1
|
Chen L, Cai M, Liu J, Jiang X, Liu J, Zhenxing W, Wang Y, Li Y. Genome-wide identification and expression analyses of SWEET gene family reveal potential roles in plant development, fruit ripening and abiotic stress responses in cranberry ( Vaccinium macrocarpon Ait). PeerJ 2024; 12:e17974. [PMID: 39308825 PMCID: PMC11416763 DOI: 10.7717/peerj.17974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
The sugars will eventually be exported transporter (SWEET) family is a novel class of sugar transporters that play a crucial role in plant growth, development, and responses to stress. Cranberry (Vaccinium macrocarpon Ait.) is a nutritious berry with economic importance, but little is known about SWEET gene family functions in this small fruit. In this research, 13 VmSWEET genes belonging to four clades were identified in the cranberry genome for the first time. In the conserved domains, we observed seven phosphorylation sites and four amino acid residues that might be crucial for the binding function. The majority of VmSWEET genes in each clade shared similar gene structures and conserved motifs, showing that the VmSWEET genes were highly conserved during evolution. Chromosomal localization and duplication analyses showed that VmSWEET genes were unevenly distributed in eight chromosomes and two pairs of them displayed synteny. A total of 79 cis-acting elements were predicted in the promoter regions of VmSWEETs including elements responsive to plant hormones, light, growth and development and stress responses. qRT-PCR analysis showed that VmSWEET10.1 was highly expressed in flowers, VmSWEET16 was highly expressed in upright and runner stems, and VmSWEET3 was highly expressed in the leaves of both types of stems. In fruit, the expression of VmSWEET14 and VmSWEET16 was highest of all members during the young fruit stage and were downregulated as fruit matured. The expression of VmSWEET4 was higher during later developmental stages than earlier developmental stages. Furthermore, qRT-PCR results revealed a significant up-regulation of VmSWEET10.2, under osmotic, saline, salt-alkali, and aluminum stress conditions, suggesting it has a crucial role in mediating plant responses to various environmental stresses. Overall, these results provide new insights into the characteristics and evolution of VmSWEET genes. Moreover, the candidate VmSWEET genes involved in the growth, development and abiotic stress responses can be used for molecular breeding to improve cranberry fruit quality and abiotic stress resistance.
Collapse
Affiliation(s)
- Li Chen
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Mingyu Cai
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiaxin Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Xuxin Jiang
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiayi Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Wang Zhenxing
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yadong Li
- Jilin Agricultural University, College of Horticulture, Changchun, China
| |
Collapse
|
2
|
Fang C, Sun Z, Li S, Su T, Wang L, Dong L, Li H, Li L, Kong L, Yang Z, Lin X, Zatybekov A, Liu B, Kong F, Lu S. Subfunctionalisation and self-repression of duplicated E1 homologues finetunes soybean flowering and adaptation. Nat Commun 2024; 15:6184. [PMID: 39039090 PMCID: PMC11263555 DOI: 10.1038/s41467-024-50623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Soybean is a photoperiod-sensitive staple crop. Its photoperiodic flowering has major consequences for latitudinal adaptation and grain yield. Here, we identify and characterise a flowering locus named Time of flower 4b (Tof4b), which encodes E1-Like b (E1Lb), a homologue of the key soybean floral repressor E1. Tof4b protein physically associates with the promoters of two FLOWERING LOCUS T (FT) genes to repress their transcription and delay flowering to impart soybean adaptation to high latitudes. Three E1 homologues undergo subfunctionalisation and show differential subcellular localisation. Moreover, they all possess self-repression capability and each suppresses the two homologous counterparts. Subfunctionalisation and the transcriptional regulation of E1 genes collectively finetune flowering time and high-latitude adaptation in soybean. We propose a model for the functional fate of the three E1 genes after the soybean whole-genome duplication events, refine the molecular mechanisms underlying high-latitude adaption, and provide a potential molecular-breeding resource.
Collapse
Affiliation(s)
- Chao Fang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhihui Sun
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Shichen Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Tong Su
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lingshuang Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lidong Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lanxin Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Lingping Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zhiquan Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Sijia Lu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou, China.
| |
Collapse
|
3
|
Zhao Z, Wang R, Su W, Sun T, Qi M, Zhang X, Wei F, Yu Z, Xiao F, Yan L, Yang C, Zhang J, Wang D. A comprehensive analysis of the WRKY family in soybean and functional analysis of GmWRKY164-GmGSL7c in resistance to soybean mosaic virus. BMC Genomics 2024; 25:620. [PMID: 38898399 PMCID: PMC11188170 DOI: 10.1186/s12864-024-10523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Soybean mosaic disease caused by soybean mosaic virus (SMV) is one of the most devastating and widespread diseases in soybean producing areas worldwide. The WRKY transcription factors (TFs) are widely involved in plant development and stress responses. However, the roles of the GmWRKY TFs in resistance to SMV are largely unclear. RESULTS Here, 185 GmWRKYs were characterized in soybean (Glycine max), among which 60 GmWRKY genes were differentially expressed during SMV infection according to the transcriptome data. The transcriptome data and RT-qPCR results showed that the expression of GmWRKY164 decreased after imidazole treatment and had higher expression levels in the incompatible combination between soybean cultivar variety Jidou 7 and SMV strain N3. Remarkably, the silencing of GmWRKY164 reduced callose deposition and enhanced virus spread during SMV infection. In addition, the transcript levels of the GmGSL7c were dramatically lower upon the silencing of GmWRKY164. Furthermore, EMSA and ChIP-qPCR revealed that GmWRKY164 can directly bind to the promoter of GmGSL7c, which contains the W-box element. CONCLUSION Our findings suggest that GmWRKY164 plays a positive role in resistance to SMV infection by regulating the expression of GmGSL7c, resulting in the deposition of callose and the inhibition of viral movement, which provides guidance for future studies in understanding virus-resistance mechanisms in soybean.
Collapse
Affiliation(s)
- Zhihua Zhao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Rongna Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Weihua Su
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Mengnan Qi
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Xueyan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fengju Wei
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Zhouliang Yu
- School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Fuming Xiao
- Handan Municipal Academy of Agricultural Sciences, Hebei Province, Handan, 056001, China
| | - Long Yan
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Chunyan Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
4
|
Guo X, Yan X, Li Y. Genome-wide identification and expression analysis of the WRKY gene family in Rhododendron henanense subsp. lingbaoense. PeerJ 2024; 12:e17435. [PMID: 38827309 PMCID: PMC11143974 DOI: 10.7717/peerj.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Background This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.
Collapse
Affiliation(s)
- Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xinyu Yan
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
5
|
Zhao X, Qi G, Liu J, Chen K, Miao X, Hussain J, Liu S, Ren H. Genome-wide identification of WRKY transcription factors in Casuarina equisetifolia and the function analysis of CeqWRKY11 in response to NaCl/NaHCO 3 stresses. BMC PLANT BIOLOGY 2024; 24:376. [PMID: 38714947 PMCID: PMC11077731 DOI: 10.1186/s12870-024-04889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Casuarina equisetifolia (C. equisetifolia) is a woody species with many excellent features. It has natural resistance against drought, salt and saline-alkali stresses. WRKY transcription factors (TFs) play significant roles in plant response to abiotic stresses, therefore, molecular characterization of WRKY gene family under abiotic stresses holds great significance for improvement of forest trees through molecular biological tools. At present, WRKY TFs from C. equisetifolia have not been thoroughly studied with respect to their role in salt and saline-alkali stresses response. The current study was conducted to bridge the same knowledge gap. RESULTS A total of 64 WRKYs were identified in C. equisetifolia and divided into three major groups i.e. group I, II and III, consisting of 10, 42 and 12 WRKY members, respectively. The WRKY members in group II were further divided into 5 subgroups according to their homology with Arabidopsis counterparts. WRKYs belonging to the same group exhibited higher similarities in gene structure and the presence of conserved motifs. Promoter analysis data showed the presence of various response elements, especially those related to hormone signaling and abiotic stresses, such as ABRE (ABA), TGACG (MeJA), W-box ((C/T) TGAC (T/C)) and TC-rich motif. Tissue specific expression data showed that CeqWRKYs were mainly expressed in root under normal growth conditions. Furthermore, most of the CeqWRKYs were up-regulated by NaCl and NaHCO3 stresses with few of WRKYs showing early responsiveness to both stresses while few others exhibiting late response. Although the expressions of CeqWRKYs were also induced by cold stress, the response was delayed compared with other stresses. Transgenic C. equisetifolia plants overexpressing CeqWRKY11 displayed lower electrolyte leakage, higher chlorophyll content, and enhanced tolerance to both stresses. The higher expression of abiotic stress related genes, especially CeqHKT1 and CeqPOD7, in overexpression lines points to the maintenance of optimum Na+/K+ ratio, and ROS scavenging as possible key molecular mechanisms underlying salt stress tolerance. CONCLUSIONS Our results show that CeqWRKYs might be key regulators of NaCl and NaHCO3 stresses response in C. equisetifolia. In addition, positive correlation of CeqWRKY11 expression with increased stress tolerance in C. equisetifolia encourages further research on other WRKY family members through functional genomic tools. The best candidates could be incorporated in other woody plant species for improving stress tolerance.
Collapse
Affiliation(s)
- Xiaohong Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Jinhong Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Kui Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinxin Miao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, Pakistan
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Huimin Ren
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
6
|
Nawaz MA, Khalil HK, Azeem F, Ali MA, Pamirsky IE, Golokhvast KS, Yang SH, Atif RM, Chung G. In Silico Comparison of WRKY Transcription Factors in Wild and Cultivated Soybean and Their Co-expression Network Arbitrating Disease Resistance. Biochem Genet 2024:10.1007/s10528-024-10701-z. [PMID: 38411942 DOI: 10.1007/s10528-024-10701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
WRKY Transcription factors (TFs) play critical roles in plant defence mechanisms that are activated in response to biotic and abiotic stresses. However, information on the Glycine soja WRKYs (GsoWRKYs) is scarce. Owing to its importance in soybean breeding, here we identified putative WRKY TFs in wild soybean, and compared the results with Glycine max WRKYs (GmaWRKYs) by phylogenetic, conserved motif, and duplication analyses. Moreover, we explored the expression trends of WRKYs in G. max (oomycete, fungi, virus, bacteria, and soybean cyst nematode) and G. soja (soybean cyst nematode), and identified commonly expressed WRKYs and their co-expressed genes. We identified, 181 and 180 putative WRKYs in G. max and G. soja, respectively. Though the number of WRKYs in both studied species is almost the same, they differ in many ways, i.e., the number of WRKYs on corresponding chromosomes, conserved domain structures, WRKYGQK motif variants, and zinc-finger motifs. WRKYs in both species grouped in three major clads, i.e., I-III, where group-II had sub-clads IIa-IIe. We found that GsoWRKYs expanded mostly through segmental duplication. A large number of WRKYs were expressed in response to biotic stresses, i.e., Phakospora pachyrhizi, Phytoplasma, Heterodera glycines, Macrophomina phaseolina, and Soybean mosaic virus; 56 GmaWRKYs were commonly expressed in soybean plants infected with these diseases. Finally, 30 and 63 GmaWRKYs and GsoWRKYs co-expressed with 205 and 123 non-WRKY genes, respectively, indicating that WRKYs play essential roles in biotic stress tolerance in Glycine species.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Russia, 634050.
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia.
| | - Hafiz Kashif Khalil
- Department of Plant Breeding and Genetics / CAS-AFS, University of Agriculture, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Igor Eduardovich Pamirsky
- Siberian Federal Scientific Centre of AgrobiotechnologyCentralnaya, Presidium, Krasnoobsk, Russia, 633501
| | - Kirill S Golokhvast
- Advanced Engineering School (Agrobiotek), Tomsk State University, Lenin Ave, 36, Tomsk Oblast, Russia, 634050
- Siberian Federal Scientific Centre of AgrobiotechnologyCentralnaya, Presidium, Krasnoobsk, Russia, 633501
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, Lenin Str. 36, Tomsk, Russia, 634050
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Yeosu-si, 59626, South Korea
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics / CAS-AFS, University of Agriculture, Faisalabad, Pakistan.
- Precision Agriculture and Analytics Lab, National Centre in Big Data and Cloud Computing, Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan.
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Yeosu-si, 59626, South Korea.
| |
Collapse
|
7
|
Sharma P, Mishra S, Pandey B, Singh G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat ( Triticum aestivum L). FRONTIERS IN PLANT SCIENCE 2023; 14:1266699. [PMID: 38111881 PMCID: PMC10726055 DOI: 10.3389/fpls.2023.1266699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023]
Abstract
Salt stress affects plant growth and development, resulting in the loss of crop yield across the world, and sodium-proton antiporters (NHXs) are one of the genes known to promote salt tolerance in transgenic plants. In this study, we conducted a comprehensive genome-wide analysis and expression profile of NHX genes in wheat under salinity stress. We identified 30 TaNHX genes in wheat based on the Na+/H+ exchanger domain, with all genes containing an amiloride motif except one, a known for inhibiting Na+ ions in plants. Phylogenetic analysis classified these genes into three classes with subfamilies: 12 were localized in vacuoles, while 18 were in the endoplasmic reticulum and plasma membrane. Promoter analysis revealed stress-related cis-acting elements, indicating their potential role in abiotic stress tolerance. The non-synonymous (Ka)/synonymous (Ks) ratios highlighted that the majority of TaNHX genes experienced robust purifying selection throughout their evolutionary history. Transcriptomis data analysis and qRT-PCR demonstrated distinct expression patterns for TaNHX genes across various tissues when subjected to salt stress. Additionally, we predicted 20 different miRNA candidates targeting the identified TaNHX genes. Protein-protein interaction prediction revealed NHX6's involvement in the SOS1 pathway, while NHX1 gene exhibit proton antiporter activity. Molecular dynamics (MD) simulations were also conducted to examine the interactions of TaNHX1, TaNHX2, and TaNHX3. These results represent a significant advancement in our understanding of the molecular mechanisms governing Na+ transporters. This may also offer promising avenues for future studies aimed at unraveling the intricate details of their biological roles and applications.
Collapse
Affiliation(s)
- Pradeep Sharma
- Crop Improvement division, ICAR-Indian Institute of Wheat and Barley Researh, Karnal, India
| | - Shefali Mishra
- Crop Improvement division, ICAR-Indian Institute of Wheat and Barley Researh, Karnal, India
| | - Bharati Pandey
- Division of AgriBioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Singh
- Crop Improvement division, ICAR-Indian Institute of Wheat and Barley Researh, Karnal, India
| |
Collapse
|
8
|
Rai GK, Mishra S, Chouhan R, Mushtaq M, Chowdhary AA, Rai PK, Kumar RR, Kumar P, Perez-Alfocea F, Colla G, Cardarelli M, Srivastava V, Gandhi SG. Plant salinity stress, sensing, and its mitigation through WRKY. FRONTIERS IN PLANT SCIENCE 2023; 14:1238507. [PMID: 37860245 PMCID: PMC10582725 DOI: 10.3389/fpls.2023.1238507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Salinity or salt stress has deleterious effects on plant growth and development. It imposes osmotic, ionic, and secondary stresses, including oxidative stress on the plants and is responsible for the reduction of overall crop productivity and therefore challenges global food security. Plants respond to salinity, by triggering homoeostatic mechanisms that counter salt-triggered disturbances in the physiology and biochemistry of plants. This involves the activation of many signaling components such as SOS pathway, ABA pathway, and ROS and osmotic stress signaling. These biochemical responses are accompanied by transcriptional modulation of stress-responsive genes, which is mostly mediated by salt-induced transcription factor (TF) activity. Among the TFs, the multifaceted significance of WRKY proteins has been realized in many diverse avenues of plants' life including regulation of plant stress response. Therefore, in this review, we aimed to highlight the significance of salinity in a global perspective, the mechanism of salt sensing in plants, and the contribution of WRKYs in the modulation of plants' response to salinity stress. This review will be a substantial tool to investigate this problem in different perspectives, targeting WRKY and offering directions to better manage salinity stress in the field to ensure food security.
Collapse
Affiliation(s)
- Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Rekha Chouhan
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Pradeep K. Rai
- Advance Center for Horticulture Research, Udheywala, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu & Kashmir, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep Kumar
- Division of Integrated Farming System, Central Arid Zone Research Institute, Indian Council of Agricultural Research (ICAR), Jodhpur, India
| | - Francisco Perez-Alfocea
- Department of Nutrition, Centre for Applied Soil Science and Biology of the Segura (CEBAS), of the Spanish National Research Council (CSIC), Murcia, Spain
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu & Kashmir, India
| | - Sumit G. Gandhi
- Infectious Diseases Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| |
Collapse
|
9
|
Liu J, Li G, Wang R, Wang G, Wan Y. Genome-Wide Analysis of WRKY Transcription Factors Involved in Abiotic Stress and ABA Response in Caragana korshinskii. Int J Mol Sci 2023; 24:ijms24119519. [PMID: 37298467 DOI: 10.3390/ijms24119519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The WRKY transcription factor family plays a vital role in plant development and environmental response. However, the information of WRKY genes at the genome-wide level is rarely reported in Caragana korshinskii. In this study, we identified and renamed 86 CkWRKY genes, which were further classified into three groups through phylogenetic analysis. Most of these WRKY genes were clustered and distributed on eight chromosomes. Multiple sequence alignment revealed that the conserved domain (WRKYGQK) of the CkWRKYs was basically consistent, but there were also six variation types (WRKYGKK, GRKYGQK, WRMYGQK, WRKYGHK, WKKYEEK and RRKYGQK) that appeared. The motif composition of the CkWRKYs was quite conservative in each group. In general, the number of WRKY genes gradually increased from lower to higher plant species in the evolutionary analysis of 28 species, with some exceptions. Transcriptomics data and RT-qPCR analysis showed that the CkWRKYs in different groups were involved in abiotic stresses and ABA response. Our results provided a basis for the functional characterization of the CkWRKYs involved in stress resistance in C. korshinskii.
Collapse
Affiliation(s)
- Jinhua Liu
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guojing Li
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruigang Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guangxia Wang
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongqing Wan
- Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
10
|
Chen M, Li M, Zhao L, Song H. Deciphering evolutionary dynamics of WRKY genes in Arachis species. BMC Genomics 2023; 24:48. [PMID: 36707767 PMCID: PMC9881300 DOI: 10.1186/s12864-023-09149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cultivated peanut (Arachis hypogaea), a progeny of the cross between A. duranensis and A. ipaensis, is an important oil and protein crop from South America. To date, at least six Arachis genomes have been sequenced. WRKY transcription factors (TFs) play crucial roles in plant growth, development, and response to abiotic and biotic stresses. WRKY TFs have been identified in A. duranensis, A. ipaensis, and A. hypogaea cv. Tifrunner; however, variations in their number and evolutionary patterns across various Arachis spp. remain unclear. RESULTS WRKY TFs were identified and compared across different Arachis species, including A. duranensis, A. ipaensis, A. monticola, A. hypogaea cultivars (cv.) Fuhuasheng, A. hypogaea cv. Shitouqi, and A. hypogaea cv. Tifrunner. The results showed that the WRKY TFs underwent dynamic equilibrium between diploid and tetraploid peanut species, characterized by the loss of old WRKY TFs and retention of the new ones. Notably, cultivated peanuts inherited more conserved WRKY orthologs from wild tetraploid peanuts than their wild diploid donors. Analysis of the W-box elements and protein-protein interactions revealed that different domestication processes affected WRKY evolution across cultivated peanut varieties. WRKY TFs of A. hypogaea cv. Fuhuasheng and Shitouqi exhibited a similar domestication process, while those of cv. Tifrunner of the same species underwent a different domestication process based on protein-protein interaction analysis. CONCLUSIONS This study provides new insights into the evolution of WRKY TFs in Arachis spp.
Collapse
Affiliation(s)
- Mingwei Chen
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Meiran Li
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Longgang Zhao
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao, China
| | - Hui Song
- grid.412608.90000 0000 9526 6338Key Laboratory of National Forestry and Grassland Administration On Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao, China ,grid.412608.90000 0000 9526 6338High-Efficiency Agricultural Technology Industry Research Institute of Saline and Alkaline Land of Dongying, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Evolutionary Analysis of StSnRK2 Family Genes and Their Overexpression in Transgenic Tobacco Improve Drought Tolerance. Int J Mol Sci 2023; 24:ijms24021000. [PMID: 36674521 PMCID: PMC9861535 DOI: 10.3390/ijms24021000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sucrose non-ferment 1-related protein kinase 2 (SnRK2) is a highly conserved protein kinase in plants that plays an important role in regulating plant response to drought stress. Although it has been reported in some plants, the evolutionary relationship of potato SnRK2s and their function in drought resistance have not been systematically analyzed. In this study, molecular characteristic analysis showed that 8 StSnRK2s were distributed on six chromosomes, coding proteins were divided into three subgroups, and StSnRK2s clustered in the same subgroup had similar conserved motifs and domains. In addition, StSnRK2 has a wide range of replication events in some species, making it closer to dicots in the process of evolution. In addition, the average nonsynonymous substitution rate/synonymous substitution rate (Ka/Ks) value of SnRK2s in monocots was higher than that of dicots. The codon usage index showed that SnRK2s prefer to use cytosine 3 (C3s), guanine 3 (G3s) and GC content (GC3s) in monocots, whereas thymine 3 (T3s) and adenine 3 (A3s) are preferred in dicots. Furthermore, stress response analysis showed that the expression of StSnRK2s under different degrees of drought stress significantly correlated with one or more stress-related physiological indices, such as proline and malondialdehyde (MDA) content, superoxide dismutase (SOD) and catalase (CAT) activity, ion leakage (IL) etc. The drought resistance of StSnRK2 transgenic plants was determined to occur in the order of StSnRK2.1/2.8 > StSnRK2.2/2.5 > StSnRK2.4/2.6 > StSnRK2.3 > StSnRK2.7, was attributed to not only lower IL but also higher proline, soluble sugar contents and stress-related genes in transgenic plants compared to wild type (WT). In conclusion, this study provides useful insights into the evolution and function of StSnRK2s and lays a foundation for further study on the molecular mechanism of StSnRK2s regulating potato drought resistance.
Collapse
|
12
|
Genome-Wide Identification of WRKY Family Genes and the Expression Profiles in Response to Nitrogen Deficiency in Poplar. Genes (Basel) 2022; 13:genes13122324. [PMID: 36553591 PMCID: PMC9777946 DOI: 10.3390/genes13122324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The fast-growing arbor poplar is widely distributed across the world and is susceptible to nitrogen availability. The WRKY transcription factor is an important regulatory node of stress tolerance as well as nutrient utilization. However, the potential response mechanism of WRKY genes toward nitrogen is poorly understood. Therefore, the identification of WRKY genes on the Populus trichocarpa genome was performed, and 98 PtWRKYs (i.e., PtWRKY1 to PtWRKY98) were identified. Phylogenetic analysis and the promoter cis-acting element detection revealed that PtWRKYs have multiple functions, including phosphorus and nitrogen homeostasis. By constructing multilayer-hierarchical gene regulatory networks (ML-hGRNs), it was predicted that many WRKY transcription factors were involved in the nitrogen response, such as PtWRKY33 and PtWRKY95. They mainly regulated the expression of primary nitrogen-responsive genes (NRGs), such as PtNRT2.5A, PtNR2 and PtGLT2. The integrative analysis of transcriptome and RT-qPCR results show that the expression levels of 6 and 15 PtWRKYs were regulated by nitrogen availability in roots and leaves, respectively, and those were also found in ML-hGRN. Our study demonstrates that PtWRKYs respond to nitrogen by regulating NRGs, which enriches the nitrate-responsive transcription factor network and helps to uncover the hub of nitrate and its related signaling regulation.
Collapse
|
13
|
Maqsood H, Munir F, Amir R, Gul A. Genome-wide identification, comprehensive characterization of transcription factors, cis-regulatory elements, protein homology, and protein interaction network of DREB gene family in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 13:1031679. [PMID: 36507398 PMCID: PMC9731513 DOI: 10.3389/fpls.2022.1031679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2022] [Indexed: 06/12/2023]
Abstract
Tomato is a drought-sensitive crop which has high susceptibility to adverse climatic changes. Dehydration-responsive element-binding (DREB) are significant plant transcription factors that have a vital role in regulating plant abiotic stress tolerance by networking with DRE/CRT cis-regulatory elements in response to stresses. In this study, bioinformatics analysis was performed to conduct the genome-wide identification and characterization of DREB genes and promoter elements in Solanum lycopersicum. In genome-wide coverage, 58 SlDREB genes were discovered on 12 chromosomes that justified the criteria of the presence of AP2 domain as conserved motifs. Intron-exon organization and motif analysis showed consistency with phylogenetic analysis and confirmed the absence of the A3 class, thus dividing the SlDREB genes into five categories. Gene expansion was observed through tandem duplication and segmental duplication gene events in SlDREB genes. Ka/Ks values were calculated in ortholog pairs that indicated divergence time and occurrence of purification selection during the evolutionary period. Synteny analysis demonstrated that 32 out of 58 and 47 out of 58 SlDREB genes were orthologs to Arabidopsis and Solanum tuberosum, respectively. Subcellular localization predicted that SlDREB genes were present in the nucleus and performed primary functions in DNA binding to regulate the transcriptional processes according to gene ontology. Cis-acting regulatory element analysis revealed the presence of 103 motifs in 2.5-kbp upstream promoter sequences of 58 SlDREB genes. Five representative SlDREB proteins were selected from the resultant DREB subgroups for 3D protein modeling through the Phyre2 server. All models confirmed about 90% residues in the favorable region through Ramachandran plot analysis. Moreover, active catalytic sites and occurrence in disorder regions indicated the structural and functional flexibility of SlDREB proteins. Protein association networks through STRING software suggested the potential interactors that belong to different gene families and are involved in regulating similar functional and biological processes. Transcriptome data analysis has revealed that the SlDREB gene family is engaged in defense response against drought and heat stress conditions in tomato. Overall, this comprehensive research reveals the identification and characterization of SlDREB genes that provide potential knowledge for improving abiotic stress tolerance in tomato.
Collapse
Affiliation(s)
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | | | | |
Collapse
|
14
|
Genome Wide Analysis of Family-1 UDP Glycosyltransferases in Populus trichocarpa Specifies Abiotic Stress Responsive Glycosylation Mechanisms. Genes (Basel) 2022; 13:genes13091640. [PMID: 36140806 PMCID: PMC9498546 DOI: 10.3390/genes13091640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Populus trichocarpa (Black cottonwood) is a dominant timber-yielding tree that has become a notable model plant for genome-level insights in forest trees. The efficient transport and solubility of various glycoside-associated compounds is linked to Family-1 UDP-glycosyltransferase (EC 2.4.1.x; UGTs) enzymes. These glycosyltransferase enzymes play a vital role in diverse plant functions, such as regulation of hormonal homeostasis, growth and development (seed, flower, fiber, root, etc.), xenobiotic detoxification, stress response (salt, drought, and oxidative), and biosynthesis of secondary metabolites. Here, we report a genome-wide analysis of the P. trichocarpa genome that identified 191 putative UGTs distributed across all chromosomes (with the exception of chromosome 20) based on 44 conserved plant secondary product glycosyltransferase (PSPG) motif amino acid sequences. Phylogenetic analysis of the 191 Populus UGTs together with 22 referenced UGTs from Arabidopsis and maize clustered the putative UGTs into 16 major groups (A–P). Whole-genome duplication events were the dominant pattern of duplication among UGTs in Populus. A well-conserved intron insertion was detected in most intron-containing UGTs across eight examined eudicots, including Populus. Most of the UGT genes were found preferentially expressed in leaf and root tissues in general. The regulation of putative UGT expression in response to drought, salt and heat stress was observed based on microarray and available RNA sequencing datasets. Up- and down-regulated UGT expression models were designed, based on transcripts per kilobase million values, confirmed their maximally varied expression under drought, salt and heat stresses. Co-expression networking of putative UGTs indicated their maximum co-expression with cytochrome P450 genes involved in triterpenoid biosynthesis. Our results provide an important resource for the identification of functional UGT genes to manipulate abiotic stress responsive glycosylation in Populus.
Collapse
|
15
|
Whole-Genome Identification of APX and CAT Gene Families in Cultivated and Wild Soybeans and Their Regulatory Function in Plant Development and Stress Response. Antioxidants (Basel) 2022; 11:antiox11081626. [PMID: 36009347 PMCID: PMC9404807 DOI: 10.3390/antiox11081626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Plants coevolved with their antioxidant defense systems, which detoxify and adjust levels of reactive oxygen species (ROS) under multiple plant stresses. We performed whole-genome identification of ascorbate peroxidase (APX) and catalase (CAT) families in cultivated and wild soybeans. In cultivated and wild soybean genomes, we identified 11 and 10 APX genes, respectively, whereas the numbers of identified CAT genes were four in each species. Comparative phylogenetic analysis revealed more homology among cultivated and wild soybeans relative to other legumes. Exon/intron structure, motif and synteny blocks are conserved in cultivated and wild species. According to the Ka/Ks value, purifying selection is a major force for evolution of these gene families in wild soybean; however, the APX gene family was evolved by both positive and purifying selection in cultivated soybean. Segmental duplication was a major factor involved in the expansion of APX and CAT genes. Expression patterns revealed that APX and CAT genes are differentially expressed across fourteen different soybean tissues under water deficit (WD), heat stress (HS) and combined drought plus heat stress (WD + HS). Altogether, the current study provides broad insights into these gene families in soybeans. Our results indicate that APX and CAT gene families modulate multiple stress response in soybeans.
Collapse
|
16
|
Ahmar S, Gruszka D. In-Silico Study of Brassinosteroid Signaling Genes in Rice Provides Insight Into Mechanisms Which Regulate Their Expression. Front Genet 2022; 13:953458. [PMID: 35873468 PMCID: PMC9299959 DOI: 10.3389/fgene.2022.953458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) regulate a diverse spectrum of processes during plant growth and development and modulate plant physiology in response to environmental fluctuations and stress factors. Thus, the BR signaling regulators have the potential to be targeted for gene editing to optimize the architecture of plants and make them more resilient to environmental stress. Our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process accumulated in the model dicot species - Arabidopsis thaliana. A deeper understanding of the BR signaling and response during plant growth and adaptation to continually changing environmental conditions will provide insight into mechanisms that govern the coordinated expression of the BR signaling genes in rice (Oryza sativa) which is a model for cereal crops. Therefore, in this study a comprehensive and detailed in silico analysis of promoter sequences of rice BR signaling genes was performed. Moreover, expression profiles of these genes during various developmental stages and reactions to several stress conditions were analyzed. Additionally, a model of interactions between the encoded proteins was also established. The obtained results revealed that promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice. Different transcription factor-binding sites and cis-regulatory elements in the gene promoters were identified which are involved in regulation of the genes’ expression during plant development and reactions to stress conditions. The in-silico analysis of BR signaling genes in O. sativa provides information about mechanisms which regulate the coordinated expression of these genes during rice development and in response to other phytohormones and environmental factors. Since rice is both an important crop and the model species for other cereals, this information may be important for understanding the regulatory mechanisms that modulate the BR signaling in monocot species. It can also provide new ways for the plant genetic engineering technology by providing novel potential targets, either cis-elements or transcriptional factors, to create elite genotypes with desirable traits.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
17
|
Matos MKDS, Benko-Iseppon AM, Bezerra-Neto JP, Ferreira-Neto JRC, Wang Y, Liu H, Pandolfi V, Amorim LLB, Willadino L, do Vale Amorim TC, Kido EA, Vianello RP, Timko MP, Brasileiro-Vidal AC. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration. Gene X 2022; 823:146377. [PMID: 35231571 DOI: 10.1016/j.gene.2022.146377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.
Collapse
Affiliation(s)
- Mitalle Karen da Silva Matos
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana Maria Benko-Iseppon
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - João Pacifico Bezerra-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - José Ribamar Costa Ferreira-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Yu Wang
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hai Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Valesca Pandolfi
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lidiane Lindinalva Barbosa Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lilia Willadino
- Laboratório de Cultura de Tecidos Vegetais, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Thialisson Caaci do Vale Amorim
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ederson Akio Kido
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Rosana Pereira Vianello
- Laboratório de Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Arroz e Feijão, Goiânia, Brazil
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Ana Christina Brasileiro-Vidal
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
18
|
Alam I, Wu X, Ge L. Comprehensive Genomic Survey, Evolution, and Expression Analysis of GIF Gene Family during the Development and Metal Ion Stress Responses in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040570. [PMID: 35214903 PMCID: PMC8876841 DOI: 10.3390/plants11040570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
The GIF gene family is one of the plant transcription factors specific to seed plants. The family members are expressed in all lateral organs produced by apical and floral meristems and contribute to the development of leaves, shoots, flowers, and seeds. This study identified eight GIF genes in the soybean genome and clustered them into three groups. Analyses of Ka/Ks ratios and divergence times indicated that they had undergone purifying selection during species evolution. RNA-sequence and relative expression patterns of these GmGIF genes tended to be conserved, while different expression patterns were also observed between the duplicated GIF members in soybean. Numerous cis-regulatory elements related to plant hormones, light, and stresses were found in the promoter regions of these GmGIF genes. Moreover, the expression patterns of GmGIF members were confirmed in soybean roots under cadmium (Cd) and copper (Cu) stress, indicating their potential functions in the heavy metal response in soybean. Our research provides valuable information for the functional characterization of each GmGIF gene in different legumes in the future.
Collapse
Affiliation(s)
- Intikhab Alam
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (I.A.); (X.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xueting Wu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (I.A.); (X.W.)
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (I.A.); (X.W.)
- Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Kesawat MS, Kherawat BS, Singh A, Dey P, Routray S, Mohapatra C, Saha D, Ram C, Siddique KHM, Kumar A, Gupta R, Chung SM, Kumar M. Genome-Wide Analysis and Characterization of the Proline-Rich Extensin-like Receptor Kinases (PERKs) Gene Family Reveals Their Role in Different Developmental Stages and Stress Conditions in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:496. [PMID: 35214830 PMCID: PMC8880425 DOI: 10.3390/plants11040496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/19/2023]
Abstract
Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study's outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, Rajasthan, India;
| | - Anupama Singh
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
| | - Prajjal Dey
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (M.S.K.); (A.S.); (P.D.)
| | - Snehasish Routray
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (S.R.); (C.M.)
| | - Chinmayee Mohapatra
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Sri Sri University, Cuttack 754006, Odisha, India; (S.R.); (C.M.)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneshwar 752050, Odisha, India;
| | - Chet Ram
- ICAR-Central Institute for Arid Horticulture, Bikaner 334006, Rajasthan, India;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ajay Kumar
- Agriculture Research Organization, Volcani Center, Department of Postharvest Science, Rishon Lezzion 50250, Israel;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea;
| | - Sang-Min Chung
- Department of Life Science, Dongguk University, Dong-gu, Ilsan, Seoul 10326, Korea;
| | - Manu Kumar
- Department of Life Science, Dongguk University, Dong-gu, Ilsan, Seoul 10326, Korea;
| |
Collapse
|
20
|
Zhu S, Fan R, Xiong X, Li J, Xiang L, Hong Y, Ye Y, Zhang X, Yu X, Chen Y. MeWRKY IIas, Subfamily Genes of WRKY Transcription Factors From Cassava, Play an Important Role in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:890555. [PMID: 35720572 PMCID: PMC9201764 DOI: 10.3389/fpls.2022.890555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection.
Collapse
Affiliation(s)
- Shousong Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ruochen Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xi Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianjun Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Li Xiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Yuhui Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yiwei Ye
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- CGIAR Research Program on Roots Tubers and Bananas (RTB), International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Xiaohui Yu
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Yinhua Chen
| |
Collapse
|
21
|
Overexpression of CpWRKY75 from Chimonanthus praecox Promotes Flowering Time in Transgenic Arabidopsis. Genes (Basel) 2021; 13:genes13010068. [PMID: 35052409 PMCID: PMC8774968 DOI: 10.3390/genes13010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
WRKY transcription factors play critical roles in the physiological processes of plants. Although the roles of WRKYs have been characterized in some model plants, their roles in woody plants, especially wintersweet (Chimonanthus praecox), are largely unclear. In this study, a wintersweet WRKY gene named CpWRKY75 belonging to group IIc was isolated and its characteristics were identified. CpWRKY75 is a nucleus-localized protein, and exhibited no transcriptional activation activity in yeast. CpWRKY75 was highly expressed in flowers at different bloom stages. Ectopic expression of CpWRKY75 significantly promoted the flowering time of transgenic Arabidopsis (Arabidopsis thaliana), as determined by the rosette leaf number and first flower open time. The expression levels of flowering-related genes were quantified by qRT-PCR, and the results suggested that CpWRKY75 had obvious influence on the expression level of MICRORNA156C (MIR156C), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9), FLOWERING LOCUS T (FT), LEAFY (LFY), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), APETALA1 (AP1), CAULIFLOWER (CAL), and FRUITFULL (FUL). These results suggest that CpWRKY75 might have a flowering time regulation function, and additionally provide a new gene resource for the genetic engineering of woody flowering plants.
Collapse
|
22
|
ain-Ali QU, Mushtaq N, Amir R, Gul A, Tahir M, Munir F. Genome-wide promoter analysis, homology modeling and protein interaction network of Dehydration Responsive Element Binding (DREB) gene family in Solanum tuberosum. PLoS One 2021; 16:e0261215. [PMID: 34914734 PMCID: PMC8675703 DOI: 10.1371/journal.pone.0261215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022] Open
Abstract
Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.
Collapse
Affiliation(s)
- Qurat-ul ain-Ali
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Tahir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
23
|
Zhang J, Han Z, Lu Y, Zhao Y, Wang Y, Zhang J, Ma H, Han YZ. Genome-wide identification, structural and gene expression analysis of the nitrate transporters (NRTs) family in potato (Solanum tuberosum L.). PLoS One 2021; 16:e0257383. [PMID: 34673820 PMCID: PMC8530285 DOI: 10.1371/journal.pone.0257383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nitrogen (N2) is the most important source of mineral N for plant growth, which was mainly transported by nitrate transporters (NRTs). However, little is known about the NRT gene family in potato. In this study, StNRT gene family members were identified in potato. In addition, we performed StNRT subfamily classification, gene structure and distribution analysis, and conserved domain prediction using various bioinformatics tools. Totally, 39 StNRT gene members were identified in potato genome, including 33, 4 and 2 member belong to NRT1, NRT2, and NRT3, respectively. These 39 StNRT genes were randomly distributed on all chromosomes. The collinearity results show that StNRT members in potato are closely related to Solanum lycopersicum and Solanum melongena. For the expression, different members of StNRT play different roles in leaves and roots. Especially under sufficient nitrogen conditions, different members have a clear distribution in different tissues. These results provide valuable information for identifying the members of the StNRT family in potato and could provide functional characterization of StNRT genes in further research.
Collapse
Affiliation(s)
- Jingying Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Zhijun Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yue Lu
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yanfei Zhao
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yaping Wang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Jiayue Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Haoran Ma
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yu Zhu Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
- * E-mail:
| |
Collapse
|
24
|
Kan J, Gao G, He Q, Gao Q, Jiang C, Ahmar S, Liu J, Zhang J, Yang P. Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. Int J Mol Sci 2021; 22:5354. [PMID: 34069581 PMCID: PMC8160967 DOI: 10.3390/ijms22105354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (J.K.); (G.G.); (Q.H.); (Q.G.); (C.J.); (S.A.); (J.L.); (J.Z.)
| |
Collapse
|
25
|
Zhao X, Yang J, Li G, Sun Z, Hu S, Chen Y, Guo W, Hou H. Genome-wide identification and comparative analysis of the WRKY gene family in aquatic plants and their response to abiotic stresses in giant duckweed (Spirodela polyrhiza). Genomics 2021; 113:1761-1777. [PMID: 33862182 DOI: 10.1016/j.ygeno.2021.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/02/2021] [Accepted: 03/06/2021] [Indexed: 12/11/2022]
Abstract
WRKY is one of the largest transcription factor families across higher plant species and is involved in important biological processes and plant responses to various biotic/abiotic stresses. However, only a few investigations on WRKYs have been conducted in aquatic plants. This study first systematically analyzed the gene structure, protein properties, and phylogenetic relationship of 693 WRKYs in nine aquatic and two wetland plants at the genome-wide level. The pattern of WRKY groups in two aquatic ferns provided new evidence for the origin and evolution of WRKY genes. ARE cis-regulatory elements show an unusual high frequency in the promoter region of WRKY genes, indicating the adaptation to the aquatic habitat in aquatic plants. The WRKY gene family experienced a series of gene loss events in aquatic plants, especially group III. Further studies were conducted on the interaction network of SpWRKYs, their target genes, and non-coding RNAs. The expression profile of SpWRKYs under phosphate starvation, cold, and submergence conditions revealed that most SpWRKYs are involved in the response to abiotic stresses. Our investigations lay the foundation for further study on the mechanism of WRKYs responding to abiotic stresses in aquatic plants.
Collapse
Affiliation(s)
- Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Environment and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, Henan, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiqi Hu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Guo
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Liu Z, Shi L, Yang S, Qiu S, Ma X, Cai J, Guan D, Wang Z, He S. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. MOLECULAR PLANT PATHOLOGY 2021; 22:3-18. [PMID: 33151622 PMCID: PMC7749755 DOI: 10.1111/mpp.13004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 05/11/2023]
Abstract
CaWRKY40 was previously found to be transcriptionally up-regulated by Ralstonia solanacearum inoculation (RSI) or heat stress (HS), but the underlying mechanism remains unknown. Herein, we report that a double-W box-element (DWE) in the promoter of CaWRKY40 is critical for these responses. The upstream W box unit WI of this composite element is crucial for preferential binding by CaWRKY40 and responsiveness to RSI or HS. DWE-driven CaWRKY40 can be transcriptionally and nonspecifically regulated by itself and by CaWRKY58 and CaWRKY27. The DWE was also found in the promoters of CaWRKY40 orthologs, including AtWRKY40, VvWRKY40, GmWRKY40, CplWRKY40, SaWRKY40, SpWRKY40, NtWRKY40, and NaWRKY40. DWEAtWRKY40 was analogous to DWECaWRKY40 by responding to RSI or HS and AtWRKY40 expression. These data suggest that a conserved response of plants to pathogen infection or HS is probably mediated by binding of the DWE by WRKY40.
Collapse
Affiliation(s)
- Zhi‐Qin Liu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lan‐Ping Shi
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Sheng Yang
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shan‐Shan Qiu
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiao‐Ling Ma
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jin‐Sen Cai
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - De‐Yi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zong‐Hua Wang
- Fujian University Key Laboratory for Plant‐Microbe InteractionCollege of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Shui‐Lin He
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive UtilizationFujian Agriculture and Forestry UniversityFuzhouChina
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
27
|
Zhang J, Han Z, Lu Y, Zhao Y, Wang Y, Zhang J, Ma H, Han YZ. Genome-wide identification, structural and gene expression analysis of the nitrate transporters (NRTs) family in potato (Solanum tuberosum L.). PLoS One 2021. [PMID: 34673820 DOI: 10.1371/journalpone.0257383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Nitrogen (N2) is the most important source of mineral N for plant growth, which was mainly transported by nitrate transporters (NRTs). However, little is known about the NRT gene family in potato. In this study, StNRT gene family members were identified in potato. In addition, we performed StNRT subfamily classification, gene structure and distribution analysis, and conserved domain prediction using various bioinformatics tools. Totally, 39 StNRT gene members were identified in potato genome, including 33, 4 and 2 member belong to NRT1, NRT2, and NRT3, respectively. These 39 StNRT genes were randomly distributed on all chromosomes. The collinearity results show that StNRT members in potato are closely related to Solanum lycopersicum and Solanum melongena. For the expression, different members of StNRT play different roles in leaves and roots. Especially under sufficient nitrogen conditions, different members have a clear distribution in different tissues. These results provide valuable information for identifying the members of the StNRT family in potato and could provide functional characterization of StNRT genes in further research.
Collapse
Affiliation(s)
- Jingying Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Zhijun Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yue Lu
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yanfei Zhao
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yaping Wang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Jiayue Zhang
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Haoran Ma
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| | - Yu Zhu Han
- College of horticulture, Jilin Agricultural University, Changchun City, P.R. China
| |
Collapse
|
28
|
Lakhssassi N, Zhou Z, Liu S, Piya S, Cullen MA, El Baze A, Knizia D, Patil GB, Badad O, Embaby MG, Meksem J, Lakhssassi A, AbuGhazaleh A, Hewezi T, Meksem K. Soybean TILLING-by-Sequencing+ reveals the role of novel GmSACPD members in unsaturated fatty acid biosynthesis while maintaining healthy nodules. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6969-6987. [PMID: 32898219 DOI: 10.1093/jxb/eraa402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 05/07/2023]
Abstract
Developing soybean lines with high levels of stearic acid is a primary goal of the soybean industry. Most high-stearic-acid soybeans carry different GmSACPD-C mutated alleles. However, due to the dual role of GmSACPD-C in seeds and nodule development, all derived deleterious GmSACPD-C mutant alleles are of extremely poor agronomic value because of defective nodulation. The soybean stearoyl-acyl carrier protein desaturase (GmSACPD) gene family is composed of five members. Comparative genomics analysis indicated that SACPD genes were duplicated and derived from a common ancestor that is still present in chlorophytic algae. Synteny analysis showed the presence of segment duplications between GmSACPD-A/GmSACPD-B, and GmSACPD-C/GmSACPD-D. GmSACPD-E was not contained in any duplicated segment and may be the result of tandem duplication. We developed a TILLING by Target Capture Sequencing (Tilling-by-Sequencing+) technology, a versatile extension of the conventional TILLING by sequencing, and successfully identified 12, 14, and 18 ethyl methanesulfonate mutants at the GmSACPD-A, GmSACPD-B, and GmSACPD-D genes, respectively. Functional analysis of all identified mutants revealed an unprecedented role of GmSACPD-A, GmSACPD-B, and GmSACPD-D in unsaturated fatty acid biosynthesis without affecting nodule development and structure. This discovery will positively impact the development of high-stearic-acid lines to enhance soybean nutritional value without potential developmental tradeoffs.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mallory A Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Gunvant B Patil
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Oussama Badad
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Mohamed G Embaby
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, Nancy, France
| | - Amer AbuGhazaleh
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
29
|
Xu H, Zhang L, Zhang K, Ran Y. Progresses, Challenges, and Prospects of Genome Editing in Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2020; 11:571138. [PMID: 33193504 PMCID: PMC7642200 DOI: 10.3389/fpls.2020.571138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 05/17/2023]
Abstract
Soybean is grown worldwide for oil and protein source as food, feed and industrial raw material for biofuel. Steady increase in soybean production in the past century mainly attributes to genetic mediation including hybridization, mutagenesis and transgenesis. However, genetic resource limitation and intricate social issues in use of transgenic technology impede soybean improvement to meet rapid increases in global demand for soybean products. New approaches in genomics and development of site-specific nucleases (SSNs) based genome editing technologies have expanded soybean genetic variations in its germplasm and have potential to make precise modification of genes controlling the important agronomic traits in an elite background. ZFNs, TALENS and CRISPR/Cas9 have been adapted in soybean improvement for targeted deletions, additions, replacements and corrections in the genome. The availability of reference genome assembly and genomic resources increases feasibility in using current genome editing technologies and their new development. This review summarizes the status of genome editing in soybean improvement and future directions in this field.
Collapse
Affiliation(s)
| | | | | | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| |
Collapse
|
30
|
Yang Y, Ma K, Zhang T, Li L, Wang J, Cheng T, Zhang Q. Characteristics and Expression Analyses of Trehalose-6-Phosphate Synthase Family in Prunus mume Reveal Genes Involved in Trehalose Biosynthesis and Drought Response. Biomolecules 2020; 10:biom10101358. [PMID: 32977584 PMCID: PMC7598203 DOI: 10.3390/biom10101358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Trehalose and its key synthase (trehalose-6-phosphate synthase, TPS) can improve the drought tolerance of plants. However, little is known about the roles of trehalose and the TPS family in Prunus mume response to drought. In our study, we discovered that the trehalose content in leaf, root, and stem tissues significantly increased in P. mume in response to drought. Therefore, the characteristics and functions of the TPS family are worth investigating in P. mume. We identified nine TPS family members in P. mume, which were divided into two sub-families and characterized by gene structure, promoter elements, protein conserved domains, and protein motifs. We found that the Hydrolase_3 domain and several motifs were highly conserved in Group II instead of Group I. The distinctions between the two groups may result from selective constraints, which we estimated by the dN/dS (ω) ratio. The ω values of all the PmTPS family gene pairs were evaluated as less than 1, indicating that purity selection facilitated their divergence. A phylogenetic tree was constructed using 92 TPSs from 10 Rosaceae species, which were further divided into five clusters. Based on evolutionary analyses, the five clusters of TPS family proteins mainly underwent varied purity selection. The expression patterns of PmTPSs under drought suggested that the TPS family played an important role in the drought tolerance of P. mume. Combining the expression patterns of PmTPSs and the trehalose content changes in leaf, stem, and root tissues under normal conditions and drought stress, we found that the PmTPS2 and PmTPS6 mainly function in the trehalose biosynthesis in P. mume. Our findings not only provide valuable information about the functions of trehalose and TPSs in the drought response of P. mume, but they also contribute to the future drought breeding of P. mume.
Collapse
Affiliation(s)
- Yongjuan Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Kaifeng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tengxun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (Y.Y.); (T.Z.); (L.L.)
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing 100083, China; (K.M.); (J.W.); (T.C.)
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-6233-8005
| |
Collapse
|
31
|
Fu X, Lu Z, Wei H, Zhang J, Yang X, Wu A, Ma L, Kang M, Lu J, Wang H, Yu S. Genome-Wide Identification and Expression Analysis of the NHX (Sodium/Hydrogen Antiporter) Gene Family in Cotton. Front Genet 2020; 11:964. [PMID: 32973884 PMCID: PMC7461838 DOI: 10.3389/fgene.2020.00964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 01/17/2023] Open
Abstract
The sodium/hydrogen antiporter (NHX) gene family with the Na+/H+ exchange protein domain is a transporter of sodium and hydrogen ions and plays an important role in the response of plants to salt stress. Studying the response of cotton to salt stress through comprehensive identification and analysis of NHX genes in several species and their roles in salt tolerance mechanisms is of great significance. In this study, 23, 24, 12, and 12 NHX genes were identified from Gossypium hirsutum (Gh), G. barbadense, G. arboreum and G. raimondii, respectively. Phylogenetic analysis showed that these genes were mainly divided into three clades with significant subcellular localization, namely, endosome (Endo-class), plasma membrane (PM-class) and vacuole (Vac-class). By analyzing the structure of NHX genes and proteins, each branch of the NHX gene family was found to be structurally conserved, and collinearity analysis showed that NHX genes were mainly expressed through whole genome and segmental duplication. The non-synonymous (Ka)/synonymous (Ks) values showed that the NHX gene family experienced strong purifying selection during long-term evolution. Cis-acting element analysis showed that the NHX gene family may be related to the regulation of abscisic acid (ABA) and methyl jasmonate (MeJA) hormones. Additionally, transcriptomic data analysis and qRT-PCR showed that GhNHXs exhibited different expression patterns in each tissue and under different salinities. These results provide an important reference for us to further understand and analyze the molecular regulation mechanism of cotton NHX genes.
Collapse
Affiliation(s)
- Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhengying Lu
- Handan Academy of Agricultural Sciences, Handan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Meng Kang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
32
|
Baillo EH, Hanif MS, Guo Y, Zhang Z, Xu P, Algam SA. Genome-wide Identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PLoS One 2020; 15:e0236651. [PMID: 32804948 PMCID: PMC7430707 DOI: 10.1371/journal.pone.0236651] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
WRKY transcription factors regulate diverse biological processes in plants, including abiotic and biotic stress responses, and constitute one of the largest transcription factor families in higher plants. Although the past decade has seen significant progress towards identifying and functionally characterizing WRKY genes in diverse species, little is known about the WRKY family in sorghum (Sorghum bicolor (L.) moench). Here we report the comprehensive identification of 94 putative WRKY transcription factors (SbWRKYs). The SbWRKYs were divided into three groups (I, II, and III), with those in group II further classified into five subgroups (IIa–IIe), based on their conserved domains and zinc finger motif types. WRKYs from the model plant Arabidopsis (Arabidopsis thaliana) were used for the phylogenetic analysis of all SbWRKY genes. Motif analysis showed that all SbWRKYs contained either one or two WRKY domains and that SbWRKYs within the same group had similar motif compositions. SbWRKY genes were located on all 10 sorghum chromosomes, and some gene clusters and two tandem duplications were detected. SbWRKY gene structure analysis showed that they contained 0–7 introns, with most SbWRKY genes consisting of two introns and three exons. Gene ontology (GO) annotation functionally categorized SbWRKYs under cellular components, molecular functions and biological processes. A cis-element analysis showed that all SbWRKYs contain at least one stress response-related cis-element. We exploited publicly available microarray datasets to analyze the expression profiles of 78 SbWRKY genes at different growth stages and in different tissues. The induction of SbWRKYs by different abiotic stresses hinted at their potential involvement in stress responses. qRT-PCR analysis revealed different expression patterns for SbWRKYs during drought stress. Functionally characterized WRKY genes in Arabidopsis and other species will provide clues for the functional characterization of putative orthologs in sorghum. Thus, the present study delivers a solid foundation for future functional studies of SbWRKY genes and their roles in the response to critical stresses such as drought.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Wad Madani, Gezira, Sudan
- * E-mail: ,
| | - Muhammad Sajid Hanif
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinghui Guo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- * E-mail: ,
| | - Ping Xu
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Soad Ali Algam
- Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
33
|
Meng L, Liu X, He C, Xu B, Li Y, Hu Y. Functional divergence and adaptive selection of KNOX gene family in plants. Open Life Sci 2020; 15:346-363. [PMID: 33817223 PMCID: PMC7874613 DOI: 10.1515/biol-2020-0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
KNOTTED-like homeodomain (KNOX) genes are transcriptional regulators that play an important role in morphogenesis. In the present study, a comparative analysis was performed to investigate the molecular evolution of the characteristics of the KNOX gene family in 10 different plant species. We identified 129 KNOX gene family members, which were categorized into two subfamilies based on multiple sequence alignment and phylogenetic tree reconstruction. Several segmental duplication pairs were found, indicating that different species share a common expansion model. Functional divergence analysis identified the 15 and 52 amino acid sites with significant changes in evolutionary rates and amino acid physicochemical properties as functional divergence sites. Additional selection analysis showed that 14 amino acid sites underwent positive selection during evolution, and two groups of co-evolutionary amino acid sites were identified by Coevolution Analysis using Protein Sequences software. These sites could play critical roles in the molecular evolution of the KNOX gene family in these species. In addition, the expression profiles of KNOX duplicated genes demonstrated functional divergence. Taken together, these results provide novel insights into the structural and functional evolution of the KNOX gene family.
Collapse
Affiliation(s)
- Lingyan Meng
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaomei Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Congfen He
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Biyao Xu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
34
|
Zhao N, He M, Li L, Cui S, Hou M, Wang L, Mu G, Liu L, Yang X. Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaea L.). PLoS One 2020; 15:e0231396. [PMID: 32271855 PMCID: PMC7144997 DOI: 10.1371/journal.pone.0231396] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/22/2020] [Indexed: 11/19/2022] Open
Abstract
WRKY transcription factors play crucial roles in regulation mechanism leading to the adaption of plants to the complex environment. In this study, AhWRKY family was comprehensively analyzed using bioinformatic approaches in combination with transcriptome sequencing data of the drought-tolerant peanut variety ‘L422’. A total of 158 AhWRKY genes were identified and named according to their distribution on the chromosomes. Based on the structural features and phylogenetic analysis of AhWRKY proteins, the AhWRKY family members were classified into three (3) groups, of which group II included five (5) subgroups. Results of structure and conserved motifs analysis for the AhWRKY genes confirmed the accuracy of the clustering analysis. In addition, 12 tandem and 136 segmental duplication genes were identified. The results indicated that segmental duplication events were the main driving force in the evolution of AhWRKY family. Collinearity analysis found that 32 gene pairs existed between Arachis hypogaea and two diploid wild ancestors (Arachis duranensis and Arachis ipaensis), which provided valuable clues for phylogenetic characteristics of AhWRKY family. Furthermore, 19 stress-related cis-acting elements were found in the promoter regions. During the study of gene expression level of AhWRKY family members in response to drought stress, 73 differentially expressed AhWRKY genes were obtained to have been influenced by drought stress. These results provide fundamental insights for further study of WRKY genes in peanut drought resistance.
Collapse
Affiliation(s)
- Nannan Zhao
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Meijing He
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Li Li
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Shunli Cui
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Mingyu Hou
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liang Wang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Guojun Mu
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Lifeng Liu
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail: (LL); (XY)
| | - Xinlei Yang
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
- * E-mail: (LL); (XY)
| |
Collapse
|
35
|
Liu Y, Liu N, Deng X, Liu D, Li M, Cui D, Hu Y, Yan Y. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics 2020; 21:276. [PMID: 32245398 PMCID: PMC7118883 DOI: 10.1186/s12864-020-6691-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results Using the recently released wheat genome database (IWGSC RefSeq v1.0), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31 T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.
Collapse
Affiliation(s)
- Yue Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Nannan Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Mengfei Li
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dada Cui
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China. .,Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
36
|
Wei Y, Liu W, Hu W, Yan Y, Shi H. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. THE NEW PHYTOLOGIST 2020; 226:476-491. [PMID: 31782811 DOI: 10.1111/nph.16346] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/23/2019] [Indexed: 05/25/2023]
Abstract
The 90 kDa heat shock protein (HSP90) is widely involved in various developmental processes and stress responses in plants. However, the molecular chaperone HSP90-constructed protein complex and its function in cassava remain elusive. In this study, we report that HSP90 is essential for drought stress resistance in cassava by regulating abscisic acid (ABA) and hydrogen peroxide (H2 O2 ) using two specific protein inhibitors of HSP90 (geldanamycin (GDA) and radicicol (RAD)). Among 10 MeHSP90s, the transcript of MeHSP90.9 is largely induced during drought stress. Further investigation identifies MeWRKY20 and MeCatalase1 as MeHSP90.9-interacting proteins. MeHSP90.9-, MeWRKY20-, or MeCatalase1-silenced plants through virus-induced gene silencing display drought sensitivity in cassava, indicating that they are important to drought stress response. MeHSP90.9 can promote the direct transcriptional activation of MeWRKY20 on the W-box element of MeNCED5 promoter, encoding a key enzyme in ABA biosynthesis. Moreover, MeHSP90.9 positively regulates the activity of MeCatalase1, and MeHSP90.9-silenced cassava leaves accumulate more H2 O2 under drought stress. Taken together, we demonstrate that the MeHSP90.9 chaperone complex is a regulator of drought stress resistance in cassava.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/ Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
37
|
Wang R, He C, Dong K, Zhao X, Li Y, Hu Y. Delineation of the Crucial Evolutionary Amino Acid Sites in Trehalose-6-Phosphate Synthase From Higher Plants. Evol Bioinform Online 2020; 16:1176934320910145. [PMID: 32214790 PMCID: PMC7065436 DOI: 10.1177/1176934320910145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022] Open
Abstract
Trehalose-6-phosphate synthase (TPS) is a key enzyme in the biosynthesis of trehalose, with its direct product, trehalose-6-phosphate, playing important roles in regulating whole-plant carbohydrate allocation and utilization. Genes encoding TPS constitute a multigene family in which functional divergence appears to have occurred repeatedly. To identify the crucial evolutionary amino acid sites of TPS in higher plants, a series of bioinformatics tools were applied to investigate the phylogenetic relationships, functional divergence, positive selection, and co-evolution of TPS proteins. First, we identified 150 TPS genes from 13 higher plant species. Phylogenetic analysis placed these TPS proteins into 2 clades: clades A and B, of which clade B could be further divided into 4 subclades (B1-B4). This classification was supported by the intron-exon structures, with more introns present in clade A. Next, detection of the critical functionally divergent amino acid sites resulted in the isolation of a total of 286 sites reflecting nonredundant radical shifts in amino acid properties with a high posterior probability cutoff among subclades. In addition, positively selected sites were identified using a codon substitution model, from which 46 amino acid sites were isolated as exhibiting positive selection at a significant level. Moreover, 18 amino acid sites were highlighted both for functional divergence and positive selection; these may thus potentially represent crucial evolutionary sites in the TPS family. Further co-evolutionary analysis revealed 3 pairs of sites: 11S and 12H, 33S and 34N, and 109G and 110E as demonstrating co-evolution. Finally, the 18 crucial evolutionary amino acid sites were mapped in the 3-dimensional structure. A total of 77 sites harboring functionally and structurally important residues of TPS proteins were found by using the CLIPS-4D online tool; notably, no overlap was observed with the identified crucial evolutionary sites, providing positive evidence supporting their designation. A total of 18 sites were isolated as key amino acids by using multiple bioinformatics tools based on their concomitant functional divergence and positive selection. Almost all these key sites are located in 2 domains of this protein family where they exhibit no overlap with the structurally and functionally conserved sites. These results will provide an improved understanding of the complexity of the TPS gene family and of its function and evolution in higher plants. Moreover, this knowledge may facilitate the exploitation of these sites for protein engineering applications.
Collapse
Affiliation(s)
- Rong Wang
- College of Life Sciences, Capital Normal
University, Beijing, China
| | - Congfen He
- Beijing Key Laboratory of Plant
Resources Research and Development, Beijing Technology and Business University,
Beijing, China
| | - Kun Dong
- Beijing Key Laboratory of Plant
Resources Research and Development, Beijing Technology and Business University,
Beijing, China
| | - Xin Zhao
- College of Life Sciences, Capital Normal
University, Beijing, China
| | - Yaxuan Li
- College of Life Sciences, Capital Normal
University, Beijing, China
| | - Yingkao Hu
- College of Life Sciences, Capital Normal
University, Beijing, China
| |
Collapse
|
38
|
Malik WA, Wang X, Wang X, Shu N, Cui R, Chen X, Wang D, Lu X, Yin Z, Wang J, Ye W. Genome-wide expression analysis suggests glutaredoxin genes response to various stresses in cotton. Int J Biol Macromol 2020; 153:470-491. [PMID: 32145231 DOI: 10.1016/j.ijbiomac.2020.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species (ROS) and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Glutaredoxins (GRXs) are ubiquitous oxidoreductase enzymes involved in diverse cellular processes and play a key role in oxidative stress responsive mechanisms. This study was aimed to explore the structure-function relationship and to provide a framework for functional validation and biochemical characterization of various GRX members. In this study, our analysis revealed the presence of 127 genes encoding GRX proteins in G. hirsutum. A total of 758 genes from two typical monocot and nine dicot species were naturally divided into four classes based on phylogenetic analysis. The classification was supported with organization of conserved protein motifs and sequence logos comparison between cotton, rice and Arabidopsis. Cotton GRX gene family has underwent strong purifying selection with limited functional divergence. A good collinearity was observed in the synteny analysis of four Gossypium species. Majority of cotton GRXs were influenced by various phytohormones and abiotic stress conditions during expression analysis, suggesting an important role of GRX proteins in response to oxidative stress. Cis-regulatory elements, gene enrichments and co-expression network analysis also support their predicted role against various abiotic stresses. Whole genome and segmental duplication were determined to be the two major impetuses for the expansion of gene numbers during the evolution. The identification of GRX genes showing differential expression in specific tissues or in response to environmental stimuli provides a new avenue for in-depth characterization of selected genes of importance. This study will further broaden our insights into the evolution and functional elucidation of GRX gene family in cotton.
Collapse
Affiliation(s)
- Waqar Afzal Malik
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Xinlei Wang
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Na Shu
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Ruifeng Cui
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zujun Yin
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology/Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture/Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
39
|
Comparative study of DAM, Dof, and WRKY gene families in fourteen species and their expression in Vitis vinifera. 3 Biotech 2020; 10:72. [PMID: 32030341 DOI: 10.1007/s13205-019-2039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Bud dormancy is one of the most important defensive mechanisms through which plants resist cold stress during harsh winter weather. DAM, Dof, and WRKY have been reported to be involved in many biological processes, including bud dormancy. In the present study, grapevine (Vitis vinifera) and other thirteen plants (six woody plants and seven herbaceous plants) were analyzed for the quantity, sequence structure, and evolution patterns of their DAM, Dof, and WRKY gene family members. Moreover, the expression of VvDAM, VvDof, and VvWRKY genes was also investigated. Thus, 51 DAM, 1,205 WRKY, and 489 Dof genes were isolated from selected genomes, while 5 DAM, 114 WRKY, and 50 Dof duplicate gene pairs were identified in 10 genomes. Moreover, WGD and segmental duplication events were associated with the majority of the expansions of Dof and WRKY gene families. The VvDAM, VvDof, and VvWRKY genes significantly differentially expressed throughout bud dormancy outnumbered those significantly differentially expressed throughout fruit development or under abiotic stresses. Interestingly, multiple stress responsive genes were identified, such as VvDAM (VIT_00s0313g00070), two VvDof genes (VIT_18s0001g11310 and VIT_02s0025g02250), and two VvWRKY genes (VIT_07s0031g01710 and VIT_11s0052g00450). These data provide candidate genes for molecular biology research investigating bud dormancy and responses to abiotic stresses (namely salt, drought, copper, and waterlogging).
Collapse
|
40
|
Irigoyen ML, Garceau DC, Bohorquez-Chaux A, Lopez-Lavalle LAB, Perez-Fons L, Fraser PD, Walling LL. Genome-wide analyses of cassava Pathogenesis-related (PR) gene families reveal core transcriptome responses to whitefly infestation, salicylic acid and jasmonic acid. BMC Genomics 2020; 21:93. [PMID: 31996126 PMCID: PMC6990599 DOI: 10.1186/s12864-019-6443-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/29/2019] [Indexed: 11/16/2022] Open
Abstract
Background Whiteflies are a threat to cassava (Manihot esculenta), an important staple food in many tropical/subtropical regions. Understanding the molecular mechanisms regulating cassava’s responses against this pest is crucial for developing control strategies. Pathogenesis-related (PR) protein families are an integral part of plant immunity. With the availability of whole genome sequences, the annotation and expression programs of the full complement of PR genes in an organism can now be achieved. An understanding of the responses of the entire complement of PR genes during biotic stress and to the defense hormones, salicylic acid (SA) and jasmonic acid (JA), is lacking. Here, we analyze the responses of cassava PR genes to whiteflies, SA, JA, and other biotic aggressors. Results The cassava genome possesses 14 of the 17 plant PR families, with a total of 447 PR genes. A cassava PR gene nomenclature is proposed. Phylogenetic relatedness of cassava PR proteins to each other and to homologs in poplar, rice and Arabidopsis identified cassava-specific PR gene family expansions. The temporal programs of PR gene expression in response to the whitefly (Aleurotrachelus socialis) in four whitefly-susceptible cassava genotypes showed that 167 of the 447 PR genes were regulated after whitefly infestation. While the timing of PR gene expression varied, over 37% of whitefly-regulated PR genes were downregulated in all four genotypes. Notably, whitefly-responsive PR genes were largely coordinately regulated by SA and JA. The analysis of cassava PR gene expression in response to five other biotic stresses revealed a strong positive correlation between whitefly and Xanthomonas axonopodis and Cassava Brown Streak Virus responses and negative correlations between whitefly and Cassava Mosaic Virus responses. Finally, certain associations between PR genes in cassava expansions and response to biotic stresses were observed among PR families. Conclusions This study represents the first genome-wide characterization of PR genes in cassava. PR gene responses to six biotic stresses and to SA and JA are demonstrably different to other angiosperms. We propose that our approach could be applied in other species to fully understand PR gene regulation by pathogens, pests and the canonical defense hormones SA and JA.
Collapse
Affiliation(s)
- Maria L Irigoyen
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Danielle C Garceau
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | | | | | - Laura Perez-Fons
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Linda L Walling
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
41
|
Tolosa LN, Zhang Z. The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives. PLANTS 2020; 9:plants9010056. [PMID: 31906447 PMCID: PMC7020414 DOI: 10.3390/plants9010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Plant growth, development, and productivity are adversely affected by environmental stresses such as drought (osmotic stress), soil salinity, cold, oxidative stress, irradiation, and diverse diseases. These impacts are of increasing concern in light of climate change. Noticeably, plants have developed their adaptive mechanism to respond to environmental stresses by transcriptional activation of stress-responsive genes. Among the known transcription factors, DoF, WRKY, MYB, NAC, bZIP, ERF, ARF and HSF are those widely associated with abiotic and biotic stress response in plants. Genome-wide identification and characterization analyses of these transcription factors have been almost completed in major solanaceous food crops, emphasizing these transcription factor families which have much potential for the improvement of yield, stress tolerance, reducing marginal land and increase the water use efficiency of solanaceous crops in arid and semi-arid areas where plant demand more water. Most importantly, transcription factors are proteins that play a key role in improving crop yield under water-deficient areas and a place where the severity of pathogen is very high to withstand the ongoing climate change. Therefore, this review highlights the role of major transcription factors in solanaceous crops, current and future perspectives in improving the crop traits towards abiotic and biotic stress tolerance and beyond. We have tried to accentuate the importance of using genome editing molecular technologies like CRISPR/Cas9, Virus-induced gene silencing and some other methods to improve the plant potential in giving yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Lemessa Negasa Tolosa
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
- Correspondence:
| |
Collapse
|
42
|
Huang R, Liu D, Huang M, Ma J, Li Z, Li M, Sui S. CpWRKY71, a WRKY Transcription Factor Gene of Wintersweet ( Chimonanthus praecox), Promotes Flowering and Leaf Senescence in Arabidopsis. Int J Mol Sci 2019; 20:ijms20215325. [PMID: 31731556 PMCID: PMC6862124 DOI: 10.3390/ijms20215325] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/03/2023] Open
Abstract
The WRKY transcription factors are one of the most important plant-specific transcription factors and play vital roles in various biological processes. However, the functions of WRKY genes in wintersweet (Chimonanthus praecox) are still unknown. In this report, a group IIc WRKY gene, CpWRKY71, was isolated from wintersweet. CpWRKY71 was localized to the nucleus and possessed transcriptional activation activity. qRT-PCR (quantitative real-time PCR) analysis showed that CpWRKY71 was expressed in all tissues tested, with higher expression in flowers and senescing leaves. During the flower development, the highest expression was detected in the early-withering stage, an obvious expression of CpWRKY71 was also observed in the flower primordia differentiation and the bloom stage. Meanwhile, the expression of CpWRKY71 was influenced by various abiotic stress and hormone treatments. The expression patterns of the CpWRKY71 gene were further confirmed in CpWRKY71pro:GUS (β-glucuronidase) plants. Heterologous overexpression of CpWRKY71 in Arabidopsis caused early flowering. Consistent with the early flowering phenotype, the expression of floral pathway integrators and floral meristem identity (FMI) genes were significantly up-regulated in transgenic plants. In addition, we also observed that the transgenic plants of CpWRKY71 exhibited precocious leaf senescence. In conclusion, our results suggested that CpWRKY71 may be involved in the regulation of flowering and leaf senescence in Arabidopsis. Our study provides a foundation for further characterization of CpWRKY genes function in wintersweet, and also enrich our knowledge of molecular mechanism about flowering and senescence in wintersweet.
Collapse
Affiliation(s)
| | | | | | | | | | - Mingyang Li
- Correspondence: (M.L.); (S.S.); Tel.: +86-23-6825-0086 (M.L.); +86-23-6825-0086 (S.S.)
| | - Shunzhao Sui
- Correspondence: (M.L.); (S.S.); Tel.: +86-23-6825-0086 (M.L.); +86-23-6825-0086 (S.S.)
| |
Collapse
|
43
|
Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, Chen SY, Zhang JS. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca 2+ signaling pathways in transgenic soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:384-398. [PMID: 31271689 DOI: 10.1111/tpj.14449] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
WRKY transcription factors play important roles in response to various abiotic stresses. Previous study have proved that soybean GmWRKY54 can improve stress tolerance in transgenic Arabidopsis. Here, we generated soybean transgenic plants and further investigated roles and biological mechanisms of GmWRKY54 in response to drought stress. We demonstrated that expression of GmWRKY54, driven by either a constitutive promoter (pCm) or a drought-induced promoter (RD29a), confers drought tolerance. GmWRKY54 is a transcriptional activator and affects a large number of stress-related genes as revealed by RNA sequencing. Gene ontology (GO) enrichment and co-expression network analysis, together with measurement of physiological parameters, supported the idea that GmWRKY54 enhances stomatal closure to reduce water loss, and therefore confers drought tolerance in soybean. GmWRKY54 directly binds to the promoter regions of genes including PYL8, SRK2A, CIPK11 and CPK3 and activates them. Therefore GmWRKY54 achieves its function through abscisic acid (ABA) and Ca2+ signaling pathways. It is valuable that GmWRKY54 activates an ABA receptor and an SnRK2 kinase in the upstream position, unlike other WRKY proteins that regulate downstream genes in the ABA pathway. Our study revealed the role of GmWRKY54 in drought tolerance and further manipulation of this gene should improve growth and production in soybean and other legumes/crops under unfavorable conditions.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Da-Wei Liang
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Hui Xiao
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Lin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Lv
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Xi Chen
- Syngenta Biotechnology (China) Co., Ltd., Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z. Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4721-4736. [PMID: 31106831 PMCID: PMC6760319 DOI: 10.1093/jxb/erz239] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/11/2019] [Indexed: 05/20/2023]
Abstract
Plants undergo a phase transition from vegetative to reproductive development that triggers floral induction. Genes containing an AAI (α-amylase inhibitor) domain form a large gene family, but there have been no comprehensive analyses of this gene family in any plant species. Here, we identified 336 AAI genes from nine plant species including122 AAI genes in cotton (Gossypium hirsutum). The AAI gene family has evolutionarily conserved amino acid residues throughout the plant kingdom. Phylogenetic analysis classified AAI genes into five major clades with significant polyploidization and showing effects of genome duplication. Our study identified 42 paralogous and 216 orthologous gene pairs resulting from segmental and whole-genome duplication, respectively, demonstrating significant contributions of gene duplication to expansion of the cotton AAI gene family. Further, GhAAI66 was preferentially expressed in flower tissue and as responses to phytohormone treatments. Ectopic expression of GhAAI66 in Arabidopsis and silencing in cotton revealed that GhAAI66 triggers a phase transition to induce early flowering. Further, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of RNA sequencing data and qRT-PCR (quantitative reverse transcription-PCR) analysis indicated that GhAAI66 integrates multiple flower signaling pathways including gibberellin, jasmonic acid, and floral integrators to trigger an early flowering cascade in Arabidopsis. Therefore, characterization of the AAI family provides invaluable insights for improving cotton breeding.
Collapse
Affiliation(s)
- Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kehai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| |
Collapse
|
45
|
Ahmad MZ, Sana A, Jamil A, Nasir JA, Ahmed S, Hameed MU, Abdullah. A genome-wide approach to the comprehensive analysis of GASA gene family in Glycine max. PLANT MOLECULAR BIOLOGY 2019; 100:607-620. [PMID: 31123969 DOI: 10.1007/s11103-019-00883-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/16/2019] [Indexed: 05/24/2023]
Abstract
A vital role of short amino acid gene family, gibberellic acid stimulated arabidopsis (GASA), has been reported in plant growth and development. Although, little information is available about these cysteine rich short proteins in different plant species and this is the first comprehensive approach to exploit available genomic data and to analyze the GASA family in G. max. The phylogenetic and sequence composition analysis distributed the 37 identified GmGASA genes into three groups. Further investigation of the tissue expression pattern, phylogenetic analysis, motif, gene structure, chromosome distributions, duplication patterns, positive-selection pressure and cis-element analysis of 37 GmGASA genes. A conserved GASA domain was found in all identified GmGASA genes and exhibited similar characteristics. The online gene expression profile based analysis of GmGASA genes reveled that these genes were highly expressed in almost all soybean parts and some have high expression in flower which indicates that GmGASA genes displayed special or distinct expression pattern among different tissues. The segmental duplication was found in five pairs from 37 GmGASA genes and was distributed on 15 different chromosomes. The Ka/Ks ratio of 5 pairs of segmentally duplicated gene indicated that after the occurrence of duplication events, the duplicated gene pairs were purified and selected after restrictive functional differentiation. This investigated study of GmGASA gene will useful to support the statement about GASA genes role during flower induction in flowering plants.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan.
| | - Aiman Sana
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Arshad Jamil
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Jamal Abdul Nasir
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Shakeel Ahmed
- International Crop Research Center for Stress Resistance, College of Life Sciences, Guangzhou University, Guangzhou, China
| | - Muhammad Uzair Hameed
- Department of Horticulture, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| | - Abdullah
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, KP, Pakistan
| |
Collapse
|
46
|
Singh A, Singh PK, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR. Understanding the Role of the WRKY Gene Family under Stress Conditions in Pigeonpea ( Cajanus Cajan L.). PLANTS 2019; 8:plants8070214. [PMID: 31295921 PMCID: PMC6681228 DOI: 10.3390/plants8070214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/26/2022]
Abstract
Pigeonpea (Cajanus cajan L.), a protein-rich legume, is a major food component of the daily diet for residents in semi-arid tropical regions of the word. Pigeonpea is also known for its high level of tolerance against biotic and abiotic stresses. In this regard, understanding the genes involved in stress tolerance has great importance. In the present study, identification, and characterization of WRKY, a large transcription factor gene family involved in numerous biological processes like seed germination, metabolism, plant growth, biotic and abiotic stress responses was performed in pigeonpea. A total of 94 WRKY genes identified in the pigeonpea genome were extensively characterized for gene-structures, localizations, phylogenetic distribution, conserved motif organizations, and functional annotation. Phylogenetic analysis revealed three major groups (I, II, and III) of pigeonpea WRKY genes. Subsequently, expression profiling of 94 CcWRKY genes across different tissues like root, nodule, stem, petiole, petal, sepal, shoot apical meristem (SAM), mature pod, and mature seed retrieved from the available RNAseq data identified tissue-specific WRKY genes with preferential expression in the vegetative and reproductive stages. Gene co-expression networks identified four WRKY genes at the center of maximum interaction which may play a key role in the entire WRKY regulations. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) expression analysis of WRKY genes in root and leaf tissue samples from plants under drought and salinity stress identified differentially expressed WRKY genes. The study will be helpful to understand the evolution, regulation, and distribution of the WRKY gene family, and additional exploration for the development of stress tolerance cultivars in pigeonpea and other legumes crops.
Collapse
Affiliation(s)
- Akshay Singh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
- Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India
| | | | - Ajay Kumar Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India.
| |
Collapse
|
47
|
Jimmy JL, Babu S. Variations in the Structure and Evolution of Rice WRKY Genes in Indica and Japonica Genotypes and their Co-expression Network in Mediating Disease Resistance. Evol Bioinform Online 2019; 15:1176934319857720. [PMID: 31236008 PMCID: PMC6572876 DOI: 10.1177/1176934319857720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/26/2022] Open
Abstract
WRKY transcription factor (TF) family regulates many functions in plant growth and development and also during biotic and abiotic stress. In this study, 101 WRKY TF gene models in indica and japonica rice were used to conduct evolutionary analysis, gene structure analysis, and motif composition. Co-expression analysis was carried out first by selecting the differentially expressing genes that showed a significant change in response to the pathogens from Rice Oligonucleotide Array Database (ROAD). About 82 genes showed responses to infection by Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. Co-expression gene network was constructed using direct neighborhood and context associated inbuilt mode in RiceNetv2 tool. Only 41 genes showed interaction with 2299 non-WRKY genes. Variations exist in the structure and evolution of WRKY genes among indica and japonica genotypes which have important implications in their differential roles including disease resistance. WRKY genes mediate a complex networking and co-express along with other WRKY and non-WRKY genes to mediate resistance against fungal and bacterial pathogens in rice.
Collapse
Affiliation(s)
- John Lilly Jimmy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subramanian Babu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
48
|
Qanmber G, Ali F, Lu L, Mo H, Ma S, Wang Z, Yang Z. Identification of Histone H3 ( HH3) Genes in Gossypium hirsutum Revealed Diverse Expression During Ovule Development and Stress Responses. Genes (Basel) 2019; 10:genes10050355. [PMID: 31075950 PMCID: PMC6562411 DOI: 10.3390/genes10050355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022] Open
Abstract
Histone acts as the core for nucleosomes and is a key protein component of chromatin. Among different histone variants, histone H3 (HH3) variants have been reported to play vital roles in plant development. However, biological information and evolutionary relationships of HH3 genes in cotton remain to be elucidated. The current study identified 34 HH3 genes in Gossypium hirsutum. Phylogenetic analysis classified HH3 genes of 19 plant species into eight distinct clades. Sequence logos analysis among Arabidopsis, rice, and G. hirsutum amino acid residues showed higher conservation in amino acids. Using collinearity analysis, we identified 81 orthologous/paralogous gene pairs among the four genomes (A, D, At, and Dt) of cotton. Further, orthologous/paralogous and the Ka/Ks ratio demonstrated that cotton HH3 genes experienced strong purifying selection pressure with restricted functional divergence resulting from segmental and whole genome duplication. Expression pattern analysis indicated that GhHH3 genes were preferentially expressed in cotton ovule tissues. Additionally, GhHH3 gene expression can be regulated by abiotic stresses (cold, heat, sodium chloride (NaCl), and polyethylene glycol (PEG)) and phytohormonal (brassinolide (BL), gibberellic acid (GA), indole-3-acetic acid (IAA), salicylic acid (SA), and methyl jasmonate (MeJA)) treatments, suggesting that GhHH3 genes might play roles in abiotic and hormone stress resistance. Taken together, this work provides important information to decipher complete molecular and physiological functions of HH3 genes in cotton.
Collapse
Affiliation(s)
- Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Faiza Ali
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Huijuan Mo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China.
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China.
| |
Collapse
|
49
|
Nan H, Gao LZ. Genome-Wide Analysis of WRKY Genes and Their Response to Hormone and Mechanic Stresses in Carrot. Front Genet 2019; 10:363. [PMID: 31191596 PMCID: PMC6504813 DOI: 10.3389/fgene.2019.00363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
The WRKY gene family plays a vital role in plant development and environment response. Although previous studies suggested that the WRKY genes in carrot (Kuroda type) involved in biotic and abiotic stress responses, the information of WRKY genes in the latest version of the carrot genome (Daucus carota v2.0, Nantes type carrot) and their response to hormone and injury stresses have not been reported. In this study, we performed a genome-wide analysis of WRKYs using a chromosome-scale genome assembly of carrot (Daucus carota subsp. sativus L.). We identified a total of 67 WRKY genes, which were further classified into the three groups. These WRKY genes are unevenly distributed on carrot chromosomes. We found that more than half of them were derived from whole-genome duplication (WGD) events, suggesting that WGDs have played a major role during the evolution of the WRKY gene family. We experimentally ascertained the expression divergence existed between WGD-derived WRKY duplicated gene pairs, which is indicative of functional differentiation between duplicated genes. Our analysis of cis-acting elements indicated that WRKY genes were transcriptionally regulated upon hormone and mechanic injury stresses. Gene expression analyses by qRT-PCR further presented that WRKY genes were involved in hormone and mechanic injury stresses.
Collapse
Affiliation(s)
- Hong Nan
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Zhi Gao
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| |
Collapse
|
50
|
Genome-Wide Identification and Characterization of the PERK Gene Family in Gossypium hirsutum Reveals Gene Duplication and Functional Divergence. Int J Mol Sci 2019; 20:ijms20071750. [PMID: 30970629 PMCID: PMC6479967 DOI: 10.3390/ijms20071750] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 PERK genes in Arabidopsis. At present, there is no comprehensive published study of PERK genes in G. hirsutum. Our study identified 33 PERK genes in G. hirsutum. Phylogenetic analysis of conserved PERK protein sequences from 15 plant species grouped them into four well defined clades. The GhPERK gene family is an evolutionarily advanced gene family that lost its introns over time. Several cis-elements were identified in the promoter regions of the GhPERK genes that are important in regulating growth, development, light responses and the response to several stresses. In addition, we found evidence for gene loss or addition through segmental or whole genome duplication in cotton. Gene duplication and synteny analysis identified 149 orthologous/paralogous gene pairs. Ka/Ks values show that most GhPERK genes experienced strong purifying selection during the rapid evolution of the gene family. GhPERK genes showed high expression levels in leaves and during ovule development. Furthermore, the expression of GhPERK genes can be regulated by abiotic stresses and phytohormone treatments. Additionally, PERK genes could be involved in several molecular, biological and physiological processes that might be the result of functional divergence.
Collapse
|