1
|
Ye J, Duan C, Han J, Chen J, Sun N, Li Y, Yuan T, Peng D. Peripheral mitochondrial DNA as a neuroinflammatory biomarker for major depressive disorder. Neural Regen Res 2025; 20:1541-1554. [PMID: 38934398 DOI: 10.4103/nrr.nrr-d-23-01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
In the pathogenesis of major depressive disorder, chronic stress-related neuroinflammation hinders favorable prognosis and antidepressant response. Mitochondrial DNA may be an inflammatory trigger, after its release from stress-induced dysfunctional central nervous system mitochondria into peripheral circulation. This evidence supports the potential use of peripheral mitochondrial DNA as a neuroinflammatory biomarker for the diagnosis and treatment of major depressive disorder. Herein, we critically review the neuroinflammation theory in major depressive disorder, providing compelling evidence that mitochondrial DNA release acts as a critical biological substrate, and that it constitutes the neuroinflammatory disease pathway. After its release, mitochondrial DNA can be carried in the exosomes and transported to extracellular spaces in the central nervous system and peripheral circulation. Detectable exosomes render encaged mitochondrial DNA relatively stable. This mitochondrial DNA in peripheral circulation can thus be directly detected in clinical practice. These characteristics illustrate the potential for mitochondrial DNA to serve as an innovative clinical biomarker and molecular treatment target for major depressive disorder. This review also highlights the future potential value of clinical applications combining mitochondrial DNA with a panel of other biomarkers, to improve diagnostic precision in major depressive disorder.
Collapse
Affiliation(s)
- Jinmei Ye
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Duan
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxin Han
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinrong Chen
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Daihui Peng
- Division of Mood Disorder, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Yang M, Tian S, Han X, Xu L, You J, Wu M, Cao Y, Jiang Y, Zheng Z, Liu J, Meng F, Li C, Wang X. Interleukin-11Rα2 in the hypothalamic arcuate nucleus affects depression-related behaviors and the AKT-BDNF pathway. Gene 2025; 933:148966. [PMID: 39341516 DOI: 10.1016/j.gene.2024.148966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Depression is a widespread emotional disorder with complex pathogenesis. An essential function of the hypothalamus is to regulate emotional disorders. However, further investigation is required to identify the pathogenic genes and molecular mechanisms that contribute to the onset of depression within the hypothalamus. Through RNA-sequencing analysis, this study identified the upregulated expression of interleukin-11 receptor alpha 2 (IL-11Rα2) in the hypothalamus of mice with chronic unpredictable stress (CUS)-induced depression. This substantial increase in IL-11Rα2, not IL-11Rα1 expression levels in the hypothalamus under the influence of CUS was found to be associated with depression-related behaviors. We further showed that IL-11Rα2 is expressed in the arcuate nucleus (ARC) proopiomelanocortin (POMC) neurons of the hypothalamus. Male and female mice exhibited behaviors association with depression, when IL-11Rα2 or its ligand IL-11 was overexpressed in the ARC POMC neurons through the action of an adeno-associated virus. In addition, reductions in the expression levels of proteins involved in the protein kinase B signaling pathways and brain-derived neurotrophic factor were observed upon overexpression of IL-11Rα2 in the hypothalamic ARC. This study emphasizes the importance of IL-11Rα2 in the hypothalamus ARC in the development of depression, and presents it as a potential novel target for depression treatment.
Collapse
Affiliation(s)
- Mengyu Yang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shulei Tian
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaofeng Han
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingjing You
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Wu
- Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yifan Cao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yuting Jiang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ziteng Zheng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xuezhen Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
3
|
Li P, Zhao J, Wei X, Luo L, Chu Y, Zhang T, Zhu A, Yan J. Acupuncture may play a key role in anti-depression through various mechanisms in depression. Chin Med 2024; 19:135. [PMID: 39367470 PMCID: PMC11451062 DOI: 10.1186/s13020-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024] Open
Abstract
Depression has emerged as a significant global health concern, exerting a profound impact on individuals, as evidenced by its high prevalence and associated suicide rates. Considering its pervasive nature, the absence of optimal treatment modalities remains a challenge. Acupuncture has garnered substantial clinical and experimental validation for its efficacy in addressing diverse forms of depression, including postpartum, post-stroke, and adolescent depression. This article endeavors to elucidate the distinctive attributes and underlying mechanisms of acupuncture in the contemporary treatment of depression. Research has demonstrated that acupuncture exerts diverse physiological effects in animal models of depression, encompassing modulation of the brain, serum, and brain-gut axis. These effects are attributed to various mechanisms, including anti-inflammatory and anti-oxidative actions, promotion of neuronal plasticity, neuroprotection, neurotrophic effects, modulation of neurotransmitters, regulation of endocrine and immune functions, and modulation of cell signal pathways. Currently, the therapeutic mechanism of acupuncture involves the engagement of multiple targets, pathways, and bidirectional regulation. Hence, acupuncture emerges as a promising alternative medical modality, exhibiting substantial research prospects and meriting comprehensive worth further study and dissemination.
Collapse
Affiliation(s)
- Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of clinical medicine, Xiamen medical college, xiamen, China
| | - Jiangna Zhao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiuxiang Wei
- Rehabilitation Medicine Department, Shenzhen Hospital of Traditional Chinese and Western Medicine , Shenzhen, China
| | - Longfei Luo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuzhou Chu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tao Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Anning Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Juntao Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
4
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
5
|
Sun R, Liang Y, Zhu S, Yin Q, Bian Y, Ma H, Zhao F, Yin G, Tang D. Homotherapy-for-heteropathy of Bupleurum Chinense DC.-Scutellaria baicalensis Georgi in treating depression and colorectal cancer: A network pharmacology and animal model approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118038. [PMID: 38479544 DOI: 10.1016/j.jep.2024.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleurum chinense DC.-Scutellaria baicalensis Georgi (BS) is a classic drug pair that has good clinical effects on depression and many tumors. However, the concurrent targeting mechanism of how the aforementioned drug pair is valid in the two distinct diseases, has not been clarified yet. AIM OF THE STUDY The components of BS were detected by LC-MS, combined with network pharmacology to explore the active ingredients and common targeting mechanism of its multi-pathway regulation of BS in treating depression and CRC, and to validate the dual effects of BS using the CUMS mice model and orthotopic transplantation tumor mice model of CRC. RESULTS Twenty-nine components were screened, 84 common gene targets were obteined, and the top 5 key targets including STAT3, PIK3R1, PIK3CA, AKT1, IL-6 were identified by PPI network. GO and KEGG analyses revealed that PI3K/AKT and JAK/STAT signaling pathways might play a crucial role of BS in regulating depression and CRC. BS significantly modulated CUMS-induced depressive-like behavior, attenuated neuronal damage, and reduced serum EPI and NE levels in CUMS model mice. BS improved the pathological histological changes of solid tumors and liver tissues and inhibited solid tumors and liver metastases in tumor-bearing mice. BS significantly decreased the proteins' expression of IL-6, p-JAK2, p-STAT3, p-PI3K, p-AKT1 in hippocampal tissues and solid tumors, and regulated the levels of IL-2, IL-6 and IL-10 in serum of two models of mice. CONCLUSION BS can exert dual antidepressant and anti-CRC effects by inhibiting the expression of IL-6/JAK2/STAT3 and PI3K/AKT pathway proteins and regulating the release of inflammatory cytokines.
Collapse
Affiliation(s)
- Ruolan Sun
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Liang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijiao Zhu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qihang Yin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong Bian
- Labthatory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Zhao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Gang Yin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Decai Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Gao W, Gao Y, Xu Y, Liang J, Sun Y, Zhang Y, Shan F, Ge J, Xia Q. Effect of duloxetine on changes in serum proinflammatory cytokine levels in patients with major depressive disorder. BMC Psychiatry 2024; 24:449. [PMID: 38877455 PMCID: PMC11179362 DOI: 10.1186/s12888-024-05910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024] Open
Abstract
OBJECTIVE Accumulating evidence supports the idea that inflammation may contribute to the pathophysiology of major depressive disorder (MDD). Duloxetine, a serotonin-norepinephrine reuptake inhibitor, exhibits anti-inflammatory effects both in vitro and in vivo. In this study, we investigated the impact of duloxetine on changes in serum proinflammatory cytokine levels among individuals diagnosed with MDD. METHODS A cohort of 23 drug-naïve individuals diagnosed with MDD and 23 healthy controls were included in this study. The severity of depressive symptoms was evaluated using the 24-item Hamilton Depression Scale (HAMD-24). A panel of 7 proinflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-8, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), were quantified using multiplex Luminex assays. The levels of serum cytokines in healthy controls and patients with MDD were compared at baseline. All patients received duloxetine at a dosage range of 40-60 mg/day for a duration of 4 weeks. The HAMD-24 scores and serum cytokine levels were compared before and after duloxetine treatment. RESULTS Compared with healthy controls, patients with MDD had significantly greater levels of IL-2, IL-6, IL-8, IL-12, TNF-α, and IFN-γ (P < 0.05). Moreover, there was a significant decrease in HAMD-24 scores observed pre- and post-treatment (t = 13.161, P < 0.001). Furthermore, after 4 weeks of treatment, the serum levels of IL-8 (t = 3.605, P = 0.002), IL-12 (t = 2.559, P = 0.018), and IFN-γ (t = 3.567, P = 0.002) decreased significantly. However, there were no significant differences in other cytokines, including IL-1β, IL-2, IL-6, and TNF-α, before and after treatment (P > 0.05). CONCLUSIONS These findings present compelling evidence, potentially for the first time, indicating that duloxetine treatment may effectively reduce the serum concentrations of IL-8, IL-12, and IFN-γ in individuals diagnosed with MDD. However, the precise mechanisms underlying this effect remain unclear and warrant further investigation.
Collapse
Affiliation(s)
- Wenfan Gao
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yejun Gao
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230000, PR China
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Yayun Xu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jun Liang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yanhong Sun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Yuanyuan Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Feng Shan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
- Department of Pharmacy, Hefei Fourth People's Hospital, Hefei, China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China
- Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Jinfang Ge
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230000, PR China.
| | - Qingrong Xia
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230000, PR China.
- Department of Science and Education, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Mena S, Cruikshank A, Best J, Nijhout HF, Reed MC, Hashemi P. Modulation of serotonin transporter expression by escitalopram under inflammation. Commun Biol 2024; 7:710. [PMID: 38851804 PMCID: PMC11162477 DOI: 10.1038/s42003-024-06240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/10/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part because of their variable clinical efficacy and in part because of their delayed onset of action. Because of the complexities involved in replicating human disease and clinical dosing in animal models, the scientific community has not reached a consensus on the reasons for these phenomena. In this work, we create a theoretical hippocampal model incorporating escitalopram's pharmacokinetics, pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT) internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-state. We show escitalopram's chemical efficacy is diminished under inflammation. Our model thus offers mechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance of optimized dose and time for future antidepressant discoveries.
Collapse
Affiliation(s)
- Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - H F Nijhout
- Department of Biology, Duke University, Durham, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
8
|
Rachayon M, Jirakran K, Sodsai P, Sughondhabirom A, Maes M. T cell activation and deficits in T regulatory cells are associated with major depressive disorder and severity of depression. Sci Rep 2024; 14:11177. [PMID: 38750122 PMCID: PMC11096341 DOI: 10.1038/s41598-024-61865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Major depressive disorder (MDD) is associated with T cell activation, but no studies have examined the combined effects of T cell activation and deficits in T regulatory (Treg) cells on the severity of acute phase MDD. Using flow cytometry, we determined the percentage and median fluorescence intensity of CD69, CD71, CD40L, and HLADR-bearing CD3+, CD4+, and CD8+ cells, and cannabinoid type 1 receptor (CB1), CD152 and GARP (glycoprotein A repetitions predominant)-bearing CD25+ FoxP3 T regulatory (Treg) cells in 30 MDD patients and 20 healthy controls in unstimulated and stimulated (anti-CD3/CD28) conditions. Based on cytokine levels, we assessed M1 macrophage, T helper (Th)-1 cell, immune-inflammatory response system (IRS), T cell growth, and neurotoxicity immune profiles. We found that the immune profiles (including IRS and neurotoxicity) were significantly predicted by decreased numbers of CD152 or GARP-bearing CD25+ FoxP3 cells or CD152 and GARP expression in combination with increases in activated T cells (especially CD8+ CD40L+ percentage and expression). MDD patients showed significantly increased numbers of CD3+ CD71+, CD3+ CD40L+, CD4+ CD71+, CD4+ CD40L+, CD4+ HLADR+, and CD8+ HLADR+ T cells, increased CD3+ CD71+, CD4+ CD71+ and CD4+ HLADR+ expression, and lowered CD25+ FoxP3 expression and CD25+ FoxP+ CB1+ numbers as compared with controls. The Hamilton Depression Rating Scale score was strongly predicted (between 30 and 40% of its variance) by a lower number of CB1 or GARP-bearing Treg cells and one or more activated T cell subtypes (especially CD8+ CD40L+). In conclusion, increased T helper and cytotoxic cell activation along with decreased Treg homeostatic defenses are important parts of MDD that lead to enhanced immune responses and, as a result, neuroimmunotoxicity.
Collapse
Affiliation(s)
- Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Maximizing Children's Developmental Potential, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Chulalongkorn University, Bangkok, 10330, Thailand.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
9
|
Mokhtari T, Irandoost E, Sheikhbahaei F. Stress, pain, anxiety, and depression in endometriosis-Targeting glial activation and inflammation. Int Immunopharmacol 2024; 132:111942. [PMID: 38565045 DOI: 10.1016/j.intimp.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Endometriosis (EM) is a gynecological inflammatory disease often accompanied by stress, chronic pelvic pain (CPP), anxiety, and depression, leading to a diminished quality of life. This review aims to discuss the relationship between systemic and local inflammatory responses in the central nervous system (CNS), focusing on glial dysfunctions (astrocytes and microglia) as in critical brain regions involved in emotion, cognition, pain processing, anxiety, and depression. The review presents that EM is connected to increased levels of pro-inflammatory cytokines in the circulation. Additionally, chronic stress and CPP as stressors may contribute to the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, depleting the production of inflammatory mediators in the circulatory system and the brain. The systemic cytokines cause blood-brain barrier (BBB) breakdown, activate microglia in the brain, and lead to neuroinflammation. Furthermore, CPP may induce neuronal morphological alterations in critical regions through central sensitization and the activation of glial cells. The activation of glial cells, particularly the polarization of microglia, leads to the activation of the NLRP3 inflammasome and the overproduction of inflammatory cytokines. These inflammatory cytokines interact with the signaling pathways involved in neural plasticity. Additionally, persistent inflammatory conditions in the brain lead to neuronal death, which is correlated with a reduced volume of key brain regions such as the hippocampus. This review highlights the involvement of glial cells in the pathogenesis of the mental comorbidities of EM (i.e., pain, anxiety, and depression) and to discuss potential therapeutic approaches for targeting the inflammation and activation of microglia in key brain regions.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Department of Pharmacology, Hubei University of Medicine, Shiyan, China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Elnaz Irandoost
- Sarem Women's Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Agranyoni O, Sur D, Amidror S, Shidlovsky N, Bagaev A, Yissachar N, Pinhasov A, Navon-Venezia S. Colon impairments and inflammation driven by an altered gut microbiota leads to social behavior deficits rescued by hyaluronic acid and celecoxib. BMC Med 2024; 22:182. [PMID: 38685001 PMCID: PMC11059729 DOI: 10.1186/s12916-024-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The exact mechanisms linking the gut microbiota and social behavior are still under investigation. We aimed to explore the role of the gut microbiota in shaping social behavior deficits using selectively bred mice possessing dominant (Dom) or submissive (Sub) behavior features. Sub mice exhibit asocial, depressive- and anxiety-like behaviors, as well as systemic inflammation, all of which are shaped by their impaired gut microbiota composition. METHODS An age-dependent comparative analysis of the gut microbiota composition of Dom and Sub mice was performed using 16S rRNA sequencing, from early infancy to adulthood. Dom and Sub gastrointestinal (GI) tract anatomy, function, and immune profiling analyses were performed using histology, RT-PCR, flow cytometry, cytokine array, and dextran-FITC permeability assays. Short chain fatty acids (SCFA) levels in the colons of Dom and Sub mice were quantified using targeted metabolomics. To support our findings, adult Sub mice were orally treated with hyaluronic acid (HA) (30 mg/kg) or with the non-steroidal anti-inflammatory agent celecoxib (16 mg/kg). RESULTS We demonstrate that from early infancy the Sub mouse gut microbiota lacks essential bacteria for immune maturation, including Lactobacillus and Bifidobacterium genera. Furthermore, from birth, Sub mice possess a thicker colon mucin layer, and from early adulthood, they exhibit shorter colonic length, altered colon integrity with increased gut permeability, reduced SCFA levels and decreased regulatory T-cells, compared to Dom mice. Therapeutic intervention in adult Sub mice treated with HA, celecoxib, or both agents, rescued Sub mice phenotypes. HA treatment reduced Sub mouse gut permeability, increased colon length, and improved mouse social behavior deficits. Treatment with celecoxib increased sociability, reduced depressive- and anxiety-like behaviors, and increased colon length, and a combined treatment resulted in similar effects as celecoxib administered as a single agent. CONCLUSIONS Overall, our data suggest that treating colon inflammation and decreasing gut permeability can restore gut physiology and prevent social deficits later in life. These findings provide critical insights into the importance of early life gut microbiota in shaping gut immunity, functionality, and social behavior, and may be beneficial for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Oryan Agranyoni
- Department of Molecular Biology and the Dr. Miriam and Sheldon G. School of Medicine, Ariel University, Ariel, Israel
| | - Debpali Sur
- Department of Molecular Biology and the Dr. Miriam and Sheldon G. School of Medicine, Ariel University, Ariel, Israel
| | - Sivan Amidror
- The Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Nuphar Shidlovsky
- The Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Anastasia Bagaev
- Department of Molecular Biology and the Dr. Miriam and Sheldon G. School of Medicine, Ariel University, Ariel, Israel
| | - Nissan Yissachar
- The Goodman Faculty of Life Sciences, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Albert Pinhasov
- Department of Molecular Biology and the Dr. Miriam and Sheldon G. School of Medicine, Ariel University, Ariel, Israel.
| | - Shiri Navon-Venezia
- Department of Molecular Biology and the Dr. Miriam and Sheldon G. School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|
11
|
Horikawa I, Nagai H, Taniguchi M, Chen G, Shinohara M, Suzuki T, Ishii S, Katayama Y, Kitaoka S, Furuyashiki T. Chronic stress alters lipid mediator profiles associated with immune-related gene expressions and cell compositions in mouse bone marrow and spleen. J Pharmacol Sci 2024; 154:279-293. [PMID: 38485346 DOI: 10.1016/j.jphs.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Despite the importance of lipid mediators in stress and depression and their link to inflammation, the influence of stress on these mediators and their role in inflammation is not fully understood. This study used RNA-seq, LC-MS/MS, and flow cytometry analyses in a mouse model subjected to chronic social defeat stress to explore the effects of acute and chronic stress on lipid mediators, gene expression, and cell population in the bone marrow and spleen. In the bone marrow, chronic stress induced a sustained transition from lymphoid to myeloid cells, accompanied by corresponding changes in gene expression. This change was associated with decreased levels of 15-deoxy-d12,14-prostaglandin J2, a lipid mediator that inhibits inflammation. In the spleen, chronic stress also induced a lymphoid-to-myeloid transition, albeit transiently, alongside gene expression changes indicative of extramedullary hematopoiesis. These changes were linked to lower levels of 12-HEPE and resolvins, both critical for inhibiting and resolving inflammation. Our findings highlight the significant role of anti-inflammatory and pro-resolving lipid mediators in the immune responses induced by chronic stress in the bone marrow and spleen. This study paves the way for understanding how these lipid mediators contribute to the immune mechanisms of stress and depression.
Collapse
Affiliation(s)
- Io Horikawa
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Hirotaka Nagai
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| | - Masayuki Taniguchi
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Guowei Chen
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tomohide Suzuki
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shinichi Ishii
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoshio Katayama
- Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan; Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
12
|
Ji Y, Wang J, Chen H, Li J, Chen M. Association between hs-CRP and depressive symptoms: a cross-sectional study. Front Psychiatry 2024; 15:1339208. [PMID: 38596631 PMCID: PMC11002220 DOI: 10.3389/fpsyt.2024.1339208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Background and aim High-sensitivity C-reactive protein (hs-CRP) is a sensitive measure of low-grade inflammation and appears superior to conventional blood tests in assessing cardiovascular disease. The purpose of this investigation was to explore the link between high-sensitivity CRP and depressive symptoms among adults. Methods and results Multiple logistic regression and smoothed curve fitting were used to investigate the association between hs-CRP and depressive symptoms based on data from the, 2017-2020 National Health and Nutrition Examination Survey (NHANES). Subgroup analyses and interaction tests were used to assess the stability of this relationship across populations. The study comprised 6,293 non-clinical participants, which included 549 individuals with depressive symptoms. The prevalence of depressive symptoms was found to increase with increasing levels of hs-CRP. This trend persisted even after quartetting hs-CRP levels. In the fully adjusted model, each unit increase in hs-CRP was associated with a 10% increase in the odds of depressive symptoms (OR=1.10,95%CI:1.01-1.21). Participants in the highest quartile of hs-CRP had a 39% higher prevalence of depressive symptoms compared to those in the lowest quartile (OR=1.39,95%CI:1.01-1.92). Additionally, this positive correlation was more pronounced in men. Conclusions In adult Americans, there exists a positive association between elevated hs-CRP levels and depressive symptoms, with a more prominent manifestation of this association observed in males.
Collapse
|
13
|
Mónica FR, Gerardo Bernabé RR, Rodrigo GZ, Melissa SB, Lorena RB. Relationship between inflammatory markers in human olfactory neural progenitor cells and antidepressant response. J Psychiatr Res 2024; 171:277-285. [PMID: 38330627 DOI: 10.1016/j.jpsychires.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Response to antidepressants is related to hippocampal neurogenesis integrity, a process mediated by neurotrophins, such as Brain Derived Neurotrophic Factor (BDNF). In turn, pro-inflammatory state appears to reduce neurogenesis, and has been associated with refractory depressive states. We propose to analyze the human neural progenitor cells derived from the olfactory epithelium (HNPCs-OE) as an indicator of neurogenesis in humans. Therefore, we compared the number and content of HNPCs-OE in depressed patients taking antidepressants, according to response to treatment. Twenty depressed patients were followed during eight weeks after antidepressant treatment was prescribed. At the end evaluation they were divided in two groups according to Hamilton depression rating scale (HDRS) scores: responders and non-responders. We compared the number and components of HNPCs-OE between groups and observed an elevation of interleukine-8 in those patients who do not achieve response to treatment, BDNF levels were no related to antidepressant response.
Collapse
Affiliation(s)
- Flores-Ramos Mónica
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, Mexico.
| | - Ramírez-Rodríguez Gerardo Bernabé
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, 14370, Ciudad de México, Mexico
| | - Guiza Zayas Rodrigo
- Médico residente, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, Mexico
| | - Solares-Bravo Melissa
- Prácticas profesionales, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, San Lorenzo Huipulco, Tlalpan, Ciudad de México, Mexico
| | - Rodríguez-Bores Lorena
- Universidad Panamericana, Augusto Rodin No. 498, Insurgentes Mixcoac, Benito Juárez, 03920, Ciudad de México, CDMX, Mexico
| |
Collapse
|
14
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
15
|
Jóźwiak-Bębenista M, Sokołowska P, Wiktorowska-Owczarek A, Kowalczyk E, Sienkiewicz M. Ketamine - A New Antidepressant Drug with Anti-Inflammatory Properties. J Pharmacol Exp Ther 2024; 388:134-144. [PMID: 37977808 DOI: 10.1124/jpet.123.001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Ketamine is a new, potent and rapid-acting antidepressant approved for therapy of treatment-resistant depression, which has a different mechanism of action than currently-available antidepressant therapies. It owes its uniquely potent antidepressant properties to a complex mechanism of action, which currently remains unclear. However, it is thought that it acts by modulating the functioning of the glutamatergic system, which plays an important role in the process of neuroplasticity associated with depression. However, preclinical and clinical studies have also found ketamine to reduce inflammation, either directly or indirectly (by activating neuroprotective branches of the kynurenine pathway), among patients exhibiting higher levels of inflammation. Inflammation and immune system activation are believed to play key roles in the development and course of depression. Therefore, the present work examines the role of the antidepressant effect of ketamine and its anti-inflammatory properties in the treatment of depression. SIGNIFICANCE STATEMENT: The present work examines the relationship between the antidepressant effect of ketamine and its anti-inflammatory properties, and the resulting benefits in treatment-resistant depression (TRD). The antidepressant mechanism of ketamine remains unclear, and there is an urgent need to develop new therapeutic strategies for treatment of depression, particularly TRD.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Ghaffaripour Jahromi G, Razi S, Rezaei N. NLRP3 inflammatory pathway. Can we unlock depression? Brain Res 2024; 1822:148644. [PMID: 37871673 DOI: 10.1016/j.brainres.2023.148644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Depression holds the title of the largest contributor to worldwide disability, with the numbers expected to continue growing. Currently, there are neither reliable biomarkers for the diagnosis of the disease nor are the current medications sufficient for a lasting response in nearly half of patients. In this comprehensive review, we analyze the previously established pathophysiological models of the disease and how the interplay between NLRP3 inflammasome activation and depression might offer a unifying perspective. Adopting this inflammatory theory, we explain how NLRP3 inflammasome activation emerges as a pivotal contributor to depressive inflammation, substantiated by compelling evidence from both human studies and animal models. This inflammation is found in the central nervous system (CNS) neurons, astrocytes, and microglial cells. Remarkably, dysregulation of the NLRP3 inflammasome extends beyond the CNS boundaries and permeates into the enteric and peripheral immune systems, thereby altering the microbiota-gut-brain axis. The integrity of the brain blood barrier (BBB) and intestinal epithelial barrier (IEB) is also compromised by this inflammation. By emphasizing the central role of NLRP3 inflammasome activation in depression and its far-reaching implications, we go over each area with potential modulating mechanisms within the inflammasome pathway in hopes of finding new targets for more effective management of this debilitating condition.
Collapse
Affiliation(s)
- Ghazaleh Ghaffaripour Jahromi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
17
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
18
|
Su WJ, Hu T, Jiang CL. Cool the Inflamed Brain: A Novel Anti-inflammatory Strategy for the Treatment of Major Depressive Disorder. Curr Neuropharmacol 2024; 22:810-842. [PMID: 37559243 PMCID: PMC10845090 DOI: 10.2174/1570159x21666230809112028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Abundant evidence suggests that inflammatory cytokines contribute to the symptoms of major depressive disorder (MDD) by altering neurotransmission, neuroplasticity, and neuroendocrine processes. Given the unsatisfactory response and remission of monoaminergic antidepressants, anti-inflammatory therapy is proposed as a feasible way to augment the antidepressant effect. Recently, there have been emerging studies investigating the efficiency and efficacy of anti-inflammatory agents in the treatment of MDD and depressive symptoms comorbid with somatic diseases. METHODS In this narrative review, prospective clinical trials focusing on anti-inflammatory treatment for depression have been comprehensively searched and screened. Based on the included studies, we summarize the rationale for the anti-inflammatory therapy of depression and discuss the utilities and confusions regarding the anti-inflammatory strategy for MDD. RESULTS This review included over 45 eligible trials. For ease of discussion, we have grouped them into six categories based on their mechanism of action, and added some other anti-inflammatory modalities, including Chinese herbal medicine and non-drug therapy. Pooled results suggest that anti-inflammatory therapy is effective in improving depressive symptoms, whether used as monotherapy or add-on therapy. However, there remain confusions in the application of anti-inflammatory therapy for MDD. CONCLUSION Based on current clinical evidence, anti-inflammatory therapy is a promisingly effective treatment for depression. This study proposes a novel strategy for clinical diagnosis, disease classification, personalized treatment, and prognostic prediction of depression. Inflammatory biomarkers are recommended to be assessed at the first admission of MDD patients, and anti-inflammatory therapy are recommended to be included in the clinical practice guidelines for diagnosis and treatment. Those patients with high levels of baseline inflammation (e.g., CRP > 3 mg/L) may benefit from adjunctive anti-inflammatory therapy.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Second Military Medical University, Shanghai, 200433, China
| |
Collapse
|
19
|
He H, Xie X, Kang X, Zhang J, Wang L, Hu N, Xie L, Peng C, You Z. Ginsenoside Rg1 ameliorates depressive-like behavior by inhibiting NLRP3 inflammasome activation in mice exposed to chronic stress. Eur J Pharmacol 2023; 960:176120. [PMID: 37863415 DOI: 10.1016/j.ejphar.2023.176120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Microglia-mediated inflammatory process is recognized as a target in the treatment of depression. Ginsenoside Rg1 (GRg1), the active ingredient of traditional ginseng, regulates microglial phenotypes to resist stress-induced inflammatory responses. Here we used a mouse model of stress-induced depression to investigate the involvement of microglial Nod-like receptor protein 3 (NLRP3) in the antidepressant effects of GRg1. Male C57BL/6J mice were exposed to chronic mild stress (CMS) for three weeks, followed by intraperitoneal injection of GRg1 (20 mg/kg) or the antidepressant imipramine (20 mg/kg) for another three weeks. Depressive-like behaviors were assessed by sucrose preference test, forced swimming test, and tail suspension test. Microglial phenotypes were assessed in terms of morphological features and cytokine profiles; inflammasome activity, in terms of levels of complexes containing NLRP3, apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1; and neurogenesis, in terms of numbers of proliferating, differentiating, and mature neurons identified by immunostaining. GRg1 reduced abnormal animal behaviors caused by CMS, such as anhedonia and desperate behaviors, without affecting locomotor behaviors. GRg1 also reduced the number of ASC-specks, implying inhibition of inflammasome activation, which was associated with weaker activation of pro-inflammatory microglia. At the same time, GRg1 rescued impairment of hippocampal neurogenesis in vivo and in vitro, which correlated with modulation of microglial phenotypes. GRg1 exert antidepressant effects by preventing stress from activating the NLRP3 inflammasome in microglia, promoting a proneurogenic phenotype and allowing adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hui He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xixi Kang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu, 610036, China
| | - Nan Hu
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lei Xie
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
20
|
Sokołowska P, Seweryn Karbownik M, Jóźwiak-Bębenista M, Dobielska M, Kowalczyk E, Wiktorowska-Owczarek A. Antidepressant mechanisms of ketamine's action: NF-κB in the spotlight. Biochem Pharmacol 2023; 218:115918. [PMID: 37952898 DOI: 10.1016/j.bcp.2023.115918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ketamine recently approved for therapy of treatment-resistant depression shows a complex and not fully understood mechanism of action. Apart from its classical glutamatergic N-methyl-D-aspartate receptor antagonistic action, it is thought that anti-inflammatory properties of the drug are of clinical relevance due to the contribution of activated inflammatory mediators to the pathophysiology of depression and non-responsiveness of a group of patients to current antidepressant therapies. In a search of the mechanism underlying anti-inflammatory effects of ketamine, the nuclear factor kappa B transcription factor (NF-κB) has been proposed as a target for ketamine. The NF-κB forms precisely regulated protein signaling cascades enabling a rapid response to cellular stimuli. In the central nervous systems, NF-κB signaling appears to have pleiotropic but double-edged functions: on the one hand it participates in the regulation of processes that are crucial in the treatment of depression, such as neuroplasticity, neurogenesis or neuronal survival, on the other - in the activation of neuroinflammation and cell death. Ketamine has been found to reduce inflammation mediated by NF-κB, leading to decreased level of pro-inflammatory cytokines and other inflammatory or stress mediators. Therefore, this review presents recent data on the significance of the NF-κB cascade in the mechanism of ketamine's action and its future perspectives in designing new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland.
| | - Michał Seweryn Karbownik
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Maria Dobielska
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Zeligowskiego 7/9, Poland
| |
Collapse
|
21
|
Khiroya K, Sekyere E, McEwen B, Bayes J. Nutritional considerations in major depressive disorder: current evidence and functional testing for clinical practice. Nutr Res Rev 2023:1-12. [PMID: 37964733 DOI: 10.1017/s0954422423000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Depression is a multifaceted condition with diverse underlying causes. Several contributing and inter-related factors such as genetic, nutritional, neurological, physiological, gut-brain-axis, metabolic and psychological stress factors play a role in the pathophysiology of depression. This review aims to highlight the role that nutritional factors play in the aetiology of depression. Secondly, we discuss the biomedical and functional pathology tests which measure these factors, and the current evidence supporting their use. Lastly, we make recommendations on how practitioners can incorporate the latest evidence-based research findings into clinical practice. This review highlights that diet and nutrition greatly affect the pathophysiology of depression. Nutrients influence gene expression, with folate and vitamin B12 playing vital roles in methylation reactions and homocysteine regulation. Nutrients are also involved in the tryptophan/kynurenine pathway and the expression of brain-derived neurotrophic factor (BDNF). Additionally, diet influences the hypothalamic-pituitary-adrenal (HPA) response and the composition and diversity of the gut microbiome, both of which have been implicated in depression. A comprehensive dietary assessment, combined with appropriate evaluation of biochemistry and blood pathology, may help uncover contributing factors to depressive symptoms. By employing such an approach, a more targeted and personalised treatment strategy can be devised, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Kathryn Khiroya
- Endeavour College of Natural Health, Haymarket, NSW, Australia
| | - Eric Sekyere
- Endeavour College of Natural Health, Haymarket, NSW, Australia
| | - Bradley McEwen
- Faculty of Health, Southern Cross University, East Lismore, NSW, Australia
| | - Jessica Bayes
- National Centre for Naturopathic Medicine, Southern Cross University, East Lismore, NSW, Australia
| |
Collapse
|
22
|
Xu YQ, Gou Y, Yuan JJ, Zhu YX, Ma XM, Chen C, Huang XX, Yang ZX, Zhou YM. Peripheral Blood Inflammatory Cytokine Factors Expressions are Associated with Response to Acupuncture Therapy in Postpartum Depression Patients. J Inflamm Res 2023; 16:5189-5203. [PMID: 38026248 PMCID: PMC10655746 DOI: 10.2147/jir.s436907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Increasing evidences demonstrate that immune dysregulation can result in depression, and it is reported that persistent inflammatory response is related to the unresponsiveness of antidepressant treatment. Purpose This study aimed to explore the reason why some responded but some not responded to acupuncture in treating postpartum depression (PPD), and whether it related to the levels of inflammatory cytokines. Patients and Methods Women diagnosed with PPD were recruited in to accept 8-week acupuncture. All subjects were assessed the 17-item Hamilton Depression Rating Scale (HDRS17) at baseline, week 1, week 2, week 4 and week 8 during the treatment. A panel of 9 cytokines was measured at baseline and 8 weeks. Results Of the 121 participants, 96 completed the 8-week assessment and 46 completed the blood sample collection. HDRS17 scores of 96 subjects showed significant statistical reduction since the first week (P = 0.002) and reached to 5.31 (P < 0.000) at the end of therapy. And we divided the 46 subjects into responders and non-responders according to the response rate of HDRS17 scores. Responders and non-responders did not differ significantly between-group in changes in the 9 cytokines. In responders, IL-6, IL-10 and IFN-γ levels were statistically lower (P = 0.006; P = 0.033; P = 0.024), while TGF-β1 was statistically higher after 8 weeks treatment (P < 0.000). In non-responders, the levels of IL-5, TNF-α and TGF-β1 were statistically higher (P = 0.018; P < 0.000; P < 0.000), while IFN-γ was statistically lower (P = 0.005). Conclusion Acupuncture could alleviate depressive symptoms of patients with PPD and might through adjusting peripheral inflammatory response by up-regulating anti-inflammatory cytokines and down-regulating pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Yu-Qin Xu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - YanHua Gou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Jin-Jun Yuan
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yan-Xian Zhu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Xiao-Ming Ma
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Chen Chen
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Xing-Xian Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Zhuo-Xin Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yu-Mei Zhou
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong Province, People’s Republic of China
| |
Collapse
|
23
|
Sarker R, Qusar MMAS, Islam SMA, Bhuiyan MA, Islam MR. Association of granulocyte macrophage colony-stimulating factor and interleukin-17 levels with obsessive-compulsive disorder: a case-control study findings. Sci Rep 2023; 13:18976. [PMID: 37923827 PMCID: PMC10624891 DOI: 10.1038/s41598-023-46401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a mental condition that affects many people and is characterized by recurring obsessions and compulsions. It significantly impacts individuals' ability to function ordinarily daily, affecting people of all ages. This study aimed to investigate whether or not the cytokines granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17) are involved in the pathophysiology of OCD. A case-control study with 50 OCD patients and 38 healthy volunteers served as the controls for this investigation. The levels of GM-CSF and IL-17 in the serum of both groups were measured with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the sociodemographic characteristics of the population under study were studied. Based on the findings of this study, OCD patients had significantly elevated levels of IL-17 than the controls, it appears that there may be a function for IL-17 in the pathophysiology of OCD. It was also discovered that the severity of OCD and IL-17 levels had a significant positive correlation. On the other hand, when comparing the levels of GM-CSF, there was no significant difference between the patients and the controls. This study provides evidence supporting the involvement of cytokine IL-17 in the pathophysiology of OCD. This study suggests IL-17 as a diagnostic biomarker for OCD and adds to our knowledge of the function that the immune system plays in this condition.
Collapse
Affiliation(s)
- Rapty Sarker
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - M M A Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | | | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
24
|
Yu H, Yu B, Qin X, Shan W. A unique inflammation-related mechanism by which high-fat diets induce depression-like behaviors in mice. J Affect Disord 2023; 339:180-193. [PMID: 37437725 DOI: 10.1016/j.jad.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND High-fat diet (HFD) consumption is an important reason for promoting depression, but the mechanism is unclear. The present study aims to explore the relationship between metabolic disturbance and HFD-induced depression-like behaviors. METHODS Depression models were established by HFD consumption and chronic unpredictable mild stress (CUMS) in mice. Enzyme-linked immunosorbent assay, western blotting, real-time polymerase chain reaction, gas chromatography and metabolomic analysis were undertaken to investigate the 5-hydroxytryptamine (5-HT) system, neuroinflammation and to identify altered lipid metabolic pathways. RESULTS Depression-like behaviors, impaired 5-HT neurotransmission and disordered lipid metabolism were observed upon HFD consumption. Despite a similar reduction of high-density lipoprotein cholesterol in CUMS and HFD group, high levels of body low-density lipoprotein cholesterol in the HFD group could help distinguish HFD from CUMS. Levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammation-related metabolites were increased in HFD mice, so a link between depression and inflammation was postulated. Different metabolites were enriched in the two groups. The linoleic acid (LA) metabolic pathway and expression of fatty acid desaturase (FADS)1 and FADS2 (key enzymes in LA metabolic pathway) were enhanced significantly in HFD mice compared with the control group. LIMITATIONS Causality analyses for HFD and inflammation-related features were not undertaken. CONCLUSIONS HFD-induced depression-like behaviors was characterized by more severely disordered metabolism of lipids (especially in the LA metabolic pathway) and increased levels of inflammatory mediators, which might be the reasons for the disturbance of serotonergic system in hippocampus.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Bixian Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Xiuyuan Qin
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Weiguang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| |
Collapse
|
25
|
Baj J, Bargieł J, Cabaj J, Skierkowski B, Hunek G, Portincasa P, Flieger J, Smoleń A. Trace Elements Levels in Major Depressive Disorder-Evaluation of Potential Threats and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:15071. [PMID: 37894749 PMCID: PMC10606638 DOI: 10.3390/ijms242015071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Julia Bargieł
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Justyna Cabaj
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Bartosz Skierkowski
- Student Research Group of Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.B.); (J.C.); (B.S.)
| | - Gabriela Hunek
- Student Research Group of Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Agata Smoleń
- Department of Epidemiology and Clinical Research Methodology, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
26
|
Liu H, Du Y, Liu LL, Liu QS, Mao HH, Cheng Y. Anti-depression-like effect of Mogroside V is related to the inhibition of inflammatory and oxidative stress pathways. Eur J Pharmacol 2023; 955:175828. [PMID: 37364672 DOI: 10.1016/j.ejphar.2023.175828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Siraitia grosvenorii (SG) is an edible medicinal plant found mainly in Guangxi, China, and Mogroside V (MGV) is the main component of SG extract. Previous research has shown that SG and MGV exert anti-inflammatory, antioxidative and neuroprotective effects. However, it is not clear whether MGV has anti-depression-like effect. In this study, we evaluated the neuroprotective effects and anti-depression-like effect of MGV both in vitro and in vivo. By performing in vitro tests, we evaluated the protective effects of MGV on PC12 cells with corticosterone-induced injury. In vivo tests, we used the chronic unpredictable mild stress (CUMS) depression model. Fluoxetine (10 mg/kg/day) and MGV (10 or 30 mg/kg/day) were administered by gavage for 21 days, and the open field test (OFT), novelty suppressed feeding test (NSFT), Tail suspension test (TST), and forced Swimming test (FST) were used to evaluate the depressive-like behaviors. In addition, we investigated the role of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and anti-inflammatory cytokine (IL-4) in the hippocampal and cortex tissues. The levels of Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in hippocampal and cortex tissues were also measured. Pathological changes in the hippocampal dentate gyrus and cortex regions were detected by immunofluorescence and Western blotting was used to measure the protein expression of BDNF, TrkB, TNF-α, and AKT. The results showed that MGV had a protective effect on PC12 cells with corticosterone-induced incurred injury. In addition, MGV treatment relieved the depressive symptoms and significantly reduced inflammatory levels (IL-1β, IL-6, and TNF-α). MGV also significantly reduced oxidative stress damage and reduced the levels of apoptosis in hippocampal nerve cells. These results suggested that the anti-depressive effect of MGV may occur through the inhibition of inflammatory and oxidative stress pathways and the BDNF/TrkB/AKT pathway. These findings provide a new concept for the identification of new anti-depressive strategies.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lian Lin Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Qing Shan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - He Hui Mao
- Department of Breast Surgery, School of Medicine, Women and Children's Hospital, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center for Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
27
|
Mokhtari T, Lu M, El-Kenawy AEM. Potential anxiolytic and antidepressant-like effects of luteolin in a chronic constriction injury rat model of neuropathic pain: Role of oxidative stress, neurotrophins, and inflammatory factors. Int Immunopharmacol 2023; 122:110520. [PMID: 37478667 DOI: 10.1016/j.intimp.2023.110520] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
This study aimed to examine the effects of luteolin (LUT) on chronic neuropathic pain (NP)-induced mood disorders (i.e., anxiety and depression) by regulating oxidative stress, neurotrophic factors (NFs), and neuroinflammation. Chronic constrictive injury (CCI) was used to induce NP in the animals. Animals in the treatment groups received LUT in three doses of 10, 25, and 50 mg/kg for 21 days. The severity of pain and mood disorders were examined. Finally, animals were sacrificed, and their brain tissue was used for molecular and histopathological studies. CCI led to cold allodynia and thermal hyperalgesia. Mood alterations were proven in the CCI group, according to the behavioral tests. Levels of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), B-cell lymphoma-2 (Bcl2), superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid-2-related factor 2 (Nrf2) were reduced in the hippocampus (HPC) and prefrontal cortex (PFC). Furthermore, the levels of MDA, Bcl-2-associated X protein (Bax), and inflammatory markers, including nuclear factor kappa B (NF-κB), NLR family pyrin domain containing 3 (NLRP3), interleukin-1β (IL-1β), IL-18, IL-6, and tumor necrosis factor-α (TNF-α) significantly increased in the HPC and PFC following CCI induction. LUT treatment reversed the behavioral alterations via regulation of oxidative stress, neurotrophines, and inflammatory mediators in the HPC and PFC. Findings confirmed the potency of LUT in the improvement of chronic pain-induced anxiety- and depressive-like symptoms, probably through antioxidant, anti-inflammatory, and neuroprotective properties in the HPC and PFC.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China.
| | - Min Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China; Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | | |
Collapse
|
28
|
de Silva PN. Immunological perturbations, psychiatric disorders and associated therapeutics: a new era for psychiatry? Br J Hosp Med (Lond) 2023; 84:1-6. [PMID: 37646557 DOI: 10.12968/hmed.2022.0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The three main theories explaining major mental illness, namely mood disorders, psychoses and dementias, have been partially discredited. Alongside this, there are emerging links between perturbations of the immune system and the onset and phenotypic features of these disorders. This article outlines the alternative pathophysiology and suggests potential treatments which could improve disease burden and avoid the need for psychotropic medication, with their associated side effects and relapse following withdrawal.
Collapse
|
29
|
Dadkhah M, Jafarzadehgharehziaaddin M, Molaei S, Akbari M, Gholizadeh N, Fathi F. Major depressive disorder: biomarkers and biosensors. Clin Chim Acta 2023:117437. [PMID: 37315724 DOI: 10.1016/j.cca.2023.117437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Depressive disorders belong to highly heterogeneous psychiatric diseases. Loss of in interest in previously enjoyed activities and a depressed mood are the main characteristics of major depressive disorder (MDD). Moreover, due to significant heterogeneity in clinical presentation and lack of applicable biomarkers, diagnosis and treatment remains challenging. Identification of relevant biomarkers would allow for improved disease classification and more personalized treatment strategies. Herein, we review the current state of these biomarkers and then discuss diagnostic techniques of aimed to specifically target these analytes using state of the art biosensor technology.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Morteza Akbari
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neghin Gholizadeh
- Students Research Committee, Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
30
|
Kositsyn YM, de Abreu MS, Kolesnikova TO, Lagunin AA, Poroikov VV, Harutyunyan HS, Yenkoyan KB, Kalueff AV. Towards Novel Potential Molecular Targets for Antidepressant and Antipsychotic Pharmacotherapies. Int J Mol Sci 2023; 24:ijms24119482. [PMID: 37298431 DOI: 10.3390/ijms24119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.
Collapse
Affiliation(s)
- Yuriy M Kositsyn
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Murilo S de Abreu
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
| | - Tatiana O Kolesnikova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
| | - Alexey A Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Vladimir V Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Hasmik S Harutyunyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
- Department of Biochemistry, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| | - Allan V Kalueff
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg 197341, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory 354340, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
- Neuroscience Group, Moscow Institute of Physics and Technology, Moscow 115184, Russia
- Vivarium, Ural Federal University, Yekaterinburg 620049, Russia
- Neuroscience Laboratory, COBRAIN Center, Yerevan State Medical University Named after M. Heratsi, Yerevan 0025, Armenia
| |
Collapse
|
31
|
Abdel-Rasoul AA, Saleh NA, Hosny EN, El-Gizawy MM, Ibrahim EA. Cardamom oil ameliorates behavioral and neuropathological disorders in a rat model of depression induced by reserpine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116254. [PMID: 36781058 DOI: 10.1016/j.jep.2023.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression is a public health problem. Despite the availability of treatment options, its prevalence is increasing. A high rate of treatment failure is often reported, along with considerable side effects associated with synthetic antidepressants. Therefore, developing effective and safe antidepressants from traditional herbs or natural products as an alternative strategy is warranted to avoid side effects and increase drug efficacy. In traditional medicine, cardamom has traditionally been used to treat conditions like asthma, tooth and gum infections, cataracts, nausea, diarrhea, and even depression and anxiety as well as some problems with the heart, kidneys, and digestive system. AIM OF THE STUDY The current study aimed to evaluate the antidepressant activity of cardamom oil in a rat model of depression induced by reserpine and compare it with the activity of the antidepressant drug fluoxetine. MATERIALS AND METHODS Depression-like symptoms were induced in male rats by daily i. p. injection of reserpine (0.2 mg/kg/d for 15 d followed by 0.1 mg/kg/d for 21 d to maintain the depressive state), and the rats were treated with cardamom oil (oral dose = 200 mg/kg/d) for 21 d along with the maintenance dose of reserpine. We performed behavioral tests (forced swimming test and open-field test) and evaluated biochemical markers of depression. RESULTS Our findings revealed that cardamom oil attenuated depression-like symptoms in reserpine-injected rats by improving the behavioral changes measured by the forced swimming test and the locomotor activities measured by the open-field test. In reserpine-injected rats, cardamom oil exerted antidepressant-like effects by modulating lower levels of brain monoamine neurotransmitters (serotonin, norepinephrine, and dopamine), GSH, and higher oxido-nitrosative stress parameters (malondialdehyde and nitric oxide). Moreover, cardamom oil alleviated depression-like behaviors by lowering monoamine oxidase activity and raising the activities of Na+/K+-ATPase and acetylcholinesterase and levels of a brain-derived neurotrophic factor in the cortex and hippocampus. CONCLUSION We recommend the use of cardamom oil as a safe and reliable treatment or an adjuvant for preventing depression-like symptoms in patients suffering from depression.
Collapse
Affiliation(s)
- Alaa A Abdel-Rasoul
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nabil A Saleh
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Ehab A Ibrahim
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
32
|
Li H, Song L, Cen M, Fu X, Gao X, Zuo Q, Wu J. Oxidative balance scores and depressive symptoms: Mediating effects of oxidative stress and inflammatory factors. J Affect Disord 2023; 334:205-212. [PMID: 37149058 DOI: 10.1016/j.jad.2023.04.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/22/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Few studies have examined the combined effects of dietary and lifestyle factors on depressive symptoms. This study aimed to evaluate the association between oxidative balance score (OBS) and depressive symptoms and the underlying mechanisms. METHODS A total of 21,283 adults from the 2007 to 2018 National Health and Nutrition Examination Survey (NHANES) were included. Depressive symptoms were defined as a total score of ≥10 on the Patient's Health Questionnaire (PHQ-9). Twenty dietary and lifestyle factors were selected to calculate the OBS. Multivariable logistic regression analyses were used to evaluate the association between OBS and depression risk. Mediation analyses were conducted to explore the roles of oxidative stress and inflammatory markers. RESULTS In multivariate model, a significant negative association was found between OBS and depression risk. Compared with those in OBS tertile 1, participants in tertile 3 had lower odds of developing depressive symptoms (OR:0.50; 95 % CI:0.40-0.62; P < 0.001). Restricted cubic splines showed a linear relationship between OBS and depression risk (P for nonlinearity = 0.67). Moreover, higher OBS was found to be associated with lower depression scores (β = -0.07; 95 % CI:-0.08, -0.05; P < 0.001). GGT concentrations and WBC counts mediated the association between OBS and depression scores by 5.72 % and 5.42 %, respectively (both P < 0.001), with a joint mediated effect of 10.77 % (P < 0.001). LIMITATIONS This study was a cross-sectional design making it difficult to infer a causal association. CONCLUSIONS OBS is negatively associated with depression, which may be mediated in part by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Huiru Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingling Song
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Manqiu Cen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xihang Fu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinxin Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianlin Zuo
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
33
|
van Haeringen M, Milaneschi Y, Lamers F, Penninx BW, Jansen R. Dissection of depression heterogeneity using proteomic clusters. Psychol Med 2023; 53:2904-2912. [PMID: 35039097 PMCID: PMC10235664 DOI: 10.1017/s0033291721004888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The search for relevant biomarkers of major depressive disorder (MDD) is challenged by heterogeneity; biological alterations may vary in patients expressing different symptom profiles. Moreover, most research considers a limited number of biomarkers, which may not be adequate for tagging complex network-level mechanisms. Here we studied clusters of proteins and examined their relation with MDD and individual depressive symptoms. METHODS The sample consisted of 1621 subjects from the Netherlands Study of Depression and Anxiety (NESDA). MDD diagnoses were based on DSM-IV criteria and the Inventory of Depressive Symptomatology questionnaire measured endorsement of 30 symptoms. Serum protein levels were detected using a multi-analyte platform (171 analytes, immunoassay, Myriad RBM DiscoveryMAP 250+). Proteomic clusters were computed using weighted correlation network analysis (WGCNA). RESULTS Six proteomic clusters were identified, of which one was nominally significantly associated with current MDD (p = 9.62E-03, Bonferroni adj. p = 0.057). This cluster contained 21 analytes and was enriched with pathways involved in inflammation and metabolism [including C-reactive protein (CRP), leptin and insulin]. At the individual symptom level, this proteomic cluster was associated with ten symptoms, among which were five atypical, energy-related symptoms. After correcting for several health and lifestyle covariates, hypersomnia, increased appetite, panic and weight gain remained significantly associated with the cluster. CONCLUSIONS Our findings support the idea that alterations in a network of proteins involved in inflammatory and metabolic processes are present in MDD, but these alterations map predominantly to clinical symptoms reflecting an imbalance between energy intake and expenditure.
Collapse
Affiliation(s)
- Marije van Haeringen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Brenda W.J.H. Penninx
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute and Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Xu Y, Liang J, Sun Y, Zhang Y, Shan F, Ge J, Xia Q. Serum cytokines-based biomarkers in the diagnosis and monitoring of therapeutic response in patients with major depressive disorder. Int Immunopharmacol 2023; 118:110108. [PMID: 37004349 DOI: 10.1016/j.intimp.2023.110108] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Several lines of evidence have suggested that cytokines are implicated in the pathophysiology of depression and antidepressant treatment outcome. However, the results are not always congruent and partly contradictory. We therefore examined the serum levels of multiple cytokines in patients with major depressive disorder (MDD), with the aim to identify serum cytokines-based biomarkers for MDD diagnosis and antidepressant response. METHODS Fifty-nine patients with MDD and 61 healthy controls were included. The baseline levels of serum cytokines between MDD group and control group were compared, and the discriminative ability of different cytokines in predicting MDD patients from healthy controls was investigated using the receiver operating characteristic (ROC) curve method. The baseline levels of serum cytokines between antidepressant nonresponders and responders were compared, and the discriminative ability of different cytokines in predicting nonresponders from responders was evaluated using the ROC curve method. RESULTS Compared to controls, 15 of the 37 serum cytokines were increased, while 8 cytokines were decreased in MDD patients (all P < 0.05). The results of ROC curve showed that the Area Under Curve (AUC) values of 15 cytokines including IL-2, IL-5, IL-6, IL-8, IL-12, IL-13, IL-16, CCL3, CCL4, CCL17, CXCL10, TNF-α, TNF-β, VEGF-C, and FGF basic were greater than 0.7 in discriminating MDD patients from healthy control. Moreover, after 4-week treatment, levels of the 2 cytokines (IL-12 and TSLP) elevated at baseline significantly down-regulated, and levels of the 6 cytokines (IL-5, IL-16, CCL17, CXCL10, TNF-β, and PIGF) decreased at baseline significantly up-regulated (all P < 0.05). Furthermore, a positive relationship was found between TNF-α levels and Hamilton Depression Rating Scale-24 (HAMD-24) scores in patients with MDD at baseline (r = 0.302, P = 0.019). Additionally, compared to responders, nonresponders exhibited decreased levels of IL-1α, IL-5, IL-13, IL-15, VEGF, and ICAM-1 (all P < 0.05). The ROC curve analysis demonstrated that a combined panel of IL-1α, IL-5, and ICAM-1 achieved a high accuracy in discriminating antidepressant nonresponders from responders (AUC = 0.850, sensitivity = 83.3%, specificity = 81.8%). CONCLUSIONS These results suggested that alterations in peripheral cytokines levels hold significant promise as biomarkers for MDD diagnosis and antidepressant response.
Collapse
|
35
|
Sousa-Santos N, Fialho M, Madeira T, Clara C, Veiga S, Martins R, Barros N, Santos G, Santos O, Almeida C, Ganança L, Campos RC, Camolas J, da Silva AP, Guarino MPS, Heitor MJ. Nutritional counselling in adults promoting adherence to the Mediterranean diet as adjuvant in the treatment of major depressive disorder (INDEPT): a randomized open controlled trial study protocol. BMC Psychiatry 2023; 23:227. [PMID: 37016319 PMCID: PMC10074649 DOI: 10.1186/s12888-023-04705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a leading cause of disability worldwide. Approximately one-third of patients with MDD do not respond to treatment, and often exhibit elevated inflammation biomarkers, which are associated with worse prognosis. Previous research has linked healthier dietary patterns, such as the Mediterranean Diet (MedDiet), with a lower risk of MDD and symptoms of depression, potentially due to their anti-inflammatory properties. The aim of this study is to evaluate the effectiveness of a nutritional counselling intervention promoting MedDiet to alleviate symptoms of depression in adults recently diagnosed with MDD and presenting with elevated inflammation biomarkers. METHODS This study is a randomized controlled trial (RCT) that will recruit adults from outpatient clinics, between the ages of 18 and 70 years who have been diagnosed with MDD and are currently receiving treatment with the first prescribed antidepressant, and who exhibit elevated inflammation biomarkers (interleukin-6 and/or C-reactive protein). The control group will receive treatment-as-usual (TAU) only. The primary outcome of the study will be the change in symptoms of depression, as measured by the Beck Depression Inventory 2 (BDI-II), after 12 weeks of intervention. Data analysis will follow an intention-to-treat approach. Secondary outcomes will include changes in inflammation biomarkers, quality of life, adherence to the MedDiet, and cost-effectiveness of nutritional counselling. All outcomes will be assessed at baseline, after the 12-week intervention, and at 6- and 12-months post-baseline. DISCUSSION This study will be the first RCT to evaluate the effect of a nutritional intervention with anti-inflammatory properties, as an adjuvant in the treatment of MDD, in individuals diagnosed with MDD and elevated inflammation biomarkers. The results of this study may contribute to the development of more effective and personalized interventions for MDD patients with elevated inflammation biomarkers.
Collapse
Affiliation(s)
- Nuno Sousa-Santos
- Center for Innovative Care and Health Technology (ciTechcare), Instituto Politécnico, Leiria - R. de Santo André, Leiria, 2410, Portugal.
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal.
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal.
| | - Mónica Fialho
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
| | - Teresa Madeira
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, ala C, piso 2, Lisboa, 1649-028, Portugal
| | - Cátia Clara
- Center for Innovative Care and Health Technology (ciTechcare), Instituto Politécnico, Leiria - R. de Santo André, Leiria, 2410, Portugal
| | - Sofia Veiga
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
| | - Raquel Martins
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
| | - Neuza Barros
- Center for Innovative Care and Health Technology (ciTechcare), Instituto Politécnico, Leiria - R. de Santo André, Leiria, 2410, Portugal
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
| | - Gabriela Santos
- Center for Innovative Care and Health Technology (ciTechcare), Instituto Politécnico, Leiria - R. de Santo André, Leiria, 2410, Portugal
| | - Osvaldo Santos
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
| | - Carolina Almeida
- Serviço de Psiquiatria e Saúde Mental, Centro Hospitalar de Leiria - Hospital de Santo André, R. de Santo André, Leiria, 2410-197, Portugal
| | - Licínia Ganança
- Departamento de Psiquiatria e Saúde Mental, Clínica Universitária de Psiquiatria e Psicologia Médica, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Rui C Campos
- Comprehensive Health Research Center, Department of Psychology, School of Social Sciences, University of Évora, Évora, Portugal
| | - José Camolas
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
- Centro Hospitalar Universitário Lisboa Norte, EPE, Hospital de Santa Maria, Av. Prof. Egas Moniz MB, Lisboa, 1649-028, Portugal
- Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, ala C, piso 2, Lisboa, 1649-028, Portugal
- Faculdade de Medicina da Universidade Católica Portuguesa - Estr. Octávio Pato, Rio de Mouro, Sintra, 2635-631, Portugal
| | - Alda Pereira da Silva
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa, 1649-028, Portugal
- Clínica Universitária de Medicina Geral e Familiar, Faculdade Medicina Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa, 1649-028, Portugal
| | - Maria Pedro Sucena Guarino
- Center for Innovative Care and Health Technology (ciTechcare), Instituto Politécnico, Leiria - R. de Santo André, Leiria, 2410, Portugal
| | - Maria João Heitor
- Instituto de Saúde Ambiental (ISAMB), Faculdade de Medicina, Universidade de Lisboa - Av, Lisboa, 1649-028, Portugal
- Faculdade de Medicina da Universidade Católica Portuguesa - Estr. Octávio Pato, Rio de Mouro, Sintra, 2635-631, Portugal
- Departamento de Psiquiatria e Saúde Mental, Hospital Beatriz Ângelo, Av. Carlos Teixeira 3, Loures, 2674-514, Portugal
| |
Collapse
|
36
|
He Q, Wu KCH, Bennett AN, Fan B, Liu J, Huang R, Kong APS, Tian X, Kwok MKM, Chan KHK. Non-steroidal anti-inflammatory drug target gene associations with major depressive disorders: a Mendelian randomisation study integrating GWAS, eQTL and mQTL Data. THE PHARMACOGENOMICS JOURNAL 2023:10.1038/s41397-023-00302-1. [PMID: 36966195 PMCID: PMC10382318 DOI: 10.1038/s41397-023-00302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/27/2023]
Abstract
Previous observational studies reported associations between non-steroidal anti-inflammatory drugs (NSAIDs) and major depressive disorder (MDD), however, these associations are often inconsistent and underlying biological mechanisms are still poorly understood. We conducted a two-sample Mendelian randomisation (MR) study to examine relationships between genetic variants and NSAID target gene expression or DNA methylation (DNAm) using publicly available expression, methylation quantitative trait loci (eQTL or mQTL) data and genetic variant-disease associations from genome-wide association studies (GWAS of MDD). We also assessed drug exposure using gene expression and DNAm levels of NSAID targets as proxies. Genetic variants were robustly adjusted for multiple comparisons related to gene expression, DNAm was used as MR instrumental variables and GWAS statistics of MDD as the outcome. A 1-standard deviation (SD) lower expression of NEU1 in blood was related to lower C-reactive protein (CRP) levels of -0.215 mg/L (95% confidence interval (CI): 0.128-0.426) and a decreased risk of MDD (odds ratio [OR] = 0.806; 95% CI: 0.735-0.885; p = 5.36 × 10-6). A concordant direction of association was also observed for NEU1 DNAm levels in blood and a risk of MDD (OR = 0.886; 95% CI: 0.836-0.939; p = 4.71 × 10-5). Further, the genetic variants associated with MDD were mediated by NEU1 expression via DNAm (β = -0.519; 95% CI: -0.717 to -0.320256; p = 3.16 × 10-7). We did not observe causal relationships between inflammatory genetic marker estimations and MDD risk. Yet, we identified a concordant association of NEU1 messenger RNA and an adverse direction of association of higher NEU1 DNAm with MDD risk. These results warrant increased pharmacovigilance and further in vivo or in vitro studies to investigate NEU1 inhibitors or supplements for MDD.
Collapse
Affiliation(s)
- Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kevin Chun Hei Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam N Bennett
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Beifang Fan
- Department of Mental Health, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| | - Jundong Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ruixuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyu Tian
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Ki Maggie Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kei Hang Katie Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, USA.
| |
Collapse
|
37
|
Hursitoglu O, Kurutas EB, Strawbridge R, Oner E, Gungor M, Tuman TC, Uygur OF. Serum NOX1 and Raftlin as new potential biomarkers of Major Depressive Disorder: A study in treatment-naive first episode patients. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110670. [PMID: 36341844 DOI: 10.1016/j.pnpbp.2022.110670] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Biological factors are known to be important in understanding the pathogenesis of Major Depressive Disorder (MDD). Oxidative stress and neuroinflammation pathways are likely to play a critical role here. METHODS We undertook a study to investigate two novel biomarkers - serum NADPH oxidase 1 (NOX1) and Raftlin levels - in treatment-naive, smoking-free first episode patients with MDD compared to healthy controls (HCs) matched for age, sex and body mass index. RESULTS We found increased NOX1 and Raftlin levels in MDD patients compared to HCs. Both parameters showed very good diagnostic performance in the MDD group. In addition, we found a significant positive correlation between depression severity (HAMD) scores and both biomarker levels in the patient group. CONCLUSION To the best of our knowledge, this is the first human study to evaluate serum NOX1 and Raftlin levels in depression. NOX1, an important source of reactive oxygen species (ROS), and Raftlin, which may play a role in the inflammatory process, represent novel potential biomarkers of MDD. These findings support the implication of oxidative stress and inflammatory processes in patients with MDD, and indicate that the deteriorated ROS-antioxidant balance can be regulated via NOX1 in patients with depression.
Collapse
Affiliation(s)
- Onur Hursitoglu
- Department of Psychiatry, Sular Academy Hospital, Kahramanmaras, Turkey.
| | - Ergul Belge Kurutas
- Department of Biochemistry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Rebecca Strawbridge
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Meltem Gungor
- Department of Medical Biochemistry, Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | - Taha Can Tuman
- Medipol University, Medical Faculty, Department of Psychiatry, İstanbul, Turkey
| | - Omer Faruk Uygur
- Ataturk University, Medical Faculty, Department of Psychiatry, Erzurum, Turkey
| |
Collapse
|
38
|
Breit S, Mazza E, Poletti S, Benedetti F. White matter integrity and pro-inflammatory cytokines as predictors of antidepressant response in MDD. J Psychiatr Res 2023; 159:22-32. [PMID: 36657311 DOI: 10.1016/j.jpsychires.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/12/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023]
Abstract
Major depressive disorder (MDD) is a multifactorial, serious and heterogeneous mental disorder that can lead to chronic recurrent symptoms, treatment resistance and suicidal behavior. MDD often involves immune dysregulation with high peripheral levels of inflammatory cytokines that might have an influence on the clinical course and treatment response. Moreover, patients with MDD show brain volume changes as well as white matter (WM) alterations that are already existing in the early stage of illness. Mounting evidence suggests that both neuroimaging markers, such as WM integrity and blood markers, such as inflammatory cytokines might serve as predictors of treatment response in MDD. However, the relationship between peripheral inflammation, WM structure and antidepressant response is not yet clearly understood. The aim of the present review is to elucidate the association between inflammation and WM integrity and its impact on the pathophysiology and progression of MDD as well as the role of possible novel biomarkers of treatment response to improve MDD prevention and treatment strategies.
Collapse
Affiliation(s)
- Sigrid Breit
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Elena Mazza
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
39
|
Yoshioka T, Yamada D, Segi-Nishida E, Nagase H, Saitoh A. KNT-127, a selective delta opioid receptor agonist, shows beneficial effects in the hippocampal dentate gyrus of a chronic vicarious social defeat stress mouse model. Neuropharmacology 2023; 232:109511. [PMID: 37001727 DOI: 10.1016/j.neuropharm.2023.109511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Delta opioid receptors (DOPs) play an important role in depression and other mood disorders. However, little is known about the underlying physiological mechanisms. The hypothalamic-pituitary-adrenal axis, adult hippocampal neurogenesis, and neuroinflammation are regarded as key pathophysiological factors in depression. In this study, we investigated the influence of DOP activation on those factors in a valid animal model of depression, chronic vicarious social defeat stress (cVSDS) mice. cVSDS mice (male C57BL/6J mice) were produced following a 10-day exposure to witness of social defeat stress, and each evaluation was performed more than 28 days after the stress period. Repeated administrations to cVSDS mice with a selective DOP agonist, KNT-127, both during (10 days) and after (28 days) the stress period respectively improved their decreased social interaction behaviors and increased serum corticosterone levels. When administered during the stress period, KNT-127 suppressed decreases in the hippocampal newborn neuron survival rate in cVSDS mice. Moreover, in both administration paradigms, KNT-127 reduced the number of Iba-1- and CD11b-positive cells in the subgranular zone and the granule cell layer of the hippocampal dentate gyrus, indicating a suppression of cVSDS-induced microglial overactivation. These results suggest that KNT-127 acts over the hypothalamic-pituitary-adrenal axis and regulates neurogenesis and neuroinflammation resulting in anti-stress effects, and the antidepressant-like effects of the DOP agonist are implicated in the suppression of the neuroinflammation. This study presents a new finding on the effects of repeated DOP activations on the pathophysiological states of depression.
Collapse
|
40
|
Li C, Li B, Liu H, Qu L, Wang H. Mechanism of Chaihu Longgu oyster adjusted decoction for the treatment of depression based on network pharmacology and molecular docking technology. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:172. [PMID: 36923088 PMCID: PMC10009556 DOI: 10.21037/atm-23-236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Background Depression is a common clinical psychiatric disorder that is responsible for health-related disease burdens globally. According to traditional Chinese medicine (TCM), mental disorders and qi stagnation are important pathogenic mechanisms of depression. The Chaihu Longgu Oyster Decoction, which has been documented in the Shanghanlun (Treatise on Typhoid), is widely used to treat various affective disorders. Methods Network pharmacology and molecular docking technology were used to investigate the material basis and mechanism of action of the Chaihu Longgu oyster adjusted decoction in treating depression. The main pharmacological substance bases, possible targets, and pathways of Chaihu Longgu oyster adjusted decoction in treating depression were visualized by constructing a "component-pathway-target" network. Results Quercetin, 7-methoxy-2-methylisoflavone, baicalein, kaempferol, and lignan are the main practical chemical components in Chaihu Longgu oyster adjusted decoction. The Chaihu Longgu oyster adjusted decoction regulates 74 protein targets and 142 pathways associated with depression. Its molecular mechanism involves inhibiting neuroinflammation and improving neurotransmitter function, neuroplasticity, etc. Conclusions The underlying mechanism of the anti-depressive effect of the Chaihu Longgu oyster adjusted decoction may involve neuroinflammatory response reduction and improvement of neurotransmitter function and neuroplasticity. This study revealed the mechanism of action of the Chaihu Longgu oyster adjusted decoction in the treatment of depression through network pharmacology, which provides a scientific basis for clinical application.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bowen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linglong Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Wang
- Department of Acupuncture, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, China
| |
Collapse
|
41
|
Napora P, Kobrzycka A, Pierzchała-Koziec K, Wieczorek M. Effect of selective cyclooxygenase inhibitors on animal behaviour and monoaminergic systems of the rat brain. Behav Brain Res 2023; 438:114143. [PMID: 36206821 DOI: 10.1016/j.bbr.2022.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
Abstract
The long-term effects of cyclooxygenase 1 and 2 (COX-1/2) inhibitors are usually tested in terms of the periphery of the organism. Therefore, we studied the effects of SC560 (selective COX-1 inhibitor) and celecoxib (selective COX-2 inhibitor) on the activity of brain monoaminergic systems and animal behaviour. Additionally, we tested the effect of these inhibitors during inflammation. We have observed that long-term administration of celecoxib reduces the activity of the noradrenergic system, increases the activity of dopaminergic and serotonergic systems, increases locomotor activity, and enhances the exploratory behaviour of rats. Administration of SC560 also increases the activity of dopaminergic and serotonergic systems but reduces locomotor activity and impairs the exploratory behaviour of rats. The mechanism responsible for decreased activity of the noradrenergic system may be related to the weakening of activity of the positive feedback loop between the paraventricular nucleus and coeruleus locus. We suggest that the effect of used inhibitors on the dopaminergic system is associated with a possible increase in anandamide concentration and its effect on dopamine reuptake in synaptic clefts. It also appears that cyclooxygenase peroxidase activity may play a role in this process. In turn, changes in the activity of the serotonergic system may be related to the activity of indoleamine-2,3-dioxygenase, which decreases because of the decreased concentration of pro-inflammatory compounds. We believe that behavioural changes induced by COX inhibitors are the result of the modified activity of monoaminergic CNS systems in the brainstem, hypothalamus, and medial prefrontal cortex.
Collapse
Affiliation(s)
- Paweł Napora
- Department of Neurobiology, University of Łódź, Faculty of Biology and Environmental Protection, 141/143 Pomorska Street, 90-236 Łódź, Poland.
| | - Anna Kobrzycka
- Department of Neurobiology, University of Łódź, Faculty of Biology and Environmental Protection, 141/143 Pomorska Street, 90-236 Łódź, Poland
| | - Krystyna Pierzchała-Koziec
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, 24/28 Adam Mickiewicz Avenue, 30-059 Łódź, Poland
| | - Marek Wieczorek
- Department of Neurobiology, University of Łódź, Faculty of Biology and Environmental Protection, 141/143 Pomorska Street, 90-236 Łódź, Poland.
| |
Collapse
|
42
|
Grolli RE, Bertollo AG, Behenck JP, de Araujo Borba L, Plissari ME, Soares SJB, Manica A, da Silva Joaquim L, Petronilho F, Quevedo J, Bagatini MD, Réus GZ, Ignácio ZM. Quetiapine effect on depressive-like behaviors, oxidative balance, and inflammation in serum of rats submitted to chronic stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02406-8. [PMID: 36735044 DOI: 10.1007/s00210-023-02406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Major depressive disorder (MDD) etiology is still not completely understood, and many individuals resist the traditional treatments. Chronic exposure to stressful events can contribute to development and progression and be involved in biological changes underlying MDD. Among the biological mechanisms involved, inflammatory changes and oxidative balance are associated with MDD pathophysiology. Quetiapine, a second-generation antipsychotic, induces a better therapeutic response in individuals refractory to traditional treatments. The main objectives of this research were as follows: to evaluate the effect of chronic mild stress (CMS) on depressive-like behaviors, oxidative stress, and inflammation in adult rats; to evaluate the possible antidepressant, antioxidant, and anti-inflammatory effects of quetiapine. The animals were submitted to CMS protocols. At the end of the CMS, the animals were submitted to a chronic treatment for 14 days with the following drugs: quetiapine (20 mg/kg), imipramine (30 mg/kg), and escitalopram (10 mg/kg). At the end of the treatments, the animals were evaluated in the open field tests, anhedonia (splash test), and forced swimming. The animals were euthanized after the behavioral tests, and serum samples were collected. Myeloperoxidase (MPO) activity and interleukin-6 (IL-6) levels were analyzed. CMS induced an increase in depressive-like behaviors, and quetiapine significantly reduced these behaviors. MPO activity and IL-6 levels increased in the serum of animals submitted to CMS. Quetiapine significantly reduced MPO activity and IL-6 levels. These results corroborate other evidence, indicating that chronic stress is a relevant phenomenon in the etiology of depression and suggesting that quetiapine induces an antidepressant effect because it reduces oxidative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Roberta Eduarda Grolli
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - João Paulo Behenck
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Laura de Araujo Borba
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Marcos Eduardo Plissari
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Silvio José Batista Soares
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Aline Manica
- Graduate Program in Health Sciences - Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Larissa da Silva Joaquim
- Neurobiology of Metabolic and Inflammatory Processes Laboratory, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.,Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Margarete Dulce Bagatini
- Laboratory of Cell Culture, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
43
|
Rossi GN, Hallak JEC, Baker G, Dursun SM, Dos Santos RG. The effects of ketamine and classic hallucinogens on neurotrophic and inflammatory markers in unipolar treatment-resistant depression: a systematic review of clinical trials. Eur Arch Psychiatry Clin Neurosci 2023; 273:129-155. [PMID: 35829812 DOI: 10.1007/s00406-022-01460-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Although results are still preliminary, ketamine and classical hallucinogens have shown promise in recent years as novel, fast-acting antidepressants, especially for the treatment of unipolar treatment-resistant depression (TRD). Depression also seems to be related to abnormal levels of peripheral inflammatory and neurotrophic biomarkers, which may one day help to diagnose of this disorder. In this context, this systematic review of clinical trials evaluated the current evidence that relates the antidepressant effects of ketamine and classical hallucinogens on TRD with changes in inflammatory and neurotrophic biomarkers. Twelve studies were found (n = 587), 2 with oral ayahuasca (1 mL/kg) and 10 with ketamine (mostly intravenous 0.5 mg/kg) administration. Results for all biomarkers assessed were contradictory and thus inconclusive. Randomized controlled trials with bigger samples and higher statistical power are warranted to clarify if peripheral biomarkers can confidently be used to indicate and measure ketamine's and classical hallucinogens' antidepressant effect. The PROSPERO ID for this study is CRD42021249089.
Collapse
Affiliation(s)
- Giordano Novak Rossi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil.,Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen Baker
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil.,Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil.,Department of Psychiatry (Neurochemical Research Unit) and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rafael G Dos Santos
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil. .,National Institute for Translational Medicine (INCT-TM), CNPq, São Paulo, Brazil. .,Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Hospital das Clínicas, Terceiro Andar, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
44
|
Khedr LH, Eladawy RM, Nassar NN, Saad MAE. Canagliflozin attenuates chronic unpredictable mild stress induced neuroinflammation via modulating AMPK/mTOR autophagic signaling. Neuropharmacology 2023; 223:109293. [PMID: 36272443 DOI: 10.1016/j.neuropharm.2022.109293] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
Abstract
Although vast progress has been made to understand the pathogenesis of depression, existing antidepressant remedies, with several adverse effects, are not fully adequate. Interestingly, new emerging theories implicating an altered HPA-axis, tryptophan metabolism, neuroinflammation and altered gut integrity were proposed to further identify novel therapeutic targets. Along these lines, canagliflozin (CAN), a novel antidiabetic medication with anti-inflammatory and neuroprotective activity may present an effective treatment for depression; nevertheless, no studies have explored its effect on depressive disorder yet. To this end, this study aimed to investigate the possible antidepressant activity of CAN in CUMS and the mechanisms underlying its action on the gut-brain inflammation axis as well as the alteration in the TRY/KYN pathway in addition to its role in modulating the autophagic signaling cascade. Interestingly, CAN successfully attenuated the CUMS-induced elevations in despair and anhedonic behaviors as well as the elevated serum CORT. Furthermore, it enhanced gut integrity via hampering the CUMS-induced colonic inflammation and amending colonic tight junction proteins. The enhanced gut integrity was further corroborated by a notable anti-inflammatory and neuroprotective activity manifested via the observed mitigation of immune cell activation in addition to IDO hippocampal protein content and promotion of the autophagy cascade. Our findings postulate the possible anti-inflammatory and neuroprotective effects of CAN and the implication of TRY/KYN and AMPK/mTOR signaling pathways in the CUMS-induced MDD. Hence, this study shed light to the promising role of CAN in the augmentation of the current antidepressant treatments.
Collapse
Affiliation(s)
- Lobna H Khedr
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Reem M Eladawy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sinai University, EL-Arish, Egypt
| | - Noha N Nassar
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Muhammad A E Saad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmaceutical Sciences Department, College of Pharmacy, Gulf Medical University, Ajman, 4184, United Arab Emirates
| |
Collapse
|
45
|
Donoso F, Cryan JF, Olavarría-Ramírez L, Nolan YM, Clarke G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin Pharmacol Ther 2023; 113:246-259. [PMID: 35278334 PMCID: PMC10084001 DOI: 10.1002/cpt.2581] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
Depression is considered a major public health concern, where existing pharmacological treatments are not equally effective across all patients. The pathogenesis of depression involves the interaction of complex biological components, such as the immune system and the microbiota-gut-brain axis. Adjunctive lifestyle-oriented approaches for depression, including physical exercise and special diets are promising therapeutic options when combined with traditional antidepressants. However, the mechanisms of action of these strategies are incompletely understood. Accumulating evidence suggests that physical exercise and specific dietary regimens can modulate both the immune system and gut microbiota composition. Here, we review the current information about the strategies to alleviate depression and their crosstalk with both inflammatory mechanisms and the gut microbiome. We further discuss the role of the microbiota-gut-brain axis as a possible mediator for the adjunctive therapies for depression through inflammatory mechanisms. Finally, we review existing and future adjunctive strategies to manipulate the gut microbiota with potential use for depression, including physical exercise, dietary interventions, prebiotics/probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Francisco Donoso
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | | | - Yvonne M Nolan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
46
|
Singh R, Kisku A, Kungumaraj H, Nagaraj V, Pal A, Kumar S, Sulakhiya K. Autism Spectrum Disorders: A Recent Update on Targeting Inflammatory Pathways with Natural Anti-Inflammatory Agents. Biomedicines 2023; 11:115. [PMID: 36672623 PMCID: PMC9856079 DOI: 10.3390/biomedicines11010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous category of developmental psychiatric disorders which is characterized by inadequate social interaction, less communication, and repetitive phenotype behavior. ASD is comorbid with various types of disorders. The reported prevalence is 1% in the United Kingdom, 1.5% in the United States, and ~0.2% in India at present. The natural anti-inflammatory agents on brain development are linked to interaction with many types of inflammatory pathways affected by genetic, epigenetic, and environmental variables. Inflammatory targeting pathways have already been linked to ASD. However, these routes are diluted, and new strategies are being developed in natural anti-inflammatory medicines to treat ASD. This review summarizes the numerous preclinical and clinical studies having potential protective effects and natural anti-inflammatory agents on the developing brain during pregnancy. Inflammation during pregnancy activates the maternal infection that likely leads to the development of neuropsychiatric disorders in the offspring. The inflammatory pathways have been an effective target for the subject of translational research studies on ASD.
Collapse
Affiliation(s)
- Ramu Singh
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Anglina Kisku
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| | - Haripriya Kungumaraj
- Department of Kinesiology and Health, School of Art and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Vini Nagaraj
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Ajay Pal
- Shriners Hospitals Pediatric Research Center (Center for Neural Rehabilitation and Repair), Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|
47
|
Safari H, Mashayekhan S. Inflammation and Mental Health Disorders: Immunomodulation as a Potential Therapy for Psychiatric Conditions. Curr Pharm Des 2023; 29:2841-2852. [PMID: 37946352 DOI: 10.2174/0113816128251883231031054700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Mood disorders are the leading cause of disability worldwide and their incidence has significantly increased after the COVID-19 pandemic. Despite the continuous surge in the number of people diagnosed with psychiatric disorders, the treatment methods for these conditions remain limited. A significant number of people either do not respond to therapy or discontinue the drugs due to their severe side effects. Therefore, alternative therapeutic interventions are needed. Previous studies have shown a correlation between immunological alterations and the occurrence of mental health disorders, yet immunomodulatory therapies have been barely investigated for combating psychiatric conditions. In this article, we have reviewed the immunological alterations that occur during the onset of mental health disorders, including microglial activation, an increased number of circulating innate immune cells, reduced activity of natural killer cells, altered T cell morphology and functionality, and an increased secretion of pro-inflammatory cytokines. This article also examines key studies that demonstrate the therapeutic efficacy of anti-inflammatory medications in mental health disorders. These studies suggest that immunomodulation can potentially be used as a complementary therapy for controlling psychiatric conditions after careful screening of candidate drugs and consideration of their efficacy and side effects in clinical trials.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
48
|
Ballaz S, Bourin M. Anti-Inflammatory Therapy as a Promising Target in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:459-486. [PMID: 36949322 DOI: 10.1007/978-981-19-7376-5_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This chapter analyzes the therapeutic potential of current anti-inflammatory drugs in treating psychiatric diseases from a neuro-immunological perspective. Based on the bidirectional brain-immune system relationship, the rationale is that a dysregulated inflammation contributes to the pathogenesis of psychiatric and neurological disorders, while the immunology function is associated with psychological variables like stress, affective disorders, and psychosis. Under certain social, psychological, and environmental conditions and biological factors, a healthy inflammatory response and the associated "sickness behavior," which are aimed to resolve a physical injury and microbial threat, become harmful to the central nervous system. The features and mechanisms of the inflammatory response are described across the main mental illnesses with a special emphasis on the profile of cytokines and the function of the HPA axis. Next, it is reviewed the potential clinical utility of immunotherapy (cytokine agonists and antagonists), glucocorticoids, unconventional anti-inflammatory agents (statins, minocycline, statins, and polyunsaturated fatty acids (PUFAs)), the nonsteroidal anti-inflammatory drugs (NSAIDs), and particularly celecoxib, a selective cyclooxygenase-2 (Cox-2) inhibitor, as adjuvants of conventional psychiatric medications. The implementation of anti-inflammatory therapies holds great promise in psychiatry. Because the inflammatory background may account for the etiology and/or progression of psychiatric disorders only in a subset of patients, there is a need to elucidate the immune underpinnings of the mental illness progression, relapse, and remission. The identification of immune-related bio-signatures will ideally assist in the stratification of the psychiatric patient to predict the risk of mental disease, the prognosis, and the response to anti-inflammatory therapy.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Science and Engineering, Yachay Tech University, Urcuquí, Ecuador
- Medical School, Universidad Espíritu Santo, Samborondón, Ecuador
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
49
|
Bhatt S, Dhar AK, Samanta MK, Suttee A. Effects of Current Psychotropic Drugs on Inflammation and Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:407-434. [PMID: 36949320 DOI: 10.1007/978-981-19-7376-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The immune system and inflammation are involved in the pathological progression of various psychiatric disorders such as depression or major depressive disorder (MDD), generalized anxiety disorder (GAD) or anxiety, schizophrenia, Alzheimer's disease (AD), and Huntington's disease. It is observed that levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and other markers are highly increased in the abovementioned disorders. The inflammation and immune component also lead to enhance the oxidative stress. The oxidative stress and increased production of reactive oxygen species (ROS) are considered as important factors that are involved in pathological progression of psychiatric disorders. Increase production of ROS is associated with excessive inflammation followed by cell necrosis and death. The psychotropic drugs are mainly work through modulations of neurotransmitter system. However, it is evident that inflammation and immune modulation are also having important role in the progression of psychiatric disorders. Rationale of the use of current psychotropic drugs is modulation of immune system by them. However, the effects of psychotropic drugs on the immune system and how these might contribute to their efficacy remain largely unclear. The drugs may act through modification of inflammation and related markers. The main purpose of this book chapter is to address the role of current psychotropic drugs on inflammation and immune system. Moreover, it will also address the role of inflammation in the progression of psychiatric disorders.
Collapse
Affiliation(s)
- Shvetank Bhatt
- School of Pharmacy, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, India
| | | | | | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
50
|
Vaseghi S, Mostafavijabbari A, Alizadeh MS, Ghaffarzadegan R, Kholghi G, Zarrindast MR. Intricate role of sleep deprivation in modulating depression: focusing on BDNF, VEGF, serotonin, cortisol, and TNF-α. Metab Brain Dis 2023; 38:195-219. [PMID: 36399239 DOI: 10.1007/s11011-022-01124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we aimed to discuss intricate roles of SD in modulating depression in preclinical and clinical studies. Decades of research have shown the inconsistent effects of SD on depression, focusing on SD duration. However, inconsistent role of SD seems to be more complicated, and SD duration cannot be the only one factor. Regarding this issue, we chose some important factors involved in the effects of SD on cognitive functions and mood including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), serotonin, cortisol, and tumor necrosis factor-alpha (TNF-α). It was concluded that SD has a wide-range of inconsistent effects on BDNF, VEGF, serotonin, and cortisol levels. It was noted that BDNF diurnal rhythm is significantly involved in the modulatory role of SD in depression. Furthermore, the important role of VEGF in blood-brain barrier permeability which is involved in modulating depression was discussed. It was also noted that there is a negative correlation between cortisol and BDNF that modulates depression. Eventually, it was concluded that TNF-α regulates sleep/wake cycle and is involved in the vulnerability to cognitive and behavioral impairments following SD. TNF-α also increases the permeability of the blood-brain barrier which is accompanied by depressive behavior. In sum, it was suggested that future studies should focus on these mechanisms/factors to better investigate the reasons behind intricate roles of SD in modulating depression.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | | | - Mohammad-Sadegh Alizadeh
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Cellular and Molecular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|