1
|
Samuel CS, Li Y, Wang Y, Widdop RE. Functional crosstalk between angiotensin receptors (types 1 and 2) and relaxin family peptide receptor 1 (RXFP1): Implications for the therapeutic targeting of fibrosis. Br J Pharmacol 2024; 181:2302-2318. [PMID: 36560925 DOI: 10.1111/bph.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Class A, rhodopsin-like, G-protein-coupled receptors (GPCRs) are by far the largest class of GPCRs and are integral membrane proteins used by various cells to convert extracellular signals into intracellular responses. Initially, class A GPCRs were believed to function as monomers, but a growing body of evidence has emerged to suggest that these receptors can function as homodimers and heterodimers and can undergo functional crosstalk to influence the actions of agonists or antagonists acting at each receptor. This review will focus on the angiotensin type 1 (AT1) and type 2 (AT2) receptors, as well as the relaxin family peptide receptor 1 (RXFP1), each of which have their unique characteristics but have been demonstrated to undergo some level of interaction when appropriately co-expressed, which influences the function of each receptor. In particular, this receptor functional crosstalk will be discussed in the context of fibrosis, the tissue scarring that results from a failed wound-healing response to injury, and which is a hallmark of chronic disease and related organ dysfunction. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
3
|
Li X, Zhuo J. Intracellular Angiotensin II Stimulation of Sodium Transporter Expression in Proximal Tubule Cells via AT 1 (AT 1a) Receptor-Mediated, MAP Kinases ERK1/2- and NF-кB-Dependent Signaling Pathways. Cells 2023; 12:1492. [PMID: 37296613 PMCID: PMC10252550 DOI: 10.3390/cells12111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The current prevailing paradigm in the renin-angiotensin system dictates that most, if not all, biological, physiological, and pathological responses to its most potent peptide, angiotensin II (Ang II), are mediated by extracellular Ang II activating its cell surface receptors. Whether intracellular (or intracrine) Ang II and its receptors are involved remains incompletely understood. The present study tested the hypothesis that extracellular Ang II is taken up by the proximal tubules of the kidney by an AT1 (AT1a) receptor-dependent mechanism and that overexpression of an intracellular Ang II fusion protein (ECFP/Ang II) in mouse proximal tubule cells (mPTC) stimulates the expression of Na+/H+ exchanger 3 (NHE3), Na+/HCO3- cotransporter, and sodium and glucose cotransporter 2 (Sglt2) by AT1a/MAPK/ERK1/2/NF-kB signaling pathways. mPCT cells derived from male wild-type and type 1a Ang II receptor-deficient mice (Agtr1a-/-) were transfected with an intracellular enhanced cyan fluorescent protein-tagged Ang II fusion protein, ECFP/Ang II, and treated without or with AT1 receptor blocker losartan, AT2 receptor blocker PD123319, MEK1/MEK2 inhibitor U0126, NF-кB inhibitor RO 106-9920, or p38 MAP kinase inhibitor SB202196, respectively. In wild-type mPCT cells, the expression of ECFP/Ang II significantly increased NHE3, Na+/HCO3-, and Sglt2 expression (p < 0.01). These responses were accompanied by >3-fold increases in the expression of phospho-ERK1/2 and the p65 subunit of NF-кB (p < 0.01). Losartan, U0126, or RO 106-9920 all significantly attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). Deletion of AT1 (AT1a) receptors in mPCT cells attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). Interestingly, the AT2 receptor blocker PD123319 also attenuated ECFP/Ang II-induced NHE3 and Na+/HCO3- expression (p < 0.01). These results suggest that, similar to extracellular Ang II, intracellular Ang II may also play an important role in Ang II receptor-mediated proximal tubule NHE3, Na+/HCO3-, and Sglt2 expression by activation of AT1a/MAPK/ERK1/2/NF-kB signaling pathways.
Collapse
Affiliation(s)
- Xiaochun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA;
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| | - Jialong Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA;
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| |
Collapse
|
4
|
View of the Renin-Angiotensin System in Acute Kidney Injury Induced by Renal Ischemia-Reperfusion Injury. J Renin Angiotensin Aldosterone Syst 2022; 2022:9800838. [DOI: 10.1155/2022/9800838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a sequence of complicated events that is defined as a reduction of the blood supply followed by reperfusion. RIRI is the leading cause of acute kidney injury (AKI). Among the diverse mediators that take part in RIRI-induced AKI, the renin-angiotensin system (RAS) plays an important role via conventional (angiotensinogen, renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R)) and nonconventional (ACE2, Ang 1-7, Ang 1-9, AT2 receptor (AT2R), and Mas receptor (MasR)) axes. RIRI alters the balance of both axes so that RAS can affect RIRI-induced AKI. In overall, the alteration of Ang II/AT1R and AKI by RIRI is important to consider. This review has looked for the effects and interactions of RAS activities during RIRI conditions.
Collapse
|
5
|
Doan TNA, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction 2022; 164:R87-R99. [PMID: 36018774 DOI: 10.1530/rep-21-0428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
In brief There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation. Abstract During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus. This results in changes to the function of the maternal cardiovascular system. There is also a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular health/function. Additionally, there is evidence that the effects of maternal vascular vasodilation are maintained post-partum, which may reduce the risk of developing high blood pressure in the next pregnancy and reduce cardiovascular risk later in life. At both non-pregnant and pregnant stages, vascular endothelial cells produce a number of vasodilators and vasoconstrictors, which transduce signals to the contractile vascular smooth muscle cells to control the dilation and constriction of blood vessels. These vascular cells are also targets of other vasoactive factors, including angiotensin II (Ang II) and relaxin. The binding of Ang II to its receptors activates different pathways to regulate the blood vessel vasoconstriction/vasodilation, and relaxin can interact with some of these pathways to induce vasodilation. Based on the available literature, this review outlines the cardiovascular changes that occur in a healthy human pregnancy, supplemented by studies in rodents. A specific focus is placed on vasodilation of blood vessels during pregnancy; the role of endothelial cells and endothelium-derived vasodilators will also be discussed. Additionally, different pathways that are activated by Ang II and relaxin that result in blood vessel dilation will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Parry
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
7
|
Flinn B, Royce N, Gress T, Chowdhury N, Santanam N. Dual role for angiotensin-converting enzyme 2 in Severe Acute Respiratory Syndrome Coronavirus 2 infection and cardiac fat. Obes Rev 2021; 22:e13225. [PMID: 33660398 PMCID: PMC8013367 DOI: 10.1111/obr.13225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) has been an increasingly prevalent target for investigation since its discovery 20 years ago. The finding that it serves a counterregulatory function within the traditional renin-angiotensin system, implicating it in cardiometabolic health, has increased its clinical relevance. Focus on ACE2's role in cardiometabolic health has largely centered on its apparent functions in the context of obesity. Interest in ACE2 has become even greater with the discovery that it serves as the cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), opening up numerous mechanisms for deleterious effects of infection. The proliferation of ACE2 within the literature coupled with its dual role in SARS-CoV-2 infection and obesity necessitates review of the current understanding of ACE2's physiological, pathophysiological, and potential therapeutic functions. This review highlights the roles of ACE2 in cardiac dysfunction and obesity, with focus on epicardial adipose tissue, to reconcile the data in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Brendin Flinn
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Nicholas Royce
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| | - Todd Gress
- Research Service, Hershel "Woody" Williams VA Medical Center, Huntington, West Virginia, USA
| | - Nepal Chowdhury
- Department of Cardiovascular and Thoracic Surgery, St. Mary's Heart Center, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Huntington, West Virginia, USA
| |
Collapse
|
8
|
ACE Inhibitor Benefit to Kidney and Cardiovascular Outcomes for Patients with Non-Dialysis Chronic Kidney Disease Stages 3-5: A Network Meta-Analysis of Randomised Clinical Trials. Drugs 2020; 80:797-811. [PMID: 32333236 PMCID: PMC7242277 DOI: 10.1007/s40265-020-01290-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The advantages of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) in reducing risk of cardiovascular events (CVEs) and delaying end-stage kidney disease (ESKD) in patients with chronic kidney disease (CKD) is well-known. However, the efficacy and safety of these agents in non-dialysis CKD stages 3–5 patients are still a controversial issue. Methods Two investigators (Yaru Zhang and Dandan He) independently searched and identified relevant studies from MEDLINE (from 1950 to October 2018), EMBASE (from 1970 to October 2018), and the Cochrane Library database. Randomised clinical trials in non-dialysis CKD3–5 patients treated with renin-angiotensin system (RAS) inhibitors were included. We used standard criteria (Cochrane risk of bias tool) to assess the inherent risk of bias of trials. We calculated the odds ratio (OR) and 95% confidence interval (CI) for each outcome by random-effects model. A 2-sided p value < 0.05 was considered statistically significant, and all statistical analyses were performed using STATA, version 15.0. This network meta-analysis was undertaken by the frequency model. Results Forty-four randomised clinical trials with 42,319 patients were included in our network meta-analysis. ACEIs monotherapy significantly decreased the odds of kidney events (OR 0.54, 95% CI 0.41–0.73), cardiovascular events (OR 0.73, 95% CI 0.64–0.84), cardiovascular death (OR 0.73, 95% CI 0.63–0.86) and all-cause death (OR 0.77, 95% CI 0.66–0.91) when compared to placebo. According to the cumulative ranking area (SUCRA), ACEI monotherapy had the highest probabilities of their protective effects on outcomes of kidney events (SUCRA 93.3%), cardiovascular events (SUCRA 77.2%), cardiovascular death (SUCRA 86%), and all-cause death (SUCRA 94.1%), even if there were no significant differences between ACEIs and other antihypertensive drugs, including calcium channel blockers (CCBs), β-blockers and diuretics on above outcomes except for kidney events. ARB monotherapy and combination therapy of an ACEI plus an ARB showed no more advantage than CCBs, β-blockers and diuretics in all primary outcomes. In the subgroup of non-dialysis diabetic kidney disease patients, no drugs, including ACEIs or ARBs, significantly lowered the odds of cardiovascular events and all-cause death. However, ACEIs were still better than other antihypertensive drugs including ARBs in all-cause death but not ARBs in cardiovascular events according to the SUCRA. Only ARBs had significant differences in preventing the occurrence of kidney events compared with placebo (OR 0.82, 95% CI 0.72–0.95). Both ACEI/ARB monotherapy and combination therapy had higher odds of hyperkalaemia. ACEIs had 3.81 times higher odds than CCBs (95% CI 1.58–9.20), ARBs had 2.08–5.10 times higher odds than placebo and CCBs and combination therapy of an ACEI and an ARB had 4.80–24.5 times higher odds than all other treatments. Compared with placebo, CCBs and β blockers, ACEI therapy significantly increased the odds of cough (OR 2.90, 95% CI 1.76–4.77; OR 8.21, 95% CI 3.13–21.54 and OR 1.80, 95% CI 1.08–3.00). There were no statistical differences in hypotension among all comparisons except ACEIs versus placebo. Conclusions Although ACEIs increased the odds of hyperkalaemia, cough and hypotension, they were still superior to ARBs and other antihypertensive drugs and had the highest benefits for the prevention of kidney events, cardiovascular outcomes, cardiovascular death and all-cause mortality in non-dialysis CKD3–5 patients. In patients with advanced diabetic kidney disease, ACEIs were superior to ARBs in lowering risk of all-cause death but not in kidney events and cardiovascular events. Electronic supplementary material The online version of this article (10.1007/s40265-020-01290-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Gouda AS, Mégarbane B. Snake venom-derived bradykinin-potentiating peptides: A promising therapy for COVID-19? Drug Dev Res 2020; 82:38-48. [PMID: 32761647 PMCID: PMC7436322 DOI: 10.1002/ddr.21732] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus‐2 (SARS‐COV‐2), a novel coronavirus responsible for the recent infectious pandemic, is known to downregulate angiotensin‐converting enzyme‐2 (ACE2). Most current investigations focused on SARS‐COV‐2‐related effects on the renin–angiotensin system and especially the resultant increase in angiotensin II, neglecting its effects on the kinin–kallikrein system. SARS‐COV‐2‐induced ACE2 inhibition leads to the augmentation of bradykinin 1‐receptor effects, as ACE2 inactivates des‐Arg9‐bradykinin, a bradykinin metabolite. SARS‐COV‐2 also decreases bradykinin 2‐receptor effects as it affects bradykinin synthesis by inhibiting cathepsin L, a kininogenase present at the site of infection and involved in bradykinin production. The physiologies of both the renin–angiotensin and kinin–kallikrein system are functionally related suggesting that any intervention aiming to treat SARS‐COV‐2‐infected patients by triggering one system but ignoring the other may not be adequately effective. Interestingly, the snake‐derived bradykinin‐potentiating peptide (BPP‐10c) acts on both systems. BPP‐10c strongly decreases angiotensin II by inhibiting ACE, increasing bradykinin‐related effects on the bradykinin 2‐receptor and increasing nitric oxide‐mediated effects. Based on a narrative review of the literature, we suggest that BPP‐10c could be an optimally effective option to consider when aiming at developing an anti‐SARS‐COV‐2 drug.
Collapse
Affiliation(s)
- Ahmed S Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, University of Cairo, Cairo, Egypt
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
10
|
Royea J, Hamel E. Brain angiotensin II and angiotensin IV receptors as potential Alzheimer's disease therapeutic targets. GeroScience 2020; 42:1237-1256. [PMID: 32700176 DOI: 10.1007/s11357-020-00231-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is multifactorial in nature. Yet, despite being the most common form of dementia in the elderly, AD's primary cause remains unknown. As such, there is currently little to offer AD patients as the vast majority of recently tested therapies have either failed in well-controlled clinical trials or inadequately treat AD. Recently, emerging preclinical and clinical evidence has associated the brain renin angiotensin system (RAS) to AD pathology. Accordingly, various components of the brain RAS were shown to be altered in AD patients and mouse models, including the angiotensin II type 1 (AT1R), angiotensin IV receptor (AT4R), and Mas receptors. Collectively, the changes observed within the RAS have been proposed to contribute to many of the neuropathological hallmarks of AD, including the neuronal, cognitive, and vascular dysfunctions. Accumulating evidence has additionally identified antihypertensive medications targeting the RAS, particularly angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs), to delay AD onset and progression. In this review, we will discuss the emergence of the RAS's involvement in AD and highlight putative mechanisms of action underlying ARB's beneficial effects that may explain their ability to modify the risk of developing AD or AD progression. The RAS may provide novel molecular targets for recovering memory pathways, cerebrovascular function, and other pathological landmarks of AD.
Collapse
Affiliation(s)
- Jessika Royea
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors. RECENT FINDINGS Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II-induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1-7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms. Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.
Collapse
|
12
|
Chow BSM, Kocan M, Shen M, Wang Y, Han L, Chew JY, Wang C, Bosnyak S, Mirabito-Colafella KM, Barsha G, Wigg B, Johnstone EKM, Hossain MA, Pfleger KDG, Denton KM, Widdop RE, Summers RJ, Bathgate RAD, Hewitson TD, Samuel CS. AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. J Am Soc Nephrol 2019; 30:2191-2207. [PMID: 31511361 DOI: 10.1681/asn.2019060597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recombinant human relaxin-2 (serelaxin), which has organ-protective actions mediated via its cognate G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1), has emerged as a potential agent to treat fibrosis. Studies have shown that serelaxin requires the angiotensin II (AngII) type 2 receptor (AT2R) to ameliorate renal fibrogenesis in vitro and in vivo. Whether its antifibrotic actions are affected by modulation of the AngII type 1 receptor (AT1R), which is expressed on myofibroblasts along with RXFP1 and AT2R, is unknown. METHODS We examined the signal transduction mechanisms of serelaxin when applied to primary rat renal and human cardiac myofibroblasts in vitro, and in three models of renal- or cardiomyopathy-induced fibrosis in vivo. RESULTS The AT1R blockers irbesartan and candesartan abrogated antifibrotic signal transduction of serelaxin via RXFP1 in vitro and in vivo. Candesartan also ameliorated serelaxin's antifibrotic actions in the left ventricle of mice with cardiomyopathy, indicating that candesartan's inhibitory effects were not confined to the kidney. We also demonstrated in a transfected cell system that serelaxin did not directly bind to AT1Rs but that constitutive AT1R-RXFP1 interactions could form. To potentially explain these findings, we also demonstrated that renal and cardiac myofibroblasts expressed all three receptors and that antagonists acting at each receptor directly or allosterically blocked the antifibrotic effects of either serelaxin or an AT2R agonist (compound 21). CONCLUSIONS These findings have significant implications for the concomitant use of RXFP1 or AT2R agonists with AT1R blockers, and suggest that functional interactions between the three receptors on myofibroblasts may represent new targets for controlling fibrosis progression.
Collapse
Affiliation(s)
- Bryna S M Chow
- Florey Institute of Neuroscience and Mental Health.,Department of Biochemistry and Molecular Biology, and
| | - Martina Kocan
- Florey Institute of Neuroscience and Mental Health.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Matthew Shen
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Yan Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Lei Han
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Jacqueline Y Chew
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Sanja Bosnyak
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Katrina M Mirabito-Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Giannie Barsha
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Belinda Wigg
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Elizabeth K M Johnstone
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Kevin D G Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Pharmacology and Therapeutics, ARC Centre for Personalised Therapeutic Technologies, Melbourne, Australia; and.,Dimerix Limited, Nedlands, Western Australia, Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia.,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health.,Department of Biochemistry and Molecular Biology, and
| | - Tim D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Chrishan S Samuel
- Department of Biochemistry and Molecular Biology, and .,Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology and
| |
Collapse
|
13
|
Li XC, Zheng X, Chen X, Zhao C, Zhu D, Zhang J, Zhuo JL. Genetic and genomic evidence for an important role of the Na +/H + exchanger 3 in blood pressure regulation and angiotensin II-induced hypertension. Physiol Genomics 2019; 51:97-108. [PMID: 30849009 PMCID: PMC6485378 DOI: 10.1152/physiolgenomics.00122.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xiaowen Zheng
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xu Chen
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Chunling Zhao
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Dongmin Zhu
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jianfeng Zhang
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
14
|
Deng T, Xie X, Duan J, Chen M. Exposure to diisononyl phthalate induced an increase in blood pressure through activation of the ACE/ AT1R axis and inhibition of NO production. Toxicol Lett 2019; 309:42-50. [PMID: 30940551 DOI: 10.1016/j.toxlet.2019.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Recent epidemiological studies have found that diisononyl phthalate (DINP) is associated with an increase in blood pressure. However, this correlation had not been clarified, nor has the underlying mechanism been characterized. In this study, C57/BL6 mice were exposed to DINP doses of 0.15 mg/kg/day, 1.5 mg/kg/day or 15 mg/kg/day for 6 weeks. Dexamethasone (DEXA) was used to build the hypertension model. After DINP exposure and 1 mg/kg/day DEXA treatment, the levels of systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP) and heart rate (HR) were determined, and any histopathological changes in hypertension targeted organs of the mice were investigated. The results suggest that DINP exposure and DEXA treatment induced marked increases in SBP, DBP, and MBP, and that 15 mg/kg/day DINP exposure could also increase the HR level. Along with the blood pressure increase, DINP exposure induced pathological changes to the heart, aorta, and kidney. To explore the underlying mechanism, we measured the expression of angiotensin converting enzyme (ACE), angiotensin-II type 1 receptor (AT1R) and endothelial nitric oxide synthase (eNOS) in the aorta, as well as the nitric oxide (NO) concentration in serum. The data suggest that DINP exposure and DEXA treatment enhance the expression of ACE and AT1R, and inhibit eNOS expression and NO production. Interestingly, treatment with 5 mg/kg/day ACE inhibitor (ACEI) alleviated the increase in blood pressure induced by DINP exposure and DEXA treatment. These findings expand our understanding of how DINP exposure impacts the development of hypertension, and elucidates the underlying mechanisms.
Collapse
Affiliation(s)
- Ting Deng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiaoman Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiufei Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
15
|
Xiao L, Liu HW, Di H, Chen LX, Zhou Q, Yu X, Jing H, Tang S. Angtensin II elicits a cAMP-dependent intestinal anion secretion by stimulating PGE2 release through AT1 subtype receptors in rat ileum. Biochem Biophys Res Commun 2017; 494:207-212. [PMID: 29032204 DOI: 10.1016/j.bbrc.2017.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 11/25/2022]
Abstract
A growing literature has demonstrated that the renin-angiotensin system (RAS) involves in gut function. Angiotensin II (AngII) stimulates Cl- secretion in intestine epithelial cells. However, the underlying signal pathway remains unexplored. Here, we explored that serosal application of Ang II (5 × 10-8 M) significantly increased the baseline Isc compared to the control group in rat ileum. Tetrodotoxin (TTX) failed to suppress Isc evoked by Ang II. However, the Ang II-evoked Isc was significantly suppressed by the ATR1 antagonist losartan instead of ATR2 antagonist PD123319. Of interest, both cyclooxygenase (COX)-1 inhibitor SC560 and COX-2 specific inhibitor ns398 blocked the Ang II-evoked Isc. Preincubation of submucosa/mucosa preparations with Ang II for 10 min significantly increased PGE2 production, which was abolished by either COX-1 or COX-2 inhibitor. In addition, the Ang II-induced PGE2 release was also attenuated by ATR1 receptor antagonist rather than selective ATR2 receptor antagonist. Furthermore, preincubation of tissues for 15 min with forskolin, a cAMP activator, markedly blocked the Isc evoked by AngII, while intracellular Ca2+ pump inhibitor thapsigargin, L-type Ca2+ channel blocker nicadipine or the epithelial Na+ channel blocker amiloride didn't show such function. These results suggest that Ang II evokes cAMP-activated intestinal anion secretion by stimulating PGE2 release through activation of ATR1.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Hong-Wei Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Hong Di
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Li-Xin Chen
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Qing Zhou
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Xin Yu
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Haiyan Jing
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, China
| | - Shuhai Tang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
16
|
Wang Y, Del Borgo M, Lee HW, Baraldi D, Hirmiz B, Gaspari TA, Denton KM, Aguilar MI, Samuel CS, Widdop RE. Anti-fibrotic Potential of AT 2 Receptor Agonists. Front Pharmacol 2017; 8:564. [PMID: 28912715 PMCID: PMC5583590 DOI: 10.3389/fphar.2017.00564] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 12/23/2022] Open
Abstract
There are a number of therapeutic targets to treat organ fibrosis that are under investigation in preclinical models. There is increasing evidence that stimulation of the angiotensin II type 2 receptor (AT2R) is a novel anti-fibrotic strategy and we have reviewed the published in vivo preclinical data relating to the effects of compound 21 (C21), which is the only nonpeptide AT2R agonist that is currently available for use in chronic preclinical studies. In particular, the differential influence of AT2R on extracellular matrix status in various preclinical fibrotic models is discussed. Collectively, these studies demonstrate that pharmacological AT2R stimulation using C21 decreases organ fibrosis, which has been most studied in the setting of cardiovascular and renal disease. In addition, AT2R-mediated anti-inflammatory effects may contribute to the beneficial AT2R-mediated anti-fibrotic effects seen in preclinical models.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Mark Del Borgo
- Department of Biochemistry and Molecular Biology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Huey W Lee
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Dhaniel Baraldi
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Baydaa Hirmiz
- Department of Biochemistry and Molecular Biology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Tracey A Gaspari
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Kate M Denton
- Department of Physiology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| | - Robert E Widdop
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, ClaytonVIC, Australia
| |
Collapse
|
17
|
Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125:21-38. [PMID: 28619367 DOI: 10.1016/j.phrs.2017.06.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system (RAS) is undisputedly one of the most prominent endocrine (tissue-to-tissue), paracrine (cell-to-cell) and intracrine (intracellular/nuclear) vasoactive systems in the physiological regulation of neural, cardiovascular, blood pressure, and kidney function. The importance of the RAS in the development and pathogenesis of cardiovascular, hypertensive and kidney diseases has now been firmly established in clinical trials and practice using renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, type 1 (AT1) angiotensin II (ANG II) receptor blockers (ARBs), or aldosterone receptor antagonists as major therapeutic drugs. The major mechanisms of actions for these RAS inhibitors or receptor blockers are mediated primarily by blocking the detrimental effects of the classic angiotensinogen/renin/ACE/ANG II/AT1/aldosterone axis. However, the RAS has expanded from this classic axis to include several other complex biochemical and physiological axes, which are derived from the metabolism of this classic axis. Currently, at least five axes of the RAS have been described, with each having its key substrate, enzyme, effector peptide, receptor, and/or downstream signaling pathways. These include the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor, the ANG II/APA/ANG III/AT2/NO/cGMP, the ANG I/ANG II/ACE2/ANG (1-7)/Mas receptor, the prorenin/renin/prorenin receptor (PRR or Atp6ap2)/MAP kinases ERK1/2/V-ATPase, and the ANG III/APN/ANG IV/IRAP/AT4 receptor axes. Since the roles and therapeutic implications of the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor axis have been extensively reviewed, this article will focus primarily on reviewing the roles and therapeutic implications of the vasoprotective axes of the RAS in cardiovascular, hypertensive and kidney diseases.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Jianfeng Zhang
- Department of Emergency Medicine, The 2nd Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| |
Collapse
|
18
|
Kai Chen, Merrill DC, Rose JC. The Importance of Angiotensin II Subtype Receptors for Blood Pressure Control During Mouse Pregnancy. Reprod Sci 2016; 14:694-704. [DOI: 10.1177/1933719107309060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kai Chen
- Department of Obstetrics and Gynecology Wake Forest University School of Medcine, Winston-salem North Carolina
| | - David C. Merrill
- Department of Obstetrics and Gynecology Wake Forest University School of Medcine, Winston-salem North Carolina
| | - James C. Rose
- Department of Obstetrics and Gynecology Wake Forest University School of Medcine, Winston-salem North Carolina, Department of Physiology and Pharmacology Wake Forest University School of Medicine, Winston-Salem, North Carolina,
| |
Collapse
|
19
|
Hashikawa-Hobara N, Hashikawa N. Angiotensin II AT2 receptors regulate NGF-mediated neurite outgrowth via the NO-cGMP pathway. Biochem Biophys Res Commun 2016; 478:970-5. [PMID: 27524238 DOI: 10.1016/j.bbrc.2016.08.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 11/26/2022]
Abstract
We investigated whether Angiotensin II type 2 (AT2) receptor activation was involved in NGF-induced nerve regeneration. NGF-mediated neurite outgrowth in cultured dorsal root ganglia (DRG) cells was significantly inhibited by AT2 receptor antagonist (PD123,319) treatment. AT2 receptor knockdown also inhibited NGF-mediated neurite outgrowth. To determine the mechanisms, we analyzed the NO-cGMP pathway. The cGMP analog increased NGF-mediated nerve elongation, which inhibited by PD123,319. Furthermore, soluble guanylate cyclase expression was significantly less in NGF and PD123,319 treatment DRG than in NGF treatment alone. These results suggest that NGF-mediated neurite outgrowth is suppressed by AT2 receptor signaling via the NO-cGMP-PKG pathway.
Collapse
Affiliation(s)
- Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan.
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama, 700-0005, Japan
| |
Collapse
|
20
|
Kafami M. The effect of angiotensin II microinjection into the bed nucleus of the stria terminalis on serum lipid peroxidation and nitric oxide metabolite levels. Adv Biomed Res 2016; 5:106. [PMID: 27376045 PMCID: PMC4918206 DOI: 10.4103/2277-9175.183667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Overactivity of renin-angiotensin system is involved in the pathophysiology of renal and cardiovascular diseases. It is suggested that endothelial cells can release nitric oxide (NO) and reactive oxygen species in response to angiotensin II (Ang II). Angiotensin type 1 (AT1) receptor of Ang II has been found in the bed nucleus of the stria terminalis (BST). BST is involved in autonomic function. This study was performed to find the role of central Ang II in serum lipid peroxidation product and in releasing NO into circulation. MATERIALS AND METHODS Twenty-one catheterized rats were placed in stereotaxic instrument. A hole was drilled above BST. In the control group, saline 0.9% (100 nl) was microinjected into the BST. In the second group, Ang II (100 μM, 100-150 nl) was microinjected into the BST. In the third group losartan (an AT1 antagonist) was microinjected (100 μM, 200 nl) before Ang II into the BST. Systolic blood pressure was recorded. The NO metabolite (nitrite) and malondialdehyde (MDA) were measured in the rat's serum. RESULTS The data indicated that microinjection of Ang II into the BST produced a pressor response (P < 0.0001). It also increased MDA and nitrite levels of the serum significantly (P < 0.001, P < 0.0001). Pretreatment with losartan before Ang II microinjection attenuated serum's levels of MDA and nitrite (P < 0.001, P < 0.0001). CONCLUSION Our findings suggest that central effect of Ang II on blood pressure is accompanied with increased levels of MDA and nitrite in the circulation.
Collapse
Affiliation(s)
- Marzieh Kafami
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Quadri SS, Culver SA, Li C, Siragy HM. Interaction of the renin angiotensin and cox systems in the kidney. Front Biosci (Schol Ed) 2016; 8:215-26. [PMID: 27100703 DOI: 10.2741/s459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in mediating actions of the renin-angiotensin system (RAS). This review sheds light on the recent developments regarding the complex interactions between components of RAS and COX-2; and their implications on renal function and disease. COX-2 is believed to counter regulate the effects of RAS activation and therefore counter balance the vasoconstriction effect of Ang II. In kidney, under normal conditions, these systems are essential for maintaining a balance between vasodilation and vasoconstriction. However, recent studies suggested a pivotal role for this interplay in pathology. COX-2 increases the renin release and Ang II formation leading to increase in blood pressure. COX-2 is also associated with diabetic nephropathy, where its upregulation in the kidney contributes to glomerular injury and albuminuria. Selective inhibition of COX-2 retards the progression of renal injury. COX-2 also mediates the pathologic effects of the (Pro)renin receptor (PRR) in the kidney. In summary, this review discusses the interaction between the RAS and COX-2 in health and disease.
Collapse
Affiliation(s)
- Syed S Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Silas A Culver
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA,
| |
Collapse
|
22
|
Maleki M, Nematbakhsh M. Gender Difference in Renal Blood Flow Response to Angiotensin II Administration after Ischemia/Reperfusion in Rats: The Role of AT2 Receptor. Adv Pharmacol Sci 2016; 2016:7294942. [PMID: 27034657 PMCID: PMC4806269 DOI: 10.1155/2016/7294942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/07/2016] [Indexed: 01/01/2023] Open
Abstract
Background. Renal ischemia/reperfusion (I/R) is one of the major causes of kidney failure, and it may interact with renin angiotensin system while angiotensin II (Ang II) type 2 receptor (AT2R) expression is gender dependent. We examined the role of AT2R blockade on vascular response to Ang II after I/R in rats. Methods. Male and female rats were subjected to 30 min renal ischemia followed by reperfusion. Two groups of rats received either vehicle or AT2R antagonist, PD123319. Mean arterial pressure (MAP), and renal blood flow (RBF) responses were assessed during graded Ang II (100, 300, and 1000 ng/kg/min, i.v.) infusion at controlled renal perfusion pressure (RPP). Results. Vehicle or antagonist did not alter MAP, RPP, and RBF levels significantly; however, 30 min after reperfusion, RBF decreased insignificantly in female treated with PD123319 (P = 0.07). Ang II reduced RBF and increased renal vascular resistance (RVR) in a dose-related fashion (P dose < 0.0001), and PD123319 intensified the reduction of RBF response in female (P group < 0.005), but not in male rats. Conclusion. The impact of the AT2R on vascular responses to Ang II in renal I/R injury appears to be sexually dimorphic. PD123319 infusion promotes these hemodynamic responses in female more than in male rats.
Collapse
Affiliation(s)
- Maryam Maleki
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745, Iran
- Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan 81546, Iran
| |
Collapse
|
23
|
Abstract
Although angiotensin II subtype-2 receptor (AT2R) was discovered over 2 decades ago, its contribution to physiology and pathophysiology is not fully elucidated. Current knowledge suggests that under normal physiologic conditions, AT2R counterbalances the effects of angiotensin II subtype-1 receptor (AT1R). A major obstacle for AT2R investigations was the lack of specific agonists. Most of the earlier AT2R studies were performed using the peptidic agonist, CG42112A, or the nonpeptidic antagonist PD123319. CGP42112A is nonspecific for AT2R and in higher concentrations can bind to AT1R. Recently, the development of specific nonpeptidic AT2R agonists boosted the efforts in identifying the therapeutic potentials for AT2R stimulation. Unlike AT1R, AT2R is involved in vasodilation by the release of bradykinin and nitric oxide, anti-inflammation, and healing from injury. Interestingly, the vasodilatory effects of AT2R stimulation were not associated with significant reduction in blood pressure. In the kidney, AT2R stimulation produced natriuresis, increased renal blood flow, and reduced tissue inflammation. In animal studies, enhanced AT2R function led to reduction of cardiac inflammation and fibrosis, and reduced the size of the infarcted area. Similarly, AT2R stimulation demonstrated protective effects in vasculature and brain.
Collapse
|
24
|
Li C, Culver SA, Quadri S, Ledford KL, Al-Share QY, Ghadieh HE, Najjar SM, Siragy HM. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion. Am J Physiol Endocrinol Metab 2015; 309:E802-10. [PMID: 26374765 PMCID: PMC4628940 DOI: 10.1152/ajpendo.00158.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Silas A Culver
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Syed Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Kelly L Ledford
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sonia M Najjar
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
25
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
26
|
Abadir PM, Siragy HM. Angiotensin type 1 receptor mediates renal production and conversion of prostaglandins E2 to F2α in conscious diabetic rats. J Renin Angiotensin Aldosterone Syst 2015. [PMID: 26195268 DOI: 10.1177/1470320315592566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Previous studies demonstrated that stimulation of angiotensin subtype 1 receptor (AT1R) led to increased renal generation of prostaglandins E2 (PGE2) and renal inflammation. In turn, PGE2 increases AT1R activity. The conversion of PGE2 to the less active metabolite prostaglandin F2α (PGF2α) via 9-ketoreductase interrupts this feedback loop. The effects of diabetes on the interface between AT1R, PGE2 and PGF2α are not well established. We hypothesized that in diabetes, an aberrant AT1R activity enhances the biosynthesis of PGE2 and impairs the activity of PGE 9-ketoreductase, leading to accumulation of PGE2. MATERIALS AND METHODS Using microdialysis technique, we monitored renal interstitial fluid levels of angiotensin II (Ang II), PGE2 and PGF2α in control and AT1R blocker, valsartan, treated diabetic rats (N=8 each). We utilized the PGF2α to PGE2 ratio as indirect measure of PGE 9-ketoreductase activity. RESULTS Diabetes increased renal interstitial fluid levels of Ang II, PGE2 and PGF2α. PGF2α/PGE2 ratio increased by the third week, but declined by the sixth week of diabetes. Valsartan reduced PGE2 and PGF2α levels and increased Ang II and the conversion of PGE2 to PGF2α. CONCLUSION Our results suggest that in diabetes, AT1R increases PGE2 generation and reduces conversion of PGE2 to PGF2α with the progression of diabetes.
Collapse
Affiliation(s)
- Peter M Abadir
- Johns Hopkins University, Division of Geriatrics Medicine and Gerontology, Baltimore, USA
| | - Helmy M Siragy
- University of Virginia School of Medicine, Department of Medicine, Charlottesville, USA
| |
Collapse
|
27
|
Matavelli LC, Zatz R, Siragy HM. A nonpeptide angiotensin II type 2 receptor agonist prevents renal inflammation in early diabetes. J Cardiovasc Pharmacol 2015; 65:371-6. [PMID: 25590749 PMCID: PMC4390440 DOI: 10.1097/fjc.0000000000000207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We hypothesized that direct AT2R stimulation improves albuminuria in diabetes by preventing renal inflammation and improving oxidative stress. Normoglycemic controls (NCs) and streptozotocin-induced diabetes Sprague-Dawley rats (DM) were treated for 4 weeks with vehicle (V) or the AT2R agonist Compound 21 (C21). At the end of study, we evaluated blood pressure, urinary albumin to creatinine ratio (UACR), renal interstitial fluid (RIF) levels of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), nitric oxide (NO), cGMP, and 8-isoprostane, and renal expression of TNF-α, IL-6, and AT2R. There were no significant differences in blood pressure between different treatments. DM rats demonstrated increased UACR, RIF TNF-α, IL-6 and 8-isoprostane, and messenger RNA (mRNA) for TNF-α and IL-6. DM rats also had reduced RIF NO and cGMP. C21 treatment of DM rats limited the increase in UACR, normalized RIF TNF-α, IL-6 and 8-isoprostane, and in mRNA for TNF-α and IL-6, and increased RIF NO and cGMP. In NC rats, C21 treatment did not change these parameters. AT2R mRNA and protein expressions increased in DM rats compared with NC but were not influenced by C21 treatment. We conclude that direct AT2R stimulation in diabetic rats improves diabetic albuminuria through the prevention of renal inflammation and improved production of NO and cGMP.
Collapse
Affiliation(s)
- Luis C. Matavelli
- Renal Division, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Roberto Zatz
- Renal Division, Department of Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Helmy M. Siragy
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
28
|
Vinturache AE, Smith FG. Angiotensin type 1 and type 2 receptors during ontogeny: cardiovascular and renal effects. Vascul Pharmacol 2014; 63:145-54. [DOI: 10.1016/j.vph.2014.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 01/24/2023]
|
29
|
Vinturache AE, Smith FG. Angiotensin receptors modulate the renal hemodynamic effects of nitric oxide in conscious newborn lambs. Physiol Rep 2014; 2:e12027. [PMID: 24872358 PMCID: PMC4098750 DOI: 10.14814/phy2.12027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/20/2022] Open
Abstract
This study aimed to elucidate the roles of both angiotensin II (ANG II) receptors - type 1 (AT1Rs) and type 2 (AT2Rs) - separately and together in influencing hemodynamic effects of endogenously produced nitric oxide (NO) during postnatal development. In conscious, chronically instrumented lambs aged ~1 week (8 ± 1 days, N = 8) and ~6 weeks (41 ± 2 days, N = 8), systolic, diastolic, and mean arterial pressure (SAP, DAP, MAP) and venous pressure (MVP), renal blood flow (RBF), and renal vascular resistance (RVR) were measured in response to the l-arginine analog, l-NAME after pretreatment with either the AT1R antagonist, ZD 7155, the AT2R antagonist, PD 123319, or both antagonists. The increase in SAP, DAP, and MAP by l-NAME was not altered by either ATR antagonist in either age group. The increase in RBF after l-NAME was, however, altered by both ATR antagonists in an age-dependent manner, which was mediated predominantly through AT2Rs in newborn lambs. These findings reveal that there is an age-dependent interaction between the renin-angiotensin (RAS) and the NO pathway in regulating renal but not systemic hemodynamics through both ATRs, whereas AT2Rs appear to be important in the renal hemodynamic effects of NO early in life.
Collapse
Affiliation(s)
- Angela E. Vinturache
- The Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
- The Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Francine G. Smith
- The Alberta Children's Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Alberta, Canada
- The Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Carey RM, Padia SH. Role of angiotensin AT(2) receptors in natriuresis: Intrarenal mechanisms and therapeutic potential. Clin Exp Pharmacol Physiol 2014; 40:527-34. [PMID: 23336117 DOI: 10.1111/1440-1681.12059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system is a coordinated hormonal cascade critical for the regulation of blood pressure (BP) and kidney function. Angiotensin (Ang) II, the major angiotensin effector peptide, binds to two major receptors, namely AT1 and AT2 receptors. The AT1 receptors engender antinatriuresis and raise BP, whereas AT2 receptors oppose these effects, inducing natriuresis and reducing BP. There is high AT2 receptor expression in the adult kidney, especially in the proximal tubule. In AT2 receptor-null mice, long-term AngII infusion results in pressor and antinatriuretic hypersensivivity compared with responses in wild-type mice. The major endogenous receptor ligand for AT2 receptor-mediated natriuretic responses appears to be des-aspartyl(1) -AngII (AngIII) instead of AngII. Recent studies have demonstrated that AngII requires metabolism to AngIII by aminopeptidase A to induce natriuresis and that inhibition of aminopeptidase N increases intrarenal AngIII and augments AngIII-induced natriuresis. The renal dopaminergic system is another important natriuretic pathway. Renal proximal tubule the D1 and D5 receptor subtypes (D1 -like receptors (D1LIKE R)) control approximately 50% of basal sodium excretion. Recently, we have found that natriuresis induced by proximal tubule D1LIKE R requires AT2 receptor activation and that D1LIKE R stimulation induces recruitment of AT2 receptors to the apical plasma membrane via a cAMP-dependent mechanism. Initial studies using the potent AT2 receptor non-peptide agonist Compound 21 demonstrate natriuresis in both the presence and absence of AT1 receptor blockade, indicating the therapeutic potential of this compound in fluid-retaining states and hypertension.
Collapse
Affiliation(s)
- Robert M Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
31
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
32
|
Vinturache AE, Smith FG. Do Angiotensin Type 2 Receptors Modulate Haemodynamic Effects of Type 1 Receptors in Conscious Newborn Lambs? J Renin Angiotensin Aldosterone Syst 2014; 15:450-7. [DOI: 10.1177/1470320313506479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Guo X, Saini HK, Wang J, Gupta SK, Goyal RK, Dhalla NS. Prevention of remodeling in congestive heart failure due to myocardial infarction by blockade of the renin–angiotensin system. Expert Rev Cardiovasc Ther 2014; 3:717-32. [PMID: 16076281 DOI: 10.1586/14779072.3.4.717] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ventricular remodeling subsequent to myocardial infarction (MI) is a complex process and is considered to be a major determinant of the clinical course of congestive heart failure (CHF). Emerging evidence suggests that activation of the renin-angiotensin system (RAS) plays an important role in post-MI ventricular remodeling; however, it is becoming clear that this is one of several neurohumoral systems that are activated in CHF. Blockade of RAS by angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor antagonists attenuates the ventricular dysfunction, but the effects of individual drugs in reducing the morbidity and mortality in CHF patients are variable. Furthermore, there is a difference of opinion as to the time of initiation of therapy with RAS blockers after the onset of MI. Since blockade of RAS partially improves cardiac function, it is suggested that a combination therapy involving RAS blockers (angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor antagonists) and agents that affect other neurohumoral systems may prove useful for improved treatment of CHF. Although activation of RAS has been shown to promote oxidative stress in experimental studies, the use of antioxidant therapy in CHF patients is controversial. Recent experimental studies have shown that ventricular remodeling in CHF is associated with remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, myofibrils and extracellular matrix in terms of their molecular structure and composition. Since attenuation of remodeling in one and/or more subcellular organelles by different agents may prevent the progression of CHF, it is a challenge to develop specific drugs affecting molecular mechanisms associated with subcellular remodeling for the improved therapy of CHF.
Collapse
Affiliation(s)
- Xiaobing Guo
- University of Manitoba, Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, Faculty of Medicine, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Li Y, Li XH, Yuan H. Angiotensin II type-2 receptor-specific effects on the cardiovascular system. Cardiovasc Diagn Ther 2013; 2:56-62. [PMID: 24282697 DOI: 10.3978/j.issn.2223-3652.2012.02.02] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/02/2012] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system (RAS) is intricately involved in cardiovascular homeostasis. It is well known that angiotensin II, the key effector in RAS, contributes to a range of cardiovascular pathologies and diseases via angiotensin II type-1 receptor (AT1R) activation. However, the role of angiotensin II type-2 receptor (AT2R) regulation is less well understood. Recent studies describe the role of the AT2R on cardiovascular function in normal and pathologic conditions. The data describe an important role of AT2R in blood pressure regulation, cardiac hypertrophy and fibrosis, myocardial infarction and vascular homeostasis.
Collapse
Affiliation(s)
- Ying Li
- Center of Clinical Pharmacology, third Xiangya hospital, Central South University, Changsha 410013, China
| | | | | |
Collapse
|
35
|
Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves MLM. Angiotensin II Type 2 Receptor (AT2R) is Associated with Increased Tolerance of the Hyperthyroid Heart to Ischemia-Reperfusion. Cardiovasc Drugs Ther 2013; 27:393-402. [DOI: 10.1007/s10557-013-6473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Carrillo-Sepúlveda MA, Ceravolo GS, Furstenau CR, Monteiro PDS, Bruno-Fortes Z, Carvalho MH, Laurindo FR, Tostes RC, Webb RC, Barreto-Chaves MLM. Emerging role of angiotensin type 2 receptor (AT2R)/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism. PLoS One 2013; 8:e61982. [PMID: 23637941 PMCID: PMC3634851 DOI: 10.1371/journal.pone.0061982] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/15/2013] [Indexed: 12/14/2022] Open
Abstract
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Hyperthyroidism/genetics
- Hyperthyroidism/metabolism
- Male
- Models, Biological
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
- Triiodothyronine/pharmacology
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Maria Alícia Carrillo-Sepúlveda
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Graziela S. Ceravolo
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina R. Furstenau
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Priscilla de Souza Monteiro
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zuleica Bruno-Fortes
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Helena Carvalho
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Francisco R. Laurindo
- Vascular Biology Laboratory of Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C. Tostes
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, Georgia Health Science University, Augusta, Georgia, United States of America
| | - R. Clinton Webb
- Department of Physiology, Georgia Health Science University, Augusta, Georgia, United States of America
| | - Maria Luiza M. Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
37
|
Carey RM. The intrarenal renin-angiotensin and dopaminergic systems: control of renal sodium excretion and blood pressure. Hypertension 2013; 61:673-80. [PMID: 23407646 DOI: 10.1161/hypertensionaha.111.00241] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Robert M Carey
- University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
38
|
Safari T, Nematbakhsh M. Angiotensin 1-7 Receptor and Angiotensin II Receptor 2 Blockades Prevent the Increased Serum and Kidney Nitric Oxide Levels in Response to Angiotensin II Administration: Gender-Related Difference. Int J Prev Med 2013; 4:311-5. [PMID: 23626887 PMCID: PMC3634169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/14/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The angiotensin II (Ang II) receptor 2 (AT2R) and angiotensin 1-7 receptor (masR) expression in the kidney are gender-related. We attempted to compare the response of nitric oxide (NO) production to Ang II administration, with and without AT2R and masR blockades, using A-779 and PD123319 in male and female rats. METHODS Anesthetized and catheterized male and female Wistar rats were subjected to one-hour continuous infusion of Ang II (~20 μg/kg/hour), with and without masR and AT2R blockades. The level of the NO metabolite (nitrite) was measured before and after the experiment in rat serum and in the homogenized kidney tissue. RESULTS The basal data indicated that no sex difference in the serum level of nitrite could be detected before Ang II infusion. However, administration of Ang II in male and female rats caused a gender difference in the nitrite level, which resulted in the serum level of the nitrite significantly increasing in males (P < 0.05) when compared with the females. In addition, masR blockade or co-blockade of masR and AT2R in male rats abolished the gender difference related to the effect of Ang II on nitrite production. In the presence of masR and AT2R, or when masR alone was blocked, the level of nitrite in the kidney, in response to the Ang II infusion was not significantly different between the two sexes. On the contrary, masR and AT2R co-blockades significantly decreased the kidney nitrite concentration response to Ang II administration in both male and female rats (P < 0.05), but no sex difference was detected. CONCLUSIONS The renal vasculature of male rats may provide more response to Ang II administration-induced NO, which is dependent on masR and AT2R. During dual masR + AT2R blockades, the kidney NO formation wasreduced in a non-gender related manner.
Collapse
Affiliation(s)
- Tahereh Safari
- Water and Electrolytes Research Center/Department of Physiology/Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center/Department of Physiology/Kidney Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence to: Prof. Mehdi Nematbakhsh, Water and Electrolytes Research Center/Kidney Diseases Research Center/Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
39
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
40
|
Cardiovascular and cerebrovascular outcomes in elderly hypertensive patients treated with either ARB or ACEI. J Geriatr Cardiol 2012; 9:252-7. [PMID: 23097655 PMCID: PMC3470024 DOI: 10.3724/sp.j.1263.2011.12031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 05/20/2012] [Accepted: 09/03/2012] [Indexed: 01/13/2023] Open
Abstract
Background Although angiotensin converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) are equally important in the treatment of hypertension, there is less evidence whether they have equal cardiovascular and cerebrovascular protective effects, especially in elder hypertensive patients. This study aims to clarify this unresolved issue. Methods This cross-sectional study included clinical data on 933 aged male patients with hypertension who received either an ARB or ACEI for more than two months between January 2007 and May 2011. The primary outcome was the composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. The secondary endpoints were unstable angina, new atrial fibrillation, and transient ischemic attack. Results The median follow-up time was 24 months. Age, drug types, cerebral infarction history, renal dysfunction history were the independent predictors of the primary endpoint. The risk of an occurrence of a primary endpoint event was higher in the ARB group than the ACEI group [P = 0.037, hazard ratios (HR): 2.124, 95% confidence interval (95% CI): 1.048–4.306]. The Kaplan-Meier method also suggests that the rate of primary endpoint occurrence was higher in the ARB group than the ACEI group (P = 0.04). In regard to the secondary endpoints, there were no significant differences between the two treatment arms (P = 0.137, HR: 1.454, 95% CI: 0.888–2.380). Patient age and coronary heart disease history were independent predictors of the secondary endpoint. Conclusion ACEI were more effective than ARB in reducing cardiovascular and cerebrovascular morbidity and mortality in aged patients with hypertension.
Collapse
|
41
|
Abstract
The renin-angiotensin system (RAS) constitutes one of the most important hormonal systems in the physiological regulation of blood pressure through renal and nonrenal mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, including kidney injury, and blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or blockade of the angiotensin type 1 receptor (AT1R) by selective antagonists constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS within the kidney and other tissues that the system is actually composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II-AT1R axis that promotes vasoconstriction, water intake, sodium retention, and other mechanisms to maintain blood pressure, as well as increase oxidative stress, fibrosis, cellular growth, and inflammation in pathological conditions. In contrast, the nonclassical RAS composed primarily of the AngII/Ang III-AT2R pathway and the ACE2-Ang-(1-7)-AT7R axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and reduced oxidative stress. Moreover, increasing evidence suggests that these non-classical RAS components contribute to the therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury, as well as contribute to normal renal function.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension & Vascular Disease Center, Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
42
|
AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers Arch 2012; 465:99-110. [PMID: 22949090 DOI: 10.1007/s00424-012-1146-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system (RAS) is a coordinated hormonal cascade intimately involved in cardiovascular and renal control and blood pressure regulation. Angiotensin II (Ang II), the major RAS effector peptide, binds two distinct receptors, the angiotensin type-1 receptor (AT(1)R) and the angiotensin type-2 (AT(2)R) receptor. The vast majority of the physiological actions of Ang II, almost all of them detrimental, are mediated by AT(1)Rs. In contrast, AT(2)Rs negatively modulate the actions of AT(1)Rs under the majority of circumstances and generally possess beneficial effects. AT(2)Rs induce vasodilation in both resistance and capacitance vessels, mediating natriuresis directly and via interactions with dopamine D1 receptors in the renal proximal tubule. AT(2)Rs inhibit renin biosynthesis and secretion and protect the kidneys from inflammation and ischemic injury. Our understanding of the exact role of AT(2)Rs in physiology and pathophysiology continues to expand; the purpose of this review is to provide an up-to-date summary of the functional role of AT(2)Rs at the organ, tissue, cellular, and subcellular levels with emphasis on the vascular and renal actions that bear on blood pressure regulation and hypertension.
Collapse
|
43
|
Guimond MO, Gallo-Payet N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front Endocrinol (Lausanne) 2012; 3:164. [PMID: 23267346 PMCID: PMC3525946 DOI: 10.3389/fendo.2012.00164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
The angiotensin type 2 (AT(2)) receptor of angiotensin II has long been thought to be limited to few tissues, with the primary effect of counteracting the angiotensin type 1 (AT(1)) receptor. Functional studies in neuronal cells have demonstrated AT(2) receptor capability to modulate neuronal excitability, neurite elongation, and neuronal migration, suggesting that it may be an important regulator of brain functions. The observation that the AT(2) receptor was expressed in brain areas implicated in learning and memory led to the hypothesis that it may also be implicated in cognitive functions. However, linking signaling pathways to physiological effects has always proven challenging since information relative to its physiological functions has mainly emerged from indirect observations, either from the blockade of the AT(1) receptor or through the use of transgenic animals. From a mechanistic standpoint, the main intracellular pathways linked to AT(2) receptor stimulation include modulation of phosphorylation by activation of kinases and phosphatases or the production of nitric oxide and cGMP, some of which are associated with the Gi-coupling protein. The receptor can also interact with other receptors, either G protein-coupled such as bradykinin, or growth factor receptors such as nerve growth factor or platelet-derived growth factor receptors. More recently, new advances have also led to identification of various partner proteins, thus providing new insights into this receptor's mechanism of action. This review summarizes the recent advances regarding the signaling pathways induced by the AT(2) receptor in neuronal cells, and discussed the potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT(2) receptor activation by non-peptide and selective agonists could represent new pharmacological tools that may help to improve impaired cognitive performance in Alzheimer's disease and other neurological cognitive disorders.
Collapse
Affiliation(s)
| | - Nicole Gallo-Payet
- *Correspondence: Nicole Gallo-Payet, Service d’Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4. e-mail:
| |
Collapse
|
44
|
Ellis B, Li XC, Miguel-Qin E, Gu V, Zhuo JL. Evidence for a functional intracellular angiotensin system in the proximal tubule of the kidney. Am J Physiol Regul Integr Comp Physiol 2011; 302:R494-509. [PMID: 22170616 DOI: 10.1152/ajpregu.00487.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ANG II is the most potent and important member of the classical renin-angiotensin system (RAS). ANG II, once considered to be an endocrine hormone, is now increasingly recognized to also play novel and important paracrine (cell-to-cell) and intracrine (intracellular) roles in cardiovascular and renal physiology and blood pressure regulation. Although an intracrine role of ANG II remains an issue of continuous debates and requires further confirmation, a great deal of research has recently been devoted to uncover the novel actions and elucidate underlying signaling mechanisms of the so-called intracellular ANG II in cardiovascular, neural, and renal systems. The purpose of this article is to provide a comprehensive review of the intracellular actions of ANG II, either administered directly into the cells or expressed as an intracellularly functional fusion protein, and its effects throughout a variety of target tissues susceptible to the impacts of an overactive ANG II, with a particular focus on the proximal tubules of the kidney. While continuously reaffirming the roles of extracellular or circulating ANG II in the proximal tubules, our review will focus on recent evidence obtained for the novel biological roles of intracellular ANG II in cultured proximal tubule cells in vitro and the potential physiological roles of intracellular ANG II in the regulation of proximal tubular reabsorption and blood pressure in rats and mice. It is our hope that the new knowledge on the roles of intracellular ANG II in proximal tubules will serve as a catalyst to stimulate further studies and debates in the field and to help us better understand how extracellular and intracellular ANG II acts independently or interacts with each other, to regulate proximal tubular transport and blood pressure in both physiological and diseased states.
Collapse
Affiliation(s)
- Brianne Ellis
- Laboratoory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The renin-angiotensin system (RAS) plays an important role in regulating blood pressure, water-salt balance and the pathogenesis of cardiovascular diseases. Angiotensin II (Ang II) is the physiologically active mediator and mediates the main pathophysiological actions in RAS. Ang II exerts the effects by activating its receptors, primarily type 1 (AT1R) and type 2 (AT2R). Most of the known pathophysiological effects of Ang II are mediated by AT1R activation. The precise physiological function of AT2R is still not clear. Generally, AT2R is considered to oppose the effects of AT1R. Lectin-like oxidized low-density lipoprotein scavenger receptor-1 (LOX-1) is one of the major receptors responsible for binding, internalizing and degrading ox-LDL. The activation of LOX-1 has been known to be related to many pathophysiological events, including endothelial dysfunction and injury, fibroblast growth, and vascular smooth muscle cell hypertrophy. Many of these alterations are present in atherosclerosis, hypertension, and myocardial ischemia and remodeling. A growing body of evidence suggests the existence of a cross-talk between LOX-1 and Ang II receptors. Their interplays are embodied in the reciprocal regulation of their expression and activity. Their interplays are involved in a series of signals. Recent studies suggests that reactive oxygen species (ROS), nitric oxide (NO), protein kinase C (PKC) and mitogen activated protein kinases (MAPKs) are important signals responsible for their cross-talk. This paper reviews these aspects of dyslipidemia and RAS activation.
Collapse
Affiliation(s)
- Xianwei Wang
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
46
|
The effect of selective antihypertensive drugs on the vascular remodeling-associated hypertension: insights from a profilin1 transgenic mouse model. J Cardiovasc Pharmacol 2011; 57:550-8. [PMID: 21326111 DOI: 10.1097/fjc.0b013e318212b1c2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hypertension represents a major risk factor for cardiovascular diseases. We have developed a novel transgenic mouse model by overexpressing the cDNA of human profilin1 in the blood vessels of transgenic mice, which led to vascular hypertrophy and hypertension. We assessed the effects of losartan, amlodipine, or atenolol on vascular hypertrophy-associated hypertension, by treating the profilin1 transgenic mice for 4 weeks. Our myograph results showed improvement in the contraction response toward phenylephrine and in the relaxation response toward acetylcholine and sodium nitrite in losartan- and amlodipine-treated profilin1 mice. Western blot analyses using mesenteric arteries of losartan- and amlodipine-treated profilin1 mice showed significant decreases in their signaling, respectively, as follows: the expression of α1 integrin (104% and 93%) and β1 integrin (116% and 109%); p-ERK1/2 (149% and 130%) and p-JNK (171% and 137%); the phospho-myosin light chain 20 (117% and 150%); and the ROCKII expression (125% and 180%). Conversely, there were significant increases in the endothelial nitric oxide synthase expression (82% and 80%) and activation (p-endothelial nitric oxide synthase) (78% and 76%). On the other hand, atenolol-treated profilin1 mice showed no significant change in all measured parameters. In conclusion, the profilin1 gene may represent a new therapeutic target in the treatment of vascular hypertrophy-associated hypertension.
Collapse
|
47
|
Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 2011; 32:1551-65. [PMID: 21699940 PMCID: PMC3137727 DOI: 10.1016/j.peptides.2011.05.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Although renin, the rate-limiting enzyme of the renin-angiotensin system (RAS), was first discovered by Robert Tigerstedt and Bergman more than a century ago, the research on the RAS still remains stronger than ever. The RAS, once considered to be an endocrine system, is now widely recognized as dual (circulating and local/tissue) or multiple hormonal systems (endocrine, paracrine and intracrine). In addition to the classical renin/angiotensin I-converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor (AT₁/AT₂) axis, the prorenin/(Pro)renin receptor (PRR)/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, and the Ang IV/AT₄/insulin-regulated aminopeptidase (IRAP) axis have recently been discovered. Furthermore, the roles of the evolving RAS have been extended far beyond blood pressure control, aldosterone synthesis, and body fluid and electrolyte homeostasis. Indeed, novel actions and underlying signaling mechanisms for each member of the RAS in physiology and diseases are continuously uncovered. However, many challenges still remain in the RAS research field despite of more than one century's research effort. It is expected that the research on the expanded RAS will continue to play a prominent role in cardiovascular, renal and hypertension research. The purpose of this article is to review the progress recently being made in the RAS research, with special emphasis on the local RAS in the kidney and the newly discovered prorenin/PRR/MAP kinase axis, the ACE2/Ang (1-7)/Mas receptor axis, the Ang IV/AT₄/IRAP axis, and intracrine/intracellular Ang II. The improved knowledge of the expanded RAS will help us better understand how the classical renin/ACE/Ang II/AT₁ receptor axis, extracellular and/or intracellular origin, interacts with other novel RAS axes to regulate blood pressure and cardiovascular and kidney function in both physiological and diseased states.
Collapse
Affiliation(s)
- Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, the University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
48
|
Angiotensin II upregulation of cardiomyocyte adiponectin production is nitric oxide/cyclic GMP dependent. Am J Med Sci 2011; 341:350-5. [PMID: 21358315 DOI: 10.1097/maj.0b013e318203abd5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Adiponectin is a circulating cytokine that is now known to be synthesized by cardiomyocytes. Accumulating evidence has shown that adiponectin production is upregulated in patients with heart failure, with activation of the renin-angiotensin system and increased formation of angiotensin (Ang) II playing a critical role in left ventricular remodeling and heart failure. To determine whether Ang II upregulates adiponectin in hypertrophic cardiomyocytes, the authors need to explore the underlying mechanisms that could be involved. METHODS To test this hypothesis, neonatal rat ventricular myocytes (NRVMs) were treated with various concentrations of Ang II, and adiponectin expression was measured by quantitative real-time reverse transcription-polymerase chain reaction and Western immunoblotting. RESULTS Adiponectin mRNA expression was significantly increased by Ang II at concentrations from 10(-6) to 10(-8) M and was increased in a time-dependent manner at concentrations of 10(-7) M. Angiotensin type-2 receptor activation is required for Ang II-stimulated effects on adiponectin. A nitric oxide synthase inhibitor (Nx-nitro-l-arginine methyl ester hydrochloride) and an analog of cGMP antagonist (Rp-8-Br-CGMP-S) blocked Ang II-mediated upregulation of adiponectin. CONCLUSIONS These data suggest a mechanism whereby Ang II upregulates adiponectin in NRVMs via the angiotensin type-2 receptor/nitric oxide/cGMP/ protein kinase G signaling pathway.
Collapse
|
49
|
Matavelli LC, Huang J, Siragy HM. Angiotensin AT₂ receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension 2010; 57:308-13. [PMID: 21189405 DOI: 10.1161/hypertensionaha.110.164202] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Angiotensin II type 2 receptor (AT₂R) counteracts most effects of angiotensin II type 1 receptor (AT(1)R). We hypothesized that direct AT₂R stimulation reduces renal production of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β1 (TGF-β1) and enhances the production of nitric oxide (NO) and cyclic guanosine 3',5'-monophosphate (cGMP) in the clipped kidney of 2-kidney, 1-clip (2K1C) hypertension rat model. We used Sprague-Dawley rats to evaluate changes in renal interstitial fluid recovery levels of TNF-α, IL-6, NO, and cGMP; renal expression of AT₁R, AT₂R, TGF-β1, TNF-α, and IL-6 in sham and 2K1C rats treated for 4 days with vehicle, AT₂R agonist compound 21 (C21), or AT₂R antagonist PD123319 (PD), alone and combined (n=6, each group). Systolic blood pressure increased significantly in 2K1C and was not influenced by any treatment. Clipped kidneys showed significant increases in renal expression of AT₁R, AT₂R, TNF-α, IL-6, TGF-β1 and decreases in NO and cGMP levels. These factors were not influenced by PD treatment. In contrast, C21 caused significant decrease in renal TNF-α, IL-6, TGF-β1 and an increase in NO and cGMP levels. Combined C21 and PD treatment partially reversed the observed C21 effects. Compared to sham, there were no significant changes in TNF-α, IL-6, TGF-β1, NO, or cGMP in the nonclipped kidneys of 2K1C animals. We conclude that direct AT₂R stimulation reduces early renal inflammatory responses and improves production of NO and cGMP in renovascular hypertension independent of blood pressure reduction.
Collapse
Affiliation(s)
- Luis C Matavelli
- Department of Medicine, University of Virginia Health Sciences Center, PO Box 801409, Charlottesville, VA 22908-1409.
| | | | | |
Collapse
|
50
|
Morand-Contant M, Anand-Srivastava MB, Couture R. Kinin B1 receptor upregulation by angiotensin II and endothelin-1 in rat vascular smooth muscle cells: receptors and mechanisms. Am J Physiol Heart Circ Physiol 2010; 299:H1625-32. [DOI: 10.1152/ajpheart.00735.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress upregulates the kinin B1 receptor (B1R) in diabetes and hypertension. Since angiotensin II (ANG II) and endothelin-1 (ET-1) are increased in these disorders, this study aims at determining the role of these two prooxidative peptides in B1R expression in rat vascular smooth muscle cells (VSMC). In the A10 cell line and aortic VSMC, ANG II enhanced B1R protein expression in a concentration- and time-dependent manner (maximal at 1 μM and 6 h). In A10 cells, ANG II (1 μM) also increased B1R mRNA expression at 3 h and the activation of induced B1R with the agonist [Sar-d-Phe8]-des-Arg9-BK (10 nM, 5 min) significantly enhanced mitogen -activated protein kinase (MAPK1/2) phosphorylation. The enhancing effect of ANG II on B1R protein expression in A10 cells was normalized by the AT1 (losartan) but not by the AT2 (PD123319) receptor antagonist. Furthermore, it was inhibited by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and NF-κB (MG132) but not of MAPK (PD098059). Whereas the ETB receptor antagonist (BQ788) had no effect, the ETA receptor antagonist (BQ123) blocked the effect of ANG II at 6–8 h but not at an early time point. BQ123 and BQ788 also blocked the increasing effect of ET-1 on B1R protein expression. Antioxidants ( N-acetyl-l-cysteine and diphenyleneiodonium) abolished ANG II- and ET-1-increased B1R protein expression. In conclusion, B1R induction is linked to oxidative stress and activation of phosphatidylinositol 3-kinase and NF-κB. The newly synthesized B1R is functional and can activate MAPK signaling in VSMC. The effect of ANG II is mediated by the AT1 receptor and the subsequent activation of ETA through ET-1 release.
Collapse
Affiliation(s)
- Marielle Morand-Contant
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Madhu B. Anand-Srivastava
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|