1
|
Zhou C, Liang C, Zhang R, Wang Y, Luo S, Pan J. TREM2 improves coagulopathy and lung inflammation in sepsis through the AKT-mTOR pathway. Int Immunopharmacol 2025; 150:114330. [PMID: 39970715 DOI: 10.1016/j.intimp.2025.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Sepsis is a systemic inflammatory response syndrome triggered by infection, often accompanied by severe coagulopathy, leading to high mortality. Tissue factor (TF) plays a pivotal role in sepsis by promoting both coagulation and inflammation. Recently, TREM2 (Triggering Receptor Expressed on Myeloid cells 2) has emerged as a key regulator of macrophage function, but its specific role in sepsis remains unclear. METHODS An in vitro sepsis model was established by stimulating RAW264.7 cells with 10 μg/mL lipopolysaccharide (LPS) for 6 h, with four groups: Negative Control (NC), NC + LPS, TREM2, and TREM2 + LPS. Inflammatory cytokines and coagulation factors were measured in each group. Cells in the TREM2 and TREM2 + LPS groups were pretreated with TREM2 overexpression plasmid for 48 h. In vivo, mice were assigned to Sham, TREM2, Cecal Ligation and Puncture (CLP), CLP + NC, and CLP + TREM2 groups. Mice in the NC group received macrophages via tail vein injection, while those in the TREM2 and CLP + TREM2 groups received TREM2-overexpressing macrophages. Lung tissue and plasma samples were collected to assess inflammatory cytokines, coagulation factors, and signaling pathway activity. RESULTS TREM2 overexpression significantly improved survival, reduced lung inflammation, and alleviated coagulopathy in mice. It increased platelet counts and reduced fibrin deposition. Furthermore, TREM2 inhibited TF release from macrophages by suppressing aberrant activation of the AKT-mTOR signaling pathway, thereby modulating the macrophage inflammatory response. CONCLUSIONS TREM2 plays a crucial protective role in sepsis-associated coagulopathy, suggesting that it could serve as a potential therapeutic target, providing novel strategies to improve clinical outcomes in sepsis patients.
Collapse
Affiliation(s)
- Chen Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China
| | - Chenglong Liang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China
| | - Rongrong Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Ying Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China
| | - Shuang Luo
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingye Pan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Medical University, Wenzhou 325000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, China; Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, China; Wenzhou Key Laboratory of Critical Care and Artificial Intelligence, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
3
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
4
|
Ramey GD, Tang A, Phongpreecha T, Yang MM, Woldemariam SR, Oskotsky TT, Montine TJ, Allen I, Miller ZA, Aghaeepour N, Capra JA, Sirota M. Exposure to autoimmune disorders is associated with increased Alzheimer's disease risk in a multi-site electronic health record analysis. Cell Rep Med 2025:101980. [PMID: 39999839 DOI: 10.1016/j.xcrm.2025.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Autoimmunity has been proposed to increase Alzheimer's disease (AD) risk, but evaluating the clinical connection between autoimmune disorders and AD has been difficult in diverse populations. We investigate risk relationships between 26 autoimmune disorders and AD using retrospective observational case-control and cohort study designs based on electronic health records for >300,000 individuals at the University of California, San Francisco (UCSF) and Stanford University. We discover that autoimmune disorders are associated with increased AD risk (odds ratios [ORs] 1.4-1.7) across study designs, primarily driven by endocrine, gastrointestinal, dermatologic, and musculoskeletal disorders. We also find that autoimmune disorders associate with increased AD risk in both sexes, but the AD sex disparity remains in those with autoimmune disorders: women exhibit higher AD prevalence than men. This study identifies consistent associations between autoimmune disorders and AD across study designs and two real-world clinical databases, establishing a foundation for exploring how autoimmunity may contribute to AD risk.
Collapse
Affiliation(s)
- Grace D Ramey
- Biological and Medical Informatics PhD Program, UCSF, San Francisco, CA, USA; Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
| | - Alice Tang
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA; School of Medicine, UCSF, San Francisco, CA, USA
| | - Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Palo Alto, CA, USA; Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA; Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA
| | - Monica M Yang
- Department of Medicine, Division of Rheumatology, UCSF, San Francisco, CA, USA
| | | | - Tomiko T Oskotsky
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA; Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Isabel Allen
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | | | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA; Department of Biomedical Data Science, Stanford University, Palo Alto, CA, USA; Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA.
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA; Department of Pediatrics, UCSF, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA.
| |
Collapse
|
5
|
Carrol D, Busse WW, Frye CJ, Klaus DR, Bach JC, Floerke H, Bendlin BB, Zetterberg H, Blennow K, Heslegrave A, Hoel R, Rosenkranz MA. Regional brain structural alterations in reward and salience networks in asthma. Brain Behav Immun 2025; 126:80-97. [PMID: 39921150 DOI: 10.1016/j.bbi.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
INTRODUCTION Chronic systemic inflammation is highly prevalent and has deleterious effects on the brain, impacting both function and structure, and manifesting in elevations in psychological symptoms transdiagnostically. Asthma is a chronic inflammatory disease of the airway that affects more than 300 million people worldwide and is known to be highly comorbid with psychological and cognitive dysfunction. Though a growing corpus of work has identified functional brain abnormalities associated with asthma, limited research has investigated structural differences which may partially underlie functional changes. Identifying and characterizing asthma-related structural brain changes will shed light on the neurobiology through which asthma impacts mental function and has the potential to inform prophylaxis and treatment. METHODS We examined differences in regional brain volume, cortical thickness, and surface area, in 128 individuals with asthma compared to 134 non-asthma healthy controls. Five regions of interest were examined a priori, based on their previous implication in inflammation-related functional consequences (dorsal and ventral striatum, pallidum, and insula), or previous evidence of asthma-related structural impact (hippocampus and thalamus). We supplemented our region of interest approach with a voxel-wise whole-brain analysis. Additionally, we examined the association of brain structure with depression symptoms, asthma severity, degree of inflammation, and plasma biomarkers of neuroinflammation, neurodegeneration, and Alzheimer's disease specific pathology. RESULTS Compared to non-asthma control participants, those with asthma had smaller nucleus accumbens volumes, thicker orbitofrontal cortices, larger middle frontal cortex surface areas, and greater diencephalon volumes. Those with more severe asthma had smaller nucleus accumbens and dorsal striatal volumes, reduced anterior cingulate cortex surface area, and greater amygdala volume compared to those with mild asthma. In untreated asthma patients, greater depressive symptoms were associated with smaller striatal volume, suggesting a potential CNS-protective effect of medications that reduce airway inflammation in asthma. In addition, a plasma marker of astrogliosis was associated with larger diencephalon, cerebellum, brainstem, and thalamus volumes, but reduced insula thickness and surface area. CONCLUSIONS Patterns of structural brain changes in participants with asthma encompass key regions of reward and salience networks, which may in part give rise to the functional alterations in these networks characteristic of chronic systemic inflammation.
Collapse
Affiliation(s)
- Danielle Carrol
- Center for Healthy Minds, University of Wisconsin-Madison Madison WI USA
| | - William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Corrina J Frye
- Wasiman Center, University of Wisconsin-Madison Madison WI USA
| | - Danika R Klaus
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Julia C Bach
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Heather Floerke
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health Madison WI USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison Madison WI USA
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison Madison WI USA; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square London UK; UK Dementia Research Institute at UCL London UK; Hong Kong Center for Neurodegenerative Diseases Clear Water Bay Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University Paris France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC Hefei China
| | - Amanda Heslegrave
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital Mölndal Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square London UK
| | - Rachel Hoel
- Center for Healthy Minds, University of Wisconsin-Madison Madison WI USA
| | - Melissa A Rosenkranz
- Center for Healthy Minds, University of Wisconsin-Madison Madison WI USA; Department of Psychiatry, University of Wisconsin-Madison, USA.
| |
Collapse
|
6
|
Sim MA, Doecke JD, Liew OW, Wong LL, Tan ESJ, Chan SP, Chong JRF, Cai Y, Hilal S, Venketasubramanian N, Tan BY, Lai MKP, Choi H, Masters CL, Richards AM, Chen CLH. Plasma proteomics for cognitive decline and dementia-A Southeast Asian cohort study. Alzheimers Dement 2025; 21:e14577. [PMID: 39998981 PMCID: PMC11854348 DOI: 10.1002/alz.14577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION The prognostic utility of plasma proteomics for cognitive decline and dementia in a Southeast Asian population characterized by high cerebrovascular disease (CeVD) burden is underexplored. METHODS We examined this in a Singaporean memory clinic cohort of 528 subjects (n = 300, CeVD; n = 167, incident cognitive decline) followed-up for 4 years. RESULTS Of 1441 plasma proteins surveyed, a 12-protein signature significantly predicted cognitive decline (q-value < .05). Sixteen diverse biological processes were implicated in cognitive decline. Ten proteins independently predicted incident dementia (q-value < .05). A unified prediction model combining plasma proteins with clinical risk factors increased the area under the curve for outcome prediction from 0.62 to 0.85. External validation in the cerebrospinal fluid proteome of an independent Caucasian cohort replicated four of the significantly predictive plasma markers for cognitive decline namely: GFAP, NEFL, AREG, and PPY. DISCUSSION The prognostic proteins prioritized in our study provide robust signals in two different biological matrices, representing potential mechanistic targets for dementia and cognitive decline. HIGHLIGHTS A total of 1441 plasma proteins were profiled in a Singaporean memory clinic cohort. We report prognostic plasma protein signatures for cognitive decline and dementia. External validation was performed in the cerebrospinal fluid proteome of a Caucasian cohort. A concordant proteomic signature was identified across both biofluids and cohorts. Further studies are needed to explore the therapeutic implications of these proteins for dementia.
Collapse
Affiliation(s)
- Ming Ann Sim
- Departments of Pharmacology and Psychological Medicine, Memory Aging and Cognition CentreNational University of SingaporeSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of AnesthesiaNational University Health SystemSingaporeSingapore
| | - James D. Doecke
- Australian E‐Health Research CentreCSIROHerstonQueenslandAustralia
| | - Oi Wah Liew
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Cardiovascular Research InstituteNational University of SingaporeSingaporeSingapore
| | - Lee Lee Wong
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Cardiovascular Research InstituteNational University of SingaporeSingaporeSingapore
| | - Eugene S. J. Tan
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of CardiologyNational University Heart CentreSingaporeSingapore
| | - Siew Pang Chan
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Cardiovascular Research InstituteNational University of SingaporeSingaporeSingapore
| | - Joyce R. F. Chong
- Departments of Pharmacology and Psychological Medicine, Memory Aging and Cognition CentreNational University of SingaporeSingaporeSingapore
| | - Yuan Cai
- Department of Medicine and Therapeutics, Faculty of MedicineDivision of NeurologyThe Chinese University of Hong KongMa Liu ShuiHong Kong
| | - Saima Hilal
- Saw Swee Hock School of Public HealthNational University of Singapore and National University Health SystemSingaporeSingapore
| | | | - Boon Yeow Tan
- Department of MedicineSt Luke's HospitalSingaporeSingapore
| | | | - Mitchell K. P Lai
- Departments of Pharmacology and Psychological Medicine, Memory Aging and Cognition CentreNational University of SingaporeSingaporeSingapore
| | - Hyungwon Choi
- Cardiovascular Research InstituteNational University of SingaporeSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Singapore Lipidomics IncubatorLife Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Arthur Mark Richards
- Department of CardiologyNational University Heart CentreSingaporeSingapore
- Cardiovascular Research InstituteNational University of SingaporeSingaporeSingapore
- Christchurch Heart InstituteUniversity of OtagoDunedinNew Zealand
| | - Christopher L. H. Chen
- Departments of Pharmacology and Psychological Medicine, Memory Aging and Cognition CentreNational University of SingaporeSingaporeSingapore
| |
Collapse
|
7
|
Zou J, Wang Y, Zhang X, Pan X, Fang T, Cai D, Guo L, Li Y, He Y, Cao X. CD33 Ameliorates Surgery-Induced Spatial Learning and Memory Impairments Through TREM2. Mol Neurobiol 2025; 62:2180-2190. [PMID: 39088031 DOI: 10.1007/s12035-024-04410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Neuroinflammation is implicated in the onset of postoperative cognitive dysfunction (POCD), with CD33 and triggering receptor expressed on myeloid cells 2 (TREM2) playing crucial roles in immune response modulation and neuroinflammatory processes. A total of 96 aged male C57/BL6 mice (9-12 months) were randomly assigned to one of four groups, each receiving an siRNA injection into the lateral ventricle. Subsequently, the mice underwent partial hepatectomy under general anesthesia. To assess cognitive function, the Morris water maze tests were conducted both pre- and post-surgery. Following behavioral assessments, hippocampal tissues were swiftly harvested. The regulation of CD33 and TREM2 expression was achieved through siRNA in the BV2 microglia cell line. Expression levels of CD33 and TREM2 were evaluated both in vitro and in vivo using quantitative RT-PCR and western blot analyses. This study explored the impact of CD33 and TREM2 on POCD in aged mice and revealed that surgery and anesthesia increased CD33 expression, leading to spatial learning and memory impairments. Inhibiting CD33 expression via siRNA administration ameliorated cognitive deficits and mitigated the neuroinflammatory response triggered by surgery. Additionally, CD33 inhibition reversed the surgery-induced decrease in synaptic-related proteins, highlighting its role in preserving synaptic integrity. Moreover, our experiments suggest that CD33 may influence neuroinflammation and cognitive function through mechanisms involving TREM2. This is evidenced by the suppression of pro-inflammatory cytokines following CD33 knockdown in microglia and the reversal of these effects when both CD33 and TREM2 are concurrently knocked down. These findings imply that CD33 might promote neuroinflammation by inhibiting TREM2. This study highlights the potential of targeting CD33 as a promising therapeutic strategy for preventing and treating POCD. It provides valuable insights into the intricate mechanisms underlying cognitive dysfunction following surgical procedures.
Collapse
Affiliation(s)
- Jie Zou
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxuan Wang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Xinyue Zhang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Xue Pan
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Te Fang
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Dasheng Cai
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Lili Guo
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Yu Li
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Yi He
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China
| | - Xuezhao Cao
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Silva JF, Polk FD, Martin PE, Thai SH, Savu A, Gonzales M, Kath AM, Gee MT, Pires PW. Sex-specific mechanisms of cerebral microvascular BK Ca dysfunction in a mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e14438. [PMID: 39698895 PMCID: PMC11848394 DOI: 10.1002/alz.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca2+-activated K+ channels (BKCa) regulate cerebrovascular reactivity and are impaired in AD. BKCa activity depends on intracellular Ca2+ (Ca2+ sparks) and nitro-oxidative post-translational modifications. However, whether these mechanisms underlie BKCa impairment in AD remains unknown. METHODS Cerebral arteries from 5x-FAD and wild-type (WT) littermates were used for molecular biology, electrophysiology, ex vivo, and in vivo experiments. RESULTS Arterial BKCa activity is reduced in 5x-FAD via sex-dependent mechanisms: in males, there is lower BKα subunit expression and less Ca2+ sparks. In females, we observed reversible nitro-oxidative modification of BKCa. Further, BKCa is involved in hemodynamic regulation in WT mice, and its dysfunction is associated with vascular deficits in 5x-FAD. DISCUSSION Our data highlight the central role played by BKCa in cerebral hemodynamic regulation and that molecular mechanisms of its impairment diverge based on sex in 5x-FAD. HIGHLIGHTS Cerebral microvascular BKCa dysfunction occurs in both female and male 5x-FAD. Reduction in BKα subunit protein and Ca2+ sparks drive the dysfunction in males. Nitro-oxidative stress is present in females, but not males, 5x-FAD. Reversible nitro-oxidation of BKα underlies BKCa dysfunction in female 5x-FAD.
Collapse
Affiliation(s)
- Josiane F. Silva
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Felipe D. Polk
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paige E. Martin
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Stephenie H. Thai
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Andrea Savu
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Matthew Gonzales
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Allison M. Kath
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Michael T. Gee
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paulo W. Pires
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Sarver Heart CenterUniversity of Arizona College of MedicineTucsonArizonaUSA
- Bio5 InstituteUniversity of Arizona College of MedicineTucsonArizonaUSA
| |
Collapse
|
9
|
Tao G, Wang X, Wang J, Ye Y, Zhang M, Lang Y, Ding S. Dihydro-resveratrol ameliorates NLRP3 inflammasome-mediated neuroinflammation via Bnip3-dependent mitophagy in Alzheimer's disease. Br J Pharmacol 2025; 182:1005-1024. [PMID: 39467709 DOI: 10.1111/bph.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Dihydro-resveratrol (DHR), a polyphenol derivative, that has been demonstrated to suppress inflammation-mediated injury. However, it is still unknown whether it has anti-neuroinflammatory and neuroprotective effects, and a therapeutic action in Alzheimer's disease (AD). EXPERIMENTAL APPROACH The anti-inflammatory and anti-Alzheimer's disease actions of dihydro-resveratrol were investigated using lipopolysaccharide (LPS) and AD mice models, and primary microglial cells. The changes in behaviour in mice were detected by the Morris water maze test and open-field test. Flow cytometry assay, western blotting, immunofluorescence assays and co-immunoprecipitation were used to investigate the changes in the NLRP3 inflammasome activation and mitophagy. KEY RESULTS In this study, in vivo observations indicated that the administration of dihydro-resveratrol (DHR) dramatically restored spatial learning, memory ability, autophagy and mitophagy, attenuated NLRP3 inflammasome activation, neuroinflammation and amyloid precursor protein pathology in LPS mice and AD mice. In addition, the inhibition of autophagy and mitophagy, or the activation of NLRP3 in vivo greatly abolished DHR-generated therapeutic efficacy on neuroinflammation, amyloid precursor protein pathology and cognitive loss. Further examination indicated that the application of DHR after the LPS and ATP exposure significantly inhibited the NLRP3 inflammasome activation, neuroinflammation and enhanced autophagic and mitophagic activation in microglia. Additionally, in vitro results show that DHR protects microglial cells against LPS and ATP-induced cytotoxicity by inhibiting NLRP3 inflammasome through activating Bnip3-dependent mitophagy and ULK phosphorylation. CONCLUSIONS AND IMPLICATIONS In summary, these findings suggest that dihydro-resveratrol (DHR) possesses potent anti-neuroinflammatory property and can act as a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Guorong Tao
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, China
| | - Yiru Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minxue Zhang
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Lang
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Saidan Ding
- Laboratory Animal Center, Fudan University, Shanghai, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhang X, Subbanna S, Williams CRO, Canals-Baker S, Hashim A, Wilson DA, Weiss LM, Shukla S, Chokkalingam P, Das S, Das BC, Saito M. Methionine Aminopeptidase 2 (MetAP2) Inhibitor BL6 Attenuates Inflammation in Cultured Microglia and in a Mouse Model of Alzheimer's Disease. Molecules 2025; 30:620. [PMID: 39942725 PMCID: PMC11820257 DOI: 10.3390/molecules30030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) plays an important role in the regulation of protein synthesis and post-translational processing. Preclinical/clinical applications of MetAP2 inhibitors for the treatment of various diseases have been explored because of their antiangiogenic, anticancer, antiobesity, antidiabetic, and immunosuppressive properties. However, the effects of MetAP2 inhibitors on CNS diseases are rarely examined despite the abundant presence of MetAP2 in the brain. Previously, we synthesized a novel boron-containing MetAP2 inhibitor, BL6, and found that it suppressed angiogenesis and adipogenesis yet improved glucose uptake. Here, we studied the anti-inflammatory effects of BL6 in SIM-A9 microglia and in a mouse model of Alzheimer's disease generated by the intracerebroventricular (icv) injection of streptozotocin (STZ). We found that BL6 reduced proinflammatory molecules, such as nitric oxide, iNOS, IL-1β, and IL-6, together with phospho-Akt and phospho-NF-κB p65, which were elevated in lipopolysaccharide (LPS)-activated microglial SIM-A9 cells. However, the LPS-induced reduction in Arg-1 and CD206 was attenuated by BL6, suggesting that BL6 promotes microglial M1 to M2 polarization. BL6 also decreased glial activation along with a reduction in phospho-tau and an elevation in synaptophysin in the icv-STZ mouse model. Thus, our experiments demonstrate an anti-neuroinflammatory action of BL6, suggesting possible clinical applications of MetAP2 inhibitors for brain disorders in which neuroinflammation is involved.
Collapse
Affiliation(s)
- Xiuli Zhang
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Shivakumar Subbanna
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Audrey Hashim
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (C.R.O.W.); (D.A.W.)
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY 10016, USA
| | - Louis M. Weiss
- Department of Pathology/Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Srushti Shukla
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Parthiban Chokkalingam
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Sasmita Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
| | - Bhaskar C. Das
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14201, USA; (S.S.); (P.C.); (S.D.)
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; (X.Z.); (S.S.); (S.C.-B.); (A.H.)
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Gu X, Chen C, Chen Y, Zeng C, Lin Y, Guo R, Xu S, Lin C. Bioinformatics approach reveals the critical role of inflammation-related genes in age-related hearing loss. Sci Rep 2025; 15:2687. [PMID: 39837906 PMCID: PMC11751394 DOI: 10.1038/s41598-024-83428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and selection operator regression analysis and converted them into human genes. The ROC curve indicated that Alox5ap expression presented a high accuracy in distinguishing between different groups. By CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play a role in the development of ARHL, providing a deeper understanding of the underlying causes of this disease.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Yuqing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruosi Guo
- Fujian Medical University, Fuzhou, China
| | - Shujin Xu
- Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
dos Santos Ono RM, dos Santos Moreira NC, Carvalho I, Passos GA, Sakamoto-Hojo ET. Novel donepezil-tacrine hybrid (TAHB3) induces neurodifferentiation, neuroprotective effects, and activates the PI3K/AKT pathway on PC12 cells. J Alzheimers Dis Rep 2025; 9:25424823241309268. [PMID: 40034521 PMCID: PMC11864261 DOI: 10.1177/25424823241309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by the impairment of cognitive functions and neuronal loss. AD has no cure; current treatments like acetylcholinesterase inhibitors (AChEI) alleviate symptoms but do not halt disease progression. Objective We aimed to evaluate the effects and mechanisms of two novel AChEI hybrid compounds (TAHB3 and TA8Amino), regarding cytotoxicity, neuroprotection and neurodifferentiation in PC12 cells. Methods The effects of TAHB3 and TA8Amino on neurodifferentiation were analyzed on PC12 cells which were treated with AChEI compounds for seven days, following morphological, and quantitative analyses to calculate the differentiation percentages, neurite length, and protein expression. Regarding cytotoxicity and neuroprotection assays, PC12 cells were differentiated into mature neurons, then treated with TAHB3 or TA8Amino, following a posttreatment with H2O2 (an inducer of oxidative damage); the analyses were performed using the XTT assay and flow cytometry. Results The hybrid compound TAHB3 induced differentiation of PC12 cells, but TA8Amino did not cause the same effect. Both compounds did not show cytotoxic effects to PC12 cells and did not change the cell cycle progression, nor induce cell death. Only TAHB3 showed neuroprotective potential against induced-oxidative damage, and TAHB3 increased the levels of p-AKT, suggesting its action through the activation of the PI3K/AKT pathway. Conclusions Our results showed that TAHB3 can induce neurodifferentiation, besides a neuroprotective activity, indicating the potential of AChEI hybrid compounds as novel candidates to be explored for the establishment of novel therapeutic strategies for patients with AD.
Collapse
Affiliation(s)
| | | | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo-USP, Brazil
| | - Elza Tiemi Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo-USP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo-USP, Brazil
| |
Collapse
|
13
|
Zeng J, Gao Z, Xiong X, Hou X, Qin H, Liu Y, Bowman H, Ritchie C, O'Brien JT, Su L. The effects of two Alzheimer's disease related genes APOE and MAPT in healthy young adults: An attentional blink study. J Alzheimers Dis 2025; 103:167-179. [PMID: 39639576 DOI: 10.1177/13872877241299124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BACKGROUND Genetic risk factors start to affect the brain and behavior in Alzheimer's disease (AD) before clinical symptoms occur. Although AD is mainly associated with memory deficits, attention and executive dysfunctions can present at the early presymptomatic stages in middle age for those with non-modifiable risks. OBJECTIVE Here, we investigated whether known risk genes for AD already affected attention in young adulthood. METHODS A total of 392 healthy young adults aged around 20 years underwent genetic testing for risks of dementia (APOE and MAPT) and performed a computerized cognitive test for temporal attention called the Attentional Blink (AB) task, in which patients with dementia tested in previous studies often showed reduced performance. Here, the AB task was analyzed using repeated-measurements analysis of variance for the ability of visual perception, attention deployment and temporal memory encoding/binding performance. RESULTS The results showed that all participants exhibited AB effects. Importantly, genetic risk factors had statistically significant influence on temporal attention depending on sex in healthy young adults. APOE4 status was associated with enhanced attention deployment in males but not females, while MAPT AA carriers had poorer performance in AB but only in females. No genetic effects were found for visual perception and temporal memory binding errors between high and low risk groups. CONCLUSIONS We provided evidence that both APOE and MAPT start to affect attentional function as early as young adulthood. Furthermore, unlike previous findings in older people, these genes had a differential effect for males and females in young adults.
Collapse
Affiliation(s)
- Jianmin Zeng
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ziyun Gao
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiong Xiong
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Xingrong Hou
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Huihui Qin
- Sino-Britain Centre for Cognition and Ageing Research, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunication, Beijing, China
| | - Howard Bowman
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Craig Ritchie
- School of Medicine, University of St Andrews, St Andrews, UK
- Scottish Brain Sciences, Edinburgh, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Li Su
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Sun Y, Veres K, Hasselbalch HC, Frederiksen H, Østgård LSG, Horváth‐Puhó E, Henderson VW, Sørensen HT. Myeloproliferative Neoplasms and Dementia Risk: A Population-Based Cohort Study. Eur J Haematol 2025; 114:45-56. [PMID: 39279726 PMCID: PMC11613695 DOI: 10.1111/ejh.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
ABSTRACTObjectivesTo estimate dementia risk for persons diagnosed with Philadelphia chromosome–negative myeloproliferative neoplasms (MPNs), which serve as a human chronic inflammation model.MethodsWe identified 9895 individuals in Denmark newly diagnosed with MPNs from 1995 to 2017; matched them 10:1 by age and sex with a general population cohort of 95 770 individuals; and followed them until dementia identification, death, emigration, or December 31, 2018. We applied a Cox proportional‐hazards regression model to estimate the cause‐specific hazard ratios (HRs) and 95% confidence intervals (CIs) for dementia. We included control diseases, like chronic lymphocytic leukemia (CLL), which is not characterized by chronic inflammation.ResultsPatients with MPNs showed a 1.15‐fold (95% CI: 1.04–1.27) increased incidence of dementia compared with members of the general population. Associations were stronger for men with MPNs (HR: 1.40, 95% CI: 1.19–1.63) than for women (HR: 1.02, 95% CI: 0.89–1.15). Patients with CLL showed a decreased dementia incidence (HR: 0.81, 95% CI: 0.72–0.90). The findings for CLL could be explained by depletion‐of‐susceptibles bias, suggesting that the findings for MPNs were underestimated by a similar bias.ConclusionsThe findings support MPNs as risk factors for dementia and the role of chronic inflammation in dementia development.
Collapse
Affiliation(s)
- Yuelian Sun
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | - Katalin Veres
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | - Hans Carl Hasselbalch
- Department of HematologyZealand University HospitalRoskildeDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Henrik Frederiksen
- Department and Research Unit of HaematologyOdense University Hospital and University of Southern DenmarkOdenseDenmark
| | - Lene Sofie Granfeldt Østgård
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
- Department and Research Unit of HaematologyOdense University Hospital and University of Southern DenmarkOdenseDenmark
| | - Erzsébet Horváth‐Puhó
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | - Victor W. Henderson
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
- Department of Neurology and Neurological SciencesStanford UniversityStanfordCaliforniaUSA
| | - Henrik Toft Sørensen
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
| |
Collapse
|
15
|
Zhang F, Han X, Mu Q, Zailani H, Liu WC, Do QL, Wu Y, Wu N, Kang Y, Su L, Liu Y, Su KP, Wang F. Elevated cerebrospinal fluid biomarkers of neuroinflammation and neuronal damage in essential hypertension with secondary insomnia: Implications for Alzheimer's disease risk. Brain Behav Immun 2024; 125:158-167. [PMID: 39733863 DOI: 10.1016/j.bbi.2024.12.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024] Open
Abstract
Essential hypertension (EH) with secondary insomnia is associated with increased risks of neuroinflammation, neuronal damage, and Alzheimer's disease (AD). However, its relationship with specific cerebrospinal fluid (CSF) biomarkers of neuronal damage and neuroinflammation remains unclear. This case-control study compared CSF biomarker levels across three groups: healthy controls (HC, n = 64), hypertension-controlled (HTN-C, n = 54), and hypertension-uncontrolled (HTN-U, n = 107) groups, all EH participants experiencing secondary insomnia. CSF samples from knee replacement patients were analyzed for key biomarkers, and sleep quality was assessed via the Pittsburgh Sleep Quality Index (PSQI). Our findings showed that the HTN-U group had significantly higher CSF levels of proinflammatory cytokines IL-6, TNF-α, and IL-17 than the HC and HTN-C groups (all p < 0.01). These cytokines correlated positively with secondary insomnia measures, with IL-6 (r = 0.285, p = 0.003), IL-17 (r = 0.324, p = 0.001), and TNF-α (r = 0.274, p = 0.005) linked to PSQI scores. In the HTN-U group, elevated IL-6, TNF-α, and IL-17 levels were also positively associated with neurofilament light (NF-L) and negatively with β-amyloid 42 (Aβ42), both key AD markers (all p < 0.05). Additionally, secondary insomnia was negatively correlated with Aβ42 (r = -0.225, p = 0.021) and positively with NF-L (r = 0.261, p = 0.007). Higher CSF palmitic acid (PA) levels observed in the HTN-U group were linked to poorer sleep quality (r = 0.208, p = 0.033). In conclusion, EH with secondary insomnia is associated with CSF biomarkers of neuronal damage, neuroinflammation, and neurodegeneration, suggesting a potential increase in AD risk among this population.
Collapse
Affiliation(s)
- Feng Zhang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital of Urumqi, Urumqi 830049, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Quang Le Do
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Nan Wu
- Institute of Polygenic Disease, Qiqihar Medical University, Qiqihar 161006, China
| | - Yimin Kang
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot 010110, China
| | - Lidong Su
- Medical Neurobiology Lab, Inner Mongolia Medical University, Baotou 014010, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| |
Collapse
|
16
|
Tu W, Xu F, Li J, Tian X, Cao L, Wang L, Qu Y. Studying targeted oxidation in diabetic cognitive dysfunction based on scientometrics analysis: research progress of natural product approaches. Front Endocrinol (Lausanne) 2024; 15:1445750. [PMID: 39758348 PMCID: PMC11695123 DOI: 10.3389/fendo.2024.1445750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 01/07/2025] Open
Abstract
Purpose The aim is to provide new insights for researchers studying the pathogenesis of diabetic cognitive dysfunction and promoting the wider use of natural products in their treatment. Method First, the Web of Science Core Collection was selected as the data source for a computerized literature search on oxidative stress and diabetic cognitive dysfunction (DCD). Next, Biblimetrix and VOSviewer performed statistical analysis focusing on publication countries, institutions, authors, research hotspots, and emerging directions in the field. Then, through the analysis of keywords and key articles, the forefront of the field is identified. Finally, we discussed the pathogenesis of DCD, the influence of oxidative stress on DCD and the antioxidant effect of natural products on DCD. Result 293 valid papers were obtained. Bibliometrics showed that oxidative stress, diabetes, Alzheimer's disease (AD), cognitive decline, insulin resistance and quercetin were the key words of the symbiotic network. Conclusion The antioxidant effects of natural products in improving DCD have been extensively studied in preclinical studies, providing potential for their treatment in DCD, but their evaluation in clinical trials is currently uncommon.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| | - Yiqian Qu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University,
Hangzhou, China
| |
Collapse
|
17
|
Carling GK, Fan L, Foxe NR, Norman K, Wong MY, Zhu D, Corona C, Razzoli A, Yu F, Yarahmady A, Ye P, Chen H, Huang Y, Amin S, Sereda R, Lopez-Lee C, Zacharioudakis E, Chen X, Xu J, Cheng F, Gavathiotis E, Cuervo AM, Holtzman DM, Mok SA, Sinha SC, Sidoli S, Ratan RR, Luo W, Gong S, Gan L. Alzheimer's disease-linked risk alleles elevate microglial cGAS-associated senescence and neurodegeneration in a tauopathy model. Neuron 2024; 112:3877-3896.e8. [PMID: 39353433 PMCID: PMC11624100 DOI: 10.1016/j.neuron.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
The strongest risk factors for late-onset sporadic Alzheimer's disease (AD) include the ε4 allele of apolipoprotein E (APOE), the R47H variant of triggering receptor expressed on myeloid cells 2 (TREM2), and female sex. Here, we combine APOE4 and TREM2R47H (R47H) in female P301S tauopathy mice to identify the pathways activated when AD risk is the strongest, thereby highlighting detrimental disease mechanisms. We find that R47H induces neurodegeneration in 9- to 10-month-old female APOE4 tauopathy mice. The combination of APOE4 and R47H (APOE4-R47H) worsened hyperphosphorylated tau pathology in the frontal cortex and amplified tauopathy-induced microglial cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling and downstream interferon response. APOE4-R47H microglia displayed cGAS- and BAX-dependent upregulation of senescence, showing association between neurotoxic signatures and implicating mitochondrial permeabilization in pathogenesis. By uncovering pathways enhanced by the strongest AD risk factors, our study points to cGAS-STING signaling and associated microglial senescence as potential drivers of AD risk.
Collapse
Affiliation(s)
- Gillian K Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nessa R Foxe
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kendra Norman
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daphne Zhu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlo Corona
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Agnese Razzoli
- Transfusion Medicine Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42122, Italy; Clinical and Experimental PhD Program, University of Modena and Reggio Emilia, Modena 41121, Italy
| | - Fangmin Yu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Allan Yarahmady
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Pearly Ye
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hao Chen
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yige Huang
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Biochemistry, Structural Biology, Cell Biology, Developmental Biology, and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rebecca Sereda
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Chloe Lopez-Lee
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Xiaoying Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center and Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center and Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Simone Sidoli
- Department of Biochemistry, Department of Medicine, Montefiore Einstein Comprehensive Cancer Center, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, Weill Cornell Medicine, White Plains, NY 10605, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
18
|
Pan H, Wang G, Bi Z, Lai C, Wang M. Identification of key neutrophil extracellular trap genes in Alzheimer's disease. J Alzheimers Dis 2024; 102:1027-1041. [PMID: 39584744 DOI: 10.1177/13872877241295374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that is associated with neuroinflammation. Neutrophil extracellular traps (NETs) are web-like structures that cause inflammation, but its involvement in AD pathogenesis is unclear. OBJECTIVE This study aimed to identify key NETs related genes associated with AD. METHODS A total of 180 samples from the GSE122063 and GSE36980 dataset were obtained from the GEO repository. The representative genes were obtained, and its diagnostic performance was evaluated by analyzing operating characteristic curves. Consensus clustering and principal component analysis were performed to cluster AD samples. Gene ontology, KEGG pathway enrichment, and protein interaction network were analyzed. Peripheral blood samples were collected from 5 AD patients and 5 healthy donors to determine the expression of representative proteins or genes using WB, ELISA, and RT-qPCR. RESULTS A total of 297 differentially expressed genes (DEGs) were associated with AD, 18 NETs genes showed potential diagnostic value. NETs genes expression effectively distinguished AD patients into 2 subgroups. The AD1 cluster showed higher abundance of activated dendritic cells, monocytes, and neutrophils, the AD2 cluster showed higher levels of naive B cells, eosinophils, and activated NK cells. We randomly selected and measured the levels representative genes in AD patients. The levels of NETs and CCL2, TLR2 expressions were significantly increased, whereas the level of BDNF was significantly decreased in AD patients comparing with healthy controls. CONCLUSIONS This study identified key NET genes including BDNF, CCL2, and TLR2 to be associated with AD pathogenesis and classification.
Collapse
Affiliation(s)
- Hengming Pan
- Department of Pediatrics, Shandong Second Provincial General Hospital, Jinan, China
| | - Ge Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Zhichao Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Chao Lai
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Min Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Tallino S, Etebari R, McDonough I, Leon H, Sepulveda I, Winslow W, Bartholomew SK, Perez SE, Mufson EJ, Velazquez R. Assessing the Benefit of Dietary Choline Supplementation Throughout Adulthood in the Ts65Dn Mouse Model of Down Syndrome. Nutrients 2024; 16:4167. [PMID: 39683562 DOI: 10.3390/nu16234167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Down syndrome (DS) is the most common cause of early-onset Alzheimer's disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied. Perinatal choline supplementation (Ch+) in the Ts65Dn mouse model of DS protects offspring against AD-relevant pathology and improves cognition. Further, dietary Ch+ in adult AD models also ameliorates pathology and improves cognition. However, dietary Ch+ in adult Ts65Dn mice has not yet been explored; thus, this study aimed to supply Ch+ throughout adulthood to determine the effects on cognition and DS co-morbidities. METHODS We fed trisomic Ts65Dn mice and disomic littermate controls either a choline normal (ChN; 1.1 g/kg) or a Ch+ (5 g/kg) diet from 4.5 to 14 months of age. RESULTS We found that Ch+ in adulthood failed to improve genotype-specific deficits in spatial learning. However, in both genotypes of female mice, Ch+ significantly improved cognitive flexibility in a reverse place preference task in the IntelliCage behavioral phenotyping system. Further, Ch+ significantly reduced weight gain and peripheral inflammation in female mice of both genotypes, and significantly improved glucose metabolism in male mice of both genotypes. CONCLUSIONS Our findings suggest that adulthood choline supplementation benefits behavioral and biological factors important for general well-being in DS and related to AD risk.
Collapse
Affiliation(s)
- Savannah Tallino
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rachel Etebari
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Ian McDonough
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hector Leon
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Isabella Sepulveda
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy Winslow
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Samantha K Bartholomew
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sylvia E Perez
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Elliott J Mufson
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Ramon Velazquez
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| |
Collapse
|
20
|
Sadiq A, Khan MA, Zafar R, Ullah F, Ahmad S, Ayaz M. Synthesis and Anti-Inflammatory and Analgesic Potentials of Ethyl 2-(2,5-Dioxo-1-Phenylpyrrolidin-3-yl)-2-Methylpropanoate. Pharmaceuticals (Basel) 2024; 17:1522. [PMID: 39598432 PMCID: PMC11597207 DOI: 10.3390/ph17111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Inflammation and analgesia are two prominent symptoms and often lead to chronic medical conditions. To control inflammation and analgesia, many marketed drugs are in practice but the majority of them have severe side effects. Methods: This study involved the synthesis of a pivalate-based Michael product and evaluated it for in vitro COX-1, COX-2, and 5-LOX inhibitory potentials using specific assays. Molecular docking studies were also assessed. Based on the in vitro results, the compound was also subjected to in vivo anti-inflammatory and antinociceptive studies. Results: The pivalate-based Michael product (MAK01) was synthesized by an organocatalytic asymmetric Michael addition of ethyl isobutyrate to N-phenylmaleimide with an isolated yield of 96%. The structure of the compound was confirmed through 1H and 13C NMR analyses. The observed IC50 values for COX-1, COX-2, and 5-LOX were 314, 130, and 105 μg/mL, respectively. The molecular docking studies on the synthesized compound showed binding interactions with the minimized pockets of the respective enzymes. In a carrageenan model, a percent reduction in edema when administered at 10 mg/kg (a reduction of 33.3 ± 0.77% at the second hour), 20 mg/kg (a reduction of 34.7 ± 0.74% at the second hour), and 30 mg/kg (a reduction of 40.58% ± 0.84% after the fifth hour) was observed. The compound showed a significant response at concentrations of 50, 100, and 150 mg/kg with latency times of 10.32 ± 0.82, 12.16 ± 0.51, and 12.93 ± 0.45 s, respectively. Conclusion: In this study, we synthesized a pivalate-based Michael product for the first time. Moreover, based on its rationality and potency, it was found to be an effective future medicine for the management of analgesia and inflammation.
Collapse
Affiliation(s)
- Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Muhammad Arif Khan
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
- Iqra Institute of Health Sciences, School of Pharmacy, Islamabad 44000, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| |
Collapse
|
21
|
Li J, Li L, Cai S, Song K, Hu S. Identification of novel risk genes for Alzheimer's disease by integrating genetics from hippocampus. Sci Rep 2024; 14:27484. [PMID: 39523385 PMCID: PMC11551212 DOI: 10.1038/s41598-024-78181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative ailment, presently lacking a definitive cure. Given that primary medications for AD patients in the early or middle stages demonstrate optimal efficacy, it becomes crucial to delve into the identification of risk genes associated with early onset. In our study, we compiled and integrated three transcriptomics datasets (GSE48350, GSE36980, GSE5281) originating from the hippocampus of 37 AD patients and 66 healthy controls (CTR) for comprehensive bioinformatics analysis. Comparative analysis with CTR revealed 25 up-regulated genes and 291 down-regulated genes in AD. Those down-regulated genes were notably enriched in processes related to the transmission and transport of synaptic signals. Intriguingly, 27 differentially expressed genes implicated in AD were also correlated with the Braak stage, establishing a connection with various immune cell types that exhibit differences in AD, including cytotoxic T cells, neutrophils, CD4 T cells, Th1, Th2, and Tfh. Significantly, a Cox model, constructed using nine feature genes, effectively stratified AD samples (HR = 2.72, 95% CI 1.94 ~ 3.81, P = 3.6e-10), highlighting their promising potential for risk assessment. In conclusion, our investigation sheds light on novel genes intricately linked to the onset and progression of AD, offering potential biomarkers for the early detection of this debilitating condition. This study contributes valuable insights toward enhancing the strategies for preventing and treating AD.
Collapse
Affiliation(s)
- Jie Li
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lingfang Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Cai
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Kun Song
- Department of Gastrointestinal Surgery & National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shenghui Hu
- Department of Orthopaedics, Xiangya Second Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Uruno A, Kadoguchi-Igarashi S, Saito R, Koiso S, Saigusa D, Chu CT, Suzuki T, Saito T, Saido TC, Cuadrado A, Yamamoto M. The NRF2 inducer CDDO-2P-Im provokes a reduction in amyloid β levels in Alzheimer's disease model mice. J Biochem 2024; 176:405-414. [PMID: 39259503 DOI: 10.1093/jb/mvae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Alzheimer's disease (AD) is the most common aetiology of dementia. The transcription factor NF-E2-related factor 2 (NRF2) induces the expression of genes encoding phase II detoxification and antioxidant genes. NRF2 is regulated by Kelch-like ECH-associated protein 1 (KEAP1), and the KEAP1-NRF2 system is the key regulatory system involved in cytoprotection. To examine whether pharmacological induction of NRF2 expression alleviates AD phenotypes in vivo, we employed two AD mouse models, i.e. App NL-G-F/NL-G-F (AppNLGF) and APPV717I::TAUP301L (APP/TAU) mice. As the synthetic oleanane triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11-dien-28-oyl)] (CDDO)-4(-pyridin-2-yl)-imidazole (CDDO-2P-Im) exhibits strong NRF2-inducing activity, we treated AD model mice with CDDO-2P-Im. We found that Aβ42 levels were markedly greater in the brains of AppNLGF mice than in those of APP/TAU mice. CDDO-2P-Im treatment significantly decreased Aβ42 levels, but not Aβ40 levels, in APP/TAU mice. Consequently, CDDO-2P-Im also decreased the ratio of Aβ42/Aβ40, a vital marker of amyloid plaque formation. LC-MS/MS analyses revealed that CDDO-2P-Im was delivered to the brains of the APP/TAU mice. CDDO-2P-Im induced the expression of detoxification and antioxidant gene targets of NRF2 and elevated reduced glutathione (GSH) levels in the mouse brain. These results support the notion that CDDO-2P-Im ameliorates AD-related pathologic changes.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shiori Kadoguchi-Igarashi
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Shohei Koiso
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Takafumi Suzuki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Antonio Cuadrado
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Instituto de Investigación Sanitaria La Paz (IdiPaz), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Duperier, 4, Madrid 28049, Spain
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| |
Collapse
|
23
|
Nie K, Gao Y, Wang H, Su H, Chen S, Jiang X, Dong H, Tang Y. Jiao-tai-wan and its effective component-coptisine alleviate cognitive impairment in db/db mice through the JAK2/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155954. [PMID: 39178683 DOI: 10.1016/j.phymed.2024.155954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is now well-accepted as a complication and comorbidity of diabetes mellitus (DM), becoming a serious medical and social problem. Jiao-tai-wan (JTW), one of noted traditional Chinese medicine (TCM), showed dual therapeutic effects on DM and CI. Nevertheless, the potential mechanism is unclear. PURPOSE This study sought to investigate the mechanism how JTW protected against DM and CI and screen the active component in JTW. METHODS Db/db mice were used as mouse models. Mice were treated by gavage with 0.9 % saline (0.1 mL/10g/d), low dose of JTW (2.4 g/kg/d) or high dose of JTW (4.8 g/kg/d) for 8 weeks separately. To access the effects of JTW, the levels of OGTT, HOMA-IR, blood lipids, inflammatory cytokines in serum and hippocampus were measured, behavioral tests were conducted, and histopathological changes were observed. The mechanism exploration was performed via network pharmacology, RT-qPCR, western blot, and immunofluorescence staining (IF). The impact and mechanism of coptisine in vitro were investigated using BV2 cells induced by LPS as cellular models. In vitro experiments were conducted in two parts. The first part comprised four groups: Control group, LPS group, LPS+LCOP group and LPS+HCOP group. The second part consisted of four groups: Control group, LPS group, LPS+HCOP group, and LPS+ Fed group. The western blot and RT-qPCR methods were used to examine the changes in biomarkers of the JAK2/STAT3 signaling pathways in BV2 cells. RESULTS The results demonstrated that JTW could improve OGTT and HOMA-IR, reduce the serum levels of LDL-C, HDL-C, TG, and TC, restore neuronal dysfunction and synaptic plasticity, and decrease the deposition of Aβ in the hippocampus. The findings from ELISA, IF, and RT-qPCR revealed that JTW could alleviate microglial activation and inflammatory status in vivo and coptisine could play the same role in vitro. Moreover, the changes of the JAK2/STAT3 signaling pathway in LPS-induced BV2 cells or hippocampus of db/db mice were distinctly reversed by coptisine or JTW, respectively. CONCLUSION Our study suggested that JTW and its effective component coptisine could alleviate diabetes mellitus-related cognitive impairment, closely linked to the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
24
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
25
|
Vasileva LA, Gaynanova GA, Romanova EA, Petrov KA, Feng C, Zakharova LY, Sinyashin OG. Supramolecular approach to the design of nanocarriers for antidiabetic drugs: targeted patient-friendly therapy. RUSSIAN CHEMICAL REVIEWS 2024; 93:RCR5150. [DOI: 10.59761/rcr5150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Diabetes and its complications derived are among serious global health concerns that critically deteriorate the quality of life of patients and, in some cases, result in lethal outcome. Herein, general information on the pathogenesis, factors aggravating the course of the disease and drugs used for the treatment of two types of diabetes are briefly discussed. The aim of the review is to introduce supramolecular strategies that are currently being developed for the treatment of diabetes mellitus and that present a very effective alternative to chemical synthesis, allowing the fabrication of nanocontainers with switchable characteristics that meet the criteria of green chemistry. Particular attention is paid to organic (amphiphilic and polymeric) formulations, including those of natural origin, due to their biocompatibility, low toxicity, and bioavailability. The advantages and limitations of different nanosystems are discussed, with emphasis on their adaptivity to noninvasive administration routes.<br>The bibliography includes 378 references.
Collapse
Affiliation(s)
- L. A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - G. A. Gaynanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - E. A. Romanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - K. A. Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Ch. Feng
- Shanghai Jiao Tong University, Shanghai, China
| | - L. Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - O. G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
26
|
Zhao Y, Yang L, Chen M, Gao F, Lv Y, Li X, Liu H. Study on Undercarboxylated Osteocalcin in Improving Cognitive Function of Rats with Type 2 Diabetes Mellitus by Regulating PI3K-AKT-GSK/3β Signaling Pathwaythrough medical images. Biotechnol Genet Eng Rev 2024; 40:2246-2261. [PMID: 37036954 DOI: 10.1080/02648725.2023.2199238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
This paper aims to clarify the effect of Undercarboxylated osteocalcin (ucOC) on cognitive function in rats with type 2 diabetes mellitus (T2DM). This research reviewed the cognitive function of 35 diabetic patients, 33 non-diabetic patients and the serum levels of Undercarboxylated osteocalcin (ucOC) in patients. What's more, we analyzed the correlation between serum ucOC levels and cognitive function. Diabetic rats were treated with high (30 μg·kg-1·d-1) and low (10 μg·kg-1·d-1) doses of ucOC to investigate its effects in regulating ucOC on blood lipid, blood glucose and cognitive function. We systematically detected the phosphorylation levels of cognitive level-related proteins (PI3K, AKT, and GSK/3β) in the hippocampus by Western Blot. Finally, PI3K-Akt pathway involved in regulating cognitive function in diabetic rats by ucOC was verified with AKT pathway inhibitor LY294002. MoCA score and serum ucOC levels were significantly reduced in patients with diabetes mellitus. ucOC could concentration-dose-dependently decrease the blood glucose and lipid levels, and improve glucose metabolism and weaken insulin resistance in diabetic rats (P < 0.001). In addition, escape latency in diabetic rats was significantly higher than that of normal rats in the Morris maze test, and ucOC dose-dependently shortened the escape latency in diabetic rats (all with P < 0.05). After using AKT pathway inhibitor, ucOC failed to shorten the escape latency in diabetic rats. In conclusion, this study explored the relevant mechanisms in inducing cognitive dysfunction of T2DM, suggesting the potential value of ucOC as a drug to improve cognitive dysfunction in patients with T2DM in clinical.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Geriatrics, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lili Yang
- Department of Cardiology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Mei Chen
- Department of Geriatrics, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Feng Gao
- Department of Neurology, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yinghui Lv
- Department of Geriatrics, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xue Li
- Department of Geriatrics, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongmin Liu
- School of Nursing, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
27
|
da Silva VF, Gayger-Dias V, da Silva RS, Sobottka TM, Cigerce A, Lissner LJ, Wartchow KM, Rodrigues L, Zanotto C, Fróes FCTDS, Seady M, Quincozes-Santos A, Gonçalves CA. Calorie restriction protects against acute systemic LPS-induced inflammation. Nutr Neurosci 2024; 27:1237-1249. [PMID: 38386276 DOI: 10.1080/1028415x.2024.2316448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets.Objective: As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.Methods: Peripheral inflammatory and metabolic parameters were evaluated in Wistar rats following CR and/or acute lipopolysaccharide (LPS) administration, as well as glial changes (microglia and astrocytes), in two regions of the brain (hippocampus and hypothalamus) involved in the inflammatory response. We used a protocol of 30% CR, for 4 or 8 weeks. Serum and brain parameters were analyzed by biochemical or immunological assays.Results: Benefits of CR were observed during the inflammatory challenge, where the partial reduction of serum interleukin-6, mediated by CR, attenuated the systemic response. In the central nervous system (CNS), specifically in the hippocampus, CR attenuated the response to the LPS, as evaluated by tumor necrosis factor alpha (TNFα) levels. Furthermore, in the hippocampus, CR increased the glutathione (GSH) levels, resulting in a better antioxidant response.Discussion: This study contributes to the understanding of the effects of CR, particularly in the CNS, and expands knowledge about glial cells, emphasizing their importance in neuroprotection strategies.
Collapse
Affiliation(s)
- Vanessa-Fernanda da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Vitor Gayger-Dias
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Rafaela Sampaio da Silva
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Thomas Michel Sobottka
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Anderson Cigerce
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Lílian Juliana Lissner
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro, Rome
| | - Krista Minéia Wartchow
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Letícia Rodrigues
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Caroline Zanotto
- Biochemistry Laboratory, Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | | | - Marina Seady
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde (ICBS), Graduate Program in Biochemistry, Porto Alegre, Brazil
| |
Collapse
|
28
|
Son DS, Kim JI, Kim DK. A Longitudinal Study Investigating Whether Chronic Rhinosinusitis Influences the Subsequent Risk of Developing Dementia. J Pers Med 2024; 14:1081. [PMID: 39590573 PMCID: PMC11595754 DOI: 10.3390/jpm14111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Numerous studies have explored the association between chronic rhinosinusitis (CRS) and cognitive decline. However, whether CRS is an independent risk factor for the development of dementia remains unclear. Thus, this retrospective cohort study sought to examine the potential association between CRS and increased incidence and risk of dementia by utilizing a representative population-based cohort dataset. Methods: In this study, we identified 2126 patients with CRS aged >55 years and matched them with 8504 controls to assess the incidence and risk of dementia. Results: We found that the incidence of all-cause dementia in CRS patients was 0.125 per 1000 person-years. The risk of developing all-cause dementia events (adjusted hazard ratio [HR] = 1.0, 95% confidence interval = 0.8-1.3) also did not differ significantly between the control group and the CRS group, irrespective of the CRS phenotype. Subgroup analysis also showed no increased adjusted HR for developing Alzheimer's disease (0.9, 0.7-1.2), Parkinson's disease (0.9, 0.5-1.4), and other types of dementia (1.0, 0.7-1.4) in the CRS group compared to the control group. Conclusions: Therefore, the present study demonstrated that patients over 55 years of age with CRS did not exhibit an increased incidence or risk of dementia compared to individuals without CRS.
Collapse
Affiliation(s)
- Dae-Soon Son
- Department of Data Science and Data Science Convergence Research Center, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Jae-In Kim
- Department of Physiology, Neurology, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
29
|
Liu G, Xie R, Tan Q, Zheng J, Li W, Wang Q, Liang Y. Pharmacokinetic study and neuropharmacological effects of atractylenolide Ⅲ to improve cognitive impairment via PI3K/AKT/GSK3β pathway in intracerebroventricular-streptozotocin rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118420. [PMID: 38838925 DOI: 10.1016/j.jep.2024.118420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herbal remedy Atractylodes macrocephala Koidz is renowned for its purported gastrointestinal regulatory properties and immune-enhancing capabilities. Atractylenolide III (ATL III), a prominent bioactive compound in Atractylodes macrocephala Koidz, has demonstrated significant pharmacological activities. However, its impact on neuroinflammation, oxidative stress, and therapeutic potential concerning Alzheimer's disease (AD) remain inadequately investigated. AIM OF THE STUDY This study aims to assess the plasma pharmacokinetics of ATL III in Sprague-Dawley (SD) rats and elucidate its neuropharmacological effects on AD via the PI3K/AKT/GSK3β pathway. Through this research, we endeavor to furnish experimental substantiation for the advancement of novel therapeutics centered on ATL III. MATERIALS AND METHODS The pharmacokinetic profile of ATL III in SD rat plasma was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). AD models were induced in SD rats through bilateral intracerebroventricular (ICV) administration of streptozotocin (STZ). ATL III was administered at doses of 0.6 mg/kg, 1.2 mg/kg, and 2.4 mg/kg, while donepezil (1 mg/kg) served as control. Cognitive function assessments were conducted employing behavioral tests including the Morris Water Maze and Novel Object Recognition. Neuronal pathology and histological changes were evaluated through Nissl staining and Hematoxylin-Eosin (HE) staining, respectively. Oxidative stress levels were determined by quantifying malondialdehyde (MDA) content and total superoxide dismutase (T-SOD) activity. Molecular docking analysis was employed to explore the direct binding between ATL III and its relevant targets, followed by validation using Western blot (WB) experiments to assess the expression of p-Tau, PI3K, AKT, GSK3β, and their phosphorylated forms. RESULTS Within the concentration range of 5-500 ng/mL, ATL III demonstrated exceptional linearity (R2 = 0.9991), with a quantification limit of 5 ng/mL. In male SD rats, ATL III exhibited a Tmax of 45 min, a t1/2 of 172.1 min, a Cmax of 1211 ng/L, and an AUC(0-t) of 156031 ng/L*min. Treatment with ATL III significantly attenuated Tau hyperphosphorylation in intracerebroventricular-streptozotocin (ICV-STZ) rats. Furthermore, ATL III administration mitigated neuroinflammation and oxidative stress, as evidenced by reduced Nissl body loss, alleviated histological alterations, decreased MDA content, and enhanced T-SOD activity. Molecular docking analyses revealed strong binding affinity between ATL III and the target genes PI3K, AKT, and GSK3β. Experimental validation corroborated that ATL III stimulated the phosphorylation of PI3K and AKT while reducing the phosphorylation of GSK3β. CONCLUSIONS Our results indicate that ATL III can mitigate Tau protein phosphorylation through modulation of the PI3K/AKT/GSK3β pathway. This attenuation consequently ameliorates neuroinflammation and oxidative stress, leading to enhanced learning and memory abilities in ICV-STZ rats.
Collapse
Affiliation(s)
- Guoqing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Ruiye Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiwen Tan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Jingjing Zheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
30
|
Bostick JW, Connerly TJ, Thron T, Needham BD, de Castro Fonseca M, Kaddurah-Daouk R, Knight R, Mazmanian SK. The microbiome shapes immunity in a sex-specific manner in mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593011. [PMID: 38766238 PMCID: PMC11100721 DOI: 10.1101/2024.05.07.593011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
INTRODUCTION : Preclinical studies reveal that the microbiome broadly affects immune responses and deposition and/or clearance of amyloid-beta (Aβ) in mouse models of Alzheimer's disease (AD). Whether the microbiome shapes central and peripheral immune profiles in AD models remains unknown. METHODS : We examined adaptive immune responses in two mouse models containing AD- related genetic predispositions (3xTg and 5xFAD) in the presence or absence of the microbiome. RESULTS : T and B cells were altered in brain-associated and systemic immune tissues between genetic models and wildtype mice, with earlier signs of immune activity in females. Systemic immune responses were modulated by the microbiome and differed by sex. Further, the absence of a microbiome in germ-free mice resulted in reduced cognitive deficits, primarily in females. DISCUSSION : These data reveal sexual dimorphism in early signs of immune activity and microbiome effects, and highlight an interesting interaction between sex and the microbiome in mouse models of AD.
Collapse
|
31
|
Ma Y, Wang N, Zhang H, Liang X, Fa W, Liu K, Liu C, Zhu M, Tian N, Tian X, Cong L, Laukka EJ, Wang Y, Hou T, Du Y, Qiu C. The lifestyle for brain health index, the cluster of differentiation 33 (CD33) gene, and cognitive function among rural Chinese older adults: A population-based study. Arch Gerontol Geriatr 2024; 125:105479. [PMID: 38768553 DOI: 10.1016/j.archger.2024.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND We sought to examine the associations of the Lifestyle for Brain Health (LIBRA) index with cognitive function among rural Chinese older adults and to explore the potential role of cluster of differentiation 33 gene (CD33) in the associations. METHODS This population-based cross-sectional study included 4914 dementia-free participants (age ≥60 years; 56.43 % women) in the 2018 baseline examination of MIND-China. The LIBRA index was generated from 11 factors. We used a neuropsychological test battery to assess episodic memory, verbal fluency, attention, executive function, and global cognition. The CD33(rs3865444) polymorphism was detected using multiple-polymerase chain reaction amplification. Data were analyzed using the general linear regression models. RESULTS A higher LIBRA index was associated with multivariable-adjusted β-coefficient (95 %CI) of -0.011(-0.020- -0.001) for global cognitive z-score, -0.020(-0.033- -0.006) for episodic memory, and -0.016(-0.029- -0.004) for verbal fluency. The CD33(rs3865444) was associated with a lower global cognitive z-score in the additive (CA vs. CC: β-coefficient=0.042; 95 %CI=0.008-0.077), the dominant (CA+AA vs. CC: 0.040; 0.007-0.073), and the over-dominant (CA vs. CC+AA: 0.043; 0.009-0.077) models. Similar results were obtained for verbal fluency and attention. The CD33 gene showed statistical interactions with LIBRA index on cognitive function (Pinteraction<0.05) such that a higher LIBRA index was significantly associated with lower z-scores of global cognition and attention only among CD33 CC carriers (P < 0.05). CONCLUSIONS This population-based study reveals for the first time that a higher LIBRA index is associated with worse cognitive performance in rural Chinese older adults and that CD33 gene could modify the association.
Collapse
Affiliation(s)
- Yixun Ma
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Nan Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China
| | - Heng Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China
| | - Xiaoyan Liang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China
| | - Wenxin Fa
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China
| | - Min Zhu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China
| | - Na Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China
| | - Xunyao Tian
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China
| | - Erika J Laukka
- Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University 17165 Solna, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China; Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University 17165 Solna, Sweden; Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong 250021, PR China; Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China.
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, PR China; Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute and Stockholm University 17165 Solna, Sweden; Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| |
Collapse
|
32
|
Seong SJ, Kim KW, Song JY, Park KJ, Jo YT, Han JH, Yoo KH, Jo HJ, Hwang JY. Inflammatory Cytokines and Cognition in Alzheimer's Disease and Its Prodrome. Psychiatry Investig 2024; 21:1054-1064. [PMID: 39465234 PMCID: PMC11513865 DOI: 10.30773/pi.2024.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the association between blood levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and cognitive impairments among elderly individuals. METHODS Peripheral concentration of TNF-α and IL-6 were measured in all subjects. To assess individual cognitive function, the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery (CERAD-NP) was used, and standardized scores (z-scores) were calculated for each test. Cytokine levels were compared between the diagnostic groups, and correlations between blood inflammatory factor levels and z-scores were analyzed. RESULTS The 37 participants included 8 patients with Alzheimer's disease (AD), 15 subjects with mild cognitive impairment (MCI), and 14 cognitively healthy controls. TNF-α and IL-6 levels were higher in patients with AD than in healthy controls. TNF-α levels were higher in the AD group than in the MCI group. However, after adjusting for age, the associations between diagnosis and TNF-α and IL-6 were not significant. The higher the plasma IL-6 level, the lower the z-scores on the Boston Naming Test, Word List Learning, Word List Recognition, and Constructional Recall. The higher the serum TNF-α level, the lower the z-scores on the Word List Learning and Constructional Recall. Negative correlation between serum TNF-α level and the z-score on Word List Learning remained significant when age was adjusted. CONCLUSION The difference in the blood levels of TNF-α and IL-6 between the diagnostic groups may be associated with aging. However, elevated TNF-α levels were associated with worse immediate memory performance, even after adjusting for age.
Collapse
Affiliation(s)
- Su Jeong Seong
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University, College of Natural Sciences, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | - Joo Yun Song
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Kee Jeong Park
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Young Tak Jo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, College of Medicine, Cheonan, Republic of Korea
| | - Ka Hee Yoo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Hyun Jun Jo
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Jae Yeon Hwang
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| |
Collapse
|
33
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
34
|
Khadhraoui E, Nickl-Jockschat T, Henkes H, Behme D, Müller SJ. Automated brain segmentation and volumetry in dementia diagnostics: a narrative review with emphasis on FreeSurfer. Front Aging Neurosci 2024; 16:1459652. [PMID: 39291276 PMCID: PMC11405240 DOI: 10.3389/fnagi.2024.1459652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
BackgroundDementia can be caused by numerous different diseases that present variable clinical courses and reveal multiple patterns of brain atrophy, making its accurate early diagnosis by conventional examinative means challenging. Although highly accurate and powerful, magnetic resonance imaging (MRI) currently plays only a supportive role in dementia diagnosis, largely due to the enormous volume and diversity of data it generates. AI-based software solutions/algorithms that can perform automated segmentation and volumetry analyses of MRI data are being increasingly used to address this issue. Numerous commercial and non-commercial software solutions for automated brain segmentation and volumetry exist, with FreeSurfer being the most frequently used.ObjectivesThis Review is an account of the current situation regarding the application of automated brain segmentation and volumetry to dementia diagnosis.MethodsWe performed a PubMed search for “FreeSurfer AND Dementia” and obtained 493 results. Based on these search results, we conducted an in-depth source analysis to identify additional publications, software tools, and methods. Studies were analyzed for design, patient collective, and for statistical evaluation (mathematical methods, correlations).ResultsIn the studies identified, the main diseases and cohorts represented were Alzheimer’s disease (n = 276), mild cognitive impairment (n = 157), frontotemporal dementia (n = 34), Parkinson’s disease (n = 29), dementia with Lewy bodies (n = 20), and healthy controls (n = 356). The findings and methods of a selection of the studies identified were summarized and discussed.ConclusionOur evaluation showed that, while a large number of studies and software solutions are available, many diseases are underrepresented in terms of their incidence. There is therefore plenty of scope for targeted research.
Collapse
Affiliation(s)
- Eya Khadhraoui
- Clinic for Neuroradiology, University Hospital, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, University Hospital, Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Magdeburg, Germany
| | - Hans Henkes
- Neuroradiologische Klinik, Katharinen-Hospital, Klinikum-Stuttgart, Stuttgart, Germany
| | - Daniel Behme
- Clinic for Neuroradiology, University Hospital, Magdeburg, Germany
- Stimulate Research Campus Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
35
|
Arshavsky YI. Autoimmune hypothesis of Alzheimer's disease: unanswered question. J Neurophysiol 2024; 132:929-942. [PMID: 39163023 DOI: 10.1152/jn.00259.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) was described more than a century ago. However, there are still no effective approaches to its treatment, which may suggest that the search for the cure is not being conducted in the most productive direction. AD begins as selective impairments of declarative memory with no deficits in other cognitive functions. Therefore, understanding of the AD pathogenesis has to include the understanding of this selectivity. Currently, the main efforts aimed at prevention and treatment of AD are based on the dominating hypothesis for the AD pathogenesis: the amyloid hypothesis. But this hypothesis does not explain selective memory impairments since β-amyloid accumulates extracellularly and should be toxic to all types of cerebral neurons, not only to "memory engram neurons." To explain selective memory impairment, I propose the autoimmune hypothesis of AD, based on the analysis of risk factors for AD and molecular mechanisms of memory formation. Memory formation is associated with epigenetic modifications of chromatin in memory engram neurons and, therefore, might be accompanied by the expression of memory-specific proteins recognized by the adaptive immune system as "non-self" antigens. Normally, the brain is protected by the blood-brain barrier (BBB). All risk factors for AD provoke BBB disruptions, possibly leading to an autoimmune reaction against memory engram neurons. This reaction would make them selectively sensitive to tauopathy. If this hypothesis is confirmed, the strategies for AD prevention and treatment would be radically changed.
Collapse
Affiliation(s)
- Yuri I Arshavsky
- BioCircuits Institute, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
36
|
Lorenzini L, Collij LE, Tesi N, Vilor‐Tejedor N, Ingala S, Blennow K, Foley C, Frisoni GB, Haller S, Holstege H, van der van der Lee S, Martinez‐Lage P, Marioni RE, McCartney DL, O’ Brien J, Oliveira TG, Payoux P, Reinders M, Ritchie C, Scheltens P, Schwarz AJ, Sudre CH, Waldman AD, Wolz R, Chatelat G, Ewers M, Wink AM, Mutsaerts HJMM, Gispert JD, Visser PJ, Tijms BM, Altmann A, Barkhof F. Alzheimer's disease genetic pathways impact cerebrospinal fluid biomarkers and imaging endophenotypes in non-demented individuals. Alzheimers Dement 2024; 20:6146-6160. [PMID: 39073684 PMCID: PMC11497686 DOI: 10.1002/alz.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.
Collapse
Affiliation(s)
- Luigi Lorenzini
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Lyduine E. Collij
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöLund UniversityLundSweden
| | - Niccoló Tesi
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Human GeneticsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Delft Bioinformatics LabDelft University of TechnologyDelftThe Netherlands
| | - Natàlia Vilor‐Tejedor
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- Centre for Genomic Regulation (CRG)The Barcelona Institute for Science and TechnologyBarcelonaSpain
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Silvia Ingala
- Department of RadiologyCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Cerebriu A/SCopenhagenDenmark
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | | | - Giovanni B. Frisoni
- Laboratory Alzheimer's Neuroimaging & EpidemiologyIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- University Hospitals and University of GenevaGenevaSwitzerland
| | - Sven Haller
- CIMC ‐ Centre d'Imagerie Médicale de CornavinGenevaSwitzerland
- Department of Surgical Sciences, RadiologyUppsala UniversityUppsalaSweden
- Department of RadiologyBeijing Tiantan HospitalCapital Medical UniversityBeijingP. R. China
| | - Henne Holstege
- Genomics of Neurodegenerative Diseases and Aging, Human GeneticsVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sven van der van der Lee
- Genomics of Neurodegenerative Diseases and Aging, Human GeneticsVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Pablo Martinez‐Lage
- Centro de Investigación y Terapias Avanzadas, Neurología, CITA‐Alzheimer FoundationSan SebastiánSpain
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental MedicineInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Daniel L. McCartney
- Centre for Genomic and Experimental MedicineInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - John O’ Brien
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Pierre Payoux
- Department of Nuclear MedicineToulouse University HospitalToulouseFrance
- ToNIC, Toulouse NeuroImaging CenterUniversity of Toulouse, InsermToulouseFrance
| | - Marcel Reinders
- Delft Bioinformatics LabDelft University of TechnologyDelftThe Netherlands
| | - Craig Ritchie
- Edinburgh Dementia Prevention, Centre for Clinical Brain Sciences, Outpatient Department 2Western General HospitalUniversity of EdinburghEdinburghUK
- Brain Health ScotlandEdinburghUK
| | - Philip Scheltens
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Carole H. Sudre
- Department of Medical Physics and Biomedical EngineeringCentre for Medical Image Computing (CMIC)University College London (UCL)LondonUK
- MRC Unit for Lifelong Health & Ageing at UCLUniversity College LondonLondonUK
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Adam D. Waldman
- Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Department of MedicineImperial College LondonLondonUK
| | | | - Gael Chatelat
- Université de Normandie, Unicaen, Inserm, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, institut Blood‐and‐Brain @ Caen‐Normandie, CyceronCaenFrance
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Alle Meije Wink
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamThe Netherlands
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
| | - Henk J. M. M. Mutsaerts
- Amsterdam Neuroscience, Brain ImagingAmsterdamThe Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI)Ghent UniversityGhentBelgium
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- CIBER Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)MadridSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Pieter Jelle Visser
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamThe Netherlands
- Alzheimer Center LimburgDepartment of Psychiatry & NeuropsychologySchool of Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of NeurogeriatricsDepartment of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Betty M. Tijms
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Amsterdam Neuroscience, NeurodegenerationAmsterdamThe Netherlands
| | - Andre Altmann
- Centre for Medical Image ComputingDepartment of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centre, Vrije UniversiteitAmsterdamThe Netherlands
- Institutes of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| |
Collapse
|
37
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
38
|
Ayaz M, Ali Shah SW, Shoaib M, Shah FA, Ahmed F. Synthesis, characterization and biological evaluation of aurones as potential neuroprotective agents. Future Med Chem 2024; 16:1649-1663. [PMID: 38940451 PMCID: PMC11370930 DOI: 10.1080/17568919.2024.2363713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Aim: To synthesize aurone (Ar) derivatives and to demonstrate their effects against diabetes mellitus (DM) and neurodegeneration.Materials & methods: Five Ar (A-E) derivatives were synthesized, characterized by proton NMR and screened for antioxidant, anti-diabetic and anti-cholinesterase activities. They were further evaluated for neuroprotective effects in streptozotocin (STZ)-induced neurodegenerative model.Results: Among the aurone derivatives ArE demonstrated significant reversal of cognitive impairment, oxidative stress and neuroinflammation. Biochemical analysis revealed anti-diabetic and neuroprotective effects, possibly through downregulation of inflammatory markers and upregulation of antioxidant enzymes.Conclusion: Synthesized Ar (A-E) exhibits promising therapeutic potential against STZ-induced neurodegeneration and DM by modulating inflammatory and oxidative pathways, suggesting a novel avenue for disease management.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy University of Malakand, Dir (L) Pakistan
| | | | - Mohammad Shoaib
- Department of Pharmacy University of Malakand, Dir (L) Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj11942, Saudi Arabia
| | - Fawad Ahmed
- Swat College of Pharmaceutical Sciences, Swat Pakistan
| |
Collapse
|
39
|
Li J, Wu Z, Xin S, Xu Y, Wang F, Liu Y, Wang S, Dong Y, Guo Y, Han Y, Zhao J, Gao Y, Sun M, Li B. Body mass index mediates the association between four dietary indices and phenotypic age acceleration in adults: a cross-sectional study. Food Funct 2024; 15:7828-7836. [PMID: 38916856 DOI: 10.1039/d4fo01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background: Diet and body mass index (BMI) are widely recognized as being closely associated with aging. However, it remains unclear which dietary indices are associated with aging, and the extent to which BMI mediates the relationship between diet and aging. Therefore, this study investigates the mediating role of BMI in the association between various dietary indices and phenotypic age acceleration (PhenoAgeAccel). Methods: Data were sourced from the National Health and Nutrition Examination Survey (NHANES), using two 24 hour recall interviews to compute four dietary indices: the Dietary Inflammatory Index (DII), Healthy Eating Index-2020 (HEI-2020), Alternative Healthy Eating Index-2010 (AHEI-2010), and Composite Dietary Antioxidant Index (CDAI). Linear regression analyses and mediation analyses assessed the associations between dietary indices and PhenoAgeAccel and the mediating effects of BMI. Z-score transformations (zDII, zHEI-2020, zAHEI-2010, and zCDAI) were used to ensure comparability between different dietary indices. Results: After adjusting for covariates, the zHEI-2020, zAHEI-2010, and zCDAI were negatively associated with PhenoAgeAccel (P < 0.05), with β values being -0.36, -0.40, and -0.41, respectively. The zDII was positively associated with PhenoAgeAccel (P < 0.001) with a β value of 0.70. Mediation analyses suggested that BMI significantly mediated the relationships between these dietary indices and PhenoAgeAccel. The mediation proportions were 23.7% for zDII, 43.3% for zHEI-2020, 24.5% for zAHEI-2010, and 23.6% for zCDAI. Conclusions: This study indicates that all dietary indices and BMI were significantly associated with PhenoAgeAccel. In addition, BMI exhibited the highest mediation proportion in the relationship between HEI-2020 and PhenoAgeAccel.
Collapse
Affiliation(s)
- Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Zibo Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Sitong Xin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Yang Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Fengdan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Yan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Sizhe Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Yibo Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Yuangang Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Yu Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Jing Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Yuqi Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| | - Mengzi Sun
- The First Affiliated Hospital of Xi'an Jiaotong University, No. 69, Xiaozhai West Road, Xi'an, 710061, P. R. China
- Global Health Institute, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710100, P. R. China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Xinmin Street No.1163, Changchun, 130021, P. R. China.
| |
Collapse
|
40
|
Hwang SY, Kim CS, Kim MK, Yang Y, Yang YJ. Association of the Korean-specific food-based index of dietary inflammatory potential with the risk of mild cognitive impairment in Korean older adults. Epidemiol Health 2024; 46:e2024067. [PMID: 39118546 DOI: 10.4178/epih.e2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVES This study aimed to examine the association between the food-based index of dietary inflammatory potential (FBDI) and the risk of mild cognitive impairment (MCI) in Korean older adults. METHODS The subjects were 798 Korean adults aged 60 years and older. The FBDI was calculated based on the intake of 7 anti-inflammatory and 3 inflammatory food groups. Cognitive function was assessed using the Korean version of the Mini-Mental State Examination. A general linear model and multiple logistic regression were applied to assess the association between FBDI and the risk of MCI. RESULTS As the FBDI increased, the intake of white rice, cookies/candies, and sweetened drinks tended to increase, but the intake of niacin, β-carotene, calcium, and potassium tended to decrease (p for trend<0.05). The highest FBDI group had a higher MCI risk (odds ratio [OR], 1.60; 95% confidence interval [CI], 1.01 to 2.52) than the lowest FBDI group, adjusted for gender, age, and education level; and this trend was significant in a fully adjusted model (p for trend=0.039). No significant associations were found in men after adjusting for confounding factors. Among women, MCI risk increased as the FBDI increased (p for trend=0.007); and the highest FBDI group had a higher MCI risk (OR, 2.22; 95% CI, 1.04 to 4.74) than the lowest FBDI group in a fully adjusted model. CONCLUSIONS These results suggest that the appropriate intake of anti-inflammatory foods and nutrients may be associated with a reduced risk of MCI among older adults.
Collapse
Affiliation(s)
- Se Yeon Hwang
- Department of Clinical Nutrition, Dongduk Women's University, Seoul, Korea
| | - Chong-Su Kim
- Department of Food and Nutrition, Dongduk Women's University, Seoul, Korea
| | - Mi Kyung Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yoonkyoung Yang
- Department of Food and Nutrition, Ansan University, Ansan, Korea
| | - Yoon Jung Yang
- Department of Food and Nutrition, Dongduk Women's University, Seoul, Korea
| |
Collapse
|
41
|
Lian P, Cai X, Wang C, Zhai H, Liu K, Yang X, Wu Y, Ma Z, Cao X, Xu Y. Identification and experimental validation of m7G-related molecular subtypes, immune signature, and feature genes in Alzheimer's disease. Heliyon 2024; 10:e33836. [PMID: 39027505 PMCID: PMC11255592 DOI: 10.1016/j.heliyon.2024.e33836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Studies has shown that N7-methylguanosine (m7G) modification plays a critical role in neurological diseases. However, the exact role and association of m7G with the immune microenvironment in Alzheimer's disease (AD) remain largely unknown and unexplored. Methods The study datasets comprised 667 AD samples and 503 control samples selected from eight datasets in the Gene Expression Omnibus database; m7G regulator genes were obtained from previous literature. The AD subtypes were identified by consensus clustering analysis according to m7G regulator genes. The clinical characteristics, immune infiltration, and biological functions of the AD subgroups were evaluated. A combination of different types of machine-learning algorithms were used for the identification of AD genes. We also assessed and validated the diagnostic performance of the identified genes via qRT-PCR, immunofluorescence, and immunohistochemical analyses. Results Two AD distinct subgroups, namely cluster A and cluster B, were identified. Cluster A had poor pathological progression and immune infiltration, representing a high-risk subgroup for AD. The differentially expressed genes of cluster A were enriched in immune and synapse-related pathways, suggesting that these genes probably contribute to AD progression by regulating immune-related pathways. Additionally, five feature genes (AEBP1, CARTPT, AK5, NPTX2, and COPG2IT1) were identified, which were used to construct a nomogram model with good ability to predict AD. The animal experiment analyses further confirmed that these feature genes were associated with AD development. Conclusion To the best of our knowledge, this is the first study to reveal close correlations among m7G RNA modification, the immune microenvironment, and the pathogenesis of AD. We also identified five feature genes associated with AD, further contributing to our understanding of the underlying mechanisms and potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Piaopiao Lian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cai
- Department of Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cailin Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Zhai
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoran Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Farris T, González-Ochoa S, Mohammed M, Rajakaruna H, Tonello J, Kanagasabai T, Korolkova O, Shimamoto A, Ivanova A, Shanker A. Loss of Mitochondrial Tusc2/Fus1 Triggers a Brain Pro-Inflammatory Microenvironment and Early Spatial Memory Impairment. Int J Mol Sci 2024; 25:7406. [PMID: 39000512 PMCID: PMC11242373 DOI: 10.3390/ijms25137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.
Collapse
Affiliation(s)
- Tonie Farris
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Salvador González-Ochoa
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Muna Mohammed
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Harshana Rajakaruna
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| | - Jane Tonello
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Thanigaivelan Kanagasabai
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Alla Ivanova
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA; (T.F.); (M.M.); (T.K.)
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (S.G.-O.); (J.T.); (O.K.); (A.S.)
- The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
43
|
Amelimojarad M, Amelimojarad M, Cui X. The emerging role of brain neuroinflammatory responses in Alzheimer's disease. Front Aging Neurosci 2024; 16:1391517. [PMID: 39021707 PMCID: PMC11253199 DOI: 10.3389/fnagi.2024.1391517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
As the most common cause of dementia, Alzheimer's disease (AD) is characterized by neurodegeneration and synaptic loss with an increasing prevalence in the elderly. Increased inflammatory responses triggers brain cells to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in this paper, we discuss the current understanding of how inflammation affects brain activity to induce AD pathology, the inflammatory biomarkers and possible therapies that combat inflammation for AD.
Collapse
Affiliation(s)
| | | | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Cao B, Zeng M, Hao F, Hao Z, Liang X, Zhang Z, Wu Y, Zhang Y, Wang R, Feng W, Zheng X. Cornus officinalis Sieb. Et Zucc. attenuates Aβ 25-35-induced mitochondrial damage and neuroinflammation in mice by modulating the ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155709. [PMID: 38735197 DOI: 10.1016/j.phymed.2024.155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/14/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Cornus officinalis Sieb. Et Zucc. has the efficacy of tonifying the marrow and filling up the essence, breaking up the accumulation and opening up the orifices. Our research team found that CoS extracts were protective against Aβ25-35-induced memory impairment in mice. However, the pharmacodynamic components and mechanisms by which CoS improves AD have yet to be thoroughly explored and investigated. PURPOSE This study focused on exploring the bioactive components and pharmacodynamic mechanisms of CoS aqueous extract underlying mitochondrial damage and neuroinflammation to improve Aβ25-35-induced AD. METHODS AD mouse models were generated using Aβ25-35 brain injections. Different doses of CoS aqueous extract were orally administered to mice for 28 days. The cognitive function, neuronal and synaptic damage, mitochondrial damage (mitochondrial length, mitochondrial fusion fission-related protein expression), neuroglial activation, and immune inflammatory factor and ERK pathway-related protein levels of mice were assessed. The CoS aqueous extracts components were identified using UPLC-TQ/MS and screened for cellular activity. Midivi-1 (Drp1 inhibitor) or PD98059 (ERK inhibitor) was added to Aβ25-35-exposed PC12 cells to assess whether CoS and its active compounds mMorB and CorE regulate mitochondrial fission through ERK/Drp1. PC12-N9 cells were cocultured to investigate whether mMorB and CorE could regulate mitochondrial division through the ERK pathway to modulate neuroinflammation. RESULTS CoS improved exploration and memory in AD mice, reduced synaptic and mitochondrial damage in their hippocampus, and modulated disturbed mitochondrial dynamics. Moreover, CoS inhibited ERK pathway signaling and attenuated abnormal activation of glial cells and secondary immune inflammatory responses. Additionally, in vitro experiments revealed that CoS and its compounds 7β-O-methylmorroniside (mMorB) and Cornusdiridoid E (CorE) ameliorated mitochondrial injury caused by Aβ25-35 in PC12 cells through inhibition of the ERK/Drp1 pathway. Meanwhile, mMorB and CorE ameliorated cellular inflammation by inhibiting the Ras/ERK/CREB signaling pathway. CONCLUSION CoS aqueous extract ameliorates behavioral deficits and brain damage in Aβ25-35-induced AD mice by modulating the ERK pathway to attenuate mitochondrial damage and neuroinflammation, and the compounds mMorB and CorE are the therapeutically active ingredients.
Collapse
Affiliation(s)
- Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Fengxiao Hao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Zhiyou Hao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiwen Liang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuanyuan Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Ru Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China; Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, China.
| |
Collapse
|
45
|
Hartmane I. Study of Genetic Mutations and Their Association With the Development of Atopic Dermatitis and Other Skin Diseases. PLASTIC AND AESTHETIC NURSING 2024; 44:200-209. [PMID: 39028474 DOI: 10.1097/psn.0000000000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The purpose of this study was to identify the heterogeneity of atopic dermatitis and to identify key genetic factors. This can lead to new approaches and personalized treatment strategies. I conducted a literature review of three scientific publication platforms (i.e., PubMed, Cochrane Library, Scopus) for records published between July 2011 and July 2023 using key words related to the genetics of atopic dermatitis. The high heritability and genetic pleiotropia of atopic dermatitis emphasize the importance of its genetic predisposition and interaction with concomitant diseases. The study also shows the role of various genes associated with immunity and inflammatory reactions, as well as the high heritability of atopic dermatitis, particularly among twins. Genetic mutations, specifically polymorphisms of genes encoding immune factors and inflammatory responses, determine an individual's predisposition to atopic dermatitis. Research findings also point to genetic aspects associated with other skin conditions such as psoriasis and vitiligo, confirming the existence of common genetic mechanisms between these diseases. Specifically, polymorphisms of the filaggrin gene have been found to be key genetic determinants of atopic dermatitis. I analyzed the genetic basis of atopic dermatitis, emphasizing the importance of genetic determinants and their interaction with the immune system and extracellular matrix. This study contributes to the understanding of the mechanisms of atopic dermatitis and opens new perspectives for individualized treatments.
Collapse
Affiliation(s)
- Ilona Hartmane
- Ilona Hartmane, MD, is a Dermatologist at the Department of Dermatology and Venereology, Rīga Stradinš University, Rīga, Latvia
| |
Collapse
|
46
|
Shete PA, Ghatpande NS, Varma ME, Joshi PV, Suryavanshi KR, Misar AV, Jadhav SH, Apte PP, Kulkarni PP. Chronic dietary iron overload affects hepatic iron metabolism and cognitive behavior in Wistar rats. J Trace Elem Med Biol 2024; 84:127422. [PMID: 38492476 DOI: 10.1016/j.jtemb.2024.127422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Iron accumulation in organs affects iron metabolism, leading to deleterious effects on the body. Previously, it was studied that high dietary iron in various forms and concentrations influences iron metabolism, resulting in iron accumulation in the liver and spleen and cognitive impairment. However, the actual mechanism and impact of long-term exposure to high dietary iron remain unknown. As a result, we postulated that iron overload caused by chronic exposure to excessive dietary iron supplementation would play a role in iron dyshomeostasis and inflammation in the liver and brain of Wistar rats. METHODS Animals were segregated into control, low iron (FAC-Ferric Ammonium Citrate 5000 ppm), and high iron dose group (FAC 20,000 ppm). The outcome of dietary iron overload on Wistar rats was evaluated in terms of body weight, biochemical markers, histological examination of liver and brain tissue, and cognitive-behavioral studies. Also, gene expression of rat brain tissue involving iron transporters Dmt1, TfR1, iron storage protein Fpn1, inflammatory markers Nf-kB, Tnf-α, Il-6, and hepcidin was performed. RESULTS Our data indicate that excess iron supplementation for 30 weeks leads to decreased body weight, increased serum iron levels, and decreased RBC levels in iron fed Wistar rats. Morris water maze (MWM) studies after 30 weeks showed increased escape latency in the high iron dose group compared with the control group. Histological studies of the high iron dose group showed an iron accumulation in the liver and brain loss of cellular architecture, and cellular degeneration was observed. Excess iron treatment showed upregulation of the Dmt1 gene in iron metabolism and a remarkable increase in the Nf-kB gene in rat brain tissue. CONCLUSION The results show chronic excess iron supplementation leads to iron accumulation in the liver, leading to inflammation in Wistar rats.
Collapse
Affiliation(s)
- Padmaja Anil Shete
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Niraj Sudhir Ghatpande
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Mokshada Evameshwar Varma
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Pranav Vijay Joshi
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Komal Ravindra Suryavanshi
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| | - Ashwini Vivek Misar
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Sachin Hanumantrao Jadhav
- Nanobioscience Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Priti Parag Apte
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India.
| | - Prasad Padmakar Kulkarni
- Bioprospecting Group, Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.
| |
Collapse
|
47
|
AmeliMojarad M, AmeliMojarad M. The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS Neurosci Ther 2024; 30:e14856. [PMID: 39031970 PMCID: PMC11259573 DOI: 10.1111/cns.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Alzheimer's disease (AD), the main cause of dementia, is characterized by synaptic loss and neurodegeneration. Amyloid-β (Aβ) accumulation, hyperphosphorylation of tau protein, and neurofibrillary tangles (NFTs) in the brain are considered to be the initiating factors of AD. However, this hypothesis falls short of explaining many aspects of AD pathogenesis. Recently, there has been mounting evidence that neuroinflammation plays a key role in the pathophysiology of AD and causes neurodegeneration by over-activating microglia and releasing inflammatory mediators. METHODS PubMed, Web of Science, EMBASE, and MEDLINE were used for searching and summarizing all the recent publications related to inflammation and its association with Alzheimer's disease. RESULTS Our review shows how inflammatory dysregulation influences AD pathology as well as the roles of microglia in neuroinflammation, the possible microglia-associated therapeutic targets, top neuroinflammatory biomarkers, and anti-inflammatory drugs that combat inflammation. CONCLUSION In conclusion, microglial inflammatory reactions are important factors in AD pathogenesis and need to be discussed in more detail for promising therapeutic strategies.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| | - Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran
| |
Collapse
|
48
|
Jong Huat T, Camats-Perna J, Newcombe EA, Onraet T, Campbell D, Sucic JT, Martini A, Forner S, Mirzaei M, Poon W, LaFerla FM, Medeiros R. The impact of astrocytic NF-κB on healthy and Alzheimer's disease brains. Sci Rep 2024; 14:14305. [PMID: 38906984 PMCID: PMC11192733 DOI: 10.1038/s41598-024-65248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Astrocytes play a role in healthy cognitive function and Alzheimer's disease (AD). The transcriptional factor nuclear factor-κB (NF-κB) drives astrocyte diversity, but the mechanisms are not fully understood. By combining studies in human brains and animal models and selectively manipulating NF-κB function in astrocytes, we deepened the understanding of the role of astrocytic NF-κB in brain health and AD. In silico analysis of bulk and cell-specific transcriptomic data revealed the association of NF-κB and astrocytes in AD. Confocal studies validated the higher level of p50 NF-κB and phosphorylated-p65 NF-κB in glial fibrillary acidic protein (GFAP)+-astrocytes in AD versus non-AD subjects. In the healthy mouse brain, chronic activation of astrocytic NF-κB disturbed the proteomic milieu, causing a loss of mitochondrial-associated proteins and the rise of inflammatory-related proteins. Sustained NF-κB signaling also led to microglial reactivity, production of pro-inflammatory mediators, and buildup of senescence-related protein p16INK4A in neurons. However, in an AD mouse model, NF-κB inhibition accelerated β-amyloid and tau accumulation. Molecular biology studies revealed that astrocytic NF-κB activation drives the increase in GFAP and inflammatory proteins and aquaporin-4, a glymphatic system protein that assists in mitigating AD. Our investigation uncovered fundamental mechanisms by which NF-κB enables astrocytes' neuroprotective and neurotoxic responses in the brain.
Collapse
Affiliation(s)
- Tee Jong Huat
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Judith Camats-Perna
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Estella A Newcombe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Josiah T Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Alessandra Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Mehdi Mirzaei
- Clinical Medicine Department, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA.
| |
Collapse
|
49
|
Sanchez-Rodriguez LM, Khan AF, Adewale Q, Bezgin G, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Jiang H, Chai X, Carbonell F, Rosa-Neto P, Iturria-Medina Y. In-vivo neuronal dysfunction by Aβ and tau overlaps with brain-wide inflammatory mechanisms in Alzheimer's disease. Front Aging Neurosci 2024; 16:1383163. [PMID: 38966801 PMCID: PMC11223503 DOI: 10.3389/fnagi.2024.1383163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024] Open
Abstract
The molecular mechanisms underlying neuronal dysfunction in Alzheimer's disease (AD) remain uncharacterized. Here, we identify genes, molecular pathways and cellular components associated with whole-brain dysregulation caused by amyloid-beta (Aβ) and tau deposits in the living human brain. We obtained in-vivo resting-state functional MRI (rs-fMRI), Aβ- and tau-PET for 47 cognitively unimpaired and 16 AD participants from the Translational Biomarkers in Aging and Dementia cohort. Adverse neuronal activity impacts by Aβ and tau were quantified with personalized dynamical models by fitting pathology-mediated computational signals to the participant's real rs-fMRIs. Then, we detected robust brain-wide associations between the spatial profiles of Aβ-tau impacts and gene expression in the neurotypical transcriptome (Allen Human Brain Atlas). Within the obtained distinctive signature of in-vivo neuronal dysfunction, several genes have prominent roles in microglial activation and in interactions with Aβ and tau. Moreover, cellular vulnerability estimations revealed strong association of microglial expression patterns with Aβ and tau's synergistic impact on neuronal activity (q < 0.001). These results further support the central role of the immune system and neuroinflammatory pathways in AD pathogenesis. Neuronal dysregulation by AD pathologies also associated with neurotypical synaptic and developmental processes. In addition, we identified drug candidates from the vast LINCS library to halt or reduce the observed Aβ-tau effects on neuronal activity. Top-ranked pharmacological interventions target inflammatory, cancer and cardiovascular pathways, including specific medications undergoing clinical evaluation in AD. Our findings, based on the examination of molecular-pathological-functional interactions in humans, may accelerate the process of bringing effective therapies into clinical practice.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Ahmed F. Khan
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Quadri Adewale
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Hongxiu Jiang
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | | | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, QC, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| |
Collapse
|
50
|
Shir D, Graff-Radford J, Fought AJ, Lesnick TG, Przybelski SA, Vassilaki M, Lowe VJ, Knopman DS, Machulda MM, Petersen RC, Jack CR, Mielke MM, Vemuri P. Complex relationships of socioeconomic status with vascular and Alzheimer's pathways on cognition. Neuroimage Clin 2024; 43:103634. [PMID: 38909419 PMCID: PMC11253683 DOI: 10.1016/j.nicl.2024.103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION AD and CVD, which frequently co-occur, are leading causes of age-related cognitive decline. We assessed how demographic factors, socioeconomic status (SES) as indicated by education and occupation, vascular risk factors, and a range of biomarkers associated with both CVD (including white matter hyperintensities [WMH], diffusion MRI abnormalities, infarctions, and microbleeds) and AD (comprising amyloid-PET and tau-PET) collectively influence cognitive function. METHODS In this cross-sectional population study, structural equation models were utilized to understand these associations in 449 participants (mean age (SD) = 74.5 (8.4) years; 56% male; 7.5% cognitively impaired). RESULTS (1) Higher SES had a protective effect on cognition with mediation through the vascular pathway. (2) The effect of amyloid directly on cognition and through tau was 11-fold larger than the indirect effect of amyloid on cognition through WMH. (3) There is a significant effect of vascular risk on tau deposition. DISCUSSION The utilized biomarkers captured the impact of CVD and AD on cognition. The overall effect of vascular risk and SES on these biomarkers are complex and need further investigation.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Angela J Fought
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 55905 USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA; Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | | |
Collapse
|