in a Marfan mouse aorta using ex vivo small chamber myography. In this study, we assessed the hypothesis that a long-term treatment with doxycycline would reduce aortic root growth, improve aortic wall elasticity as measured by pulse wave velocity, and improve the ultrastructure of elastic fiber in the mouse model of MFS. In our study, longitudinal measurements of aortic root diameters using high-resolution ultrasound imaging display significantly decreased aortic root diameters and lower pulse wave velocity in doxycycline-treated Marfan mice starting at 6 months as compared to their non-treated MFS counterparts. In addition, at the ultrastructural level, our data show that long-term doxycycline treatment corrects the irregularities of elastic fibers within the aortic wall of Marfan mice to the levels similar to those observed in control subjects. Our findings underscore the key role of matrix metalloproteinases during the progression of aortic aneurysm, and provide new insights into the potential therapeutic value of doxycycline in blocking MFS-associated aortic aneurysm.
Collapse
Affiliation(s)
- Jason Z Cui
- Department of Anesthesiology, Pharmacology and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Cardiothoracic Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Ling Lee
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaoye Sheng
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Fanny Chu
- Department of Anesthesiology, Pharmacology and Therapeutics, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Christine P Gibson
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Taline Aydinian
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - David C Walker
- Department of Anesthesiology, Pharmacology and Therapeutics, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - George G S Sandor
- Children's Heart Centre, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Glen F Tibbits
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Cornelis van Breemen
- Department of Anesthesiology, Pharmacology and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mitra Esfandiarei
- Department of Anesthesiology, Pharmacology and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada. .,Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA.
| |
Collapse
|
48
|
Salhi L, Rompen E, Sakalihasan N, Laleman I, Teughels W, Michel JB, Lambert F. Can Periodontitis Influence the Progression of Abdominal Aortic Aneurysm? A Systematic Review. Angiology 2018; 70:479-491. [DOI: 10.1177/0003319718821243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Leila Salhi
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Eric Rompen
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
| | - Natzi Sakalihasan
- Department of Cardiovascular and Thoracic Surgery, Surgical Research Centre, GIGA-Cardiovascular Science Unit, University of Liège, Liège, Belgium
| | - Isabelle Laleman
- Department of Oral Health Sciences, KU Leuven & Dentistry University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Periodontology, Research Group for Microbial Adhesion, Catholic University Leuven, Leuven, Belgium
| | - Jean-Baptiste Michel
- DRE Laboratory for Translational Vascular Science, Inserm Denis Diderot University, Paris, France
| | - France Lambert
- Dental Biomaterials Research Unit, Head of Clinic, Department of Periodontology and Oral Surgery, University of Liège, Liège, Belgium
| |
Collapse
|
49
|
Wiernicki I, Parafiniuk M, Kolasa-Wołosiuk A, Gutowska I, Kazimierczak A, Clark J, Baranowska-Bosiacka I, Szumilowicz P, Gutowski P. Relationship between aortic wall oxidative stress/proteolytic enzyme expression and intraluminal thrombus thickness indicates a novel pathomechanism in the progression of human abdominal aortic aneurysm. FASEB J 2018; 33:885-895. [PMID: 30351992 DOI: 10.1096/fj.201800633r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The possibility that oxidative stress promotes degradation of the extracellular matrix and a relationship between intraluminal thrombus (ILT) thickness and proteolytic activity within the abdominal aortic aneurysm (AAA) wall has been suggested. In the present study, the hypothesis that thin ILT is correlated with an increase in oxidative stress-related enzymes and matrix metalloproteinase-9 (MMP-9) expression within the human AAA wall was investigated. We also studied the antioxidant activity of superoxide dismutases, catalase, glutathione peroxidase, glutathione reductase, and thioredoxin within the full-thickness AAA wall and through fluoroimmunohistochemical staining of catalase and MMP-9 expression within the inner and outer media, in relation to ILT thickness. Reactive oxygen species control the degradation and remodeling of the extracellular matrix by up-regulating proteolytic enzymes, such as MMPs. Results showed that oxidative stress and proteolytic enzyme expression were simultaneously, significantly higher within thin thrombus (≤10 mm)-covered aneurysm wall when compared with the wall covered by thick thrombus (≥25 mm). These findings provide the first demonstration, to our knowledge, of a causative link between oxidative stress instigating proteolytic enzyme expression at the tissue level and human AAA development. Presence of a thin circumferential thrombus should always be considered as a risk factor for the greatest increase in aneurysm growth rate and rupture, giving an indication for surgery timing.-Wiernicki, I., Parafiniuk, M., Kolasa-Wołosiuk, A., Gutowska, I., Kazimierczak, A., Clark, J., Baranowska-Bosiacka, I., Szumilowicz, P., Gutowski, P. Relationship between aortic wall oxidative stress/proteolytic enzyme expression and intraluminal thrombus thickness indicates a novel pathomechanism in the progression of human abdominal aortic aneurysm.
Collapse
Affiliation(s)
- Ireneusz Wiernicki
- Department of Vascular Surgery and Angiology, Pomeranian Medical University, Szczecin, Poland
| | - Miroslaw Parafiniuk
- Department of Forensic Medicine, Pomeranian Medical University, Szczecin, Poland
| | | | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - Arkadiusz Kazimierczak
- Department of Vascular Surgery and Angiology, Pomeranian Medical University, Szczecin, Poland
| | - Jeremy Clark
- Department of Clinical and Molecular Biochemistry, Faculty of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Faculty of Laboratory Diagnostics and Molecular Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Pawel Szumilowicz
- Department of Vascular Surgery and Angiology, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Gutowski
- Department of Vascular Surgery and Angiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
50
|
Wang S, Liu Y, Zhao G, He L, Fu Y, Yu C, Wang Z, Zhao T, Cao F, Gao Y, Kong W, Zheng J. Postnatal deficiency of ADAMTS1 ameliorates thoracic aortic aneurysm and dissection in mice. Exp Physiol 2018; 103:1717-1731. [PMID: 30191627 DOI: 10.1113/ep087018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/27/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Thoracic aortic aneurysm and dissection (TAAD) is characterized by extracellular matrix remodelling and an inflammatory response. Evidence suggests that ADAMTS1 is closely associated with TAAD development, but whether it contributes to the pathophysiology of TAAD remains unknown. What is the main finding and its importance? We generated inducible postnatal ADAMTS1 knockout mice and found that ADAMTS1 deficiency attenuated β-aminopropionitrile-dependent TAAD formation and rupture. Furthermore, ADAMTS1 deficiency suppressed neutrophil and macrophage infiltration by inhibiting inflammatory cytokine levels and macrophage migration during the early stage of β-aminopropionitrile-induced TAAD. ADAMTS1 could be a new therapeutic target for TAAD. ABSTRACT Thoracic aortic aneurysm and dissection (TAAD), as a life-threatening cardiovascular disease, is characterized by extracellular matrix remodelling and an inflammatory response. A disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) is an inflammation-related protein that is able to degrade extracellular matrix proteins in arteries. Herein, we investigated whether ADAMTS1 contributes to the pathophysiology of TAAD in mice. Using the mouse model of β-aminopropionitrile (BAPN)-induced TAAD, we found that ADAMTS1 expression was upregulated beginning in the early stage of TAAD development and localized predominantly in the aortic adventitia. ADAMTS1-floxed mice and whole-body tamoxifen-inducible ADAMTS1 knockout mice (ADAMTS1flox/flox Ubc-CreERT2+ , ADAMTS1 KO) were generated to investigate the direct causal role of ADAMTS1 in TAAD development. The incidence and rupture rates of BAPN-induced TAAD in ADAMTS1 KO mice were significantly lower than those in ADAMTS1flox/flox mice (45.5 versus 81.8% and 18.2 versus 42.4%, respectively). Aortas from BAPN-treated ADAMTS1flox/flox mice displayed profound destruction of the elastic lamellae, abundant neutrophil and macrophage accumulation in the adventitia, obviously increased neutrophil proportions in peripheral blood and significantly increased expression of inflammatory factors in the early stage of TAAD induction, all of which were markedly suppressed in ADAMTS1 KO mice. Furthermore, ADAMTS1-deficient macrophages exhibited abrogated migration capacity both in vivo and in vitro. In conclusion, ADAMTS1 plays a crucial role in postnatal TAAD formation and rupture by regulating inflammatory responses, suggesting that ADAMTS1 might be a new therapeutic target for TAAD.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuting Liu
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li He
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Changan Yu
- Central Laboratory of Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Zhizhi Wang
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingting Zhao
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Fan Cao
- Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship School of Clinical Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|