1
|
Koester SW, Catapano JS, Hoglund BK, Rhodenhiser EG, Hartke JN, Rudy RF, Winkler EA, Jha RM, Jadhav AP, Ducruet AF, Albuquerque FC, Lawton MT. Predictors of Neurological Outcomes in Patients with Poor Glasgow Coma Scale Scores 1 Week After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2024:S1878-8750(24)01566-3. [PMID: 39270786 DOI: 10.1016/j.wneu.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND This study assessed neurological outcomes and variables associated with favorable outcomes in aneurysmal subarachnoid hemorrhage patients with low functional status (Glasgow Coma Scale [GCS] score ≤8) on postbleed day 7 (PBD7). METHODS A retrospective analysis was conducted of all patients in the Barrow Ruptured Aneurysm Trial (January 1, 2014-July 31, 2019) treated for a ruptured aneurysm and who had a GCS score ≤8 on PBD7. The primary outcome was a favorable neurological outcome (modified Rankin Scale score ≤2) at last follow-up. RESULTS Of 312 patients, 63 had low GCS scores at PBD7. These patients had a significantly greater proportion of poor Hunt and Hess scale grades (≥4) (44/63 [70%] vs. 49/249 [19.7%], P < 0.001) and poor Fisher grades (grade = 4) (58/63 [92%] vs. 174/249 [69.9%], P < 0.001) compared to patients who did not have low GCS scores on PBD7, but no differences were found in age, sex, anterior location, aneurysm size, or type of treatment. Of the 63 patients, 7 (11%) experienced a favorable neurological outcome. On univariate analysis, none of the physical examination reflexes predicted a favorable neurological outcome. The middle cerebral artery aneurysm territory was the only significant predictor of a favorable neurological outcome by multivariate analysis (odds ratio, 10.8; 95% confidence interval, 1.16-100], P = 0.04). CONCLUSIONS This study yielded no significant physical examination findings that predict a favorable outcome in patients with a GCS score ≤8 on PBD7. This finding may inform the decision of whether to prolong hospital management or arrange for end-of-life care.
Collapse
Affiliation(s)
- Stefan W Koester
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Joshua S Catapano
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Brandon K Hoglund
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Emmajane G Rhodenhiser
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Joelle N Hartke
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Robert F Rudy
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ethan A Winkler
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ruchira M Jha
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ashutosh P Jadhav
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Felipe C Albuquerque
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
2
|
Taylor RR, Keane RW, Guardiola B, López-Lage S, Moratinos L, Dietrich WD, Perez-Barcena J, de Rivero Vaccari JP. Inflammasome Proteins Are Reliable Biomarkers of the Inflammatory Response in Aneurysmal Subarachnoid Hemorrhage. Cells 2024; 13:1370. [PMID: 39195261 DOI: 10.3390/cells13161370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is caused by abnormal blood vessel dilation and subsequent rupture, resulting in blood pooling in the subarachnoid space. This neurological insult results in the activation of the inflammasome, a multiprotein complex that processes pro-inflammatory interleukin (IL)-1 cytokines leading to morbidity and mortality. Moreover, increases in inflammasome proteins are associated with clinical deterioration in many neurological diseases. Limited studies have investigated inflammasome protein expression following aSAH. Reliable markers of the inflammatory response associated with aSAH may allow for earlier detection of patients at risk for complications and aid in the identification of novel pharmacologic targets. Here, we investigated whether inflammasome signaling proteins may serve as potential biomarkers of the inflammatory response in aSAH. Serum and cerebrospinal fluid (CSF) from fifteen aSAH subjects and healthy age-matched controls and hydrocephalus (CSF) no-aneurysm controls were evaluated for levels of inflammasome signaling proteins and downstream pro-inflammatory cytokines. Protein measurements were carried out using Simple Plex and Single-Molecule Array (Simoa) technology. The area under the curve (AUC) was calculated using receiver operating characteristics (ROCs) to obtain information on biomarker reliability, specificity, sensitivity, cut-off points, and likelihood ratio. In addition, a Spearman r correlation matrix was performed to determine the correlation between inflammasome protein levels and clinical outcome measures. aSAH subjects demonstrated elevated caspase-1, apoptosis-associated speck-like protein with a caspase recruiting domain (ASC), IL-18 and IL-1β levels in serum, and CSF when compared to controls. Each of these proteins was found to be a promising biomarker of inflammation in aSAH in the CSF. In addition, ASC, caspase-1, and IL-1β were found to be promising biomarkers of inflammation in aSAH in serum. Furthermore, we found that elevated levels of inflammasome proteins in serum are useful to predict worse functional outcomes following aSAH. Thus, the determination of inflammasome protein levels in CSF and serum in aSAH may be utilized as reliable biomarkers of inflammation in aSAH and used clinically to monitor patient outcomes.
Collapse
Affiliation(s)
- Ruby R Taylor
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Cellular Physiology and Molecular Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Begoña Guardiola
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Sofía López-Lage
- Neurosurgical Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Lesmes Moratinos
- Neurosurgical Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jon Perez-Barcena
- Intensive Care Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Cellular Physiology and Molecular Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
3
|
Sümer Coşkun A, Bülbül M, Çeker T, Özak A, Tanrıöver G, Elif Gürer İ, Tuzcu Balaban H, Göksu E, Aslan M. Protective Effects of Adropin in Experimental Subarachnoid Hemorrhage. Neuroscience 2024; 551:307-315. [PMID: 38851381 DOI: 10.1016/j.neuroscience.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE We aimed to investigate early effects of exogenously administered adropin (AD) on neurological function, endothelial nitric oxide synthase (eNOS) expression, nitrite/nitrate levels, oxidative stress, and apoptosis in subarachnoid hemorrhage (SAH). METHODS Following intracerebroventricular AD administration (10 µg/5 µl at a rate of 1 µl/min) SAH model was carried out in Sprague-Dawley rats by injection of autologous blood into the prechiasmatic cistern. The effects of AD were assessed 24 h following SAH. The modified Garcia score was employed to evaluate functional insufficiencies. Adropin and caspase-3 proteins were measured by ELISA, while nitrite/nitrate levels, total antioxidant capacity (TAC) and reactive oxygen/nitrogen species (ROS/RNS) were assayed by standard kits. eNOS expression and apoptotic neurons were detected by immunohistochemical analysis. RESULTS The SAH group performed notably lower on the modified Garcia score compared to sham and SAH + AD groups. Adropin administration increased brain eNOS expression, nitrite/nitrate and AD levels compared to SHAM and SAH groups. SAH produced enhanced ROS/RNS generation and reduced antioxidant capacity in the brain. Adropin boosted brain TAC and diminished ROS/RNS production in SAH rats and no considerable change amongst SHAM and SAH + AD groups were detected. Apoptotic cells were notably increased in intensity and number after SAH and were reduced by AD administration. CONCLUSIONS Adropin increases eNOS expression and reduces neurobehavioral deficits, oxidative stress, and apoptotic cell death in SAH model. Presented results indicate that AD provides protection in early brain injury associated with SAH.
Collapse
Affiliation(s)
- Ayşenur Sümer Coşkun
- Division of Anesthesia and Reanimation, Kepez State Hospital, 07320 Antalya, Turkey.
| | - Mehmet Bülbül
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| | - Ahmet Özak
- Department of Neurosurgery, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| | - Gamze Tanrıöver
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| | - İnanç Elif Gürer
- Department Pathology, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| | - Hazal Tuzcu Balaban
- Department Pathology, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| | - Ethem Göksu
- Department of Neurosurgery, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey.
| |
Collapse
|
4
|
Orban B, Tengölics R, Zavori L, Simon D, Erdo-Bonyar S, Molnar T, Schwarcz A, Csecsei P. The Difference in Serum Metabolomic Profiles between the Good and Poor Outcome Groups at 3 Months in the Early and Late Phases of Aneurysmal Subarachnoid Hemorrhage. Int J Mol Sci 2024; 25:6597. [PMID: 38928303 PMCID: PMC11203497 DOI: 10.3390/ijms25126597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
We aimed to investigate the characteristics of serum metabolomics in aneurysmal subarachnoid hemorrhage patients (aSAH) with different 3-month outcomes (good = modified Rankin score: 0-3 vs. poor = mRS 4-6). We collected serum samples from 46 aSAH patients at 24 (D1) and 168 (D7) hours after injury for analysis by liquid chromatography-mass spectrometry. Ninety-six different metabolites were identified. Groups were compared using multivariate (orthogonal partial least squares discriminant analysis), univariate, and receiving operator characteristic (ROC) methods. We observed a marked decrease in serum homocysteine levels at the late phase (D7) compared to the early phase (D1). At both D1 and D7, mannose and sorbose levels were notably higher, alongside elevated levels of kynurenine (D1) and increased 2-hydroxybutyrate, methyl-galactoside, creatine, xanthosine, p-hydroxyphenylacetate, N-acetylalanine, and N-acetylmethionine (all D7) in the poor outcome group. Conversely, levels of guanidinoacetate (D7) and several amino acids (both D1 and D7) were significantly lower in patients with poor outcomes. Our results indicate significant changes in energy metabolism, shifting towards ketosis and alternative energy sources, both in the early and late phases, even with adequate enteral nutrition, particularly in patients with poor outcomes. The early activation of the kynurenine pathway may also play a role in this process.
Collapse
Affiliation(s)
- Brigitta Orban
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Roland Tengölics
- Metabolomics Lab, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary;
- Core Facilities, Biological Research Centre, Hungarian Research Network, 6726 Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine—Biological Research Centre Metabolic Systems Biology Lab, 6726 Szeged, Hungary
| | - Laszlo Zavori
- Emergency Department, Saudi German Hospital, Dubai 391093, United Arab Emirates;
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, 7632 Pecs, Hungary; (D.S.); (S.E.-B.)
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, 7632 Pecs, Hungary;
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, 7632 Pecs, Hungary; (B.O.); (A.S.)
| |
Collapse
|
5
|
Ding M, Jin L, Wei B, Cheng W, Liu W, Li X, Duan C. Tumor necrosis factor-stimulated gene-6 ameliorates early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome-mediated astrocyte pyroptosis. Neural Regen Res 2024; 19:1064-1071. [PMID: 37862209 PMCID: PMC10749632 DOI: 10.4103/1673-5374.385311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 10/22/2023] Open
Abstract
Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment. Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage. Previous studies have confirmed that tumor necrosis factor-stimulated gene-6 (TSG-6) can exert a neuroprotective effect by suppressing oxidative stress and apoptosis. However, no study to date has explored whether TSG-6 can alleviate pyroptosis in early brain injury after subarachnoid hemorrhage. In this study, a C57BL/6J mouse model of subarachnoid hemorrhage was established using the endovascular perforation method. Our results indicated that TSG-6 expression was predominantly detected in astrocytes, along with NLRC4 and gasdermin-D (GSDMD). The expression of NLRC4, GSDMD and its N-terminal domain (GSDMD-N), and cleaved caspase-1 was significantly enhanced after subarachnoid hemorrhage and accompanied by brain edema and neurological impairment. To explore how TSG-6 affects pyroptosis during early brain injury after subarachnoid hemorrhage, recombinant human TSG-6 or a siRNA targeting TSG-6 was injected into the cerebral ventricles. Exogenous TSG-6 administration downregulated the expression of NLRC4 and pyroptosis-associated proteins and alleviated brain edema and neurological deficits. Moreover, TSG-6 knockdown further increased the expression of NLRC4, which was accompanied by more severe astrocyte pyroptosis. In summary, our study revealed that TSG-6 provides neuroprotection against early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome activation-induced astrocyte pyroptosis.
Collapse
Affiliation(s)
- Mingxiang Ding
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Cerebrovascular Intervention, Zhongshan City People’s Hospital, Zhongshan, Guangdong Province, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenping Cheng
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Zhu J, Pan E, Pang L, Zhou X, Che Y, Liu Z. MiR-497-5p ameliorates the oxyhemoglobin-induced subarachnoid hemorrhage injury in vitro by targeting orthodenticle homeobox protein 1 (Otx1) to activate the Nrf2/HO-1 pathway. Mol Genet Genomics 2024; 299:45. [PMID: 38635011 DOI: 10.1007/s00438-024-02137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a neurological disorder that severely damages the brain and causes cognitive impairment. MicroRNAs are critical regulators in a variety of neurological diseases. MiR-497-5p has been found to be downregulated in the aneurysm vessel walls obtained from patients with aneurysmal subarachnoid hemorrhage, but its functions and mechanisms in SAH have not been reported. Therefore, this study was designed to investigate the effect of miR-497-5p and its related mechanisms in SAH. We established an in vitro SAH model by exposing PC12 cells to oxyhemoglobin (oxyHb). We found that miR-497-5p was downregulated in SAH serum and oxyHb-treated PC12 cells, and its overexpression inhibited the oxyHb-induced apoptosis, inflammatory response and oxidative stress via activation of the Nrf2 pathway. Mechanistically, the targeting relationship between miR-497-5p and Otx1 was verified by luciferase reporter assays. Moreover, Otx1 upregulation abolished the protective effects of miR-497-5p upregulation against oxyHb-induced apoptosis, inflammation and oxidative stress in PC12 cells. Collectively, our findings indicate that miR-497-5p could inhibit the oxyHb-induced SAH damage by targeting Otx1 to activate the Nrf2/HO-1 pathway, which provides a potential therapeutic target for SAH treatment.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, Jiangsu, 214500, People's Republic of China
| | - Enyu Pan
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, Jiangsu, 214500, People's Republic of China
| | - Lujun Pang
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, Jiangsu, 214500, People's Republic of China
| | - Xiwei Zhou
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, Jiangsu, 214500, People's Republic of China
| | - Yanjun Che
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, Jiangsu, 214500, People's Republic of China.
| | - Zhao Liu
- Department of Neurosurgery, Jingjiang People's Hospital, 28 Zhongzhou Road, Jingjiang, Jiangsu, 214500, People's Republic of China.
| |
Collapse
|
7
|
Zhang J, Zhu Q, Wang J, Peng Z, Zhuang Z, Hang C, Li W. Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage. Neural Regen Res 2024; 19:825-832. [PMID: 37843218 PMCID: PMC10664111 DOI: 10.4103/1673-5374.381493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 10/17/2023] Open
Abstract
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow. Mitochondria are directly affected by direct factors such as ischemia, hypoxia, excitotoxicity, and toxicity of free hemoglobin and its degradation products, which trigger mitochondrial dysfunction. Dysfunctional mitochondria release large amounts of reactive oxygen species, inflammatory mediators, and apoptotic proteins that activate apoptotic pathways, further damaging cells. In response to this array of damage, cells have adopted multiple mitochondrial quality control mechanisms through evolution, including mitochondrial protein quality control, mitochondrial dynamics, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer, to maintain mitochondrial homeostasis under pathological conditions. Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage. This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage, particularly mitochondrial quality control mechanisms. It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jiatong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
8
|
Yang S, Tan B, Lin J, Wang X, Fu C, Wang K, Qian J, Liu J, Xian J, Tan L, Feng H, Chen Y, Wang L. Monitoring of Perioperative Microcirculation Dysfunction by Near-Infrared Spectroscopy for Neurological Deterioration and Prognosis of Aneurysmal Subarachnoid Hemorrhage: An Observational, Longitudinal Cohort Study. Neurol Ther 2024; 13:475-495. [PMID: 38367176 PMCID: PMC10951157 DOI: 10.1007/s40120-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
INTRODUCTION No evidence has established a direct causal relationship between early microcirculation disturbance after aneurysmal subarachnoid hemorrhage (aSAH) and neurological function prognosis, which is the key pathophysiological mechanism of early brain injury (EBI) in patients with aSAH. METHODS A total of 252 patients with aSAH were enrolled in the Neurosurgical Intensive Care Unit of Southwest Hospital between January 2020 and December 2022 and divided into the no neurological deterioration, early neurological deterioration, and delayed neurological deterioration groups. Indicators of microcirculation disorders in EBI included regional cerebral oxygen saturation (rSO2) measured by near-infrared spectroscopy (NIRS), brain oxygen monitoring, and other clinical parameters for evaluating neurological function and determining the prognosis of patients with aSAH. RESULTS Our data suggest that the rSO2 is generally lower in patients who develop neurological deterioration than in those who do not and that there is at least one time point in the population of patients who develop neurological deterioration where left and right cerebral hemisphere differences can be significantly monitored by NIRS. An unordered multiple-classification logistic regression model was constructed, and the results revealed that multiple factors were effective predictors of early neurological deterioration: reoperation, history of brain surgery, World Federation of Neurosurgical Societies (WFNS) grade 4-5, Fisher grade 3-4, SAFIRE grade 3-5, abnormal serum sodium and potassium levels, and reduced rSO2 during the perioperative period. However, for delayed neurological deterioration in patients with aSAH, only a history of brain surgery and perioperative RBC count were predictive indicators. CONCLUSIONS The rSO2 concentration in patients with neurological deterioration is generally lower than that in patients without neurological deterioration, and at least one time point in the population with neurological deterioration can be significantly monitored via NIRS. However, further studies are needed to determine the role of microcirculation and other predictive factors in the neurocritical management of EBI after aSAH, as these factors can reduce the incidence of adverse outcomes and mortality during hospitalization.
Collapse
Affiliation(s)
- Shunyan Yang
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou Province, China
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Binbin Tan
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Lin
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 943 Hospital of Joint Logistics Support Force of PLA, Wuwei, 733099, Gansu Province, China
| | - Xia Wang
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Congying Fu
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou Province, China
| | - Kaishan Wang
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyu Qian
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Liu
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jishu Xian
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liang Tan
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Lihua Wang
- Hospital Administration Office, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
9
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
10
|
Mahmoud SH, Hefny F, Isse FA, Farooq S, Ling S, O'Kelly C, Kutsogiannis DJ. Nimodipine systemic exposure and outcomes following aneurysmal subarachnoid hemorrhage: a pilot prospective observational study (ASH-1 study). Front Neurol 2024; 14:1233267. [PMID: 38249736 PMCID: PMC10796587 DOI: 10.3389/fneur.2023.1233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Background Nimodipine improves outcomes following aneurysmal subarachnoid hemorrhage (aSAH). Guidelines recommend that all patients should receive a fixed-dose nimodipine for 21 days. However, studies reported variability of nimodipine concentrations in aSAH. It is not clear if reduced systemic exposure contributes to worsening outcomes. The aim of this study was to compare nimodipine systemic exposure in those who experienced poor outcomes to those who experienced favorable outcomes. Methods This was a pilot prospective observational study in 30 adult patients admitted to the University of Alberta Hospital with aSAH. Data were collected from the electronic health records following enrollment. Blood samples were collected around one nimodipine 60 mg dose at a steady state, and nimodipine [total, (+)-R and (-)-S enantiomers] plasma concentrations were determined. The poor outcome was defined as a modified Rankin Scale (mRS) score at 90 days of 3-6, while the favorable outcome was an mRS score of 0-2. The correlation between nimodipine concentrations and percent changes in mean arterial pressure (MAP) before and after nimodipine administration was also determined. Furthermore, covariates potentially associated with nimodipine exposure were explored. Results In total, 20 (69%) participants had favorable outcomes and 9 (31%) had poor outcomes. Following the exclusion of those with delayed presentation (>96 h from aSAH onset), among those presented with the World Federation of Neurological Surgeons (WFNS) grade 3-5, nimodipine median (interquartile range) area under the concentration time curve (AUC0-3h) in those with favorable outcomes were 4-fold higher than in those with poor outcomes [136 (52-192) vs. 33 (23-39) ng.h/mL, respectively, value of p = 0.2]. On the other hand, among those presented with WFNS grade 1-2, nimodipine AUC0-3h in those with favorable outcomes were significantly lower than in those with poor outcomes [30 (28-36) vs. 172 (117-308) ng.h/mL, respectively, value of p = 0.03)]. (+)-R-nimodipine AUC0-3h in those who did not develop vasospasm were 4-fold significantly higher than those who had vasospasm (value of p = 0.047). (-)-S-nimodipine was significantly correlated with percentage MAP reduction. Similar results were obtained when the whole cohort was analyzed. Conclusion The study was the first to investigate the potential association between nimodipine exposure following oral dosing and outcomes. In addition, it suggests differential effects of nimodipine enantiomers, shedding light on the potential utility of nimodipine enantiomers. Larger studies are needed.
Collapse
Affiliation(s)
- Sherif Hanafy Mahmoud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fatma Hefny
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shahmeer Farooq
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Spencer Ling
- Pharmacy Services, University of Alberta Hospital, Alberta Health Services, Edmonton, AB, Canada
| | - Cian O'Kelly
- Vascular, Endovascular and General Neurosurgery, Division of Neurosurgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Demetrios James Kutsogiannis
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Yuan Z, Zhou X, Zou Y, Zhang B, Jian Y, Wu Q, Chen S, Zhang X. Hypoxia Aggravates Neuron Ferroptosis in Early Brain Injury Following Subarachnoid Hemorrhage via NCOA4-Meditated Ferritinophagy. Antioxidants (Basel) 2023; 12:2097. [PMID: 38136217 PMCID: PMC10740655 DOI: 10.3390/antiox12122097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The occurrence of early brain injury (EBI) significantly contributes to the unfavorable prognosis observed in patients with subarachnoid hemorrhage (SAH). During the process of EBI, a substantial quantity of iron permeates into the subarachnoid space and brain tissue, thereby raising concerns regarding its metabolism. To investigate the role and metabolic processes of excessive iron in neurons, we established both in vivo and in vitro models of SAH. We substantiated that ferritinophagy participates in iron metabolism disorders and promotes neuronal ferroptosis using an in vivo model, as detected by key proteins such as ferritin heavy chain 1, glutathione peroxidase 4, autophagy related 5, nuclear receptor coactivator 4 (NCOA4), LC3B, and electron microscopy results. By interfering with NCOA4 expression in vitro and in vivo, we confirmed the pivotal role of elevated NCOA4 levels in ferritinophagy during EBI. Additionally, our in vitro experiments demonstrated that the addition of oxyhemoglobin alone did not result in a significant upregulation of NCOA4 expression. However, simultaneous addition of oxyhemoglobin and hypoxia exposure provoked a marked increase in NCOA4 expression and heightened ferritinophagy in HT22 cells. Using YC-1 to inhibit hypoxia signaling in in vitro and in vitro models effectively attenuated neuronal ferroptosis. Collectively, we found that the hypoxic microenvironment during the process of EBI exaggerates iron metabolism abnormalities, leading to poor prognoses in SAH. The findings also offer a novel and potentially effective foundation for the treatment of SAH, with the aim of alleviating hypoxia.
Collapse
Affiliation(s)
- Zixuan Yuan
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Xiaoming Zhou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Yan Zou
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Bingtao Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Yao Jian
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Qi Wu
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Shujuan Chen
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
| | - Xin Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China; (Z.Y.); (X.Z.); (Y.Z.); (B.Z.); (Y.J.); (Q.W.); (S.C.)
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210000, China
| |
Collapse
|
12
|
Lauzier DC. Correspondence regarding "Clinical features and outcome in pediatric arteriovenous malformation: institutional multimodality treatment". Childs Nerv Syst 2023; 39:3337-3338. [PMID: 37902888 DOI: 10.1007/s00381-023-06207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023]
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Yuan Y, Zhang Y, Song X, Zhang X, Li C, Yuan T, Qi H, Yan L. Value of multi-channel somatosensory evoked potentials recording in patients undergoing scoliosis correction surgery. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:4045-4053. [PMID: 37642775 DOI: 10.1007/s00586-023-07899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE We aimed to investigate the value of intraoperative multi-channel recording of somatosensory evoked potentials (SSEPs) in patients undergoing posterior instrumentation surgery with fusion. METHODS This study included 176 patients with scoliosis who underwent posterior correction surgery from January 2019 to June 2020. Among them, 88 patients underwent routine SSEPs monitoring via single-channel (Cz'-Fpz) cortical recording (control group), while the remaining 88 patients underwent multi-channel (Cz'-Fpz and C3'-C4') SSEPs monitoring in the cortex. Chi-square and Fisher's exact tests were used to analyze the influence of age, spinal deformity classification, and Cobb angle on waveform differentiation and the success rate of SSEPs monitoring. RESULTS Univariate analysis revealed that age, type of scoliosis, and Cobb angle exerted significant effects on the success rate of intraoperative SSEPs monitoring, and the SSEPs waveform differentiation rate was poorest among patients with congenital scoliosis. Intraoperative monitoring results indicated that the success rate of single-channel SSEPs monitoring was 90.9%, while that of multi-channel monitoring was 98.9% (P < 0.05). Among the intraoperative alarm cases, the incidence of adverse events after single-channel SSEPs monitoring was 66.7%, while the incidence of adverse events after multi-channel SSEPs monitoring was only 28.6%. CONCLUSION Multi-channel cortical SSEPs monitoring can effectively and accurately evaluate the function of the posterior column of the spinal cord. Use of multi-channel SSEP monitoring may help to improve the success rate of monitoring and reduce the incidence of postoperative adverse events in patients with congenital scoliosis.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Functional Examination, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Yongjie Zhang
- Department of Functional Examination, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xiao Song
- Department of Functional Examination, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xin Zhang
- Department of Functional Examination, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Chunjuan Li
- Department of Functional Examination, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Tao Yuan
- Department of Functional Examination, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Huaguang Qi
- Department of Functional Examination, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
| | - Liang Yan
- Spine Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
14
|
Li S, Zhang J, Li N, Wang D, Zhao X. Predictive nomogram models for unfavorable prognosis after aneurysmal subarachnoid hemorrhage: Analysis from a prospective, observational cohort in China. CNS Neurosci Ther 2023; 29:3567-3578. [PMID: 37287438 PMCID: PMC10580355 DOI: 10.1111/cns.14288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
AIM The aim of the study was to identify predictors for 3-month poor functional outcome or death after aSAH and develop precise and easy-to-use nomogram models. METHODS The study was performed at the department of neurology emergency in Beijing Tiantan Hospital. A total of 310 aSAH patients were enrolled between October 2020 and September 2021 as a derivation cohort, while a total of 208 patients were admitted from October 2021 to March 2022 as an external validation cohort. Clinical outcomes included poor functional outcome defined as modified Rankin Scale score (mRS) of 4-6 or all-cause death at 3 months. Least absolute shrinkage and selection operator (LASSO) analysis, as well as multivariable regression analysis, were applied to select independent variables associated with poor functional outcome or death and then to construct two nomogram models. Model performance were evaluated through discrimination, calibration, and clinical usefulness in both derivation cohort and external validation cohort. RESULTS The nomogram model to predict poor functional outcome included seven predictors: age, heart rate, Hunt-Hess grade on admission, lymphocyte, C-reactive protein (CRP), platelet, and direct bilirubin levels. It demonstrated high discrimination ability (AUC, 0.845; 95% CI: 0.787-0.903), satisfactory calibration curve, and good clinical usefulness. Similarly, the nomogram model combining age, neutrophil, lymphocyte, CRP, aspartate aminotransferase (AST) levels, and treatment methods to predict all-cause death also revealed excellent discrimination ability (AUC, 0.944; 95% CI: 0.910-0.979), satisfactory calibration curve, and clinical effectiveness. Internal validation showed the bias-corrected C-index for poor functional outcome and death was 0.827 and 0.927, respectively. When applied to the external validation dataset, both two nomogram models exhibited high discrimination capacity [poor functional outcome: AUC = 0.795 (0.716-0.873); death: AUC = 0.811 (0.707-0.915)], good calibration ability, and clinical usefulness. CONCLUSIONS Nomogram models constructed for predicting 3-month poor functional outcome or death after aSAH are precise and easily applicable, which can help physicians to identify patients at risk, guide decision-making, and provide new directions for future studies to explore the novel treatment targets.
Collapse
Affiliation(s)
- Sijia Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jia Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ning Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dandan Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical SciencesBeijingChina
- Center of Stroke, Beijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Göcking B, Gloeckler S, Ferrario A, Brandi G, Glässel A, Biller-Andorno N. A case for preference-sensitive decision timelines to aid shared decision-making in intensive care: need and possible application. Front Digit Health 2023; 5:1274717. [PMID: 37881363 PMCID: PMC10595152 DOI: 10.3389/fdgth.2023.1274717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
In the intensive care unit, it can be challenging to determine which interventions align with the patients' preferences since patients are often incapacitated and other sources, such as advance directives and surrogate input, are integral. Managing treatment decisions in this context requires a process of shared decision-making and a keen awareness of the preference-sensitive instances over the course of treatment. The present paper examines the need for the development of preference-sensitive decision timelines, and, taking aneurysmal subarachnoid hemorrhage as a use case, proposes a model of one such timeline to illustrate their potential form and value. First, the paper draws on an overview of relevant literature to demonstrate the need for better guidance to (a) aid clinicians in determining when to elicit patient preference, (b) support the drafting of advance directives, and (c) prepare surrogates for their role representing the will of an incapacitated patient in clinical decision-making. This first section emphasizes that highlighting when patient (or surrogate) input is necessary can contribute valuably to shared decision-making, especially in the context of intensive care, and can support advance care planning. As an illustration, the paper offers a model preference-sensitive decision timeline-whose generation was informed by existing guidelines and a series of interviews with patients, surrogates, and neuro-intensive care clinicians-for a use case of aneurysmal subarachnoid hemorrhage. In the last section, the paper offers reflections on how such timelines could be integrated into digital tools to aid shared decision-making.
Collapse
Affiliation(s)
- Beatrix Göcking
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
| | - Sophie Gloeckler
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
| | - Andrea Ferrario
- Department of Management, Technology, and Economics, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
- Mobiliar Lab for Analytics at ETH, Zurich, Switzerland
| | - Giovanna Brandi
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Glässel
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
- School of Health Sciences, Institute of Public Health, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Nikola Biller-Andorno
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Grossini E, Esposito T, Viretto M, Venkatesan S, Licari I, Surico D, Della Corte F, Castello L, Bruno S, Quaglia M, Comi C, Cantaluppi V, Vaschetto R. Circulating Extracellular Vesicles in Subarachnoid Hemorrhage Patients: Characterization and Cellular Effects. Int J Mol Sci 2023; 24:14913. [PMID: 37834361 PMCID: PMC10573706 DOI: 10.3390/ijms241914913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Circulating extracellular vesicles (EVs) may play a pathophysiological role in the onset of complications of subarachnoid hemorrhage (SAH), potentially contributing to the development of vasospasm (VP). In this study, we aimed to characterize circulating EVs in SAH patients and examine their effects on endothelial and smooth muscle cells (SMCs). In a total of 18 SAH patients, 10 with VP (VP), 8 without VP (NVP), and 5 healthy controls (HC), clinical variables were recorded at different time points. EVs isolated from plasma samples were characterized and used to stimulate human vascular endothelial cells (HUVECs) and SMCs. We found that EVs from SAH patients expressed markers of T-lymphocytes and platelets and had a larger size and a higher concentration compared to those from HC. Moreover, EVs from VP patients reduced cell viability and mitochondrial membrane potential in HUVECs and increased oxidants and nitric oxide (NO) release. Furthermore, EVs from SAH patients increased intracellular calcium levels in SMCs. Altogether, our findings reveal an altered pattern of circulating EVs in SAH patients, suggesting their pathogenic role in promoting endothelial damage and enhancing smooth muscle reactivity. These results have significant implications for the use of EVs as potential diagnostic/prognostic markers and therapeutic tools in SAH management.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Teresa Esposito
- Anesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (T.E.); (M.V.); (I.L.); (F.D.C.); (R.V.)
- Maggiore della Carità Hospital, 28100 Novara, Italy; (D.S.); (V.C.)
| | - Michela Viretto
- Anesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (T.E.); (M.V.); (I.L.); (F.D.C.); (R.V.)
- Maggiore della Carità Hospital, 28100 Novara, Italy; (D.S.); (V.C.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Ilaria Licari
- Anesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (T.E.); (M.V.); (I.L.); (F.D.C.); (R.V.)
- Maggiore della Carità Hospital, 28100 Novara, Italy; (D.S.); (V.C.)
| | - Daniela Surico
- Maggiore della Carità Hospital, 28100 Novara, Italy; (D.S.); (V.C.)
- Gynecology and Obstetrics, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Della Corte
- Anesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (T.E.); (M.V.); (I.L.); (F.D.C.); (R.V.)
- Maggiore della Carità Hospital, 28100 Novara, Italy; (D.S.); (V.C.)
| | - Luigi Castello
- Internal Medicine, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
- Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Stefania Bruno
- Laboratory of Translational Research, Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Marco Quaglia
- Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
- Nephrology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
- Sant’Andrea Hospital, 00189 Vercelli, Italy
| | - Vincenzo Cantaluppi
- Maggiore della Carità Hospital, 28100 Novara, Italy; (D.S.); (V.C.)
- Nephrology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Rosanna Vaschetto
- Anesthesia and Intensive Care, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (T.E.); (M.V.); (I.L.); (F.D.C.); (R.V.)
- Maggiore della Carità Hospital, 28100 Novara, Italy; (D.S.); (V.C.)
| |
Collapse
|
17
|
Gouvea Bogossian E, Battaglini D, Fratino S, Minini A, Gianni G, Fiore M, Robba C, Taccone FS. The Role of Brain Tissue Oxygenation Monitoring in the Management of Subarachnoid Hemorrhage: A Scoping Review. Neurocrit Care 2023; 39:229-240. [PMID: 36802011 DOI: 10.1007/s12028-023-01680-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Monitoring of brain tissue oxygenation (PbtO2) is an important component of multimodal monitoring in traumatic brain injury. Over recent years, use of PbtO2 monitoring has also increased in patients with poor-grade subarachnoid hemorrhage (SAH), particularly in those with delayed cerebral ischemia. The aim of this scoping review was to summarize the current state of the art regarding the use of this invasive neuromonitoring tool in patients with SAH. Our results showed that PbtO2 monitoring is a safe and reliable method to assess regional cerebral tissue oxygenation and that PbtO2 represents the oxygen available in the brain interstitial space for aerobic energy production (i.e., the product of cerebral blood flow and the arterio-venous oxygen tension difference). The PbtO2 probe should be placed in the area at risk of ischemia (i.e., in the vascular territory in which cerebral vasospasm is expected to occur). The most widely used PbtO2 threshold to define brain tissue hypoxia and initiate specific treatment is between 15 and 20 mm Hg. PbtO2 values can help identify the need for or the effects of various therapies, such as hyperventilation, hyperoxia, induced hypothermia, induced hypertension, red blood cell transfusion, osmotic therapy, and decompressive craniectomy. Finally, a low PbtO2 value is associated with a worse prognosis, and an increase of the PbtO2 value in response to treatment is a marker of good outcome.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Denise Battaglini
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Fratino
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Andrea Minini
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Giuseppina Gianni
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Marco Fiore
- Department of Women, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| |
Collapse
|
18
|
Hoh BL, Ko NU, Amin-Hanjani S, Chou SHY, Cruz-Flores S, Dangayach NS, Derdeyn CP, Du R, Hänggi D, Hetts SW, Ifejika NL, Johnson R, Keigher KM, Leslie-Mazwi TM, Lucke-Wold B, Rabinstein AA, Robicsek SA, Stapleton CJ, Suarez JI, Tjoumakaris SI, Welch BG. 2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2023; 54:e314-e370. [PMID: 37212182 DOI: 10.1161/str.0000000000000436] [Citation(s) in RCA: 167] [Impact Index Per Article: 167.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AIM The "2023 Guideline for the Management of Patients With Aneurysmal Subarachnoid Hemorrhage" replaces the 2012 "Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage." The 2023 guideline is intended to provide patient-centric recommendations for clinicians to prevent, diagnose, and manage patients with aneurysmal subarachnoid hemorrhage. METHODS A comprehensive search for literature published since the 2012 guideline, derived from research principally involving human subjects, published in English, and indexed in MEDLINE, PubMed, Cochrane Library, and other selected databases relevant to this guideline, was conducted between March 2022 and June 2022. In addition, the guideline writing group reviewed documents on related subject matter previously published by the American Heart Association. Newer studies published between July 2022 and November 2022 that affected recommendation content, Class of Recommendation, or Level of Evidence were included if appropriate. Structure: Aneurysmal subarachnoid hemorrhage is a significant global public health threat and a severely morbid and often deadly condition. The 2023 aneurysmal subarachnoid hemorrhage guideline provides recommendations based on current evidence for the treatment of these patients. The recommendations present an evidence-based approach to preventing, diagnosing, and managing patients with aneurysmal subarachnoid hemorrhage, with the intent to improve quality of care and align with patients' and their families' and caregivers' interests. Many recommendations from the previous aneurysmal subarachnoid hemorrhage guidelines have been updated with new evidence, and new recommendations have been created when supported by published data.
Collapse
|
19
|
Zhang Y, Liu J, Zhou Y, Zou Z, Xie C, Ma L. miR-18a-5p shuttled by mesenchymal stem cell-derived extracellular vesicles alleviates early brain injury following subarachnoid hemorrhage through blockade of the ENC1/p62 axis. Cell Tissue Res 2023:10.1007/s00441-023-03754-w. [PMID: 36795153 DOI: 10.1007/s00441-023-03754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have therapeutic potential in various diseases due to their capacity to transfer bioactive cargoes such as microRNAs (miRNAs or miRs) to recipient cells. The present study isolated EVs from rat MSCs and aimed to delineate their functions and molecular mechanisms in early brain injury following subarachnoid hemorrhage (SAH). We initially determined the expression of miR-18a-5p and ENC1 in hypoxia/reoxygenation (H/R)-induced brain cortical neurons and rat models of SAH induced by the endovascular perforation method. Accordingly, increased ENC1 and decreased miR-18a-5p were detected in H/R-induced brain cortical neurons and SAH rats. After MSC-EVs were co-cultured with cortical neurons, the effects of miR-18a-5p on neuron damage, inflammatory response, endoplasmic reticulum (ER) stress, and oxidative stress markers were evaluated based on ectopic expression and depletion experiments. miR-18a-5p overexpression in brain cortical neurons co-cultured with MSC-EVs was shown to impede neuron apoptosis, ER stress and oxidative stress while augmenting neuron viability. Mechanistically, miR-18a-5p bound to the 3'UTR of ENC1 and reduced its expression, weakening the interaction between ENC1 and p62. Through this mechanism, transfer of miR-18a-5p by MSC-EVs contributed to the eventual inhibition of early brain injury and neurological impairment following SAH. Overall, miR-18a-5p/ENC1/p62 may be a possible mechanism underlying the cerebral protective effects of MSC-EVs against early brain injury following SAH.
Collapse
Affiliation(s)
- Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Sichuan Province, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China.
| | - Junying Liu
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Sichuan Province, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, People's Republic of China
| | - Zhonglan Zou
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Sichuan Province, No. 82, North Section 2, 2nd Ring Road, Chengdu, 610081, People's Republic of China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, People's Republic of China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Sichuan Province, No. 76, Huacai Road, Chenghua District, Chengdu, 610052, People's Republic of China.
| |
Collapse
|
20
|
Sheng B, Lai N, Tao T, Chen X, Gao S, Zhu Q, Li W, Zhang Q, Hang C. Diagnosis potential of subarachnoid hemorrhage using miRNA signatures isolated from plasma-derived extracellular vesicles. Front Pharmacol 2023; 14:1090389. [PMID: 36860299 PMCID: PMC9968748 DOI: 10.3389/fphar.2023.1090389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The diagnosis and clinical management of aneurysmal subarachnoid hemorrhage (aSAH) is currently limited by the lack of accessible molecular biomarkers that reflect the pathophysiology of disease. We used microRNAs (miRNAs) as diagnostics to characterize plasma extracellular vesicles in aSAH. It is unclear whether they can diagnose and manage aSAH. Next-generation sequencing (NGS) was used to detect the miRNA profile of plasma extracellular vesicles (exosomes) in three patients with SAH and three healthy controls (HCs). We identified four differentially expressed miRNAs and validated the results using quantitative real-time polymerase chain reaction (RT-qPCR) with 113 aSAH patients, 40 HCs, 20 SAH model mice, and 20 sham mice. Exosomal miRNA NGS revealed that six circulating exosomal miRNAs were differentially expressed in patients with aSAH versus HCs and that the levels of four miRNAs (miR-369-3p, miR-410-3p, miR-193b-3p, and miR-486-3p) were differentially significant. After multivariate logistic regression analysis, only miR-369-3p, miR-486-3p, and miR-193b-3p enabled prediction of neurological outcomes. In a mouse model of SAH, greater expression of miR-193b-3p and miR-486-3p remained statistically significant relative to controls, whereas expression levels of miR-369-3p and miR-410-3p were lower. miRNA gene target prediction showed six genes associated with all four of these differentially expressed miRNAs. The circulating exosomes miR-369-3p, miR-410-3p, miR-193b-3p, and miR-486-3p may influence intercellular communication and have potential clinical utility as prognostic biomarkers for aSAH patients.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Niansheng Lai
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiangxin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingrong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,*Correspondence: Qingrong Zhang, ; Chunhua Hang,
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,*Correspondence: Qingrong Zhang, ; Chunhua Hang,
| |
Collapse
|
21
|
Lu Z, Tang H, Li S, Zhu S, Li S, Huang Q. Role of Circulating Exosomes in Cerebrovascular Diseases: A Comprehensive Review. Curr Neuropharmacol 2023; 21:1575-1593. [PMID: 36847232 PMCID: PMC10472809 DOI: 10.2174/1570159x21666230214112408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 03/01/2023] Open
Abstract
Exosomes are lipid bilayer vesicles that contain multiple macromolecules secreted by the parent cells and play a vital role in intercellular communication. In recent years, the function of exosomes in cerebrovascular diseases (CVDs) has been intensively studied. Herein, we briefly review the current understanding of exosomes in CVDs. We discuss their role in the pathophysiology of the diseases and the value of the exosomes for clinical applications as biomarkers and potential therapies.
Collapse
Affiliation(s)
- Zhiwen Lu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haishuang Tang
- Department of Nerurosurgery, Naval Medical Center of PLA, Navy Medical University, Shanghai, 200050, China
| | - Sisi Li
- Department of Cerebrovascular Intervention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shijie Zhu
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Siqi Li
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qinghai Huang
- Department of Neurovascular Centre, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
22
|
Zhang R, Liu Z, Zhang Y, Pei Y, He Y, Yu J, You C, Ma L, Fang F. Improving the models for prognosis of aneurysmal subarachnoid hemorrhage with the neutrophil-to-albumin ratio. Front Neurol 2023; 14:1078926. [PMID: 37034067 PMCID: PMC10079994 DOI: 10.3389/fneur.2023.1078926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Many peripheral inflammatory markers were reported to be associated with the prognosis of aneurysmal subarachnoid hemorrhage (aSAH). We aimed to identify the most promising inflammatory factor that can improve existing predictive models. Methods The study was based on data from a 10 year retrospective cohort study at Sichuan University West China Hospital. We selected the well-known SAFIRE and Subarachnoid Hemorrhage International Trialists' (SAHIT) models as the basic models. We compared the performance of the models after including the inflammatory markers and that of the original models. The developed models were internally and temporally validated. Results A total of 3,173 patients were included in this study, divided into the derivation cohort (n = 2,525) and the validation cohort (n = 648). Most inflammatory markers could improve the SAH model for mortality prediction in patients with aSAH, and the neutrophil-to-albumin ratio (NAR) performed best among all the included inflammatory markers. By incorporating NAR, the modified SAFIRE and SAHIT models improved the area under the receiver operator characteristics curve (SAFIRE+NAR vs. SAFIRE: 0.794 vs. 0.778, p = 0.012; SAHIT+NAR vs. SAHIT: 0.831 vs. 0.819, p = 0.016) and categorical net reclassification improvement (SAFIRE+NAR: 0.0727, p = 0.002; SAHIT+NAR: 0.0810, p < 0.001). Conclusion This study illustrated that among the inflammatory markers associated with aSAH prognosis, NAR could improve the SAFIRE and SAHIT models for 3 month mortality of aSAH.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Center for Evidence-Based Medical and Clinical Research, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yiyan Pei
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan He
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Lu Ma,
| | - Fang Fang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Fang Fang,
| |
Collapse
|
23
|
Rhim JK, Park JJ, Kim H, Jeon JP. Early and Prolonged Mild Hypothermia in Patients with Poor-Grade Subarachnoid Hemorrhage: A Pilot Study. Ther Hypothermia Temp Manag 2022; 12:229-234. [PMID: 36130134 DOI: 10.1089/ther.2022.0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We assessed the feasibility of therapeutic early and prolonged mild hypothermia (MH) in patients with poor-grade subarachnoid hemorrhage (SAH). A retrospective pilot study was conducted for poor-grade SAH patients at two university hospitals from March 2015 to December 2018 who had received MH immediately after coil embolization and maintained a target temperature of 34-35°C for 5 days. A matched controlled design at a 1:2 ratio was used to compare MH therapy outcomes. The primary goal was to assess the two groups' severe functional outcomes at discharge defined as a modified Rankin Scale score of 4-6. The secondary aim was to assess mortality and severe vasospasm depending upon MH. A binary logistic regression analysis was performed to identify relevant risk factors for the outcomes. A total of 54 patients (18 with MH treatment and 36 without MH treatment) were included. Severe functional outcome was significantly decreased in poor-grade SAH patients with MH (n = 7, 38.9%) than those without MH (n = 25, 69.4%; p = 0.031). In patients treated with MH, mortality and severe vasospasm tended to be less common, although the difference was not statistically significant. A binary logistic regression analysis revealed that early and prolonged MH (odds ratio [OR] = 0.156, 95% confidence intervals [CI]: 0.037-0.644) and severe vasospasm (OR = 5.593, 95% CI: 1.372-22.812) were risk factors for severe functional outcomes. This study shows potential therapeutic effect of early and prolonged MH treatment in poor-grade SAH patients. A randomized controlled study with a large number of patients is warranted in the future.
Collapse
Affiliation(s)
- Jong-Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Heungcheol Kim
- Department of Radiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
24
|
Song N, Song R, Ma P. MiR-340-5p alleviates neuroinflammation and neuronal injury via suppressing STING in subarachnoid hemorrhage. Brain Behav 2022; 12:e2687. [PMID: 35957622 PMCID: PMC9480905 DOI: 10.1002/brb3.2687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe acute neurological disorder. SAH causes neuroinflammation and leads to early brain injury (EBI) and secondary injury. MicroRNAs are crucial regulators in a variety of neurological diseases. This study was performed to decipher how miR-340-5p functions in SAH. METHODS An experimental mouse model with SAH was established by the intravascular perforation, and the in vitro SAH model was constructed by exposing cocultured primary neurons and microglia to oxyhemoglobin. After overexpression of miR-340-5p in mice, the neurobehavioral disorders were evaluated by Garcia test; brain edema was evaluated by wet-dry method; blood-brain barrier (BBB) damage was detected with Evan's blue staining; levels of inflammatory cytokines were detected with enzyme-linked immunosorbent assay. After miR-340-5p was transfected in to microglia, Iba-1 expression was detected by Western blot, and neuronal apoptosis were detected with flow cytometry. The targeting relationship between miR-340-5p and STING was verified by dual-luciferase reporter gene assay and RNA immunoprecipitation assay. RESULTS MiR-340-5p was significantly inhibited in the brain tissues of mice with SAH and microglia of SAH model, and neurological impairment, brain edema, BBB injury, and neuroinflammation were significantly alleviated in mice after overexpressing miR-340-5p. STING was identified as a target of miR-340-5p, and STING overexpression could counteract the effects of miR-340-5p overexpression on neurons. CONCLUSION MiR-340-5p can attenuate EBI caused by SAH-induced neuroinflammation by inhibiting STING.
Collapse
Affiliation(s)
- Ning Song
- Department of Emergency, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou, Gansu, China
| | - Rong Song
- Department of Oral Medicine, Lanzhou University Dental Hospital, Lanzhou, Gansu, China
| | - Peiliang Ma
- Department of Orthopedics, Lanzhou PLA 96604 Military Hospital, Lanzhou, Gansu, China
| |
Collapse
|
25
|
Chen Y, Galea I, Macdonald RL, Wong GKC, Zhang JH. Rethinking the initial changes in subarachnoid haemorrhage: Focusing on real-time metabolism during early brain injury. EBioMedicine 2022; 83:104223. [PMID: 35973388 PMCID: PMC9396538 DOI: 10.1016/j.ebiom.2022.104223] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last two decades, neurological researchers have uncovered many pathophysiological mechanisms associated with subarachnoid haemorrhage (SAH), with early brain injury and delayed cerebral ischaemia both contributing to morbidity and mortality. The current dilemma in SAH management inspired us to rethink the nature of the insult in SAH: sudden bleeding into the subarachnoid space and hypoxia due to disturbed cerebral circulation and increased intracranial pressure, generating exogenous stimuli and subsequent pathophysiological processes. Exogenous stimuli are defined as factors which the brain tissue is not normally exposed to when in the healthy state. Intersections of these initial pathogenic factors lead to secondary brain injury with related metabolic changes after SAH. Herein, we summarized the current understanding of efforts to monitor and analyse SAH-related metabolic changes to identify those precise pathophysiological processes and potential therapeutic strategies; in particular, we highlight the restoration of normal cerebrospinal fluid circulation and the normalization of brain-blood interface physiology to alleviate early brain injury and delayed neurological deterioration after SAH.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ian Galea
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - R Loch Macdonald
- Community Neurosciences Institutes, Community Regional Medical Center, Fresno, CA 93701, USA
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
26
|
Hu P, Li Y, Liu Y, Guo G, Gao X, Su Z, Wang L, Deng G, Yang S, Qi Y, Xu Y, Ye L, Sun Q, Nie X, Sun Y, Li M, Zhang H, Chen Q. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study. Front Aging Neurosci 2022; 14:857521. [PMID: 35783143 PMCID: PMC9247265 DOI: 10.3389/fnagi.2022.857521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Timely and accurate prediction of delayed cerebral ischemia is critical for improving the prognosis of patients with aneurysmal subarachnoid hemorrhage. Machine learning (ML) algorithms are increasingly regarded as having a higher prediction power than conventional logistic regression (LR). This study aims to construct LR and ML models and compare their prediction power on delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage (aSAH). Methods This was a multicenter, retrospective, observational cohort study that enrolled patients with aneurysmal subarachnoid hemorrhage from five hospitals in China. A total of 404 aSAH patients were prospectively enrolled. We randomly divided the patients into training (N = 303) and validation cohorts (N = 101) according to a ratio of 75–25%. One LR and six popular ML algorithms were used to construct models. The area under the receiver operating characteristic curve (AUC), accuracy, balanced accuracy, confusion matrix, sensitivity, specificity, calibration curve, and Hosmer–Lemeshow test were used to assess and compare the model performance. Finally, we calculated each feature of importance. Results A total of 112 (27.7%) patients developed DCI. Our results showed that conventional LR with an AUC value of 0.824 (95%CI: 0.73–0.91) in the validation cohort outperformed k-nearest neighbor, decision tree, support vector machine, and extreme gradient boosting model with the AUCs of 0.792 (95%CI: 0.68–0.9, P = 0.46), 0.675 (95%CI: 0.56–0.79, P < 0.01), 0.677 (95%CI: 0.57–0.77, P < 0.01), and 0.78 (95%CI: 0.68–0.87, P = 0.50). However, random forest (RF) and artificial neural network model with the same AUC (0.858, 95%CI: 0.78–0.93, P = 0.26) were better than the LR. The accuracy and the balanced accuracy of the RF were 20.8% and 11% higher than the latter, and the RF also showed good calibration in the validation cohort (Hosmer-Lemeshow: P = 0.203). We found that the CT value of subarachnoid hemorrhage, WBC count, neutrophil count, CT value of cerebral edema, and monocyte count were the five most important features for DCI prediction in the RF model. We then developed an online prediction tool (https://dynamic-nomogram.shinyapps.io/DynNomapp-DCI/) based on important features to calculate DCI risk precisely. Conclusions In this multicenter study, we found that several ML methods, particularly RF, outperformed conventional LR. Furthermore, an online prediction tool based on the RF model was developed to identify patients at high risk for DCI after SAH and facilitate timely interventions. Clinical Trial Registration http://www.chictr.org.cn, Unique identifier: ChiCTR2100044448.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangfan Liu
- Department of Neurosurgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Geng Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuang Yang
- School of Physics and Technology, Wuhan University, Wuhan, China
- School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohu Nie
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Yanqi Sun
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongbo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Hongbo Zhang
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Qianxue Chen
| |
Collapse
|
27
|
Zhou XY, Sun JY, Wang WQ, Li SX, Li HX, Yang HJ, Yang MF, Yuan H, Zhang ZY, Sun BL, Han JX. TAT-HSP27 Peptide Improves Neurologic Deficits via Reducing Apoptosis After Experimental Subarachnoid Hemorrhage. Front Cell Neurosci 2022; 16:878673. [PMID: 35573833 PMCID: PMC9096089 DOI: 10.3389/fncel.2022.878673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Cell apoptosis plays an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Heat shock protein 27 (HSP27), a member of the small heat shock protein (HSP) family, is induced by various stress factors and exerts protective role on cells. However, the role of HSP27 in brain injury after SAH needs to be further clarified. Here, we reported that HSP27 level of cerebrospinal fluid (CSF) is increased obviously at day 1 in patients with aneurysmal SAH (aSAH) and related to the grades of Hunt and Hess (HH), World Federation of Neurological Surgeons (WFNS), and Fisher score. In rat SAH model, HSP27 of CSF is first increased and then obviously declined; overexpression of HSP27, not knockdown of HSP27, attenuates SAH-induced neurological deficit and cell apoptosis in the basal cortex; and overexpression of HSP27 effectively suppresses SAH-elevated activation of mitogen-activated protein Kinase Kinase 4 (MKK4), the c-Jun N-terminal kinase (JNK), c-Jun, and caspase-3. In an in vitro hemolysate-damaged cortical neuron model, HSP2765-90 peptide effectively inhibits hemolysate-induced neuron death. Furthermore, TAT-HSP2765-90 peptide, a fusion peptide consisting of trans-activating regulatory protein (TAT) of HIV and HSP2765-90 peptide, effectively attenuates SAH-induced neurological deficit and cell apoptosis in the basal cortex of rats. Altogether, our results suggest that TAT-HSP27 peptide improves neurologic deficits via reducing apoptosis.
Collapse
Affiliation(s)
- Xiao-yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Ji'nan, China
- Department of Neurosurgery, First Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, China
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, China
| | - Jing-yi Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wei-qi Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shu-xian Li
- Department of Neurology, Key Laboratory of Cerebral Microcirculation, Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Han-xia Li
- Department of Neurology, Key Laboratory of Cerebral Microcirculation, Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Hui-juan Yang
- Department of Neurology, Key Laboratory of Cerebral Microcirculation, Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ming-feng Yang
- Department of Neurology, Key Laboratory of Cerebral Microcirculation, Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Hui Yuan
- Department of Neurology, Key Laboratory of Cerebral Microcirculation, Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Zong-yong Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurology, Key Laboratory of Cerebral Microcirculation, Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Bao-liang Sun
- Department of Neurology, Key Laboratory of Cerebral Microcirculation, Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jin-Xiang Han
- Department of Neurosurgery, First Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, China
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji'nan, China
| |
Collapse
|
28
|
Vlachogiannis P, Hillered L, Enblad P, Ronne-Engström E. Temporal patterns of inflammation-related proteins measured in the cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage using multiplex Proximity Extension Assay technology. PLoS One 2022; 17:e0263460. [PMID: 35324941 PMCID: PMC8947082 DOI: 10.1371/journal.pone.0263460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The complexity of the inflammatory response post subarachnoid hemorrhage (SAH) may require temporal analysis of multiple protein biomarkers simultaneously to be more accurately described. METHODS Ventricular cerebrospinal fluid was collected at days 1, 4 and 10 after SAH in 29 patients. Levels of 92 inflammation-related proteins were simultaneously measured using Target 96 Inflammation ® assay (Olink Proteomics, Uppsala, Sweden) based on Proximity Extension Assay (PEA) technology. Twenty-eight proteins were excluded from further analysis due to lack of >50% of measurable values. Temporal patterns of the remaining 64 proteins were analyzed. Repeated measures ANOVA and its nonparametric equivalent Friedman's ANOVA were used for comparisons of means between time points. RESULTS Four different patterns (Groups A-D) were visually observed with an early peak and gradually decreasing trend (11 proteins), a middle peak (10 proteins), a late peak after a gradually increasing trend (30 proteins) and no specific pattern (13 proteins). Statistically significant early peaks defined as Day 1 > Day 4 values were noticed in 4 proteins; no significant decreasing trends defined as Day 1 > Day 4 > Day 10 values were observed. Two proteins showed significant middle peaks (i.e. Day 1 < Day 4 > Day 10 values). Statistically significant late peaks (i.e. Day 4 < Day 10 values) and increasing trends (i.e. Day 1 < Day 4 < Day 10 values) were observed in 14 and 10 proteins, respectively. Four of Group D proteins showed biphasic peaks and the rest showed stable levels during the observation period. CONCLUSION The comprehensive data set provided in this explorative study may act as an illustration of an inflammatory profile of the acute phase of SAH showing groups of potential protein biomarkers with similar temporal patterns of activation, thus facilitating further research on their role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Pavlos Vlachogiannis
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Lars Hillered
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neurosciences, Neurosurgery, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
29
|
Hu P, Liu Y, Li Y, Guo G, Su Z, Gao X, Chen J, Qi Y, Xu Y, Yan T, Ye L, Sun Q, Deng G, Zhang H, Chen Q. A Comparison of LASSO Regression and Tree-Based Models for Delayed Cerebral Ischemia in Elderly Patients With Subarachnoid Hemorrhage. Front Neurol 2022; 13:791547. [PMID: 35359648 PMCID: PMC8960268 DOI: 10.3389/fneur.2022.791547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Backgrounds As a most widely used machine learning method, tree-based algorithms have not been applied to predict delayed cerebral ischemia (DCI) in elderly patients with aneurysmal subarachnoid hemorrhage (aSAH). Hence, this study aims to develop the conventional regression and tree-based models and determine which model has better prediction performance for DCI development in hospitalized elderly patients after aSAH. Methods This was a multicenter, retrospective, observational cohort study analyzing elderly patients with aSAH aged 60 years and older. We randomly divided the multicentral data into model training and validation cohort in a ratio of 70–30%. One conventional regression and tree-based model, such as least absolute shrinkage and selection operator (LASSO), decision tree (DT), random forest (RF), and eXtreme Gradient Boosting (XGBoost), was developed. Accuracy, sensitivity, specificity, area under the precision-recall curve (AUC-PR), and area under the receiver operating characteristic curve (AUC-ROC) with 95% CI were employed to evaluate the model prediction performance. A DeLong test was conducted to calculate the statistical differences among models. Finally, we figured the importance weight of each feature to visualize the contribution on DCI. Results There were 111 and 42 patients in the model training and validation cohorts, and 53 cases developed DCI. According to AUC-ROC value in the model internal validation, DT of 0.836 (95% CI: 0.747–0.926, p = 0.15), RF of 1 (95% CI: 1–1, p < 0.05), and XGBoost of 0.931 (95% CI: 0.885–0.978, p = 0.01) outperformed LASSO of 0.793 (95% CI: 0.692–0.893). However, the LASSO scored a highest AUC-ROC value of 0.894 (95% CI: 0.8–0.989) than DT of 0.764 (95% CI: 0.6–0.928, p = 0.05), RF of 0.821 (95% CI: 0.683–0.959, p = 0.27), and XGBoost of 0.865 (95% CI: 0.751–0.979, p = 0.69) in independent external validation. Moreover, the LASSO had a highest AUC-PR value of 0.681 than DT of 0.615, RF of 0.667, and XGBoost of 0.622 in external validation. In addition, we found that CT values of subarachnoid clots, aneurysm therapy, and white blood cell counts were the most important features for DCI in elderly patients with aSAH. Conclusions The LASSO had a superior prediction power than tree-based models in external validation. As a result, we recommend the conventional LASSO regression model to predict DCI in elderly patients with aSAH.
Collapse
Affiliation(s)
- Ping Hu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangfan Liu
- Department of Neurosurgery, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Geng Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhongzhou Su
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou, China
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Junhui Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tengfeng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongbo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Hongbo Zhang
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Qianxue Chen
| |
Collapse
|
30
|
A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
|
31
|
Acetyl CoA synthase 2 potentiates ATG5-induced autophagy against neuronal apoptosis after subarachnoid hemorrhage. J Mol Histol 2022; 53:511-521. [PMID: 35137294 DOI: 10.1007/s10735-022-10057-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023]
Abstract
ATG5-induced autophagy is triggered in the early stages after SAH, which plays a vital role in subarachnoid hemorrhage (SAH). Acyl-CoA synthetase short-chain family 2 (ACSS2) is not just involved in energy metabolism but also binds to TEFB to form a complex translocated to related autophagy genes to regulate the expression of autophagy-related genes. However, the contribution of ACSS2 to the activation of autophagy in early brain injury (EBI) after SAH has barely been discussed. The purpose of this study was to investigate the alterations of ACSS2 and its neuroprotective effects following SAH. We first evaluated the expression of ACSS2 at different time points (6, 12, 24, and 72 h after SAH) in vivo and primary cortical neurons stimulated by oxyhemoglobin (OxyHb). Subsequently, adeno-associated virus and lentivirus were used to regulate ACSS2 expression to investigate the effect of ACSS2 after SAH. The results showed that the ACSS2 level decreased significantly in the early stages of SAH and was minimized at 24 h post-SAH. After artificial intervention to overexpress ACSS2, ATG5-induced autophagy was further enhanced in EBI after SAH, and neuronal apoptosis was alleviated to protect brain injury. In addition, brain edema and neurological function scores were improved. These results suggest that ACSS2 plays an important role in the neuroprotection against EBI after SAH by increasing ATG5-induce autophagy and inhibiting apoptosis.
Collapse
|
32
|
Wu CH, Tsai HP, Su YF, Tsai CY, Lu YY, Lin CL. 2-PMAP Ameliorates Cerebral Vasospasm and Brain Injury after Subarachnoid Hemorrhage by Regulating Neuro-Inflammation in Rats. Cells 2022; 11:242. [PMID: 35053358 PMCID: PMC8773560 DOI: 10.3390/cells11020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
A subarachnoid hemorrhage (SAH), leading to severe disability and high fatality in survivors, is a devastating disease. Neuro-inflammation, a critical mechanism of cerebral vasospasm and brain injury from SAH, is tightly related to prognoses. Interestingly, studies indicate that 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) crosses the blood-brain barrier easily. Here, we investigated whether the vasodilatory and neuroprotective roles of 2-PMAP were observed in SAH rats. Rats were assigned to three groups: sham, SAH and SAH+2-PMAP. SAHs were induced by a cisterna magna injection. In the SAH+2-PMAP group, 5 mg/kg 2-PMAP was injected into the subarachnoid space before SAH induction. The administration of 2-PMAP markedly ameliorated cerebral vasospasm and decreased endothelial apoptosis 48 h after SAH. Meanwhile, 2-PMAP decreased the severity of neurological impairments and neuronal apoptosis after SAH. Furthermore, 2-PMAP decreased the activation of microglia and astrocytes, expressions of TLR-4 and p-NF-κB, inflammatory markers (TNF-α, IL-1β and IL-6) and reactive oxygen species. This study is the first to confirm that 2-PMAP has vasodilatory and neuroprotective effects in a rat model of SAH. Taken together, the experimental results indicate that 2-PMAP treatment attenuates neuro-inflammation, oxidative stress and cerebral vasospasm, in addition to ameliorating neurological deficits, and that these attenuating and ameliorating effects are conferred through the TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Cheng-Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (H.-P.T.); (Y.-F.S.); (C.-Y.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| |
Collapse
|
33
|
Predictive effects of admission white blood cell counts and hounsfield unit values on delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 2021; 212:107087. [PMID: 34929583 DOI: 10.1016/j.clineuro.2021.107087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Neuroinflammatory response is deemed the primary pathogenesis of delayed cerebral ischemia (DCI) caused by aneurysmal subarachnoid hemorrhage (aSAH). Both white blood cell (WBC) count and Hounsfield Unit (HU) are gradually considered can reflect inflammation in DCI. This study aims to identify the relationship between WBC count and HU value and investigate the effects of both indicators in predicting DCI after aSAH. METHODS We enrolled 109 patients with aSAH admitted within 24 h of onset in our study. A multivariate logistic regression analysis was used to evaluate the admission WBC count, HU value, and combined WBC-HU associated with DCI. The receiver operating characteristic curve and area under the curve (AUC) were used to determine thresholds and detect the predictive ability of these predictors. These indicators were also compared with the established inflammation markers. RESULTS Thirty-six (33%) patients developed DCI. Both WBC count and HU value were strongly associated with the admission glucose level (ρ = .303, p = .001; ρ = .273, p = .004), World Federation of Neurosurgical Societies grade (ρ = .452, p < .001; ρ = .578; p < .001), Hunt-Hess grade (ρ = .450, p < .001; ρ = .510, p < .001), and modified Fisher scale score (ρ = .357, p < .001; ρ = .330, p < .001). After controlling these public variables, WBC count (ρ = .300, p = .002) positively correlated with HU value. An early elevated WBC (odds ratio [OR] 1.449, 95% confidence interval [CI]: 1.183-1.774, p < .001) count and HU value (OR 1.304, 95%CI: 1.149-1.479, p < .001) could independently predict the occurrence of DCI. However, only these patients with both WBC count and HU value exceeding the cut-off points (OR 36.89, 95%CI: 5.606-242.78, p < .001) were strongly correlated with DCI. Compared with a single WBC count (AUC 0.811, 95%CI: 0.729-0.892, p < .001) or HU value (AUC 0.869, 95%CI: 0.803-0.936, p < .001), the combined WBC-HU (AUC 0.898, 95%CI: 0.839-0.957, p < .001) demonstrated a better ability to predict the occurrence of DCI. Inspiringly, the prediction performance of these indicators outperformed the established inflammatory markers. CONCLUSION An early elevated WBC count and HU value could independently predict DCI occurrence between 4 and 30 days after aSAH. Furthermore, WBC count was positively correlated with HU value, and the combined WBC-HU demonstrated a superior prediction ability for DCI development compared with the individual indicator.
Collapse
|
34
|
Castillo-Pinto C, Sen K, Gropman A. Neuromonitoring in Rare Disorders of Metabolism. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:645-655. [PMID: 34970103 PMCID: PMC8686771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inborn errors of metabolism (IEM) are a unique class of genetic diseases due to mutations in genes involved in key metabolic pathways. The combined incidence of IEM has been estimated to be as high as 1:1000. Urea Cycle disorders (UCD), one class of IEM, can present with cerebral edema and represent a possible target to explore the utility of different neuromonitoring techniques during an hyperammonemic crisis. The last two decades have brought advances in the early identification and comprehensive management of UCD, including further understanding of neuroimaging patterns associated with neurocognitive function. Nonetheless, very important questions remain about the potential acute neurotoxic effects of hyperammonemia to better understand how to treat and prevent secondary brain injury. In this review, we describe existing neuromonitoring techniques that have been used in rare metabolic disorders to assess and allow amelioration of ongoing brain injury. Directions of future research should be focused on identifying new diagnostic approaches in the management of metabolic crises to optimize care and reduce long term morbidity and mortality in patients with IEM.
Collapse
Affiliation(s)
| | - Kuntal Sen
- Neurogenetics and Neurodevelopmental Pediatrics, Children's National, Washington DC, USA
| | - Andrea Gropman
- Neurogenetics and Neurodevelopmental Pediatrics, Children's National, Washington DC, USA
| |
Collapse
|
35
|
Al-Mufti F, Mayer SA, Kaur G, Bassily D, Li B, Holstein ML, Ani J, Matluck NE, Kamal H, Nuoman R, Bowers CA, S Ali F, Al-Shammari H, El-Ghanem M, Gandhi C, Amuluru K. Neurocritical care management of poor-grade subarachnoid hemorrhage: Unjustified nihilism to reasonable optimism. Neuroradiol J 2021; 34:542-551. [PMID: 34476991 PMCID: PMC8649190 DOI: 10.1177/19714009211024633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Historically, overall outcomes for patients with high-grade subarachnoid hemorrhage (SAH) have been poor. Generally, between physicians, either reluctance to treat, or selectivity in treating such patients has been the paradigm. Recent studies have shown that early and aggressive care leads to significant improvement in survival rates and favorable outcomes of grade V SAH patients. With advancements in both neurocritical care and end-of-life care, non-treatment or selective treatment of grade V SAH patients is rarely justified. Current paradigm shifts towards early and aggressive care in such cases may lead to improved outcomes for many more patients. MATERIALS AND METHODS We performed a detailed review of the current literature regarding neurointensive management strategies in high-grade SAH, discussing multiple aspects. We discussed the neurointensive care management protocols for grade V SAH patients. RESULTS Acutely, intracranial pressure control is of utmost importance with external ventricular drain placement, sedation, optimization of cerebral perfusion pressure, osmotherapy and hyperventilation, as well as cardiopulmonary support through management of hypotension and hypertension. CONCLUSIONS Advancements of care in SAH patients make it unethical to deny treatment to poor Hunt and Hess grade patients. Early and aggressive treatment results in a significant improvement in survival rate and favorable outcome in such patients.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Stephan A Mayer
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Gurmeen Kaur
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Daniel Bassily
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Boyi Li
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Matthew L Holstein
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Jood Ani
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Nicole E Matluck
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Haris Kamal
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Rolla Nuoman
- Department of Neurology, Westchester Medical Center, Maria Fareri Children’s Hospital, Westchester Medical Center, Valhalla, USA
| | | | - Faizan S Ali
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Hussein Al-Shammari
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Mohammad El-Ghanem
- Department of Neurology, Neurosurgery and Medical Imaging, University of Arizona, Tucson, USA
| | - Chirag Gandhi
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Krishna Amuluru
- Goodman Campbell Brain and Spine, Ascension St. Vincent Medical Center, Indianapolis, USA
| |
Collapse
|
36
|
Xu G, Guo J, Sun C. Eucalyptol ameliorates early brain injury after subarachnoid haemorrhage via antioxidant and anti-inflammatory effects in a rat model. PHARMACEUTICAL BIOLOGY 2021; 59:114-120. [PMID: 33550883 PMCID: PMC8871613 DOI: 10.1080/13880209.2021.1876101] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
CONTEXT As the terpenoid oxide extracted from Eucalyptus L. Herit (Myrtaceae), eucalyptol (EUC) has anti-inflammatory and antioxidant effects. OBJECTIVE To evaluate the neuroprotective role of EUC in subarachnoid haemorrhage (SAH). MATERIALS AND METHODS Sprague-Dawley rats were divided into 4 groups: sham group, SAH group, SAH + vehicle group, and SAH + EUC group. SAH was induced by endovascular perforation. In SAH + EUC group, 100 mg/kg EUC was administrated intraperitoneally at 1 h before SAH and 30 min after SAH, respectively. Neurological deficits were examined by modified Neurological Severity Scores (mNSS). The brain edoema was evaluated by wet-dry method. Neuronal apoptosis was detected by Nissl staining. The expression of Bcl-2, cleaved caspase-3, phospho-NF-κB p65, ionised calcium-binding adapter molecule-1 (Iba-1), nuclear factor erythroid-2 (Nrf-2), and haem oxygenase 1 (HO-1) were measured by Western blot. Expression of pro-inflammatory cytokines was detected by qRT-PCR. Oxidative stress markers were also measured. RESULTS EUC markedly relieved brain edoema (from 81.22% to 78.33%) and neurological deficits [from 16.28 to 9.28 (24 h); from 12.50 to 7.58 (48 h)]. EUC reduced neuronal apoptosis, microglial activation, and oxidative stress. EUC increased the expression of HO-1 (1.15-fold), Nrf2 (1.34-fold) and Bcl-2 (1.17-fold) in the rats' brain tissue, and down-regulated the expressions of cleaved caspase-3 (41.09%), phospho-NF-κB p65 (14.38%) and pro-inflammatory cytokines [TNF-α (34.33%), IL-1β (50.40%) and IL-6 (59.13%)]. DISCUSSION AND CONCLUSION For the first time, this study confirms that EUC has neuroprotective effects against early brain injury after experimental SAH in rats.
Collapse
Affiliation(s)
- Gang Xu
- Department of Neurosurgery, Liyang People’s Hospital, Affiliated Hospital of Nantong University, Changzhou, China
- CONTACT Gang Xu Department of Neurosurgery, Liyang People’s Hospital, Affiliated Hospital of Nantong University, Jianshe West Road No.70, Changzhou213300, China
| | - Junsheng Guo
- Department of Neurosurgery, Liyang People’s Hospital, Affiliated Hospital of Nantong University, Changzhou, China
| | - Chunming Sun
- Department of Neurosurgery, Liyang People’s Hospital, Affiliated Hospital of Nantong University, Changzhou, China
| |
Collapse
|
37
|
Kovacs M, Peluso L, Njimi H, De Witte O, Gouvêa Bogossian E, Quispe Cornejo A, Creteur J, Schuind S, Taccone FS. Optimal Cerebral Perfusion Pressure Guided by Brain Oxygen Pressure Measurement. Front Neurol 2021; 12:732830. [PMID: 34777201 PMCID: PMC8581172 DOI: 10.3389/fneur.2021.732830] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Although increasing cerebral perfusion pressure (CPP) is commonly accepted to improve brain tissue oxygen pressure (PbtO2), it remains unclear whether recommended CPP targets (i. e., >60 mmHg) would result in adequate brain oxygenation in brain injured patients. The aim of this study was to identify the target of CPP associated with normal brain oxygenation. Methods: Prospectively collected data including patients suffering from acute brain injury and monitored with PbtO2, in whom daily CPP challenge using vasopressors was performed. Initial CPP target was >60 mmHg; norepinephrine infusion was modified to have an increase in CPP of at least 10 mmHg at two different steps above the baseline values. Whenever possible, the same CPP challenge was performed for the following days, for a maximum of 5 days. CPP “responders” were patients with a relative increase in PbtO2 from baseline values > 20%. Results: A total of 53 patients were included. On the first day of assessment, CPP was progressively increased from 73 (70–76) to 83 (80–86), and 92 (90–96) mmHg, which resulted into a significant PbtO2 increase [from 20 (17–23) mmHg to 22 (20–24) mmHg and 24 (22–26) mmHg, respectively; p < 0.001]. Median CPP value corresponding to PbtO2 values > 20 mmHg was 79 (74–87) mmHg, with 2 (4%) patients who never achieved such target. Similar results of CPP targets were observed the following days. A total of 25 (47%) were PbtO2 responders during the CPP challenge on day 1, in particular if low PbtO2 was observed at baseline. Conclusions: PbtO2 monitoring can be an effective way to individualize CPP values to avoid tissue hypoxia. Low PbtO2 values at baseline can identify the responders to the CPP challenge.
Collapse
Affiliation(s)
- Matyas Kovacs
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Elisa Gouvêa Bogossian
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Armin Quispe Cornejo
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Schuind
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
38
|
Yan Z, Wu Q, Cai W, Xiang H, Wen L, Zhang A, Peng Y, Zhang X, Wang H. Identifying critical genes associated with aneurysmal subarachnoid hemorrhage by weighted gene co-expression network analysis. Aging (Albany NY) 2021; 13:22345-22360. [PMID: 34542421 PMCID: PMC8507255 DOI: 10.18632/aging.203542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening medical condition with a high mortality and disability rate. aSAH has an unclear pathogenesis, and limited treatment options are available. Here, we aimed to identify critical genes involved in aSAH pathogenesis using peripheral blood gene expression data of 43 patients with aSAH due to ruptured intracranial aneurysms and 18 controls with headache, downloaded from Gene Expression Omnibus. These data were used to construct a co-expression network using weighted gene co-expression network analysis (WGCNA). The biological functions of the hub genes were explored, and critical genes were selected by combining with differentially expressed genes analysis. Fourteen modules were identified by WGCNA. Among those modules, red, blue, brown and cyan modules were closely associated with aSAH. Moreover, 364 hub genes in the significant modules were found to play important roles in aSAH. Biological function analysis suggested that protein biosynthesis-related processes and inflammatory responses-related processes were involved in the pathology of aSAH pathology. Combined with differentially expressed genes analysis and validation in 35 clinical samples, seven gene (CD27, ANXA3, ACSL1, PGLYRP1, ALPL, ARG1, and TPST1) were identified as potential biomarkers for aSAH, and three genes (ANXA3, ALPL, and ARG1) were changed with disease development, that may provide new insights into potential molecular mechanisms for aSAH.
Collapse
Affiliation(s)
- Zhizhong Yan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China.,Department of Neurosurgery, The 904th Hospital of The Joint Logistics Support Force of Chinese People's Liberation Army, Wuxi 214000, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| | - Wei Cai
- Department of Neurosurgery, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian 223800, China
| | - Haitao Xiang
- Department of Neurosurgery, Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 215028, China
| | - Lili Wen
- Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| | - An Zhang
- Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| | - Yaonan Peng
- Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| | - Handong Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.,Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
39
|
Ikram A, Javaid MA, Ortega-Gutierrez S, Selim M, Kelangi S, Anwar SMH, Torbey MT, Divani AA. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2021; 30:106064. [PMID: 34464924 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106064] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is the most feared complication of aneurysmal subarachnoid hemorrhage (aSAH). It increases the mortality and morbidity associated with aSAH. Previously, large cerebral artery vasospasm was thought to be the sole major contributing factor associated with increased risk of DCI. Recent literature has challenged this concept. We conducted a literature search using PUBMED as the prime source of articles discussing various other factors which may contribute to the development of DCI both in the presence or absence of large cerebral artery vasospasm. These factors include microvascular spasm, micro-thrombosis, cerebrovascular dysregulation, and cortical spreading depolarization. These factors collectively result in inflammation of brain parenchyma, which is thought to precipitate early brain injury and DCI. We conclude that diagnostic modalities need to be refined in order to diagnose DCI more efficiently in its early phase, and newer interventions need to be developed to prevent and treat this condition. These newer interventions are currently being studied in experimental models. However, their effectiveness on patients with aSAH is yet to be determined.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Muhammad Ali Javaid
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Kelangi
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | | | - Michel T Torbey
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, MSC10-5620, 1, Albuquerque, NM 87131, USA.
| |
Collapse
|
40
|
Aneurysmal Subarachnoid Hemorrhage: Review of the Pathophysiology and Management Strategies. Curr Neurol Neurosci Rep 2021; 21:50. [PMID: 34308493 DOI: 10.1007/s11910-021-01136-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Aneurysmal subarachnoid hemorrhage remains a devastating disease process despite medical advances made over the past 3 decades. Much of the focus was on prevention and treatment of vasospasm to reduce delayed cerebral ischemia and improve outcome. In recent years, there has been a shift of focus onto early brain injury as the precursor to delayed cerebral ischemia. This review will focus on the most recent data surrounding the pathophysiology of aneurysmal subarachnoid hemorrhage and current management strategies. RECENT FINDINGS There is a paucity of successful trials in the management of subarachnoid hemorrhage likely related to the targeting of vasospasm. Pathophysiological changes occurring at the time of aneurysmal rupture lead to early brain injury including cerebral edema, inflammation, and spreading depolarization. These events result in microvascular collapse, vasospasm, and ultimately delayed cerebral ischemia. Management of aneurysmal subarachnoid hemorrhage has remained the same over the past few decades. No recent trials have resulted in new treatments. However, our understanding of the pathophysiology is rapidly expanding and will advise future therapeutic targets.
Collapse
|
41
|
Tsai TH, Chang CH, Lin SH, Su YF, Tsai YC, Yang SF, Lin CL. Therapeutic effect of and mechanisms underlying the effect of miR-195-5p on subarachnoid hemorrhage-induced vasospasm and brain injury in rats. PeerJ 2021; 9:e11395. [PMID: 34221706 PMCID: PMC8231314 DOI: 10.7717/peerj.11395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives There is much evidence suggesting that inflammation contributes majorly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and brain injury. miRNAs have been found to modulate inflammation in several neurological disorders. This study investigated the effect of miR-195-5p on SAH-induced vasospasm and early brain injury in experimental rats. Methods Ninety-six Sprague-Dawley male rats were randomly and evenly divided into a control group (no SAH, sham surgery), a SAH only group, a SAH + NC-mimic group, and a SAH + miR-195-5p group. SAH was induced using a single injection of blood into the cisterna magna. Suspensions containing NC-mimic and miR-195-5p were intravenously injected into rat tail 30 mins after SAH was induced. We determined degree of vasospasm by averaging areas of cross-sections the basilar artery 24h after SAH. We measured basilar artery endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ B), phosphorylated NF-κ B (p-NF-κ B), inhibitor of NF-κ B (Iκ Bα) and phosphorylated-Iκ Bα (p-Iκ Bα). Cell death assay was used to quantify the DNA fragmentation, an indicator of apoptotic cell death, in the cortex, hippocampus, and dentate gyrus. Tumor necrosis factor alpha (TNF-α) levels were measured using sample protein obtained from the cerebral cortex, hippocampus and dentate gyrus. Results Prior to fixation by perfusion, there were no significant physiological differences among the control and treatment groups. SAH successfully induced vasospasm and early brain injury. MiR-195-5p attenuated vasospasam-induced changes in morphology, reversed SAH-induced elevation of iNOS, p-NF-κ B, NF-κ B, and p-Iκ Bα and reversed SAH-induced suppression of eNOS in the basilar artery. Cell death assay revealed that MiR-195-5p significantly decreased SAH-induced DNA fragmentation (apoptosis) and restored TNF-α level in the dentate gyrus. Conclusion In conclusion, MiRNA-195-5p attenuated SAH-induced vasospasm by up-regulating eNOS, down-regulating iNOS and inhibiting the NF-κ B signaling pathway. It also protected neurons by decreasing SAH-induced apoptosis-related cytokine TNF-α expression in the dentate gyrus. Further study is needed to elucidate the detail mechanism underlying miR-195-5p effect on SAH-induced vasospasm and cerebral injury. We believe that MiR-195-5p can potentially be used to manage SAH-induced cerebral vasospasm and brain injury.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Huai Lin
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Cheng Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Abstract
Background Subarachnoid hemorrhage (SAH) is a devastating disease associated with high mortality and morbidity. Besides neurological sequelae, neuropsychological deficits largely contribute to patients’ long-term quality of life. Little is known about the pituitary gland volume (PGV) after SAH compared to healthy referents and the association of PGV with long-term outcome including cognitive function. Methods Sixty consecutive non-traumatic SAH patients admitted to the neurological intensive care unit between 2010 and 2014 were enrolled. 3-Tesla magnetic resonance imagining was performed at baseline (16 days) and 12 months after SAH to measure PGV semi-automatically using the software iPlan Net 3.5.0. PGV was compared to age and sex matched healthy referents. The difference between baseline and 1-year-PGV was classified as increase (> 20 mm3 PGV increase), stable (± 20 mm3), or decrease (> 20 mm3 PGV decrease). In addition, total intracerebral volume was calculated. Neuropsychological testing was applied in 43 SAH patients at 1-year follow up encompassing several domains (executive, attention, memory) and self-assessment (questionnaire for self-perceived deficits in attention [German: FEDA]) of distractibility in mental processes, fatigue and decrease in motivation. Multivariable regression with multivariable generalized linear models was used for comparison of PGVs and for subgroup analysis to evaluate a potential association between PGV and neuropsychological outcome. Results Patients were 53 years old (IQR = 44–63) and presented with a median Hunt&Hess grade of 2 (IQR = 1–3). SAH patients had a significantly lower PGV both at baseline (360 ± 19 mm3, p < 0.001) and 1 year (367 ± 18 mm3p < 0.001) as compared to matched referents (mean 505 ± 18 mm3). PGV decreased by 75 ± 8 mm3 in 28 patients, increased by 120 ± 22 mm3 in 22 patients and remained stable in 10 patients at 1-year follow-up. PGV in patients with PGV increase at 12 months was not different to healthy referents (p = 0.062). Low baseline PGV was associated with impaired executive functions at 1 year (adjOR = 8.81, 95%-CI = 1.46–53.10, p = 0.018) and PGV decrease within 1 year was associated with self-perceived worse motivation (FEDA; Wald-statistic = 6.6, df = 1, p = 0.010). Conclusions Our data indicate significantly lower PGVs following SAH. The association of sustained PGV decrease with impaired neuropsychological long-term outcome warrants further investigations including neuroendocrine hormone measurements.
Collapse
|
43
|
The Importance of Probe Location for the Interpretation of Cerebral Microdialysis Data in Subarachnoid Hemorrhage Patients. Neurocrit Care 2021; 32:135-144. [PMID: 31037640 PMCID: PMC7012974 DOI: 10.1007/s12028-019-00713-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background There is no uniform definition for cerebral microdialysis (CMD) probe location with respect to focal brain lesions, and the impact of CMD-probe location on measured molecule concentrations is unclear. Methods We retrospectively analyzed data of 51 consecutive subarachnoid hemorrhage patients with CMD-monitoring between 2010 and 2016 included in a prospective observational cohort study. Microdialysis probe location was assessed on all brain computed tomography (CT) scans performed during CMD-monitoring and defined as perilesional in the presence of a focal hypodense or hyperdense lesion within a 1-cm radius of the gold tip of the CMD-probe, or otherwise as normal-appearing brain tissue. Results Probe location was detected in normal-appearing brain tissue on 53/143 (37%) and in perilesional location on 90/143 (63%) CT scans. In the perilesional area, CMD-glucose levels were lower (p = 0.003), whereas CMD-lactate (p = 0.002), CMD-lactate-to-pyruvate-ratio (LPR; p < 0.001), CMD-glutamate (p = 0.002), and CMD-glycerol levels (p < 0.001) were higher. Neuroglucopenia (CMD-glucose < 0.7 mmol/l, p = 0.002), metabolic distress (p = 0.002), and mitochondrial dysfunction (p = 0.005) were more common in perilesional compared to normal-appearing brain tissue. Development of new lesions in the proximity of the CMD-probe (n = 13) was associated with a decrease in CMD-glucose levels, evidence of neuroglucopenia, metabolic distress, as well as increasing CMD-glutamate and CMD-glycerol levels. Neuroglucopenia was associated with poor outcome independent of probe location, whereas elevated CMD-lactate, CMD-LPR, CMD-glutamate, and CMD-glycerol levels were only predictive of poor outcome in normal-appearing brain tissue. Conclusions Focal brain lesions significantly impact on concentrations of brain metabolites assessed by CMD. With the exception of CMD-glucose, the prognostic value of CMD-derived parameters seems to be higher when assessed in normal-appearing brain tissue. CMD was sensitive to detect the development of new focal lesions in vicinity to the neuromonitoring probe. Probe location should be described in the research reporting brain metabolic changes measured by CMD and integrated in statistical models. Electronic supplementary material The online version of this article (10.1007/s12028-019-00713-8) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Addis A, Gaasch M, Schiefecker AJ, Kofler M, Ianosi B, Rass V, Lindner A, Broessner G, Beer R, Pfausler B, Thomé C, Schmutzhard E, Helbok R. Brain temperature regulation in poor-grade subarachnoid hemorrhage patients - A multimodal neuromonitoring study. J Cereb Blood Flow Metab 2021; 41:359-368. [PMID: 32151225 PMCID: PMC7812508 DOI: 10.1177/0271678x20910405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elevated body temperature (Tcore) is associated with poor outcome after subarachnoid hemorrhage (SAH). Brain temperature (Tbrain) is usually higher than Tcore. However, the implication of this difference (Tdelta) remains unclear. We aimed to study factors associated with higher Tdelta and its association with outcome. We included 46 SAH patients undergoing multimodal neuromonitoring, for a total of 7879 h of averaged data of Tcore, Tbrain, cerebral blood flow, cerebral perfusion pressure, intracranial pressure and cerebral metabolism (CMD). Three-months good functional outcome was defined as modified Rankin Scale ≤2. Tbrain was tightly correlated with Tcore (r = 0.948, p < 0.01), and was higher in 73.7% of neuromonitoring time (Tdelta +0.18°C, IQR -0.01 - 0.37°C). A higher Tdelta was associated with better metabolic state, indicated by lower CMD-glutamate (p = 0.003) and CMD-lactate (p < 0.001), and lower risk of mitochondrial dysfunction (MD) (OR = 0.2, p < 0.001). During MD, Tdelta was significantly lower (0°C, IQR -0.2 - 0.1; p < 0.001). A higher Tdelta was associated with improved outcome (OR = 7.7, p = 0.002). Our study suggests that Tbrain is associated with brain metabolic activity and exceeds Tcore when mitochondrial function is preserved. Further studies are needed to understand how Tdelta may serve as a surrogate marker for brain function and predict clinical course and outcome after SAH.
Collapse
Affiliation(s)
- Alberto Addis
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Neurology, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,School of Medicine, University of Milan-Bicocca, Milano, Italy
| | - Maxime Gaasch
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois J Schiefecker
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Kofler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bogdan Ianosi
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Rass
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Lindner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Broessner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Beer
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Hosmann A, Milivojev N, Dumitrescu S, Reinprecht A, Weidinger A, Kozlov AV. Cerebral nitric oxide and mitochondrial function in patients suffering aneurysmal subarachnoid hemorrhage-a translational approach. Acta Neurochir (Wien) 2021; 163:139-149. [PMID: 32839865 PMCID: PMC7778629 DOI: 10.1007/s00701-020-04536-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/11/2020] [Indexed: 01/15/2023]
Abstract
Background Cerebral ischemia and neuroinflammation following aneurysmal subarachnoid hemorrhage (SAH) are major contributors to poor neurological outcome. Our study set out to investigate in an exploratory approach the interaction between NO and energy metabolism following SAH as both hypoxia and inflammation are known to affect nitric oxide (NO) metabolism and NO in turn affects mitochondria. Methods In seven patients under continuous multimodality neuromonitoring suffering poor-grade aneurysmal SAH, cerebral metabolism and NO levels (determined as a sum of nitrite plus nitrate) were determined in cerebral microdialysate for 14 days following SAH. In additional ex vivo experiments, rat cortex homogenate was subjected to the NO concentrations determined in SAH patients to test whether these NO concentrations impair mitochondrial function (determined by means of high-resolution respirometry). Results NO levels showed biphasic kinetics with drastically increased levels during the first 7 days (74.5 ± 29.9 μM) and significantly lower levels thereafter (47.5 ± 18.7 μM; p = 0.02). Only during the first 7 days, NO levels showed a strong negative correlation with brain tissue oxygen tension (r = − 0.78; p < 0.001) and a positive correlation with cerebral lactate (r = 0.79; p < 0.001), pyruvate (r = 0.68; p < 0.001), glutamate (r = 0.65; p < 0.001), as well as the lactate-pyruvate ratio (r = 0.48; p = 0.01), suggesting mitochondrial dysfunction. Ex vivo experiments confirmed that the increase in NO levels determined in patients during the acute phase is sufficient to impair mitochondrial function (p < 0.001). Mitochondrial respiration was inhibited irrespectively of whether glutamate (substrate of complex I) or succinate (substrate of complex II) was used as mitochondrial substrate suggesting the inhibition of mitochondrial complex IV. The latter was confirmed by direct determination of complex IV activity. Conclusions Exploratory analysis of our data suggests that during the acute phase of SAH, NO plays a key role in the neuronal damage impairing mitochondrial function and facilitating accumulation of mitochondrial substrate; further studies are required to understand mechanisms underlying this observation.
Collapse
|
46
|
Spencer P, Jiang Y, Liu N, Han J, Li Y, Vodovoz S, Dumont AS, Wang X. Update: Microdialysis for Monitoring Cerebral Metabolic Dysfunction after Subarachnoid Hemorrhage. J Clin Med 2020; 10:jcm10010100. [PMID: 33396652 PMCID: PMC7794715 DOI: 10.3390/jcm10010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023] Open
Abstract
Cerebral metabolic dysfunction has been shown to extensively mediate the pathophysiology of brain injury after subarachnoid hemorrhage (SAH). The characterization of the alterations of metabolites in the brain can help elucidate pathophysiological changes occurring throughout SAH and the relationship between secondary brain injury and cerebral energy dysfunction after SAH. Cerebral microdialysis (CMD) is a tool that can measure concentrations of multiple bioenergetics metabolites in brain interstitial fluid. This review aims to provide an update on the implication of CMD on the measurement of metabolic dysfunction in the brain after SAH. A literature review was conducted through a general PubMed search with the terms “Subarachnoid Hemorrhage AND Microdialysis” as well as a more targeted search using MeSh with the search terms “Subarachnoid hemorrhage AND Microdialysis AND Metabolism.” Both experimental and clinical papers were reviewed. CMD is a suitable tool that has been used for monitoring cerebral metabolic changes in various types of brain injury. Clinically, CMD data have shown the dramatic changes in cerebral metabolism after SAH, including glucose depletion, enhanced glycolysis, and suppressed oxidative phosphorylation. Experimental studies using CMD have demonstrated a similar pattern of cerebral metabolic dysfunction after SAH. The combination of CMD and other monitoring tools has also shown value in further dissecting and distinguishing alterations in different metabolic pathways after brain injury. Despite the lack of a standard procedure as well as the presence of limitations regarding CMD application and data interpretation for both clinical and experimental studies, emerging investigations have suggested that CMD is an effective way to monitor the changes of cerebral metabolic dysfunction after SAH in real-time, and alternatively, the combination of CMD and other monitoring tools might be able to further understand the relationship between cerebral metabolic dysfunction and brain injury after SAH, determine the severity of brain injury and predict the pathological progression and outcomes after SAH. More translational preclinical investigations and clinical validation may help to optimize CMD as a powerful tool in critical care and personalized medicine for patients with SAH.
Collapse
Affiliation(s)
| | - Yinghua Jiang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| | | | | | | | | | | | - Xiaoying Wang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| |
Collapse
|
47
|
Dai JX, Cai JY, Sun J, Lin Q, Yu ZQ. Serum soluble tumor necrosis factor-like weak inducer of apoptosis is a potential biomarker for outcome prediction of patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2020; 510:354-359. [DOI: 10.1016/j.cca.2020.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
|
48
|
Lai N, Wu D, Liang T, Pan P, Yuan G, Li X, Li H, Shen H, Wang Z, Chen G. Systemic exosomal miR-193b-3p delivery attenuates neuroinflammation in early brain injury after subarachnoid hemorrhage in mice. J Neuroinflammation 2020; 17:74. [PMID: 32098619 PMCID: PMC7041199 DOI: 10.1186/s12974-020-01745-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Inflammation is a potential crucial factor in the pathogenesis of subarachnoid hemorrhage (SAH). Circulating microRNAs (miRNAs) are involved in the regulation of diverse aspects of neuronal dysfunction. The therapeutic potential of miRNAs has been demonstrated in several CNS disorders and is thought to involve modulation of neuroinflammation. Here, we found that peripherally injected modified exosomes (Exos) delivered miRNAs to the brains of mice with SAH and that the potential mechanism was regulated by regulation of neuroinflammation. Methods Next-generation sequencing (NGS) and qRT-PCR were used to define the global miRNA profile of plasma exosomes in aSAH patients and healthy controls. We peripherally injected RVG/Exos/miR-193b-3p to achieve delivery of miR-193b-3p to the brain of mice with SAH. The effects of miR-193b-3p on SAH were assayed using a neurological score, brain water content, blood-brain barrier (BBB) injury, and Fluoro-Jade C (FJC) staining. Western blotting analysis, enzyme-linked immunosorbent assay (ELISA), and qRT-PCR were used to measure various proteins and mRNA levels. Results NGS and qRT-PCR revealed that four circulating exosomal miRNAs were differentially expressed. RVG/Exos exhibited improved targeting to the brains of SAH mice. MiR-193b-3p suppressed the expression and activity of HDAC3, upregulating the acetylation of NF-κB p65. Finally, miR-193b-3p treatment mitigated the neurological behavioral impairment, brain edema, BBB injury, and neurodegeneration induced by SAH, and reduced inflammatory cytokine expression in the brains of mice after SAH. Conclusions Exos/miR-193b-3p treatment attenuated the inflammatory response by acetylation of the NF-κB p65 via suppressed expression and activity of HDAC3. These effects alleviated neurobehavioral impairments and neuroinflammation following SAH.
Collapse
Affiliation(s)
- Niansheng Lai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui Province, China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui Province, China
| | - Degang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.,Department of Neurosurgery, First Affiliated Hospital of Wannan Medical College, 2 West Zheshan Road, Wuhu, Anhui Province, China.,Non-coding RNA Research Center of Wannan Medical College, Wuhu, Anhui Province, China
| | - Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Pengjie Pan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Guiqiang Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
49
|
Yuan B, Zhou XM, You ZQ, Xu WD, Fan JM, Chen SJ, Han YL, Wu Q, Zhang X. Inhibition of AIM2 inflammasome activation alleviates GSDMD-induced pyroptosis in early brain injury after subarachnoid haemorrhage. Cell Death Dis 2020; 11:76. [PMID: 32001670 PMCID: PMC6992766 DOI: 10.1038/s41419-020-2248-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Only a few types of inflammasomes have been described in central nervous system cells. Among these, the absent in melanoma 2 (AIM2) inflammasome is primarily found in neurons, is highly specific and can be activated only by double-stranded DNA. Although it has been demonstrated that the AIM2 inflammasome is activated by poly(deoxyadenylic-deoxythymidylic) acid sodium salt and leads to pyroptotic neuronal cell death, the role of AIM2 inflammasome-mediated pyroptosis in early brain injury (EBI) after subarachnoid haemorrhage (SAH) has rarely been studied. Thus, we designed this study to explore the mechanism of gasdermin D(GSDMD)-induced pyroptosis mediated by the AIM2 inflammasome in EBI after SAH. The level of AIM2 from the cerebrospinal fluid (CSF) of patients with SAH was detected. The pathway of AIM2 inflammasome-mediated pyroptosis, the AIM2/Caspase-1/GSDMD pathway, was explored after experimental SAH in vivo and in primary cortical neurons stimulated by oxyhaemoglobin (oxyHb) in vitro. Then, we evaluated GSDMD-induced pyroptosis mediated by the AIM2 inflammasome in AIM2 and caspase-1- deficient mice and primary cortical neurons generated through lentivirus (LV) knockdown. Compared with that of the control samples, the AIM2 level in the CSF of the patients with SAH was significantly increased. Pyroptosis-associated proteins mediated by the AIM2 inflammasome were significantly increased in vivo and in vitro following experimentally induced SAH. After AIM2 and caspase-1 were knocked down by an LV, GSDMD-induced pyroptosis mediated by the AIM2 inflammasome was alleviated in EBI after SAH. Intriguingly, when caspase-1 was knocked down, apoptosis was significantly suppressed via impeding the activation of caspase-3. GSDMD-induced pyroptosis mediated by the AIM2 inflammasome may be involved in EBI following SAH. The inhibition of AIM2 inflammasome activation caused by knocking down AIM2 and caspase-1 alleviates GSDMD-induced pyroptosis in EBI after SAH.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, P R China
| | - Xiao-Ming Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P R China
| | - Zong-Qi You
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Jiangsu University, Nanjing, 210002, P R China
| | - Wei-Dong Xu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, 210002, P R China
| | - Jie-Mei Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P R China
| | - Shu-Juan Chen
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P R China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P R China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P R China.
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, P R China.
| |
Collapse
|
50
|
Rass V, Ianosi BA, Wegmann A, Gaasch M, Schiefecker AJ, Kofler M, Lindner A, Addis A, Almashad SS, Rhomberg P, Pfausler B, Beer R, Gizewski ER, Thomé C, Helbok R. Delayed Resolution of Cerebral Edema Is Associated With Poor Outcome After Nontraumatic Subarachnoid Hemorrhage. Stroke 2020; 50:828-836. [PMID: 30869561 DOI: 10.1161/strokeaha.118.024283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background and Purpose- Global cerebral edema occurs in up to 57% of patients with subarachnoid hemorrhage (SAH) and is associated with prolonged hospital stay and poor outcome. Recently, admission brain edema was successfully graded using a simplified computed tomography-based semiquantitative score (subarachnoid hemorrhage early brain edema score [SEBES]). Longitudinal evaluation of the SEBES grade may discriminate patients with rapid and delayed edema resolution after SAH. Here, we aimed to describe the resolution of brain edema and to study the relationship between this radiographic biomarker and hospital course and outcome after SAH. Methods- For the current observational cohort study, computed tomography scans of 283 consecutive nontraumatic SAH patients admitted to the neurological intensive care unit of a tertiary hospital were graded based on the absence of visible sulci at 2 predefined brain tissue levels in each hemisphere (SEBES ranging from 0 to 4). A score of ≥3 was defined as high-grade SEBES. Multivariable regression models using generalized linear models were used to identify associated factors with delayed edema resolution based on the median time to resolution (SEBES ≤2) in SAH survivors. Results- Patients were 57 years old (interquartile range, 48-68) and presented with a median admission Hunt and Hess grade of 3 (interquartile range, 1-5). High-grade SEBES was common (106/283, 37%) and resolved within a median of 8 days (interquartile range, 4-15) in survivors (N=80). Factors associated with delayed edema resolution were early (<72 hours) hypernatremia (>150 mmol/L; adjusted odds ratio [adjOR], 4.88; 95% CI, 1.68-14.18), leukocytosis (>15 G/L; adjOR, 3.14; 95% CI, 1.24-8.77), hyperchloremia (>121 mmol/L; adjOR, 5.24; 95% CI, 1.64-16.76), and female sex (adjOR, 3.71; 95% CI, 1.01-13.64) after adjusting for admission Hunt and Hess grade and age. Delayed brain edema resolution was an independent predictor of worse functional 3-month outcome (adjOR, 2.52; 95% CI, 1.07-5.92). Conclusions- Our data suggest that repeated quantification of the SEBES can identify SAH patients with delayed edema resolution. Based on its' prognostic value as radiographic biomarker, the SEBES may be integrated in future trials aiming to improve edema resolution after SAH.
Collapse
Affiliation(s)
- Verena Rass
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Bogdan-Andrei Ianosi
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria.,Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Hall, Austria (B.-A.I., )
| | - Andreas Wegmann
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Max Gaasch
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Alois J Schiefecker
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Mario Kofler
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Anna Lindner
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Alberto Addis
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria.,Department of Clinical and Experimental Medicine, University of Sassari, Italy (A.A.)
| | - Salma S Almashad
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria.,Faculty of Medicine, Alexandria University, El-Khartoum Square Azarita Medical Campus, Egypt (S.S.A.)
| | - Paul Rhomberg
- Department of Neuroradiology (P.R., E.R.G.), Medical University of Innsbruck, Austria
| | - Bettina Pfausler
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Ronny Beer
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| | - Elke R Gizewski
- Department of Neuroradiology (P.R., E.R.G.), Medical University of Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery (C.T.), Medical University of Innsbruck, Austria
| | - Raimund Helbok
- From the Neurological Intensive Care Unit, Department of Neurology (V.R., B.-A.I., A.W., M.G., A.J.S., M.K., A.L., A.A., S.S.A., B.P., R.B., R.H.), Medical University of Innsbruck, Austria
| |
Collapse
|