1
|
Rosain J, Le Voyer T, Liu X, Gervais A, Polivka L, Cederholm A, Berteloot L, Parent AV, Pescatore A, Spinosa E, Minic S, Kiszewski AE, Tsumura M, Thibault C, Esnaola Azcoiti M, Martinovic J, Philippot Q, Khan T, Marchal A, Charmeteau-De Muylder B, Bizien L, Deswarte C, Hadjem L, Fauvarque MO, Dorgham K, Eriksson D, Falcone EL, Puel M, Ünal S, Geraldo A, Le Floc'h C, Li H, Rheault S, Muti C, Bobrie-Moyrand C, Welfringer-Morin A, Fuleihan RL, Lévy R, Roelens M, Gao L, Materna M, Pellegrini S, Piemonti L, Catherinot E, Goffard JC, Fekkar A, Sacko-Sow A, Soudée C, Boucherit S, Neehus AL, Has C, Hübner S, Blanchard-Rohner G, Amador-Borrero B, Utsumi T, Taniguchi M, Tani H, Izawa K, Yasumi T, Kanai S, Migaud M, Aubart M, Lambert N, Gorochov G, Picard C, Soudais C, L'Honneur AS, Rozenberg F, Milner JD, Zhang SY, Vabres P, Trpinac D, Marr N, Boddaert N, Desguerre I, Pasparakis M, Miller CN, Poziomczyk CS, Abel L, Okada S, Jouanguy E, Cheynier R, Zhang Q, Cobat A, Béziat V, Boisson B, Steffann J, Fusco F, Ursini MV, Hadj-Rabia S, Bodemer C, Bustamante J, Luche H, Puel A, Courtois G, Bastard P, Landegren N, Anderson MS, Casanova JL. Incontinentia pigmenti underlies thymic dysplasia, autoantibodies to type I IFNs, and viral diseases. J Exp Med 2024; 221:e20231152. [PMID: 39352576 PMCID: PMC11448874 DOI: 10.1084/jem.20231152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Human inborn errors of thymic T cell tolerance underlie the production of autoantibodies (auto-Abs) neutralizing type I IFNs, which predispose to severe viral diseases. We analyze 131 female patients with X-linked dominant incontinentia pigmenti (IP), heterozygous for loss-of-function (LOF) NEMO variants, from 99 kindreds in 10 countries. Forty-seven of these patients (36%) have auto-Abs neutralizing IFN-α and/or IFN-ω, a proportion 23 times higher than that for age-matched female controls. This proportion remains stable from the age of 6 years onward. On imaging, female patients with IP have a small, abnormally structured thymus. Auto-Abs against type I IFNs confer a predisposition to life-threatening viral diseases. By contrast, patients with IP lacking auto-Abs against type I IFNs are at no particular risk of viral disease. These results suggest that IP accelerates thymic involution, thereby underlying the production of auto-Abs neutralizing type I IFNs in at least a third of female patients with IP, predisposing them to life-threatening viral diseases.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Xian Liu
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Laura Polivka
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
- Reference Center for Mastocytosis (CEREMAST), Necker Hospital for Sick Children, AP-HP , Paris, France
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Laureline Berteloot
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Ezia Spinosa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Snezana Minic
- Clinics of Dermatovenerology, Clinical Center of Serbia , Belgrade, Serbia
- School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Ana Elisa Kiszewski
- Section of Dermatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Section of Pediatric Dermatology, Hospital da Criança Santo Antônio, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Chloé Thibault
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Maria Esnaola Azcoiti
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hospital Antoine Béclère, Paris Saclay University , Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | | | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Lillia Hadjem
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | | | - Karim Dorgham
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emilia Liana Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montréal Clinical Research Institute (IRCM) , Montréal, Canada
- Department of Medicine, Montréal University, Montréal, Canada
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Sinem Ünal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Amyrath Geraldo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Sylvie Rheault
- Department of Medicine, Montréal University, Montréal, Canada
- Center of Research of the Geriatric University Institute of Montréal, University of Montréal , Montréal, Canada
| | - Christine Muti
- Department of Genetics, André Mignot Hospital, Versailles, France
| | | | - Anne Welfringer-Morin
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Ramsay L Fuleihan
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Marie Roelens
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | | | - Jean-Christophe Goffard
- Internal Medicine, Brussels University Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Department of Parasitology Mycology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Aissata Sacko-Sow
- Department of Pediatrics, Jean Verdier Hospital, AP-HP, Bondy, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
- European Reference Network (ERN) for Rare and Undiagnosed Skin Disorders
| | - Stefanie Hübner
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
| | - Géraldine Blanchard-Rohner
- Unit of Immunology, Vaccinology, and Rheumatology, Division of General Pediatrics, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Blanca Amador-Borrero
- Internal Medicine Department, Lariboisière Hospital, AP-HP, University of Paris Cité, Paris, France
| | - Takanori Utsumi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Maki Taniguchi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Hiroo Tani
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
- Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sotaro Kanai
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Guy Gorochov
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
- Department of Immunology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Anne-Sophie L'Honneur
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Flore Rozenberg
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Vabres
- MAGEC Reference Center for Rare Skin Diseases, Dijon Bourgogne University Hospital, Dijon, France
| | - Dusan Trpinac
- Institute of Histology and Embryology, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University , Doha, Qatar
| | - Nathalie Boddaert
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Isabelle Desguerre
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | | | - Corey N Miller
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Rémi Cheynier
- University of Paris Cité, CNRS, Inserm, Institut Cochin , Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Julie Steffann
- Department of Genomic Medicine, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Francesca Fusco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Christine Bodemer
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Hervé Luche
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Gilles Courtois
- University Grenoble Alpes, CEA, Inserm , BGE UA13, Grenoble, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute , New York, NY, USA
| |
Collapse
|
2
|
Gervais A, Le Floc'h C, Le Voyer T, Bizien L, Bohlen J, Celmeli F, Al Qureshah F, Masson C, Rosain J, Chbihi M, Lévy R, Castagnoli R, Rothenbuhler A, Jouanguy E, Zhang Q, Zhang SY, Béziat V, Bustamante J, Puel A, Bastard P, Casanova JL. A sensitive assay for measuring whole-blood responses to type I IFNs. Proc Natl Acad Sci U S A 2024; 121:e2402983121. [PMID: 39312669 PMCID: PMC11459193 DOI: 10.1073/pnas.2402983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Human inborn errors of the type I IFN response pathway and auto-Abs neutralizing IFN-α, -β, and/or -ω can underlie severe viral illnesses. We report a simple assay for the detection of both types of condition. We stimulate whole blood from healthy individuals and patients with either inborn errors of type I IFN immunity or auto-Abs against type I IFNs with glycosylated human IFN-α2, -β, or -ω. As controls, we add a monoclonal antibody (mAb) blocking the type I IFN receptors and stimulated blood with IFN-γ (type II IFN). Of the molecules we test, IP-10 (encoded by the interferon-stimulated gene (ISG) CXCL10) is the molecule most strongly induced by type I and type II IFNs in the whole blood of healthy donors in an ELISA-like assay. In patients with inherited IFNAR1, IFNAR2, TYK2, or IRF9 deficiency, IP-10 is induced only by IFN-γ, whereas, in those with auto-Abs neutralizing specific type I IFNs, IP-10 is also induced by the type I IFNs not neutralized by the auto-Abs. The measurement of type I and type II IFN-dependent IP-10 induction therefore constitutes a simple procedure for detecting rare inborn errors of the type I IFN response pathway and more common auto-Abs neutralizing type I IFNs.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris 75010, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Fatih Celmeli
- Division of Pediatric Allergy and Immunology, Antalya Education and Research Hospital, University of Medical Science, Antalya 07100, Türkiye
| | - Fahd Al Qureshah
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Cécile Masson
- Bioinformatics Core Facility, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marwa Chbihi
- Paris Cité University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
- Pediatric Clinic, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Anya Rothenbuhler
- Endocrinology and Diabetes for children, Reference Center for rare diseases of calcium and phosphate metabolism, OSCAR network, Platform of expertise for rare diseases of Paris Saclay Hospital, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre 94270, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
- Department of Pediatrics, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
3
|
Liu H, Yang H, Xu H, Liu J, Li H, Zhao S. Diffuse alveolar hemorrhage as the initial presentation of hypomorphic RAG1 deficiency. Pediatr Allergy Immunol 2024; 35:e14250. [PMID: 39367705 DOI: 10.1111/pai.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Hui Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Haiming Yang
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hui Xu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Huimin Li
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
4
|
Molitor A, Lederle A, Radosavljevic M, Sapuru V, Zavorka Thomas ME, Yang J, Shirin M, Collin-Bund V, Jerabkova-Roda K, Miao Z, Bernard A, Rolli V, Grenot P, Castro CN, Rosenzwajg M, Lewis EG, Person R, Esperón-Moldes US, Kaare M, Nokelainen PT, Batzir NA, Hoffer GZ, Paul N, Stemmelen T, Naegely L, Hanauer A, Bibi-Triki S, Grün S, Jung S, Busnelli I, Tripolszki K, Al-Ali R, Ordonez N, Bauer P, Song E, Zajo K, Partida-Sanchez S, Robledo-Avila F, Kumanovics A, Louzoun Y, Hirschler A, Pichot A, Toker O, Mejía CAM, Parvaneh N, Knapp E, Hersh JH, Kenney H, Delmonte OM, Notarangelo LD, Goetz JG, Kahwash SB, Carapito C, Bajwa RPS, Thomas C, Ehl S, Isidor B, Carapito R, Abraham RS, Hite RK, Marcus N, Bertoli-Avella A, Bahram S. A pleiotropic recurrent dominant ITPR3 variant causes a complex multisystemic disease. SCIENCE ADVANCES 2024; 10:eado5545. [PMID: 39270020 PMCID: PMC11397499 DOI: 10.1126/sciadv.ado5545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptor type 1 (ITPR1), 2 (ITPR2), and 3 (ITPR3) encode the IP3 receptor (IP3R), a key player in intracellular calcium release. In four unrelated patients, we report that an identical ITPR3 de novo variant-NM_002224.3:c.7570C>T, p.Arg2524Cys-causes, through a dominant-negative effect, a complex multisystemic disorder with immunodeficiency. This leads to defective calcium homeostasis, mitochondrial malfunction, CD4+ lymphopenia, a quasi-absence of naïve CD4+ and CD8+ cells, an increase in memory cells, and a distinct TCR repertoire. The calcium defect was recapitulated in Jurkat knock-in. Site-directed mutagenesis displayed the exquisite sensitivity of Arg2524 to any amino acid change. Despite the fact that all patients had severe immunodeficiency, they also displayed variable multisystemic involvements, including ectodermal dysplasia, Charcot-Marie-Tooth disease, short stature, and bone marrow failure. In conclusion, unlike previously reported ITPR1-3 deficiencies leading to narrow, mainly neurological phenotypes, a recurrent dominant ITPR3 variant leads to a multisystemic disease, defining a unique role for IP3R3 in the tetrameric IP3R complex.
Collapse
Affiliation(s)
- Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Alexandre Lederle
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mirjana Radosavljevic
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Vinay Sapuru
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Megan E. Zavorka Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jianying Yang
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mahsa Shirin
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Virginie Collin-Bund
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Katerina Jerabkova-Roda
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Equipe labellisée, Ligue nationale Contre le Cancer, Strasbourg, France
| | - Zhichao Miao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Alice Bernard
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Pierre Grenot
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle Rosenzwajg
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Paris, France
- Sorbonne Université, INSERM UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Elyssa G. Lewis
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | - Milja Kaare
- Blueprint Genetics, A Quest Diagnostics Company, Espoo, Finland
| | | | - Nurit Assia Batzir
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Gal Zaks Hoffer
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
| | - Nicodème Paul
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Tristan Stemmelen
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lydie Naegely
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Antoine Hanauer
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Sabrina Bibi-Triki
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Sarah Grün
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sophie Jung
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Centre de Référence des maladies rares orales et dentaires (O-Rares), Pôle de Médecine et de Chirurgie bucco-dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ignacio Busnelli
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | | | | | | | | | - Eunkyung Song
- Division of Infectious Diseases and Host Defense, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kristin Zajo
- Institute of Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Ori Toker
- Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine Hebrew university, Jerusalem, Israel
| | | | - Nima Parvaneh
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Esther Knapp
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph H. Hersh
- Norton Children’s Medical Group, University of Louisville School of Medicine, Louisville, KY, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jacky G. Goetz
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Equipe labellisée, Ligue nationale Contre le Cancer, Strasbourg, France
| | - Samir B. Kahwash
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique (LSMBO), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, Université de Strasbourg, CNRS, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Rajinder P. S. Bajwa
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, Hôpital Enfant-Adolescent, CHU Nantes, Nantes, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, CHU de Nantes, Nantes, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Roshini S. Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nufar Marcus
- Allergy and Immunology Unit, Kipper Institute of Immunology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, USA
| | | | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Plateforme GENOMAX, Centre de Recherche d’Immunologie et d’Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Le Voyer T, Maglorius Renkilaraj MRL, Moriya K, Pérez Lorenzo M, Nguyen T, Gao L, Rubin T, Cederholm A, Ogishi M, Arango-Franco CA, Béziat V, Lévy R, Migaud M, Rapaport F, Itan Y, Deenick EK, Cortese I, Lisco A, Boztug K, Abel L, Boisson-Dupuis S, Boisson B, Frosk P, Ma CS, Landegren N, Celmeli F, Casanova JL, Tangye SG, Puel A. Inherited human RelB deficiency impairs innate and adaptive immunity to infection. Proc Natl Acad Sci U S A 2024; 121:e2321794121. [PMID: 39231201 PMCID: PMC11406260 DOI: 10.1073/pnas.2321794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
We report two unrelated adults with homozygous (P1) or compound heterozygous (P2) private loss-of-function variants of V-Rel Reticuloendotheliosis Viral Oncogene Homolog B (RELB). The resulting deficiency of functional RelB impairs the induction of NFKB2 mRNA and NF-κB2 (p100/p52) protein by lymphotoxin in the fibroblasts of the patients. These defects are rescued by transduction with wild-type RELB complementary DNA (cDNA). By contrast, the response of RelB-deficient fibroblasts to Tumor Necrosis Factor (TNF) or IL-1β via the canonical NF-κB pathway remains intact. P1 and P2 have low proportions of naïve CD4+ and CD8+ T cells and of memory B cells. Moreover, their naïve B cells cannot differentiate into immunoglobulin G (IgG)- or immunoglobulin A (IgA)-secreting cells in response to CD40L/IL-21, and the development of IL-17A/F-producing T cells is strongly impaired in vitro. Finally, the patients produce neutralizing autoantibodies against type I interferons (IFNs), even after hematopoietic stem cell transplantation, attesting to a persistent dysfunction of thymic epithelial cells in T cell selection and central tolerance to some autoantigens. Thus, inherited human RelB deficiency disrupts the alternative NF-κB pathway, underlying a T- and B cell immunodeficiency, which, together with neutralizing autoantibodies against type I IFNs, confers a predisposition to viral, bacterial, and fungal infections.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris75010, France
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tamar Rubin
- Division of Pediatric Clinical Immunology and Allergy, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MBR3A 1S1, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Group of Inborn Errors of Immunity, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín050010, Colombia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaan Boztug
- St. Anna Children’s Cancer Research Institute, Vienna1090, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science, Antalya Education and Research Hospital, Antalya07100, Türkiye
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris75015, France
- HHMI, New York, NY10065
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| |
Collapse
|
6
|
Fernbach S, Mair NK, Abela IA, Groen K, Kuratli R, Lork M, Thorball CW, Bernasconi E, Filippidis P, Leuzinger K, Notter J, Rauch A, Hirsch HH, Huber M, Günthard HF, Fellay J, Kouyos RD, Hale BG. Loss of tolerance precedes triggering and lifelong persistence of pathogenic type I interferon autoantibodies. J Exp Med 2024; 221:e20240365. [PMID: 39017930 PMCID: PMC11253716 DOI: 10.1084/jem.20240365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Autoantibodies neutralizing type I interferons (IFN-Is) can underlie infection severity. Here, we trace the development of these autoantibodies at high-resolution using longitudinal samples from 1,876 well-treated individuals living with HIV over a 35-year period. Similar to general populations, ∼1.9% of individuals acquired anti-IFN-I autoantibodies as they aged (median onset ∼63 years). Once detected, anti-IFN-I autoantibodies persisted lifelong, and titers increased over decades. Individuals developed distinct neutralizing and non-neutralizing autoantibody repertoires at discrete times that selectively targeted combinations of IFNα, IFNβ, and IFNω. Emergence of neutralizing anti-IFNα autoantibodies correlated with reduced baseline IFN-stimulated gene levels and was associated with subsequent susceptibility to severe COVID-19 several years later. Retrospective measurements revealed enrichment of pre-existing autoreactivity against other autoantigens in individuals who later developed anti-IFN-I autoantibodies, and there was evidence for prior viral infections or increased IFN at the time of anti-IFN-I autoantibody triggering. These analyses suggest that age-related loss of self-tolerance prior to IFN-I immune-triggering poses a risk of developing lifelong functional IFN-I deficiency.
Collapse
Affiliation(s)
- Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nina K. Mair
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kevin Groen
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kuratli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marie Lork
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christian W. Thorball
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Paraskevas Filippidis
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Julia Notter
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans H. Hirsch
- Department of Biomedicine, Transplantation and Clinical Virology, University of Basel, Basel, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
9
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
10
|
Pavel-Dinu M, Gardner CL, Nakauchi Y, Kawai T, Delmonte OM, Palterer B, Bosticardo M, Pala F, Viel S, Malech HL, Ghanim HY, Bode NM, Kurgan GL, Detweiler AM, Vakulskas CA, Neff NF, Sheikali A, Menezes ST, Chrobok J, Hernández González EM, Majeti R, Notarangelo LD, Porteus MH. Genetically corrected RAG2-SCID human hematopoietic stem cells restore V(D)J-recombinase and rescue lymphoid deficiency. Blood Adv 2024; 8:1820-1833. [PMID: 38096800 PMCID: PMC11006817 DOI: 10.1182/bloodadvances.2023011766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αβ and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Cameron L. Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yusuke Nakauchi
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Tomoki Kawai
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastien Viel
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
- Service d’immunologie biologique, Hospices Civils de Lyon, Centre International de Recherche en Infectivologie, Centre International de Recheerche in Infectivalogie, INSERM U1111, Université Claude Bernard Lyon 1, Centre National de la Recherge Scientifique, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hana Y. Ghanim
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | | | | | | | | | | | - Adam Sheikali
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Sherah T. Menezes
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Jade Chrobok
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Elaine M. Hernández González
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Matthew H. Porteus
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
11
|
Peel JN, Yang R, Le Voyer T, Gervais A, Rosain J, Bastard P, Behere A, Cederholm A, Bodansky A, Seeleuthner Y, Conil C, Ding JY, Lei WT, Bizien L, Soudee C, Migaud M, Ogishi M, Yatim A, Lee D, Bohlen J, Perpoint T, Perez L, Messina F, Genet R, Karkowski L, Blot M, Lafont E, Toullec L, Goulvestre C, Mehlal-Sedkaoui S, Sallette J, Martin F, Puel A, Jouanguy E, Anderson MS, Landegren N, Tiberghien P, Abel L, Boisson-Dupuis S, Bustamante J, Ku CL, Casanova JL. Neutralizing IFN-γ autoantibodies are rare and pathogenic in HLA-DRB1*15:02 or 16:02 individuals. J Clin Invest 2024; 134:e178263. [PMID: 38470480 PMCID: PMC11014650 DOI: 10.1172/jci178263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUNDWeakly virulent environmental mycobacteria (EM) can cause severe disease in HLA-DRB1*15:02 or 16:02 adults harboring neutralizing anti-IFN-γ autoantibodies (nAIGAs). The overall prevalence of nAIGAs in the general population is unknown, as are the penetrance of nAIGAs in HLA-DRB1*15:02 or 16:02 individuals and the proportion of patients with unexplained, adult-onset EM infections carrying nAIGAs.METHODSThis study analyzed the detection and neutralization of anti-IFN-γ autoantibodies (auto-Abs) from 8,430 healthy individuals of the general population, 257 HLA-DRB1*15:02 or 16:02 carriers, 1,063 patients with autoimmune disease, and 497 patients with unexplained severe disease due to EM.RESULTSWe found that anti-IFN-γ auto-Abs detected in 4,148 of 8,430 healthy individuals (49.2%) from the general population of an unknown HLA-DRB1 genotype were not neutralizing. Moreover, we did not find nAIGAs in 257 individuals carrying HLA-DRB1* 15:02 or 16:02. Additionally, nAIGAs were absent in 1,063 patients with an autoimmune disease. Finally, 7 of 497 patients (1.4%) with unexplained severe disease due to EM harbored nAIGAs.CONCLUSIONThese findings suggest that nAIGAs are isolated and that their penetrance in HLA-DRB1*15:02 or 16:02 individuals is low, implying that they may be triggered by rare germline or somatic variants. In contrast, the risk of mycobacterial disease in patients with nAIGAs is high, confirming that these nAIGAs are the cause of EM disease.FUNDINGThe Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI095983 and U19AIN1625568), the National Center for Advancing Translational Sciences (NCATS), the NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), ANR-GENMSMD (ANR-16-CE17-0005-01), ANR-MAFMACRO (ANR-22-CE92-0008), ANRSECTZ170784, the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), and ANR AI2D (ANR-22-CE15-0046) projects, the ANR-RHU program (ANR-21-RHUS-08-COVIFERON), the European Union's Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the Battersea & Bowery Advisory Group, William E. Ford, General Atlantic's Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic's Co-President, Managing Director, and Head of business in EMEA, and the General Atlantic Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and of Paris Cité University. JR was supported by the INSERM PhD program for doctors of pharmacy (poste d'accueil INSERM). JR and TLV were supported by the Bettencourt-Schueller Foundation and the MD-PhD program of the Imagine Institute. MO was supported by the David Rockefeller Graduate Program, the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the New York Hideyo Noguchi Memorial Society (HNMS).
Collapse
Affiliation(s)
- Jessica N. Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Tom Le Voyer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies and
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anish Behere
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aaron Bodansky
- Department of Pediatric Critical Care Medicine and
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Clément Conil
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences; Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences; Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Hsinchu Municipal MacKay Children’s Hospital, Hsinchu, Taiwan
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Camille Soudee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Thomas Perpoint
- Infectious and Tropical Diseases Service, Hospices Civils of Lyon, Lyon, France
| | - Laura Perez
- Immunology and Rheumatology Unit, Prof. Dr. Juan P. Garrahan National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Fernando Messina
- Mycology Unit, Dr. Francisco J. Muñiz Hospital, Buenos Aires, Argentina
| | - Roxana Genet
- Infectious Diseases Service, Regional Hospital of Metz-Thionville, France
| | - Ludovic Karkowski
- Deparement of Internal Medicine, Sainte Anne Armed Forces Teaching Hospital, Toulon, France
| | - Mathieu Blot
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
| | - Emmanuel Lafont
- Department of Infectious Diseases and Tropical Medicine, Paris Cité University, Necker Hospital for Sick Children and
| | - Laurie Toullec
- Laboratory of Immunology, Cochin hospital, AP-HP, Paris, France
| | | | | | | | | | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | | | - 3C-Dijon Study
- Details are available in the Supplemental Acknowledgments
| | | | - Mark S. Anderson
- Department of Pediatric Critical Care Medicine and
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Centre for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Pierre Tiberghien
- Etablissement Français Du Sang, La Plaine Saint-Denis, France
- 20UMR1098 RIGHT, INSERM, EFS, Université de Franche-Comté, Besançon, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies and
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences; Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| |
Collapse
|
12
|
Borghesi A. Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability. Cell Immunol 2024; 397-398:104807. [PMID: 38232634 DOI: 10.1016/j.cellimm.2024.104807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, EU, Italy; School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| |
Collapse
|
13
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Materna M, Delmonte OM, Bosticardo M, Momenilandi M, Conrey PE, Muylder BCD, Bravetti C, Bellworthy R, Cederholm A, Staels F, Ganoza CA, Darko S, Sayed S, Le Floc’h C, Ogishi M, Rinchai D, Guenoun A, Bolze A, Khan T, Gervais A, Krüger R, Völler M, Palterer B, Sadeghi-Shabestari M, de Septenville AL, Schramm CA, Shah S, Tello-Cajiao JJ, Pala F, Amini K, Campos JS, Lima NS, Eriksson D, Lévy R, Seeleuthner Y, Jyonouchi S, Ata M, Al Ali F, Deswarte C, Pereira A, Mégre t J, Le Voyer T, Bastard P, Berteloot L, Dussiot M, Vladikine N, Cardenas PP, Jouanguy E, Alqahtani M, Hasan A, Thanaraj TA, Rosain J, Al Qureshah F, Sabato V, Alyanakian MA, Leruez-Ville M, Rozenberg F, Haddad E, Regueiro JR, Toribio ML, Kelsen JR, Salehi M, Nasiri S, Torabizadeh M, Rokni-Zadeh H, Changi-Ashtiani M, Vatandoost N, Moravej H, Akrami SM, Mazloomrezaei M, Cobat A, Meyts I, Etsushi T, Nishimura M, Moriya K, Mizukami T, Imai K, Abel L, Malissen B, Al-Mulla F, Alkuraya FS, Parvaneh N, von Bernuth H, Beetz C, Davi F, Douek DC, Cheynier R, Langlais D, Landegren N, Marr N, Morio T, Shahrooei M, Schrijvers R, Henrickson SE, Luche H, Notarangelo LD, Casanova JL, Béziat V. The immunopathological landscape of human pre-TCRα deficiency: From rare to common variants. Science 2024; 383:eadh4059. [PMID: 38422122 PMCID: PMC10958617 DOI: 10.1126/science.adh4059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
We describe humans with rare biallelic loss-of-function PTCRA variants impairing pre-α T cell receptor (pre-TCRα) expression. Low circulating naive αβ T cell counts at birth persisted over time, with normal memory αβ and high γδ T cell counts. Their TCRα repertoire was biased, which suggests that noncanonical thymic differentiation pathways can rescue αβ T cell development. Only a minority of these individuals were sick, with infection, lymphoproliferation, and/or autoimmunity. We also report that 1 in 4000 individuals from the Middle East and South Asia are homozygous for a common hypomorphic PTCRA variant. They had normal circulating naive αβ T cell counts but high γδ T cell counts. Although residual pre-TCRα expression drove the differentiation of more αβ T cells, autoimmune conditions were more frequent in these patients compared with the general population.
Collapse
Affiliation(s)
- Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Peyton E. Conrey
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | | | - Clotilde Bravetti
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
- Sorbonne University, Paris Cancer Institute CURAMUS, INSERM U1138, Paris, France
| | - Rebecca Bellworthy
- Deptartment of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Frederik Staels
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | | | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samir Sayed
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Corentin Le Floc’h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | | | | | - Taushif Khan
- Research Branch, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Boaz Palterer
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Mahnaz Sadeghi-Shabestari
- Immunology Research Center, TB and Lung Disease Research Center, Mardaniazar children hospital, Tabriz University of Medical Science, Tabriz, Iran
| | - Anne Langlois de Septenville
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
| | - Chaim A. Schramm
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sanjana Shah
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John J. Tello-Cajiao
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Jose S. Campos
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Noemia Santana Lima
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Section of Clinical Genetics, Uppsala, Sweden
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Soma Jyonouchi
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
| | - Manar Ata
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Anaïs Pereira
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Jérôme Mégre t
- Cytometry Core Facility, SFR Necker, INSERM US24-CNRS UAR3633, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Laureline Berteloot
- Department of Pediatric Radiology, University Hospital Necker-Enfants Malades, AP-HP, Paris, France
| | - Michaël Dussiot
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM UMR 1163, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Paula P. Cardenas
- Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Hasan
- Department of Translational Research, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Fahd Al Qureshah
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, University of Antwerp, Antwerp University Hospital, Belgium
| | - Marie Alexandra Alyanakian
- Immunology Laboratory, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Flore Rozenberg
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Virology, Cochin Hospital, AP-HP, APHP-CUP, Paris, France
| | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Jose R. Regueiro
- Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Maria L. Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology and Nutrition at Children's Hospital of Philadelphia
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology,Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Nasiri
- Department of Pediatric Neurology, Children's Medical Center of Abuzar, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Torabizadeh
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Rokni-Zadeh
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Majid Changi-Ashtiani
- School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Nasimeh Vatandoost
- Department of Genetics and Molecular Biology,Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Moravej
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Akrami
- Medical Genetics Poursina St., Genetic Deptartment, Medical Faculty, Tehran University of Medical Sciences, Tehran, Iran
- Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | | | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Toyofuku Etsushi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Madoka Nishimura
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Kunihiko Moriya
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tomoyuki Mizukami
- Department of Pediatrics, NHO Kumamoto Medical Center, Kumamoto, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Bernard Malissen
- Immunology Center of Marseille-Luminy, Aix Marseille University, Inserm, CNRS, Marseille, France
- Immunophenomics Center (CIPHE), Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Research Division, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Fowzan Sami Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin GmbH, Department of Immunology, Berlin, Germany
| | | | - Frédéric Davi
- Department of Biological Hematology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) and Sorbonne Université, Paris, France
- Sorbonne University, Paris Cancer Institute CURAMUS, INSERM U1138, Paris, France
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rémi Cheynier
- University of Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - David Langlais
- Deptartment of Human Genetics, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mohammad Shahrooei
- Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Belgium
| | - Sarah E. Henrickson
- Division of Allergy-Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, USA
- Institute for Immunology and Immune Health, University of Pennsylvania; Philadelphia, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, USA
| | - Hervé Luche
- Immunophenomics Center (CIPHE), Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| |
Collapse
|
15
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
16
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
17
|
Oftedal BE, Sjøgren T, Wolff ASB. Interferon autoantibodies as signals of a sick thymus. Front Immunol 2024; 15:1327784. [PMID: 38455040 PMCID: PMC10917889 DOI: 10.3389/fimmu.2024.1327784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Bouayad A. IL-1RA autoantibodies: insights into mechanisms and associated diseases. Am J Transl Res 2024; 16:374-386. [PMID: 38463591 PMCID: PMC10918145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024]
Abstract
The association of neutralizing autoantibodies targeting interleukin-1 receptor antagonist (IL-1RA) with multisystem inflammatory syndrome, IgG4-related disease, and vaccine-related myocarditis is increasingly recognized. The detection of IL-1RA autoantibodies can be notably affected by the techniques and methods employed. Two categories of assays are available: solid-phase immunoassays, which detect binding of IL-1RA autoantibodies, and functional IL-1 signaling reporter cell assays, which offer greater specificity by determining whether circulating autoantibodies can impede interleukin (IL)-1β signal transduction pathways. It is as yet unclear why only a minority of individuals produce pathogenic anti-IL-1RA autoantibodies in response to coronavirus disease 2019 (COVID19) or vaccination. This review article discusses our current knowledge of the process of IL-1RA autoantibody generation, the underlying pathogenesis, detection, and potential treatment strategies for associated diseases.
Collapse
Affiliation(s)
- Abdellatif Bouayad
- Faculty of Medicine and Pharmacy, Mohammed First UniversityOujda, Morocco
- Laboratory of Immunohematology and Cellular Therapy, Faculty of Medicine and Pharmacy, Mohammed First UniversityOujda, Morocco
| |
Collapse
|
19
|
Wang C, Sun B, Wu K, Farmer JR, Ujhazi B, Geier CB, Gordon S, Westermann-Clark E, Savic S, Secord E, Sargur R, Chen K, Jin JJ, Dutmer CM, Kanariou MG, Adeli M, Palma P, Bonfim C, Lycopoulou E, Wolska-Kusnierz B, Dbaibo G, Bleesing J, Moshous D, Neven B, Schuetz C, Geha RS, Notarangelo LD, Miano M, Buchbinder DK, Csomos K, Wang W, Wang JY, Wang X, Walter JE. Clinical, immunological features, treatments, and outcomes of autoimmune hemolytic anemia in patients with RAG deficiency. Blood Adv 2024; 8:603-607. [PMID: 37883797 PMCID: PMC10837476 DOI: 10.1182/bloodadvances.2023011264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Chen Wang
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL
| | - Bijun Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Kevin Wu
- Department of Pediatrics & Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Jocelyn R. Farmer
- Division of Allergy and Inflammation, Beth Israel Lahey Health, Harvard Medical School, Boston, MA
| | - Boglarka Ujhazi
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Christoph B. Geier
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg; Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sumai Gordon
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Emma Westermann-Clark
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Sinisa Savic
- St James’s University Hospital, University of Leeds, Leeds, United Kingdom
| | - Elizabeth Secord
- Division of Allergy and Immunology, Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI
| | - Ravishankar Sargur
- Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, United Kingdom
| | - Karin Chen
- Division of Immunology, Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, WA
| | - Jay J. Jin
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Cullen M. Dutmer
- Section of Allergy & Immunology, Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Maria G. Kanariou
- Department of Immunology and Histocompatibility, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Mehdi Adeli
- Pediatric Allergy and Immunology, Sidra Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesu` Children’s Hospital, Department of Systems Medicine, University of Rome ‘‘Tor Vergata,’’ Rome, Italy
| | - Carmem Bonfim
- Hospital Pequeno Príncipe/Instituto de Pesquisa Pelé Pequeno Príncipe/Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Evangelia Lycopoulou
- 1st Department of Pediatrics, University of Athens, Aghia Sofia Children’s Hospital, Athens, Greece
| | | | - Ghassan Dbaibo
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cancer and Blood Diseases Institute, Cincinnati, OH
| | - Despina Moshous
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, CEREDIH, French National Reference Centre for Primary Immunodeficiencies, Paris, France
- Imagine Institute, INSERM UMR 1163, University Paris Cité, Paris, France
| | - Benedicte Neven
- Imagine Institute, INSERM UMR 1163, University Paris Cité, Paris, France
| | - Catharina Schuetz
- Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Raif S. Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Krisztian Csomos
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jolan E. Walter
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| |
Collapse
|
20
|
Karaatmaca B, Cagdas D, Esenboga S, Erman B, Tan C, Turul Ozgur T, Boztug K, van der Burg M, Sanal O, Tezcan I. Heterogeneity in RAG1 and RAG2 deficiency: 35 cases from a single-centre. Clin Exp Immunol 2024; 215:160-176. [PMID: 37724703 PMCID: PMC10847812 DOI: 10.1093/cei/uxad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
Recombination activating genes (RAG)1 and RAG2 deficiency leads to combined T/B-cell deficiency with varying clinical presentations. This study aimed to define the clinical/laboratory spectrum of RAG1 and RAG2 deficiency. We retrospectively reviewed the clinical/laboratory data of 35 patients, grouped them as severe combined immunodeficiency (SCID), Omenn syndrome (OS), and delayed-onset combined immunodeficiency (CID) and reported nine novel mutations. The male/female ratio was 23/12. Median age of clinical manifestations was 1 months (mo) (0.5-2), 2 mo (1.25-5), and 14 mo (3.63-27), age at diagnosis was 4 mo (3-6), 4.5 mo (2.5-9.75), and 27 mo (14.5-70) in SCID (n = 25; 71.4%), OS (n = 5; 14.3%), and CID (n = 5; 14.3%) patients, respectively. Common clinical manifestations were recurrent sinopulmonary infections 82.9%, oral moniliasis 62.9%, diarrhea 51.4%, and eczema/dermatitis 42.9%. Autoimmune features were present in 31.4% of the patients; 80% were in CID patients. Lymphopenia was present in 92% of SCID, 80% of OS, and 80% of CID patients. All SCID and CID patients had low T (CD3, CD4, and CD8), low B, and increased NK cell numbers. Twenty-eight patients underwent hematopoietic stem cell transplantation (HSCT), whereas seven patients died before HSCT. Median age at HSCT was 7 mo (4-13.5). Survival differed in groups; maximum in SCID patients who had an HLA-matched family donor, minimum in OS. Totally 19 (54.3%) patients survived. Early molecular genetic studies will give both individualized therapy options, and a survival advantage because of timely diagnosis and treatment. Further improvement in therapeutic outcomes will be possible if clinicians gain time for HSCT.
Collapse
Affiliation(s)
- Betul Karaatmaca
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Baran Erman
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Tuba Turul Ozgur
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Ozden Sanal
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Bastard P, Gervais A, Taniguchi M, Saare L, Särekannu K, Le Voyer T, Philippot Q, Rosain J, Bizien L, Asano T, Garcia-Prat M, Parra-Martínez A, Migaud M, Tsumura M, Conti F, Belot A, Rivière JG, Morio T, Tanaka J, Javouhey E, Haerynck F, Duvlis S, Ozcelik T, Keles S, Tandjaoui-Lambiotte Y, Escoda S, Husain M, Pan-Hammarström Q, Hammarström L, Ahlijah G, Abi Haidar A, Soudee C, Arseguel V, Abolhassani H, Sahanic S, Tancevski I, Nukui Y, Hayakawa S, Chrousos GP, Michos A, Tatsi EB, Filippatos F, Rodriguez-Palmero A, Troya J, Tipu I, Meyts I, Roussel L, Ostrowski SR, Schidlowski L, Prando C, Condino-Neto A, Cheikh N, Bousfiha AA, El Bakkouri J, Peterson P, Pujol A, Lévy R, Quartier P, Vinh DC, Boisson B, Béziat V, Zhang SY, Borghesi A, Pession A, Andreakos E, Marr N, Mentis AFA, Mogensen TH, Rodríguez-Gallego C, Soler-Palacin P, Colobran R, Tillmann V, Neven B, Trouillet-Assant S, Brodin P, Abel L, Jouanguy E, Zhang Q, Martinón-Torres F, Salas A, Gómez-Carballa A, Gonzalez-Granado LI, Kisand K, Okada S, Puel A, Cobat A, Casanova JL. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J Exp Med 2024; 221:e20231353. [PMID: 38175961 PMCID: PMC10771097 DOI: 10.1084/jem.20231353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-ω and/or IFN-α2.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Maki Taniguchi
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Liisa Saare
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Takaki Asano
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Alba Parra-Martínez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Miyuki Tsumura
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dept. of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alexandre Belot
- National Reference Center for Rheumatic, and Autoimmune and Systemic Diseases in Children, Lyon, France
- Immunopathology Federation LIFE, Hospices Civils de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Jacques G. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomohiro Morio
- Dept. of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Junko Tanaka
- Dept. of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Filomeen Haerynck
- Dept. of Paediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Sotirija Duvlis
- Faculty of Medical Sciences, University “Goce Delchev”, Stip, Republic of Northern Macedonia
- Institute of Public Health of the Republic of North Macedonia, Skopje, North Macedonia
| | - Tayfun Ozcelik
- Dept. of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Sevgi Keles
- Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Yacine Tandjaoui-Lambiotte
- Pulmonology and Infectious Disease Department, Saint Denis Hospital, Saint Denis, France
- INSERM UMR 1137 IAME, Paris, France
- INSERM UMR 1272 Hypoxia and Lung, Bobigny, France
| | - Simon Escoda
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Maya Husain
- Pediatric Dept., Saint-Denis Hospital, Saint-Denis, France
| | - Qiang Pan-Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gloria Ahlijah
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Anthony Abi Haidar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Camille Soudee
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Vincent Arseguel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Hassan Abolhassani
- Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabina Sahanic
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Dept. of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Yoko Nukui
- Dept. of Infection Control and Prevention, Medical Hospital, TMDU, Tokyo, Japan
| | - Seiichi Hayakawa
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Michos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth-Barbara Tatsi
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Filippos Filippatos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- First Dept. of Pediatics, National and Kapodistrian University of Athens, Athens, Greece
| | - Agusti Rodriguez-Palmero
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Dept. of Pediatrics, Germans Trias i Pujol University Hospital, UAB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jesus Troya
- Dept. of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Imran Tipu
- University of Management and Technology, Lahore, Pakistan
| | - Isabelle Meyts
- Dept. of Immunology, Laboratory of Inborn Errors of Immunity, Microbiology and Transplantation, KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Jeffrey Modell Diagnostic and Research Network Center, University Hospitals Leuven, Leuven, Belgium
| | - Lucie Roussel
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Sisse Rye Ostrowski
- Dept. of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laire Schidlowski
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Carolina Prando
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Antonio Condino-Neto
- Dept. of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathalie Cheikh
- Pediatric Hematology Unit, University Hospital of Besançon, Besançon, France
| | - Ahmed A. Bousfiha
- Dept. of Pediatric Infectious Disease and Clinical Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Immunology, CHU Ibn Rushd and LICIA, Laboratoire d’Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, CIBERER U759, and Catalan Institution of Research and Advanced Studies, Barcelona, Spain
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Pierre Quartier
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Donald C. Vinh
- Dept. of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Canada
- Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Alexios-Fotios A. Mentis
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Trine H. Mogensen
- Dept. of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
- Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carlos Rodríguez-Gallego
- Hospital Universitario de Gran Canaria Dr Negrín, Canarian Health System, Las Palmas, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Genetics Dept., Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, UAB, Barcelona, Spain
| | - Vallo Tillmann
- Dept. of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Bénédicte Neven
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Trouillet-Assant
- Hospices Civils de Lyon, Lyon, France
- International Center of Research in Infectiology, Lyon University, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bio Mérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Petter Brodin
- Unit for Clinical Pediatrics, Dept. of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Dept., Hospital Clínico Universitario de Santiago, Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Alberto Gómez-Carballa
- GENVIP Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Facultade de Medicina, Unidade de Xenética, Instituto de Ciencias Forenses, Universidade de Santiago de Compostela, and GenPoB Research Group, IDIS, SERGAS, Galicia, Spain
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital 12 de octubre, Research Institute Hospital 12 octubre, Madrid, Spain
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Satoshi Okada
- Dept. of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
22
|
Peterson P. Novel Insights into the Autoimmunity from the Genetic Approach of the Human Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:3-18. [PMID: 38467969 DOI: 10.1007/978-981-99-9781-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic inborn error of autoimmunity that is caused by damaging germline variants in the AIRE gene and clinically manifests with multiple autoimmune diseases in patients. Studies on the function of the AIRE gene, discovered in 1997, have contributed to fundamental aspects of human immunology as they have been important in understanding the basic mechanism of immune balance between self and non-self. This chapter looks back to the discovery of the AIRE gene, reviews its main properties, and discusses the key findings of its function in the thymus. However, more recent autoantibody profilings in APECED patients have highlighted a gap in our knowledge of the disease pathology and point to the need to revisit the current paradigm of AIRE function. The chapter reviews these new findings in APECED patients, which potentially trigger new thoughts on the mechanism of immune tolerance.
Collapse
Affiliation(s)
- Pärt Peterson
- Institute of Biomedical and Translational Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
23
|
Wolff ASB, Kucuka I, Oftedal BE. Autoimmune primary adrenal insufficiency -current diagnostic approaches and future perspectives. Front Endocrinol (Lausanne) 2023; 14:1285901. [PMID: 38027140 PMCID: PMC10667925 DOI: 10.3389/fendo.2023.1285901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The adrenal glands are small endocrine glands located on top of each kidney, producing hormones regulating important functions in our body like metabolism and stress. There are several underlying causes for adrenal insufficiency, where an autoimmune attack by the immune system is the most common cause. A number of genes are known to confer early onset adrenal disease in monogenic inheritance patterns, usually genetic encoding enzymes of adrenal steroidogenesis. Autoimmune primary adrenal insufficiency is usually a polygenic disease where our information recently has increased due to genome association studies. In this review, we go through the physiology of the adrenals before explaining the different reasons for adrenal insufficiency with a particular focus on autoimmune primary adrenal insufficiency. We will give a clinical overview including diagnosis and current treatment, before giving an overview of the genetic causes including monogenetic reasons for adrenal insufficiency and the polygenic background and inheritance pattern in autoimmune adrenal insufficiency. We will then look at the autoimmune mechanisms underlying autoimmune adrenal insufficiency and how autoantibodies are important for diagnosis. We end with a discussion on how to move the field forward emphasizing on the clinical workup, early identification, and potential targeted treatment of autoimmune PAI.
Collapse
Affiliation(s)
- Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Isil Kucuka
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
24
|
Gupta S, Nakabo S, Chu J, Hasni S, Kaplan MJ. Correspondence on 'Clinical course of coronavirus disease 2019 (COVID-19) in a series of 17 patients with systemic lupus erythematosus under long-term treatment with hydroxychloroquine'. Ann Rheum Dis 2023; 82:e215. [PMID: 33452005 PMCID: PMC8280245 DOI: 10.1136/annrheumdis-2020-219648] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Sarthak Gupta
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuichiro Nakabo
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Chu
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Martinez RJ, Hogquist KA. The role of interferon in the thymus. Curr Opin Immunol 2023; 84:102389. [PMID: 37738858 PMCID: PMC10543640 DOI: 10.1016/j.coi.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Interferons (IFNs) are a family of proteins that are generated in response to viral infection and induce an antiviral response in many cell types. The COVID-19 pandemic revealed that patients with inborn errors of type-I IFN immunity were more prone to severe infections, but also found that many patients with severe COVID-19 had anti-IFN autoantibodies that led to acquired defects in type-I IFN immunity. These findings revealed the previously unappreciated finding that central immune tolerance to IFN is essential to immune health. Further evidence has also highlighted the importance of IFN within the thymus and its impact on T-cell development. This review will highlight what is known of IFN's role in T-cell development, T-cell central tolerance, and the impact of IFN on the thymus.
Collapse
Affiliation(s)
- Ryan J Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Gervais A, Rovida F, Avanzini MA, Croce S, Marchal A, Lin SC, Ferrari A, Thorball CW, Constant O, Le Voyer T, Philippot Q, Rosain J, Angelini M, Pérez Lorenzo M, Bizien L, Achille C, Trespidi F, Burdino E, Cassaniti I, Lilleri D, Fornara C, Sammartino JC, Cereda D, Marrocu C, Piralla A, Valsecchi C, Ricagno S, Cogo P, Neth O, Marín-Cruz I, Pacenti M, Sinigaglia A, Trevisan M, Volpe A, Marzollo A, Conti F, Lazzarotto T, Pession A, Viale P, Fellay J, Ghirardello S, Aubart M, Ghisetti V, Aiuti A, Jouanguy E, Bastard P, Percivalle E, Baldanti F, Puel A, MacDonald MR, Rice CM, Rossini G, Murray KO, Simonin Y, Nagy A, Barzon L, Abel L, Diamond MS, Cobat A, Zhang SY, Casanova JL, Borghesi A. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in ∼40% of patients. J Exp Med 2023; 220:e20230661. [PMID: 37347462 PMCID: PMC10287549 DOI: 10.1084/jem.20230661] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Pediatric Hemato-Oncology and Bone Marrow Transplantation, San Matteo Research Hospital, Pavia, Italy
| | - Stefania Croce
- UOSD Cell Factory, San Matteo Research Hospital, Pavia, Italy
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Shih-Ching Lin
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Alessandro Ferrari
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Christian W. Thorball
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Orianne Constant
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cristian Achille
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Elisa Burdino
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Irene Cassaniti
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Daniele Lilleri
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Chiara Fornara
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | | | | | - Chiara Marrocu
- Department of Biomedical Sciences for Health, Postgraduate School of Public Health, University of Milan, Milan, Italy
| | - Antonio Piralla
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Chiara Valsecchi
- Laboratory of Pediatric Hemato-Oncology and Bone Marrow Transplantation, San Matteo Research Hospital, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, San Donato Hospital, Milan, Italy
| | - Paola Cogo
- Department of Medicine (DAME), Division of Pediatrics, University of Udine, Udine, Italy
| | - Olaf Neth
- Inborn Errors of Immunity Laboratory, Biomedicine Institute in Seville (IBiS), University of Seville/CSIC, “Red de Investigación Translacional en Infectología Pediátrica”, Seville, Spain
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville, Spain
| | - Inés Marín-Cruz
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Virgen del Rocío University Hospital, Seville, Spain
| | - Monia Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | | | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Andrea Volpe
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, Padova, Italy
| | - Francesca Conti
- Pediatric Unit, University Hospital of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, University Hospital of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, University Hospital of Bologna, Bologna, Italy
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | | | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Neurology Department, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Valeria Ghisetti
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, ASL Città di Torino, Turin, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris, Paris, France
| | - Elena Percivalle
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Unit, San Matteo Research Hospital, Pavia, Italy
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Kristy O. Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary
| | - Luisa Barzon
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Michael S. Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Alessandro Borghesi
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| |
Collapse
|
27
|
Rotulo GA, Palma P. Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatr Res 2023; 94:434-442. [PMID: 36879079 PMCID: PMC9987407 DOI: 10.1038/s41390-023-02549-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Coronavirus disease 2019 in children presents with milder clinical manifestations than in adults. On the other hand, the presence of a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), in the period after infection suggests a particular susceptibility of some children toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Both protective factors that prevent evolution to severe forms and risk factors for post-infectious conditions are likely to be found in age-related differences in the immune system. The prompt innate response with type I IFN production and the generation of neutralizing antibodies play a crucial role in containing the infection. The greater number of naive and regulatory cells in children helps to avoid the cytokine storm while the causes of the intense inflammatory response in MIS-C need to be elucidated. This review aims to analyze the main results of the recent literature assessing immune response to SARS-CoV-2 over the pediatric age group. We summarized such observations by dividing them into innate and acquired immunity, then reporting how altered immune responses can determine post-infectious conditions. IMPACT: The main immune markers of acute SARS-CoV-2 infection in children are summarized in this review. This paper reports a broad overview of age-related differences in the immune response to SARS-CoV-2 and emerging post-infection conditions. A summary of currently available therapies for the pediatric age group is provided.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", 00185, Rome, Italy.
| |
Collapse
|
28
|
Wolff ASB, Hansen L, Grytaas MA, Oftedal BE, Breivik L, Zhou F, Hufthammer KO, Sjøgren T, Olofsson JS, Trieu MC, Meager A, Jørgensen AP, Lima K, Greve-Isdahl Mohn K, Langeland N, Cox RJ, Husebye ES. Vaccination prevents severe COVID-19 outcome in patients with neutralizing type 1 interferon autoantibodies. iScience 2023; 26:107084. [PMID: 37346050 PMCID: PMC10251722 DOI: 10.1016/j.isci.2023.107084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023] Open
Abstract
A hallmark of patients with autoimmune polyendocrine syndrome type 1 (APS-1) is serological neutralizing autoantibodies against type 1 interferons (IFN-I). The presence of these antibodies has been associated with severe course of COVID-19. The aims of this study were to investigate SARS-CoV-2 vaccine tolerability and immune responses in a large cohort of patients with APS-1 (N = 33) and how these vaccinated patients coped with subsequent infections. We report that adult patients with APS-1 were able to mount adequate SARS-CoV-2 spike-specific antibody responses after vaccination and observed no signs of decreased tolerability. Compared with age- and gender-matched healthy controls, patients with APS-1 had considerably lower peak antibody responses resembling elderly persons, but antibody decline was more rapid in the elderly. We demonstrate that vaccination protected patients with APS-1 from severe illness when infected with SARS-CoV-2 virus, overriding the systemic danger of IFN-I autoantibodies observed in previous studies.
Collapse
Affiliation(s)
- Anette S B Wolff
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Lena Hansen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | | | - Bergithe E Oftedal
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Lars Breivik
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Karl Ove Hufthammer
- Centre for Clinical Research, Haukeland University Hospital, 5021 Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Jan Stefan Olofsson
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Mai Chi Trieu
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Anthony Meager
- Biotherapeutics Group, The National Institute for Biological Standards and Control, South Mimms, Potters Bar EN6 3QG, UK
| | - Anders P Jørgensen
- Department of Endocrinology, Oslo University Hospital, 0372 Oslo, Norway
| | - Kari Lima
- Department of Paediatric Medicine, Oslo University Hospital, 0372 Oslo, Norway
- Department of Endocrinology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kristin Greve-Isdahl Mohn
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Nina Langeland
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Rebecca Jane Cox
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Influenza Centre, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Eystein S Husebye
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| |
Collapse
|
29
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
30
|
Min Q, Csomos K, Li Y, Dong L, Hu Z, Meng X, Yu M, Walter JE, Wang JY. B cell abnormalities and autoantibody production in patients with partial RAG deficiency. Front Immunol 2023; 14:1155380. [PMID: 37475856 PMCID: PMC10354446 DOI: 10.3389/fimmu.2023.1155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.
Collapse
Affiliation(s)
- Qing Min
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
31
|
Chitty Lopez M, Yilmaz M, Diaz-Cabrera NM, Saco T, Ishmael L, Sotoudeh S, Bindernagel C, Ujhazi B, Gordon S, Potts DE, Danziger R, Bosticardo M, Kenney H, Illes P, Lee S, Harris M, Cuellar-Rodriguez J, Patel KN, Csomos K, Dimitrova D, Kanakry JA, Notarangelo LD, Walter JE. Separating the Wheat From the Chaff in Asthma and Bronchiectasis: The Saga Trajectory of a Patient With Adult-Onset RAG1 Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1972-1980. [PMID: 37088379 PMCID: PMC10332246 DOI: 10.1016/j.jaip.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Maria Chitty Lopez
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Natalie M Diaz-Cabrera
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Tara Saco
- Windom Allergy, Asthma and Sinus, Sarasota, Fla
| | - Leah Ishmael
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Shannon Sotoudeh
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | | | - Boglarka Ujhazi
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Sumai Gordon
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - David Evan Potts
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Peter Illes
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Sena Lee
- Riverchase Dermatology and Cosmetic Surgery, Suncity Center, Fla
| | - Megan Harris
- Infectious Disease Associates of Tampa Bay, Tampa, Fla
| | - Jennifer Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Kapil N Patel
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Dimana Dimitrova
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla; Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
32
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
33
|
Sun S, Wijanarko K, Liani O, Strumila K, Ng ES, Elefanty AG, Stanley EG. Lymphoid cell development from fetal hematopoietic progenitors and human pluripotent stem cells. Immunol Rev 2023; 315:154-170. [PMID: 36939073 PMCID: PMC10952469 DOI: 10.1111/imr.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Lymphoid cells encompass the adaptive immune system, including T and B cells and Natural killer T cells (NKT), and innate immune cells (ILCs), including Natural Killer (NK) cells. During adult life, these lineages are thought to derive from the differentiation of long-term hematopoietic stem cells (HSCs) residing in the bone marrow. However, during embryogenesis and fetal development, the ontogeny of lymphoid cells is both complex and multifaceted, with a large body of evidence suggesting that lymphoid lineages arise from progenitor cell populations antedating the emergence of HSCs. Recently, the application of single cell RNA-sequencing technologies and pluripotent stem cell-based developmental models has provided new insights into lymphoid ontogeny during embryogenesis. Indeed, PSC differentiation platforms have enabled de novo generation of lymphoid immune cells independently of HSCs, supporting conclusions drawn from the study of hematopoiesis in vivo. Here, we examine lymphoid development from non-HSC progenitor cells and technological advances in the differentiation of human lymphoid cells from pluripotent stem cells for clinical translation.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kevin Wijanarko
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Oniko Liani
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Kathleen Strumila
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Elizabeth S. Ng
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Andrew G. Elefanty
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Edouard G. Stanley
- Murdoch Children's Research InstituteThe Royal Children's HospitalParkvilleVictoriaAustralia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
34
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
35
|
Bucciol G, Meyts I. Inherited and acquired errors of type I interferon immunity govern susceptibility to COVID-19 and multisystem inflammatory syndrome in children. J Allergy Clin Immunol 2023; 151:832-840. [PMID: 36841740 PMCID: PMC9951110 DOI: 10.1016/j.jaci.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019 (COVID-19) pandemic, global sequencing efforts have led in the field of inborn errors of immunity, and inspired particularly by previous research on life-threatening influenza, they have revealed that known and novel inborn errors affecting type I interferon immunity underlie critical COVID-19 in up to 5% of cases. In addition, neutralizing autoantibodies against type I interferons have been identified in up to 20% of patients with critical COVID-19 who are older than 80 years and 20% of fatal cases, with a higher prevalence in men and individuals older than 70 years. Also, inborn errors impairing regulation of type I interferon responses and RNA degradation have been found as causes of multisystem inflammatory syndrome in children, a life-threatening hyperinflammatory condition complicating otherwise mild initial SARS-CoV-2 infection in children and young adults. Better understanding of these immunologic mechanisms can aid in designing treatments for severe COVID-19, multisystem inflammatory syndrome in children, long COVID, and neuro-COVID.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, Leuven, Belgium; Childhood Immunology, Department of Pediatrics, Leuven University Hospitals, Leuven, Belgium.
| |
Collapse
|
36
|
Alotaibi F, Alharbi NK, Rosen LB, Asiri AY, Assiri AM, Balkhy HH, Al Jeraisy M, Mandourah Y, AlJohani S, Al Harbi S, Jokhdar HAA, Deeb AM, Memish ZA, Jose J, Ghazal S, Al Faraj S, Al Mekhlafi GA, Sherbeeni NM, Elzein FE, AlMutairi BM, Al‐Dawood A, Abdullah ML, Barhoumi T, Alenazi MW, Almasood A, Holland SM, Arabi YM. Type I interferon autoantibodies in hospitalized patients with Middle East respiratory syndrome and association with outcomes and treatment effect of interferon beta-1b in MIRACLE clinical trial. Influenza Other Respir Viruses 2023; 17:e13116. [PMID: 36960162 PMCID: PMC10028524 DOI: 10.1111/irv.13116] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
Background Type I interferons (IFNs) are essential antiviral cytokines induced upon respiratory exposure to coronaviruses. Defects in type I IFN signaling can result in severe disease upon exposure to respiratory viral infection and are associated with worse clinical outcomes. Neutralizing autoantibodies (auto-Abs) to type I IFNs were reported as a risk factor for life-threatening COVID-19, but their presence has not been evaluated in patients with severe Middle East respiratory syndrome (MERS). Methods We evaluated the prevalence of type I IFN auto-Abs in a cohort of hospitalized patients with MERS who were enrolled in a placebo-controlled clinical trial for treatment with IFN-β1b and lopinavir-ritonavir (MIRACLE trial). Samples were tested for type I IFN auto-Abs using a multiplex particle-based assay. Results Among the 62 enrolled patients, 15 (24.2%) were positive for immunoglobulin G auto-Abs for at least one subtype of type I IFNs. Auto-Abs positive patients were not different from auto-Abs negative patients in age, sex, or comorbidities. However, the majority (93.3%) of patients who were auto-Abs positive were critically ill and admitted to the ICU at the time of enrollment compared to 66% in the auto-Abs negative patients. The effect of treatment with IFN-β1b and lopinavir-ritonavir did not significantly differ between the two groups. Conclusion This study demonstrates the presence of type I IFN auto-Abs in hospitalized patients with MERS.
Collapse
Affiliation(s)
- Faizah Alotaibi
- College of Science and Health ProfessionsKing Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Naif Khalaf Alharbi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural ResearchNational Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)MDBethesdaUSA
| | - Ayed Y. Asiri
- Prince Mohammed bin Abdulaziz HospitalRiyadhSaudi Arabia
| | | | - Hanan H. Balkhy
- Antimicrobial Resistance DivisionWorld Health OrganizationGenevaSwitzerland
| | - Majed Al Jeraisy
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | | | - Sameera AlJohani
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
- Department of Pathology and Laboratory MedicineKing Abdulaziz Medical City, Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Shmeylan Al Harbi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
- Pharmaceutical Care DepartmentKing Abdulaziz Medical City, Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | | | - Ahmad M. Deeb
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Ziad A. Memish
- Prince Mohammed bin Abdulaziz Hospital, Ministry of Health, College of MedicineAlfaisal University, Riyadh, Kingdom of Saudi Arabia, Hubert Department of Global Health, Rollins School of Public Health, Emory UniversityGeorgiaAtlantaUSA
| | - Jesna Jose
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Sameeh Ghazal
- Prince Mohammed bin Abdulaziz HospitalRiyadhSaudi Arabia
| | | | | | | | | | - Badriah M. AlMutairi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Abdulaziz Al‐Dawood
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
- Intensive Care DepartmentKing Abdulaziz Medical City, Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Mashan L. Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research CenterKing Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
| | - Tlili Barhoumi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Mohammed W. Alenazi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Abdulrahman Almasood
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural ResearchNational Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)MDBethesdaUSA
| | - Yaseen M. Arabi
- King Saud bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research CenterRiyadhSaudi Arabia
- Intensive Care DepartmentKing Abdulaziz Medical City, Ministry of National Guard Health AffairsRiyadhSaudi Arabia
| | | |
Collapse
|
37
|
Schuetz C, Gerke J, Ege M, Walter J, Kusters M, Worth A, Kanakry JA, Dimitrova D, Wolska-Kuśnierz B, Chen K, Unal E, Karakukcu M, Pashchenko O, Leiding J, Kawai T, Amrolia PJ, Berghuis D, Buechner J, Buchbinder D, Cowan MJ, Gennery AR, Güngör T, Heimall J, Miano M, Meyts I, Morris EC, Rivière J, Sharapova SO, Shaw PJ, Slatter M, Honig M, Veys P, Fischer A, Cavazzana M, Moshous D, Schulz A, Albert MH, Puck JM, Lankester AC, Notarangelo LD, Neven B. Hypomorphic RAG deficiency: impact of disease burden on survival and thymic recovery argues for early diagnosis and HSCT. Blood 2023; 141:713-724. [PMID: 36279417 PMCID: PMC10082356 DOI: 10.1182/blood.2022017667] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with hypomorphic mutations in the RAG1 or RAG2 gene present with either Omenn syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT, 78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18% had granulomas pretransplant. These complications are frequently associated with organ damage. Eight individuals (13%) were diagnosed by newborn screening or family history. HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) from matched unrelated donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and 30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection was the main cause of death. In univariable analysis, active infection, organ damage pre-HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were predictive of worse outcome, whereas organ damage and T-cell depletion remained significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and 22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly recovery of naïve CD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without organ damage. These findings support the indication for early transplantation.
Collapse
Affiliation(s)
- C. Schuetz
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J. Gerke
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M. Ege
- Dr. von Hauner Children’s Hospital at Ludwig-Maximilians-Universität, München, Germany
- Helmholtz Zentrum München, Neuherberg, Germany
| | - J. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - M. Kusters
- Department of Immunology and Gene therapy, Great Ormond Street Hospital, NHS Foundation trust, London, United Kingdom
| | - A. Worth
- Department of Immunology and Gene therapy, Great Ormond Street Hospital, NHS Foundation trust, London, United Kingdom
| | - J. A. Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - D. Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - B. Wolska-Kuśnierz
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - K. Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
| | - E. Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - M. Karakukcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - O. Pashchenko
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - J. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Orlando Health Arnold Pamer Hospital for Children, Orlando, FL
| | - T. Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - P. J. Amrolia
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - D. Berghuis
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - D. Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, CA
| | - M. J. Cowan
- Division of Allergy, Immunology, and Blood and Marrow Transplant, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - A. R. Gennery
- Translational and Clinical Research Institute, Newcastle University, Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - T. Güngör
- Department of Hematology/Oncology/Immunology, Gene-therapy, and Stem Cell Transplantation, University Children’s Hospital Zurich–Eleonore Foundation & Children’s Research Center, Zürich, Switzerland
| | - J. Heimall
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - M. Miano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - I. Meyts
- Department of Pediatrics, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - E. C. Morris
- UCL Institute of Immunity & Transplantation, University College London Hospitals NHS Foundation Trust, Royal Free London Hospital NHS Foundation Trust, London, United Kingdom
| | - J. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S. O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - P. J. Shaw
- Blood Transplant and Cell Therapies, Children’s Hospital at Westmead, Sydney, Australia
| | - M. Slatter
- Paediatric Immunology & HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - M. Honig
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - P. Veys
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - A. Fischer
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Collège de France, Paris, France
| | - M. Cavazzana
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Département de Biothérapie, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique–Hopitaux de Paris, Paris, France
- Centre d’Investigation Clinique Biothérapie, Groupe hospitalier Universitaire paris centre, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - D. Moshous
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - A. Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - M. H. Albert
- Pediatric SCT Program, Dr. von Hauner University Children’s Hospital, Ludwig-Maximilians Universität, München, Germany
| | - J. M. Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplant, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - A. C. Lankester
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - L. D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - B. Neven
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
| | - Inborn Errors Working Party (IEWP) of the European Society for Immunodeficiencies (ESID) and European Society for Blood and Marrow Transplantation (EBMT) and the Primary Immune Deficiency Treatment Consortium (PIDTC)
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Dr. von Hauner Children’s Hospital at Ludwig-Maximilians-Universität, München, Germany
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Department of Immunology and Gene therapy, Great Ormond Street Hospital, NHS Foundation trust, London, United Kingdom
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow, Russia
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Orlando Health Arnold Pamer Hospital for Children, Orlando, FL
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
- Division of Hematology, Children's Hospital of Orange County, Orange, CA
- Division of Allergy, Immunology, and Blood and Marrow Transplant, Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Translational and Clinical Research Institute, Newcastle University, Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Department of Hematology/Oncology/Immunology, Gene-therapy, and Stem Cell Transplantation, University Children’s Hospital Zurich–Eleonore Foundation & Children’s Research Center, Zürich, Switzerland
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Pediatrics, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
- UCL Institute of Immunity & Transplantation, University College London Hospitals NHS Foundation Trust, Royal Free London Hospital NHS Foundation Trust, London, United Kingdom
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
- Blood Transplant and Cell Therapies, Children’s Hospital at Westmead, Sydney, Australia
- Paediatric Immunology & HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Collège de France, Paris, France
- Département de Biothérapie, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique–Hopitaux de Paris, Paris, France
- Centre d’Investigation Clinique Biothérapie, Groupe hospitalier Universitaire paris centre, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Pediatric SCT Program, Dr. von Hauner University Children’s Hospital, Ludwig-Maximilians Universität, München, Germany
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
38
|
Feng A, Yang EY, Moore AR, Dhingra S, Chang SE, Yin X, Pi R, Mack EK, Völkel S, Geßner R, Gündisch M, Neubauer A, Renz H, Tsiodras S, Fragkou PC, Asuni AA, Levitt JE, Wilson JG, Leong M, Lumb JH, Mao R, Pinedo K, Roque J, Richards CM, Stabile M, Swaminathan G, Salagianni ML, Triantafyllia V, Bertrams W, Blish CA, Carette JE, Frankovich J, Meffre E, Nadeau KC, Singh U, Wang TT, Luning Prak ET, Herold S, Andreakos E, Schmeck B, Skevaki C, Rogers AJ, Utz PJ. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight 2023; 8:e163150. [PMID: 36752204 PMCID: PMC9977421 DOI: 10.1172/jci.insight.163150] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/14/2022] [Indexed: 02/09/2023] Open
Abstract
The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.
Collapse
Affiliation(s)
- Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Emily Y. Yang
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Andrew Reese Moore
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Shaurya Dhingra
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Sarah Esther Chang
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Xihui Yin
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Ruoxi Pi
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Elisabeth K.M. Mack
- Department of Hematology, Oncology, Immunology, Philipps University Marburg, Marburg, Germany
| | - Sara Völkel
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Reinhard Geßner
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Margrit Gündisch
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology, Immunology, Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Paraskevi C. Fragkou
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Adijat A. Asuni
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Joseph E. Levitt
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | | | - Michelle Leong
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer H. Lumb
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Rong Mao
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Kassandra Pinedo
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Jonasel Roque
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Christopher M. Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Mikayla Stabile
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
| | - Gayathri Swaminathan
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| | - Maria L. Salagianni
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Wilhelm Bertrams
- Institute for Lung Research, UGMLC, Philipps University Marburg, Marburg, Germany
| | - Catherine A. Blish
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer Frankovich
- Department of Pediatrics, Division of Allergy, Immunology, Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Kari Christine Nadeau
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Upinder Singh
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Taia T. Wang
- Institute for Immunity, Transplantation and Infection
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine and
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susanne Herold
- Department of Internal Medicine V, Infectious Diseases and Infection Control, UKGM, Justus Liebig University, and Institute for Lung Health (ILH), Giessen, Germany
- DZL and UGMLC, Giessen, Germany
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Bernd Schmeck
- Institute for Lung Research, UGMLC, Philipps University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Marburg, Germany
- DZL, German Center for Infection Research (DZIF), Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Angela J. Rogers
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology
- Institute for Immunity, Transplantation and Infection
| |
Collapse
|
39
|
Casanova JL, Anderson MS. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. J Clin Invest 2023; 133:e166283. [PMID: 36719370 PMCID: PMC9888384 DOI: 10.1172/jci166283] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Since 2003, rare inborn errors of human type I IFN immunity have been discovered, each underlying a few severe viral illnesses. Autoantibodies neutralizing type I IFNs due to rare inborn errors of autoimmune regulator (AIRE)-driven T cell tolerance were discovered in 2006, but not initially linked to any viral disease. These two lines of clinical investigation converged in 2020, with the discovery that inherited and/or autoimmune deficiencies of type I IFN immunity accounted for approximately 15%-20% of cases of critical COVID-19 pneumonia in unvaccinated individuals. Thus, insufficient type I IFN immunity at the onset of SARS-CoV-2 infection may be a general determinant of life-threatening COVID-19. These findings illustrate the unpredictable, but considerable, contribution of the study of rare human genetic diseases to basic biology and public health.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | - Mark S. Anderson
- Diabetes Center and
- Department of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
40
|
Wimmers F, Burrell AR, Feng Y, Zheng H, Arunachalam PS, Hu M, Spranger S, Nyhoff L, Joshi D, Trisal M, Awasthi M, Bellusci L, Ashraf U, Kowli S, Konvinse KC, Yang E, Blanco M, Pellegrini K, Tharp G, Hagan T, Chinthrajah RS, Grifoni A, Sette A, Nadeau KC, Haslam DB, Bosinger SE, Wrammert J, Maecker HT, Utz PJ, Wang TT, Khurana S, Khatri P, Staat MA, Pulendran B. Systems biological assessment of the temporal dynamics of immunity to a viral infection in the first weeks and months of life. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285133. [PMID: 36778389 PMCID: PMC9915811 DOI: 10.1101/2023.01.28.23285133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life.
Collapse
Affiliation(s)
- Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tuebingen, Tuebingen, Germany
- DFG Cluster of Excellence 2180 ‘Image-guided and Functional Instructed Tumor Therapy’ (iFIT), University of Tuebingen, Tuebingen, Germany
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Allison R. Burrell
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, Division of Epidemiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Hong Zheng
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Sara Spranger
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lindsay Nyhoff
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Devyani Joshi
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Meera Trisal
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Mayanka Awasthi
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Usama Ashraf
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| | - Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katherine C. Konvinse
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Emily Yang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Blanco
- Stanford Genomics Service Center, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gregory Tharp
- Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Thomas Hagan
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R. Sharon Chinthrajah
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kari C. Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94305, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul J. Utz
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taia T. Wang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Mary A. Staat
- Department of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
41
|
Shaw ER, Matzinger P. Transient autoantibodies to danger signals. Front Immunol 2023; 14:1046300. [PMID: 36742299 PMCID: PMC9889632 DOI: 10.3389/fimmu.2023.1046300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The Danger Model predicts that there are some molecules that no immune system can ever be fully tolerant of, namely proteins that are only transiently expressed during times of stress, infection, or injury. Among these are the danger/alarm signals themselves. Accordingly, a fleeting autoantibody response to danger signals is expected during times when they are released. Depending on context, these autoantibodies may serve beneficial "housekeeping" functions by removing surplus danger signals from the circulation or, conversely, create an immunodeficiency. Here, we will focus on the Type 1 Interferons as examples of foreseeable targets for a transient autoantibody response, but the principles outlined should hold for other danger-associated molecules as well.
Collapse
Affiliation(s)
- Elana R. Shaw
- Medical Scientist Training Program, School of Medicine, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Elana R. Shaw,
| | - Polly Matzinger
- Ghost Lab, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Blazso P, Csomos K, Tipton CM, Ujhazi B, Walter JE. Lineage Reconstruction of In Vitro Identified Antigen-Specific Autoreactive B Cells from Adaptive Immune Receptor Repertoires. Int J Mol Sci 2022; 24:ijms24010225. [PMID: 36613668 PMCID: PMC9820449 DOI: 10.3390/ijms24010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The emergence, survival, growth and maintenance of autoreactive (AR) B-cell clones, the hallmark of humoral autoimmunity, leave their footprints in B-cell receptor repertoires. Collecting IgH sequences related to polyreactive (PR) ones from adaptive immune receptor repertoire (AIRR) datasets make the reconstruction and analysis of PR/AR B-cell lineages possible. We developed a computational approach, named ImmChainTracer, to extract members and to visualize clonal relationships of such B-cell lineages. Our approach was successfully applied on the IgH repertoires of patients suffering from monogenic hypomorphic RAG1 and 2 deficiency (pRD) or polygenic systemic lupus erythematosus (SLE) autoimmune diseases to identify relatives of AR IgH sequences and to track their fate in AIRRs. Signs of clonal expansion, affinity maturation and class-switching events in PR/AR and non-PR/AR B-cell lineages were revealed. An extension of our method towards B-cell expansion caused by any trigger (e.g., infection, vaccination or antibody development) may provide deeper insight into antigen specific B-lymphogenesis.
Collapse
Affiliation(s)
- Peter Blazso
- Department of Pediatrics, University of Szeged, 6720 Szeged, Hungary
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
- Correspondence: (P.B.); (J.E.W.)
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA 30322, USA
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA 02114, USA
- Correspondence: (P.B.); (J.E.W.)
| |
Collapse
|
43
|
Sjøgren T, Bratland E, Røyrvik EC, Grytaas MA, Benneche A, Knappskog PM, Kämpe O, Oftedal BE, Husebye ES, Wolff ASB. Screening patients with autoimmune endocrine disorders for cytokine autoantibodies reveals monogenic immune deficiencies. J Autoimmun 2022; 133:102917. [PMID: 36191466 DOI: 10.1016/j.jaut.2022.102917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autoantibodies against type I interferons (IFN) alpha (α) and omega (ω), and interleukins (IL) 17 and 22 are a hallmark of autoimmune polyendocrine syndrome type 1 (APS-1), caused by mutations in the autoimmune regulator (AIRE) gene. Such antibodies are also seen in a number of monogenic immunodeficiencies. OBJECTIVES To determine whether screening for cytokine autoantibodies (anti-IFN-ω and anti-IL22) can be used to identify patients with monogenic immune disorders. METHODS A novel ELISA assay was employed to measure IL22 autoantibodies in 675 patients with autoimmune primary adrenal insufficiency (PAI) and a radio immune assay (RIA) was used to measure autoantibodies against IFN-ω in 1778 patients with a variety of endocrine diseases, mostly of autoimmune aetiology. Positive cases were sequenced for all coding exons of the AIRE gene. If no AIRE mutations were found, we applied next generation sequencing (NGS) to search for mutations in immune related genes. RESULTS We identified 29 patients with autoantibodies against IFN-ω and/or IL22. Of these, four new APS-1 cases with disease-causing variants in AIRE were found. In addition, we identified two patients with pathogenic heterozygous variants in CTLA4 and NFKB2, respectively. Nine rare variants in other immune genes were identified in six patients, although further studies are needed to determine their disease-causing potential. CONCLUSION Screening of cytokine autoantibodies can efficiently identify patients with previously unknown monogenic and possible oligogenic causes of autoimmune and immune deficiency diseases. This information is crucial for providing personalised treatment and follow-up of patients and their relatives.
Collapse
Affiliation(s)
- Thea Sjøgren
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Marianne Aa Grytaas
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Olle Kämpe
- KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| |
Collapse
|
44
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
45
|
Zhang Q, Pizzorno A, Miorin L, Bastard P, Gervais A, Le Voyer T, Bizien L, Manry J, Rosain J, Philippot Q, Goavec K, Padey B, Cupic A, Laurent E, Saker K, Vanker M, Särekannu K, García-Salum T, Ferres M, Le Corre N, Sánchez-Céspedes J, Balsera-Manzanero M, Carratala J, Retamar-Gentil P, Abelenda-Alonso G, Valiente A, Tiberghien P, Zins M, Debette S, Meyts I, Haerynck F, Castagnoli R, Notarangelo LD, Gonzalez-Granado LI, Dominguez-Pinilla N, Andreakos E, Triantafyllia V, Rodríguez-Gallego C, Solé-Violán J, Ruiz-Hernandez JJ, Rodríguez de Castro F, Ferreres J, Briones M, Wauters J, Vanderbeke L, Feys S, Kuo CY, Lei WT, Ku CL, Tal G, Etzioni A, Hanna S, Fournet T, Casalegno JS, Queromes G, Argaud L, Javouhey E, Rosa-Calatrava M, Cordero E, Aydillo T, Medina RA, Kisand K, Puel A, Jouanguy E, Abel L, Cobat A, Trouillet-Assant S, García-Sastre A, Casanova JL. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J Exp Med 2022; 219:e20220514. [PMID: 36112363 PMCID: PMC9485705 DOI: 10.1084/jem.20220514] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Lisa Miorin
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Kelian Goavec
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Signia Therapeutics SAS, Lyon, France
| | - Anastasija Cupic
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Kahina Saker
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Martti Vanker
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara García-Salum
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pathology Advanced Translational Research Unit, Dept. of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA
| | - Marcela Ferres
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Sánchez-Céspedes
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - María Balsera-Manzanero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - Jordi Carratala
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Pilar Retamar-Gentil
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Gabriela Abelenda-Alonso
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Dept. of Infectious Diseases, Bellvitge University Hospital, Barcelona, Spain
| | - Adoración Valiente
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Pierre Tiberghien
- Etablissement Francais Du Sang, La Plaine-Saint Denis, Saint-Denis, France
| | - Marie Zins
- University of Paris Cite, University of Paris-Saclay, UVSQ, INSERM UMS11, Villejuif, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent, PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital October 12, Research Institute Hospital October 12, School of Medicine, Complutense University, Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Pediatrics Service, Hematology and Oncology Unit, University Hospital 12 October, Madrid, Spain
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Carlos Rodríguez-Gallego
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Critical Care Unit, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Juan Ruiz-Hernandez
- Dept. of Internal Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Ferreres
- Critical Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Marisa Briones
- Dept. of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Joost Wauters
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Dept. of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Amos Etzioni
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Suhair Hanna
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Thomas Fournet
- Etablissement Français Du Sang, Université de Franche-Comté, Besançon, France
| | - Jean-Sebastien Casalegno
- Virology Laboratory, CNR des Virus des Infections Respiratoires, Institut des Agents Infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Gregory Queromes
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Laurent Argaud
- Medical Intensive Care Dept., Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Elisa Cordero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Dept. of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Aydillo
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rafael A. Medina
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Sophie Trouillet-Assant
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Adolfo García-Sastre
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
46
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
47
|
van der Made CI, Netea MG, van der Veerdonk FL, Hoischen A. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Med 2022; 14:96. [PMID: 35986347 PMCID: PMC9390103 DOI: 10.1186/s13073-022-01100-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/03/2022] [Indexed: 01/08/2023] Open
Abstract
Since the start of the coronavirus disease 2019 (COVID-19) pandemic, important insights have been gained into virus biology and the host factors that modulate the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 displays a highly variable clinical picture that ranges from asymptomatic disease to lethal pneumonia. Apart from well-established general risk factors such as advanced age, male sex and chronic comorbidities, differences in host genetics have been shown to influence the individual predisposition to develop severe manifestations of COVID-19. These differences range from common susceptibility loci to rare genetic variants with strongly predisposing effects, or proven pathogenic variants that lead to known or novel inborn errors of immunity (IEI), which constitute a growing group of heterogeneous Mendelian disorders with increased susceptibility to infectious disease, auto-inflammation, auto-immunity, allergy or malignancies. The current genetic findings point towards a convergence of common and rare genetic variants that impact the interferon signalling pathways in patients with severe or critical COVID-19. Monogenic risk factors that impact IFN-I signalling have an expected prevalence between 1 and 5% in young, previously healthy individuals (<60 years of age) with critical COVID-19. The identification of these IEI such as X-linked TLR7 deficiency indicates a possibility for targeted genetic screening and personalized clinical management. This review aims to provide an overview of our current understanding of the host genetic factors that predispose to severe manifestations of COVID-19 and focuses on rare variants in IFN-I signalling genes and their potential clinical implications.
Collapse
Affiliation(s)
- Caspar I van der Made
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Frank L van der Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
48
|
Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell 2022; 185:3086-3103. [PMID: 35985287 PMCID: PMC9386946 DOI: 10.1016/j.cell.2022.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022]
Abstract
The immense interindividual clinical variability during any infection is a long-standing enigma. Inborn errors of IFN-γ and IFN-α/β immunity underlying rare infections with weakly virulent mycobacteria and seasonal influenza virus have inspired studies of two common infections: tuberculosis and COVID-19. A TYK2 genotype impairing IFN-γ production accounts for about 1% of tuberculosis cases, and autoantibodies neutralizing IFN-α/β account for about 15% of critical COVID-19 cases. The discovery of inborn errors and mechanisms underlying rare infections drove the identification of common monogenic or autoimmune determinants of related common infections. This "rare-to-common" genetic and mechanistic approach to infectious diseases may be of heuristic value.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
49
|
Mathian A, Breillat P, Dorgham K, Bastard P, Charre C, Lhote R, Quentric P, Moyon Q, Mariaggi AA, Mouries-Martin S, Mellot C, Anna F, Haroche J, Cohen-Aubart F, Sterlin D, Zahr N, Gervais A, Le Voyer T, Bizien L, Amiot Q, Pha M, Hié M, Chasset F, Yssel H, Miyara M, Charneau P, Ghillani-Dalbin P, Casanova JL, Rozenberg F, Amoura Z, Gorochov G. Lower disease activity but higher risk of severe COVID-19 and herpes zoster in patients with systemic lupus erythematosus with pre-existing autoantibodies neutralising IFN-α. Ann Rheum Dis 2022; 81:1695-1703. [PMID: 35973806 DOI: 10.1136/ard-2022-222549] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Type-I interferons (IFNs-I) have potent antiviral effects. IFNs-I are also overproduced in patients with systemic lupus erythematosus (SLE). Autoantibodies (AAbs) neutralising IFN-α, IFN-β and/or IFN-ω subtypes are strong determinants of hypoxemic COVID-19 pneumonia, but their impact on inflammation remains unknown. METHODS We retrospectively analysed a monocentric longitudinal cohort of 609 patients with SLE. Serum AAbs against IFN-α were quantified by ELISA and functionally assessed by abolishment of Madin-Darby bovine kidney cell protection by IFN-α2 against vesicular stomatitis virus challenge. Serum-neutralising activity against IFN-α2, IFN-β and IFN-ω was also determined with a reporter luciferase activity assay. SARS-CoV-2 antibody responses were measured against wild-type spike antigen, while serum-neutralising activity was assessed against the SARS-CoV-2 historical strain and variants of concerns. RESULTS Neutralising and non-neutralising anti-IFN-α antibodies are present at a frequency of 3.3% and 8.4%, respectively, in individuals with SLE. AAbs neutralising IFN-α, unlike non-neutralising AAbs, are associated with reduced IFN-α serum levels and a reduced likelihood to develop active disease. However, they predispose patients to an increased risk of herpes zoster and severe COVID-19 pneumonia. Severe COVID-19 pneumonia in patients with SLE is mostly associated with combined neutralisation of different IFNs-I. Finally, anti-IFN-α AAbs do not interfere with COVID-19 vaccine humoral immunogenicity. CONCLUSION The production of non-neutralising and neutralising anti-IFN-I antibodies in SLE is likely to be a consequence of SLE-associated high IFN-I serum levels, with a beneficial effect on disease activity, yet a greater viral risk. This finding reinforces the recommendations for vaccination against SARS-CoV-2 in SLE.
Collapse
Affiliation(s)
- Alexis Mathian
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Institut E3M, Paris, France.,Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Paul Breillat
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Karim Dorgham
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris Cité, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Caroline Charre
- Université de Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France.,INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Raphael Lhote
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Paul Quentric
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Quentin Moyon
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Paris, France
| | - Alice-Andrée Mariaggi
- Université de Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France.,INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Suzanne Mouries-Martin
- Centre Hospitalier Universitaire de Dijon, Hôpital François-Mitterrand, service de médecine interne et maladies systémiques (médecine interne 2), Dijon, France
| | - Clara Mellot
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - François Anna
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Paris, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Paris, France
| | - Fleur Cohen-Aubart
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Paris, France
| | - Delphine Sterlin
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,Département d'Immunologie, AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Noël Zahr
- Service de Pharmacologie, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris Cité, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
| | - Quentin Amiot
- Département d'Immunologie, AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Micheline Pha
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Miguel Hié
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Institut E3M, Paris, France
| | - Francois Chasset
- Sorbonne Université, Service de dermatologie et allergologie, hôpital Tenon, AP-HP, Paris, France
| | - Hans Yssel
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,Département d'Immunologie, AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Paris, France
| | | | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris Cité, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Flore Rozenberg
- Université de Paris Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupement Hospitalier Pitié-Salpêtrière, Centre de Référence pour le Lupus, le Syndrome des anti-phospholipides et autres maladies auto-immunes rares, Service de Médecine Interne 2, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France .,Département d'Immunologie, AP-HP, Groupement Hospitalier Pitié-Salpêtrière, Paris, France
| |
Collapse
|
50
|
Shaw ER, Rosen LB, Ding L, Holland SM, Su HC. Detection of Neutralizing Anti-Type 1 Interferon Autoantibodies. Curr Protoc 2022; 2:e511. [PMID: 35976040 PMCID: PMC9389601 DOI: 10.1002/cpz1.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autoantibodies (autoAbs) that neutralize type 1 interferons (T1IFNs) are a major risk factor associated with developing critical COVID-19 disease and are most commonly found in individuals over age 70 and in patients with genetic or acquired thymic defects. Swift identification of autoAb-positive individuals may allow targeted interventions to prevent critical COVID-19 disease. Herein, we provide a workflow and protocols aimed at rapidly identifying individuals who are autoAb positive from a large cohort. Basic Protocol 1 describes a multiplex particle-based assay to screen large cohorts of individuals for binding levels of anti-T1IFN autoAbs, and Basic Protocol 2 describes a functional assay to test if autoAbs in patient plasma can block T1IFN-induced JAK/STAT signaling. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Multiplex particle-based bead assay to screen for binding levels of anti-type 1 interferon autoantibodies Alternate Protocol: Multiplex particle-based bead assay to screen for binding levels of anti-type 1 interferon immunoglobulin subtypes and isotypes Support Protocol: Coupling type 1 interferons (IFN-α, IFN-β, and IFN-ω) to magnetic beads Basic Protocol 2: pSTAT1 functional assay to test for neutralization activity of anti-type 1 interferon autoantibodies.
Collapse
Affiliation(s)
- Elana R. Shaw
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Lindsey B. Rosen
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Li Ding
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Steven M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Helen C. Su
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| |
Collapse
|