1
|
Kravitz MS, Lee JH, Shapiro NI. Cardiac arrest and microcirculatory dysfunction: a narrative review. Curr Opin Crit Care 2024; 30:611-617. [PMID: 39377652 PMCID: PMC11540727 DOI: 10.1097/mcc.0000000000001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW This review provides an overview of the role of microcirculation in cardiac arrest and postcardiac arrest syndrome through handheld intravital microscopy and biomarkers. It highlights the importance of microcirculatory dysfunction in postcardiac arrest outcomes and explores potential therapeutic targets. RECENT FINDINGS Sublingual microcirculation is impaired in the early stage of postarrest and is potentially associated with increased mortality. Recent work suggests that the proportion of perfused small vessels is predictive of mortality. Microcirculatory impairment is consistently found to be independent of macrohemodynamic parameters. Biomarkers of endothelial cell injury and endothelial glycocalyx degradation are elevated in postarrest settings and may predict mortality and clinical outcomes, warranting further studies. Recent studies of exploratory therapies targeting microcirculation have shown some promise in animal models but still require significant research. SUMMARY Although research continues to suggest the important role that microcirculation may play in postcardiac arrest syndrome and cardiac arrest outcomes, the existing studies are still limited to draw any definitive conclusions. Further research is needed to better understand microcirculatory changes and their significance to improve cardiac arrest care and outcomes.
Collapse
Affiliation(s)
- Max S. Kravitz
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John H. Lee
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Bestle MH, Stensballe J, Lange T, Clausen NE, Søe-Jensen P, Pedersen KH, Gybel-Brask M, Kjær MBN, Steensen CO, Jensen DB, Gärtner R, Schønemann-Lund M, Kristiansen KT, Lindhardt A, Johansson PI, Perner A. Iloprost and Organ Dysfunction in Adults With Septic Shock and Endotheliopathy: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2432444. [PMID: 39259541 PMCID: PMC11391323 DOI: 10.1001/jamanetworkopen.2024.32444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Importance Soluble thrombomodulin is a marker of endotheliopathy, and iloprost may improve endothelial function. In patients with septic shock, high plasma levels of soluble thrombomodulin (>10 ng/mL) have been associated with worse organ dysfunction and mortality. Objective To assess the effects of treatment with iloprost vs placebo on the severity of organ failure in patients with septic shock and plasma levels of soluble thrombomodulin higher than 10 ng/mL. Design, Setting, and Participants This investigator-initiated, adaptive, parallel group, stratified, double-blind randomized clinical trial was conducted between November 1, 2019, and July 5, 2022, at 6 hospitals in Denmark. The trial had a maximum sample size of 380, with an interim analysis for futility only at 200 patients with 90 days of follow-up. In total, 279 adults in the intensive care unit (ICU) with septic shock and endotheliopathy were included. Interventions Patients were randomized 1:1 to masked intravenous infusion of iloprost, 1 ng/kg/min (n = 142), or placebo (n = 137) for 72 hours. Main Outcomes and Measures The primary outcome was mean daily Sequential Organ Failure Assessment (SOFA) score in the ICU adjusted for trial site and baseline SOFA score for the per-protocol population. SOFA scores for each of the 5 organ systems ranged from 0 to 4, with higher scores indicating more severe dysfunction (maximum score, 20). The secondary outcomes included serious adverse reactions and serious adverse events at 7 days and mortality at 90 days. Results Of 279 randomized patients, data from 278 were analyzed (median [IQR] age, 69 [58-77] years; 171 (62%) male), 142 in the iloprost group and 136 in the placebo group. The trial was stopped for futility at the planned interim analysis. The mean [IQR] daily SOFA score was 10.6 (6.4-14.8) in the iloprost group and 10.5 (5.9-15.5) in the placebo group (adjusted mean difference, 0.2 [95% CI, -0.8 to 1.2]; P = .70). Mortality at 90 days in the iloprost group was 57% (81 of 142) vs 51% (70 of 136) in the placebo group (adjusted relative risk, 1.12 [95% CI, 0.91-1.40]; P = .33). Serious adverse events occurred in 26 of 142 patients (18%) for the iloprost group vs 20 of 136 patients (15%) for the placebo group (adjusted relative risk, 1.25 [95% CI, 0.73-2.15]; P = .52). Only 1 serious adverse reaction was observed. Conclusions and Relevance In this randomized clinical trial of adults in the ICU with septic shock and severe endotheliopathy, infusion of iloprost, 1 ng/kg/min, for 72 hours did not reduce mean daily SOFA scores compared with placebo. In a clinical context, administration of iloprost will be unlikely to improve outcome in these patients. Trial Registration ClinicalTrials.gov Identifier: NCT04123444.
Collapse
Affiliation(s)
- Morten H Bestle
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stensballe
- Capital Region Blood Bank, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Anesthesiology and Trauma, Centre of Head and Ortopaedics, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Theis Lange
- Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Niels E Clausen
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter Søe-Jensen
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Kristine Holst Pedersen
- Capital Region Blood Bank, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Gybel-Brask
- Capital Region Blood Bank, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Maj-Brit N Kjær
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | | | - Diana Bertelsen Jensen
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Rune Gärtner
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Martin Schønemann-Lund
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Klaus T Kristiansen
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
| | - Anne Lindhardt
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital-Zealand University Hospital, Koege, Denmark
| | - Pär I Johansson
- Capital Region Blood Bank, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anders Perner
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Intensive Care, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Renaldo AC, Soudan H, Gomez MK, Ganapathy AS, Cambronero GE, Patterson JW, Lane MR, Sanin GD, Patel N, Niebler JA, Jordan JE, Williams TK, Neff LP, Rahbar E. INVESTIGATING THE RELATIONSHIP BETWEEN BLEEDING, CLOTTING, AND COAGULOPATHY DURING AUTOMATED PARTIAL REBOA STRATEGIES IN A HIGHLY LETHAL PORCINE HEMORRHAGE MODEL. Shock 2024; 62:265-274. [PMID: 38888571 PMCID: PMC11313271 DOI: 10.1097/shk.0000000000002385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Background: Death due to hemorrhagic shock, particularly, noncompressible truncal hemorrhage, remains one of the leading causes of potentially preventable deaths. Automated partial and intermittent resuscitative endovascular balloon occlusion of the aorta (i.e., pREBOA and iREBOA, respectively) are lifesaving endovascular strategies aimed to achieve quick hemostatic control while mitigating distal ischemia. In iREBOA, the balloon is titrated from full occlusion to no occlusion intermittently, whereas in pREBOA, a partial occlusion is maintained. Therefore, these two interventions impose different hemodynamic conditions, which may impact coagulation and the endothelial glycocalyx layer. In this study, we aimed to characterize the clotting kinetics and coagulopathy associated with iREBOA and pREBOA, using thromboelastography (TEG). We hypothesized that iREBOA would be associated with a more hypercoagulopathic response compared with pREBOA due to more oscillatory flow. Methods: Yorkshire swine (n = 8/group) were subjected to an uncontrolled hemorrhage by liver transection, followed by 90 min of automated pREBOA, iREBOA, or no balloon support (control). Hemodynamic parameters were continuously recorded, and blood samples were serially collected during the experiment (i.e., eight key time points: baseline (BL), T0, T10, T30, T60, T90, T120, T210 min). Citrated kaolin heparinase assays were run on a TEG 5000 (Haemonetics, Niles, IL). General linear mixed models were employed to compare differences in TEG parameters between groups and over time using STATA (v17; College Station, TX), while adjusting for sex and weight. Results: As expected, iREBOA was associated with more oscillations in proximal pressure (and greater magnitudes of peak pressure) because of the intermittent periods of full aortic occlusion and complete balloon deflation, compared to pREBOA. Despite these differences in acute hemodynamics, there were no significant differences in any of the TEG parameters between the iREBOA and pREBOA groups. However, animals in both groups experienced a significant reduction in clotting times (R time: P < 0.001; K time: P < 0.001) and clot strength (MA: P = 0.01; G: P = 0.02) over the duration of the experiment. Conclusions: Despite observing acute differences in peak proximal pressures between the iREBOA and pREBOA groups, we did not observe any significant differences in TEG parameters between iREBOA and pREBOA. The changes in TEG profiles were significant over time, indicating that a severe hemorrhage followed by both pREBOA and iREBOA can result in faster clotting reaction times (i.e., R times). Nevertheless, when considering the significant reduction in transfusion requirements and more stable hemodynamic response in the pREBOA group, there may be some evidence favoring pREBOA usage over iREBOA.
Collapse
Affiliation(s)
- Antonio C. Renaldo
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hebah Soudan
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Micaela K. Gomez
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aravindh S. Ganapathy
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gabriel E. Cambronero
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James W. Patterson
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Magan R. Lane
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gloria D. Sanin
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nathan Patel
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jacob A.P. Niebler
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James E. Jordan
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Cardiothoracic Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Timothy K. Williams
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Vascular and Endovascular Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lucas P. Neff
- Department of General Surgery, Section of Pediatric Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| |
Collapse
|
4
|
Kravitz MS, Kattouf N, Stewart IJ, Ginde AA, Schmidt EP, Shapiro NI. Plasma for prevention and treatment of glycocalyx degradation in trauma and sepsis. Crit Care 2024; 28:254. [PMID: 39033135 PMCID: PMC11265047 DOI: 10.1186/s13054-024-05026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
The endothelial glycocalyx, a gel-like layer that lines the luminal surface of blood vessels, is composed of proteoglycans, glycoproteins, and glycosaminoglycans. The endothelial glycocalyx plays an essential role in vascular homeostasis, and its degradation in trauma and sepsis can lead to microvascular dysfunction and organ injury. While there are no proven therapies for preventing or treating endothelial glycocalyx degradation, some initial literature suggests that plasma may have a therapeutic role in trauma and sepsis patients. Overall, the literature suggesting the use of plasma as a therapy for endothelial glycocalyx degradation is non-clinical basic science or exploratory. Plasma is an established therapy in the resuscitation of patients with hemorrhage for restoration of coagulation factors. However, plasma also contains other bioactive components, including sphingosine-1 phosphate, antithrombin, and adiponectin, which may protect and restore the endothelial glycocalyx, thereby helping to maintain or restore vascular homeostasis. This narrative review begins by describing the endothelial glycocalyx in health and disease: we discuss the overlapping disease mechanisms in trauma and sepsis that lead to its damage and introduce plasma transfusion as a potential therapy for prevention and treatment of endothelial glycocalyx degradation. Second, we review the literature on plasma as an exploratory therapy for endothelial glycocalyx degradation in trauma and sepsis. Third, we discuss the safety of plasma transfusion by reviewing the adverse events associated with plasma and other blood product transfusions, and we examine modern transfusion precautions that have enhanced the safety of plasma transfusion. We conclude that the literature proposes that plasma may have the potential to prevent and treat endothelial glycocalyx degradation in trauma and sepsis, indicating the need for further research.
Collapse
Affiliation(s)
- M S Kravitz
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - N Kattouf
- Department of Emergency Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - I J Stewart
- Department of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - A A Ginde
- Department of Emergency Medicine, University of Colorado School of Medicines, Aurora, CO, USA
| | - E P Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - N I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Băetu AE, Mirea L, Cobilinschi C, Grințescu IC, Grințescu IM. Beyond Trauma-Induced Coagulopathy: Detection of Auto-Heparinization as a Marker of Endotheliopathy Using Rotational Thromboelastometry. J Clin Med 2024; 13:4219. [PMID: 39064259 PMCID: PMC11278177 DOI: 10.3390/jcm13144219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: The complexity of trauma-induced coagulopathy (TIC) is a result of the unique interactions between the patient, trauma, and resuscitation-related causes. The main objective of trauma resuscitation is to create the optimal milieu for both the development of immediate reparatory mechanisms and the prevention of further secondary injuries. Endotheliopathy represents one of the hallmarks of trauma-induced coagulopathy, and comprises endothelial dysfunction, abnormal coagulation, and inflammation, all of which arise after severe trauma and hemorrhagic shock. Methods: We retrospectively and descriptively evaluated 217 patients admitted to the Bucharest Clinical Emergency Hospital who met the Berlin criteria for the diagnosis of multiple trauma. Patients with high suspicion of auto-heparinization were identified according to the dynamic clinical and para-clinical evolution and subsequently tested using rotational thromboelastometry (ROTEM). The ratio between the clot formation time (CT) was used, obtained on the two channels of interest (INTEM/HEPTEM). Results: Among the 217 patients with a mean age of 43.43 ± 15.45 years and a mean injury severity score (ISS) of 36.98 ± 1.875, 42 patients had a reasonable clinical and para-clinical suspicion of auto-heparinization, which was later confirmed by the INTEM/HEPTEM clotting time ratio in 28 cases (12.9% from the entire study population). A multiple linear regression analysis highlighted that serum lactate (estimated 0.02, p = 0.0098) and noradrenaline requirement (estimated 0.03, p = 0.0053) influenced the CT (INTEM/HEPTEM) ratio. Conclusions: There is a subset of multiple trauma patients in which the CT (INTEM/HEPTEM) ratio was influenced only by serum lactate levels and patients' need for vasopressor use, reinforcing the relationship between shock, hypoperfusion, and clotting derangements. This emphasizes the unique response that each patient has to trauma.
Collapse
Affiliation(s)
- Alexandru Emil Băetu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (I.M.G.)
- Department of Anesthesiology and Intensive Care, Grigore Alexandrescu Clinical Emergency Hospital for Children, 011743 Bucharest, Romania
| | - Liliana Mirea
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (I.M.G.)
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | - Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (I.M.G.)
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| | | | - Ioana Marina Grințescu
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (I.M.G.)
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
6
|
Thomas M, Hayes K, White P, Baumer T, Beattie C, Ramesh A, Culliford L, Ackland GL, Pickering AE. Early Intravenous Beta-Blockade with Esmolol in Adults with Severe Traumatic Brain Injury: A Phase 2a Intervention Design Study. Neurocrit Care 2024:10.1007/s12028-024-02029-8. [PMID: 38951446 DOI: 10.1007/s12028-024-02029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Targeted beta-blockade after severe traumatic brain injury may reduce secondary brain injury by attenuating the sympathoadrenal response. The potential role and optimal dosage for esmolol, a selective, short-acting, titratable beta-1 beta-blocker, as a safe, putative early therapy after major traumatic brain injury has not been assessed. METHODS We conducted a single-center, open-label dose-finding study using an adaptive model-based design. Adults (18 years or older) with severe traumatic brain injury and intracranial pressure monitoring received esmolol within 24 h of injury to reduce their heart rate by 15% from baseline of the preceding 4 h while ensuring cerebral perfusion pressure was maintained above 60 mm Hg. In cohorts of three, the starting dosage and dosage increments were escalated according to a prespecified plan in the absence of dose-limiting toxicity. Dose-limiting toxicity was defined as failure to maintain cerebral perfusion pressure, triggering cessation of esmolol infusion. The primary outcome was the maximum tolerated dosage schedule of esmolol, defined as that associated with less than 10% probability of dose-limiting toxicity. Secondary outcomes include 6-month mortality and 6-month extended Glasgow Outcome Scale score. RESULTS Sixteen patients (6 [37.5%] female patients; mean age 36 years [standard deviation 13 years]) with a median Glasgow Coma Scale score of 6.5 (interquartile range 5-7) received esmolol. The optimal starting dosage of esmolol was 10 μg/kg/min, with increments every 30 min of 5 μg/kg/min, as it was the highest dosage with less than 10% estimated probability of dose-limiting toxicity (7%). All-cause mortality was 12.5% at 6 months (corresponding to a standardized mortality ratio of 0.63). One dose-limiting toxicity event and no serious adverse hemodynamic effects were seen. CONCLUSIONS Esmolol administration, titrated to a heart rate reduction of 15%, is feasible within 24 h of severe traumatic brain injury. The probability of dose-limiting toxicity requiring withdrawal of esmolol when using the optimized schedule is low. Trial registrationI SRCTN, ISRCTN11038397, registered retrospectively January 7, 2021 ( https://www.isrctn.com/ISRCTN11038397 ).
Collapse
Affiliation(s)
- Matt Thomas
- Intensive Care Unit, North Bristol NHS Trust, Bristol, UK.
| | - Kati Hayes
- Research and Development, North Bristol NHS Trust, Bristol, UK
| | - Paul White
- School of Data Science and Mathematics, University of the West of England, Bristol, UK
| | | | - Clodagh Beattie
- Research and Development, North Bristol NHS Trust, Bristol, UK
| | - Aravind Ramesh
- Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Lucy Culliford
- Bristol Medical School (PHS), Bristol Trials Centre, University of Bristol, Bristol, UK
| | - Gareth L Ackland
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Racine-Brzostek SE, Cushing MM, Gareis M, Heger A, Mehta Shah T, Scully M. Thirty years of experience with solvent/detergent-treated plasma for transfusion medicine. Transfusion 2024; 64:1132-1153. [PMID: 38644541 DOI: 10.1111/trf.17836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Affiliation(s)
| | - Melissa M Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA
| | - Michelle Gareis
- Octapharma Pharmazeutika Produktionsges.mb.H, Vienna, Austria
| | - Andrea Heger
- Octapharma Pharmazeutika Produktionsges.mb.H, Vienna, Austria
| | | | - Marie Scully
- Department of Haematology, University College London Hospital, London, UK
| |
Collapse
|
8
|
Silva-Lance F, Montejano-Montelongo I, Bautista E, Nielsen LK, Johansson PI, Marin de Mas I. Integrating Genome-Scale Metabolic Models with Patient Plasma Metabolome to Study Endothelial Metabolism In Situ. Int J Mol Sci 2024; 25:5406. [PMID: 38791446 PMCID: PMC11121795 DOI: 10.3390/ijms25105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Patient blood samples are invaluable in clinical omics databases, yet current methodologies often fail to fully uncover the molecular mechanisms driving patient pathology. While genome-scale metabolic models (GEMs) show promise in systems medicine by integrating various omics data, having only exometabolomic data remains a limiting factor. To address this gap, we introduce a comprehensive pipeline integrating GEMs with patient plasma metabolome. This pipeline constructs case-specific GEMs using literature-based and patient-specific metabolomic data. Novel computational methods, including adaptive sampling and an in-house developed algorithm for the rational exploration of the sampled space of solutions, enhance integration accuracy while improving computational performance. Model characterization involves task analysis in combination with clustering methods to identify critical cellular functions. The new pipeline was applied to a cohort of trauma patients to investigate shock-induced endotheliopathy using patient plasma metabolome data. By analyzing endothelial cell metabolism comprehensively, the pipeline identified critical therapeutic targets and biomarkers that can potentially contribute to the development of therapeutic strategies. Our study demonstrates the efficacy of integrating patient plasma metabolome data into computational models to analyze endothelial cell metabolism in disease contexts. This approach offers a deeper understanding of metabolic dysregulations and provides insights into diseases with metabolic components and potential treatments.
Collapse
Affiliation(s)
- Fernando Silva-Lance
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
| | | | - Eric Bautista
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
| | - Lars K. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Pär I. Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Igor Marin de Mas
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 2800 Lyngby, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Kwon MA, Ji SM. Revolutionizing trauma care: advancing coagulation management and damage control anesthesia. Anesth Pain Med (Seoul) 2024; 19:73-84. [PMID: 38725162 PMCID: PMC11089294 DOI: 10.17085/apm.24038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/15/2024] Open
Abstract
Despite advances in emergency transfer systems and trauma medicine, the incidence of preventable deaths due to massive hemorrhage remains high. Recent immunological research has elucidated key mechanisms underlying trauma-induced coagulopathy in the early stages of trauma, including sympathoadrenal stimulation, shedding of the glycocalyx, and endotheliopathy. Consequently, the condition progresses to fibrinogen depletion, hyperfibrinolysis, and platelet dysfunction. Coexisting factors such as uncorrected acidosis, hypothermia, excessive crystalloid administration, and a history of anticoagulant use exacerbate coagulopathy. This study introduces damage-control anesthetic management based on recent insights into damage-control resuscitation, emphasizing the importance of rapid transport, timely bleeding control, early administration of antifibrinolytics and fibrinogen concentrates, and maintenance of calcium levels and body temperature. Additionally, this study discusses brain-protective strategies for trauma patients with brain injuries and the utilization of cartridge-based viscoelastic assays for goal-directed coagulation management in trauma settings. This comprehensive approach may provide potential insights for anesthetic management in the fast-paced field of trauma medicine.
Collapse
Affiliation(s)
- Min A Kwon
- Department of Anesthesiology and Pain Medicine, Dankook University Hospital, Cheonan, Korea
| | - Sung Mi Ji
- Department of Anesthesiology and Pain Medicine, Dankook University Hospital, Cheonan, Korea
| |
Collapse
|
10
|
Lee JH, Ward KR. Blood failure: traumatic hemorrhage and the interconnections between oxygen debt, endotheliopathy, and coagulopathy. Clin Exp Emerg Med 2024; 11:9-21. [PMID: 38018069 PMCID: PMC11009713 DOI: 10.15441/ceem.23.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023] Open
Abstract
This review explores the concept of "blood failure" in traumatic injury, which arises from the interplay of oxygen debt, the endotheliopathy of trauma (EoT), and acute traumatic coagulopathy (ATC). Traumatic hemorrhage leads to the accumulation of oxygen debt, which can further exacerbate hemorrhage by triggering a cascade of events when severe. Such events include EoT, characterized by endothelial glycocalyx damage, and ATC, involving platelet dysfunction, fibrinogen depletion, and dysregulated fibrinolysis. To manage blood failure effectively, a multifaceted approach is crucial. Damage control resuscitation strategies such as use of permissive hypotension, early hemorrhage control, and aggressive transfusion of blood products including whole blood aim to minimize oxygen debt and promote its repayment while addressing endothelial damage and coagulation. Transfusions of red blood cells, plasma, and platelets, as well as the use of tranexamic acid, play key roles in hemostasis and countering ATC. Whole blood, whether fresh or cold-stored, is emerging as a promising option to address multiple needs in traumatic hemorrhage. This review underscores the intricate relationships between oxygen debt, EoT, and ATC and highlights the importance of comprehensive, integrated strategies in the management of traumatic hemorrhage to prevent blood failure. A multidisciplinary approach is essential to address these interconnected factors effectively and to improve patient outcomes.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kevin R. Ward
- Department of Emergency Medicine, Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Ho JW, Dawood ZS, Taylor ME, Liggett MR, Jin G, Jaishankar D, Nadig SN, Bharat A, Alam HB. THE NEUROENDOTHELIAL AXIS IN TRAUMATIC BRAIN INJURY: MECHANISMS OF MULTIORGAN DYSFUNCTION, NOVEL THERAPIES, AND FUTURE DIRECTIONS. Shock 2024; 61:346-359. [PMID: 38517237 DOI: 10.1097/shk.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Severe traumatic brain injury (TBI) often initiates a systemic inflammatory response syndrome, which can potentially culminate into multiorgan dysfunction. A central player in this cascade is endotheliopathy, caused by perturbations in homeostatic mechanisms governed by endothelial cells due to injury-induced coagulopathy, heightened sympathoadrenal response, complement activation, and proinflammatory cytokine release. Unique to TBI is the potential disruption of the blood-brain barrier, which may expose neuronal antigens to the peripheral immune system and permit neuroinflammatory mediators to enter systemic circulation, propagating endotheliopathy systemically. This review aims to provide comprehensive insights into the "neuroendothelial axis" underlying endothelial dysfunction after TBI, identify potential diagnostic and prognostic biomarkers, and explore therapeutic strategies targeting these interactions, with the ultimate goal of improving patient outcomes after severe TBI.
Collapse
Affiliation(s)
- Jessie W Ho
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zaiba Shafik Dawood
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Meredith E Taylor
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Marjorie R Liggett
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Guang Jin
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dinesh Jaishankar
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Satish N Nadig
- Department of Surgery, Division of Organ Transplant, and Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ankit Bharat
- Department of Surgery, Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hasan B Alam
- Department of Surgery, Division of Trauma Surgery and Critical Care, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
12
|
Duron V, Schmoke N, Ichinose R, Stylianos S, Kernie SG, Dayan PS, Slidell MB, Stulce C, Chong G, Williams RF, Gosain A, Morin NP, Nasr IW, Kudchadkar SR, Bolstridge J, Prince JM, Sathya C, Sweberg T, Dorrello NV. Delphi Process for Validation of Fluid Treatment Algorithm for Critically Ill Pediatric Trauma Patients. J Surg Res 2024; 295:493-504. [PMID: 38071779 DOI: 10.1016/j.jss.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 02/25/2024]
Abstract
INTRODUCTION While intravenous fluid therapy is essential to re-establishing volume status in children who have experienced trauma, aggressive resuscitation can lead to various complications. There remains a lack of consensus on whether pediatric trauma patients will benefit from a liberal or restrictive crystalloid resuscitation approach and how to optimally identify and transition between fluid phases. METHODS A panel was comprised of physicians with expertise in pediatric trauma, critical care, and emergency medicine. A three-round Delphi process was conducted via an online survey, with each round being followed by a live video conference. Experts agreed or disagreed with each aspect of the proposed fluid management algorithm on a five-level Likert scale. The group opinion level defined an algorithm parameter's acceptance or rejection with greater than 75% agreement resulting in acceptance and greater than 50% disagreement resulting in rejection. The remaining were discussed and re-presented in the next round. RESULTS Fourteen experts from five Level 1 pediatric trauma centers representing three subspecialties were included. Responses were received from 13/14 participants (93%). In round 1, 64% of the parameters were accepted, while the remaining 36% were discussed and re-presented. In round 2, 90% of the parameters were accepted. Following round 3, there was 100% acceptance by all the experts on the revised and final version of the algorithm. CONCLUSIONS We present a validated algorithm for intavenous fluid management in pediatric trauma patients that focuses on the de-escalation of fluids. Focusing on this time point of fluid therapy will help minimize iatrogenic complications of crystalloid fluids within this patient population.
Collapse
Affiliation(s)
- Vincent Duron
- Division of Pediatric Surgery, Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons/NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York.
| | - Nicholas Schmoke
- Division of Pediatric Surgery, Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons/NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Rika Ichinose
- Division of Pediatric Surgery, Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons/NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Steven Stylianos
- Division of Pediatric Surgery, Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons/NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Steven G Kernie
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Peter S Dayan
- Department of Emergency Medicine, NewYork-Presbyterian/Columbia University Valegos College of Physicians and Surgeons, New York, New York
| | - Mark B Slidell
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Casey Stulce
- Division of Critical Care, Department of Pediatrics, University of Chicago Medicine Comer Children's Hospital, Chicago, Illinois
| | - Grace Chong
- Division of Critical Care, Department of Pediatrics, University of Chicago Medicine Comer Children's Hospital, Chicago, Illinois
| | - Regan F Williams
- Division of Pediatric Surgery, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ankush Gosain
- Department of Pediatric Surgery, Children's Hospital Colorado, University of Colorado, Denver, Colorado
| | - Nicholas P Morin
- Division of Critical Care Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Isam W Nasr
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sapna R Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Bolstridge
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose M Prince
- Division of Pediatric Surgery, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York
| | - Chethan Sathya
- Division of Pediatric Surgery, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York
| | - Todd Sweberg
- Division of Pediatric Critical Care Medicine, Cohen Children's Medical, Northwell Health, New Hyde Park, New York
| | - N Valerio Dorrello
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
13
|
Dettling A, Weimann J, Sundermeyer J, Beer BN, Besch L, Becher PM, Brunner FJ, Kluge S, Kirchhof P, Blankenberg S, Westermann D, Schrage B. Association of systemic inflammation with shock severity, 30-day mortality, and therapy response in patients with cardiogenic shock. Clin Res Cardiol 2024; 113:324-335. [PMID: 37982862 PMCID: PMC10850174 DOI: 10.1007/s00392-023-02336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Mortality in cardiogenic shock (CS) remains high even when mechanical circulatory support (MCS) restores adequate circulation. To detect a potential contribution of systemic inflammation to shock severity, this study determined associations between C-reactive protein (CRP) concentrations and outcomes in patients with CS. METHODS Unselected, consecutive patients with CS and CRP measurements treated at a single large cardiovascular center between 2009 and 2019 were analyzed. Adjusted regression models were fitted to evaluate the association of CRP with shock severity, 30-day in-hospital mortality and treatment response to MCS. RESULTS The analysis included 1116 patients [median age: 70 (IQR 58-79) years, 795 (71.3%) male, lactate 4.6 (IQR 2.2-9.5) mmol/l, CRP 17 (IQR 5-71) mg/l]. The cause of CS was acute myocardial infarction in 530 (48%) patients, 648 (58%) patients presented with cardiac arrest. Plasma CRP concentrations were equally distributed across shock severities (SCAI stage B-E). Higher CRP concentrations were associated with 30-day in-hospital mortality (8% relative risk increase per 50 mg/l increase in CRP, range 3-13%; p < 0.001), even after adjustment for CS severity and other potential confounders. Higher CRP concentrations were only associated with higher mortality in patients not treated with MCS [hazard ratio (HR) for CRP > median 1.50; 95%-CI 1.21-1.86; p < 0.001], but not in those treated with MCS (HR for CRP > median 0.92; 95%-CI 0.67-1.26; p = 0.59; p-interaction = 0.01). CONCLUSION Elevated CRP concentrations are associated with increased 30-day in-hospital mortality in unselected patients with cardiogenic shock. The use of mechanical circulatory support attenuates this association.
Collapse
Affiliation(s)
- Angela Dettling
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jessica Weimann
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Jonas Sundermeyer
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Benedikt N Beer
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lisa Besch
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Peter M Becher
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Fabian J Brunner
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Stefan Blankenberg
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Bad Krozingen, Germany
| | - Benedikt Schrage
- Department of Cardiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
14
|
Gong S, Ding X, Wang X. Assessment of Pulmonary Circulation of Critically Ill Patients Based on Critical Care Ultrasound. J Clin Med 2024; 13:722. [PMID: 38337417 PMCID: PMC10856787 DOI: 10.3390/jcm13030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/01/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Pulmonary circulation is crucial in the human circulatory system, facilitating the oxygenation of blood as it moves from the right heart to the lungs and then to the left heart. However, during critical illness, pulmonary microcirculation can be vulnerable to both intrapulmonary and extrapulmonary injuries. To assess these potential injuries in critically ill patients, critical point-of-care ultrasound can be used to quantitatively and qualitatively evaluate the right atrium, right ventricle, pulmonary artery, lung, pulmonary vein, and left atrium along the direction of blood flow. This assessment is particularly valuable for common ICU diseases such as acute respiratory distress syndrome (ARDS), sepsis, pulmonary hypertension, and cardiogenic pulmonary edema. It has significant potential for diagnosing and treating these conditions in critical care medicine.
Collapse
Affiliation(s)
| | - Xin Ding
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China;
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Beijing 100730, China;
| |
Collapse
|
15
|
Wang G, Hao C, Yao S, Wang Y, Xu Z, Zhao H, An Y. Exploring the Mediating Role of Multiple Organ Dysfunction in Sepsis-Induced Disseminated Intravascular Coagulation and Its Impact on Worsening Prognosis. Clin Appl Thromb Hemost 2024; 30:10760296241271358. [PMID: 39109998 PMCID: PMC11307354 DOI: 10.1177/10760296241271358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Disseminated intravascular coagulation (DIC) poses a high mortality risk, yet its exact impact remains contentious. This study investigates DIC's association with mortality in individuals with sepsis, emphasizing multiple organ function. Using data from the Peking University People's Hospital Investigation on Sepsis-Induced Coagulopathy database, we categorized patients into DIC and non-DIC groups based on DIC scores within 24 h of ICU admission (< 5 cutoff). ICU mortality was the main outcome. Initial data comparison preceded logistic regression analysis of mortality factors post-propensity score matching (PSM). Employing mediation analysis estimated direct and indirect associations. Of 549 participants, 131 were in the DIC group, with the remaining 418 in the non-DIC group. Following baseline characteristic presentation, PSM was conducted, revealing significantly higher nonplatelet sequential organ failure assessment (nonplt-SOFA) scores (6.3 ± 2.7 vs 5.0 ± 2.5, P < 0.001) and in-hospital mortality rates (47.3% vs 29.5%, P = 0.003) in the DIC group. A significant correlation between DIC and in-hospital mortality persisted (OR 2.15, 95% CI 1.29-3.59, P = 0.003), with nonplt-SOFA scores (OR 1.16, 95% CI 1.05-1.28, P = 0.004) and hemorrhage (OR 2.33, 95% CI 1.08-5.03, P = 0.032) as predictors. The overall effect size was 0.1786 (95% CI 0.0542-0.2886), comprising a direct effect size of 0.1423 (95% CI 0.0153-0.2551) and an indirect effect size of 0.0363 (95% CI 0.0034-0.0739), with approximately 20.3% of effects mediated. These findings underscore DIC's association with increased mortality risk in patients with sepsis, urging anticoagulation focus over bleeding management, with organ dysfunction assessment recommended for anticoagulant treatment efficacy.
Collapse
Affiliation(s)
- Guangjie Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Chenxiao Hao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Sun Yao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yiqin Wang
- Department of Gynecology and Obstetrics, Peking University People's Hospital, Beijing 100044, China
| | - Zongtao Xu
- Department Critical Care Medicine, The Second People's Hospital of Chengyang District, Qingdao 266111, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
16
|
Chalkias A. Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:17522. [PMID: 38139351 PMCID: PMC10743945 DOI: 10.3390/ijms242417522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
17
|
Schaid TR, Mitra S, Stafford P, DeBot M, Thielen O, Hallas W, Cralley A, Gallagher L, Jeffrey D, Hansen KC, D'Alessandro A, Silliman CC, Dabertrand F, Cohen MJ. Endothelial Cell Calcium Influx Mediates Trauma-induced Endothelial Permeability. Ann Surg 2023:00000658-990000000-00719. [PMID: 38073572 PMCID: PMC11164825 DOI: 10.1097/sla.0000000000006164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2024]
Abstract
OBJECTIVE We aimed to investigate if ex vivo plasma from injured patients causes endothelial calcium (Ca2+) influx as a mechanism of trauma-induced endothelial permeability. SUMMARY BACKGROUND DATA Endothelial permeability after trauma contributes to post-injury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca2+ signaling may play a role. METHODS Ex vivo plasma from injured patients with "Low Injury/Low Shock" (injury severity score [ISS]<15, base excess [BE])≥-6mEq/L) and "High Injury/High Shock" (ISS≥15, BE<-6mEq/L) were used to treat endothelial cells. Experimental conditions included Ca2+ removal from the extracellular buffer, cyclopiazonic acid pre-treatment to deplete intracellular Ca2+ stores, and GSK2193874 pre-treatment to block the TRPV4 Ca2+ channel. Live cell fluorescence microscopy and ECIS were used to assess cytosolic Ca2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain (MLC) phosphorylation and actomyosin contraction. RESULTS Compared to Low Injury/Low Shock plasma, High Injury/High Shock induced greater cytosolic Ca2+ increase. Cytosolic Ca2+ increase, MLC phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca2+ present. High Injury/High Shock plasma did not induce endothelial permeability without extracellular Ca2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca2+ influx and permeability. CONCLUSIONS This study illuminates a novel mechanism of post-injury endotheliopathy involving Ca2+ influx via the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca2+-targeted therapies and interventions in the care of severely injured patients.
Collapse
Affiliation(s)
- Terry R Schaid
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - Sanchayita Mitra
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - Preston Stafford
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - Margot DeBot
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - Otto Thielen
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - William Hallas
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - Alexis Cralley
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - Lauren Gallagher
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| | - Danielle Jeffrey
- University of Colorado Denver, School of Medicine, Department of Anesthesiology, Aurora, CO
- University of Colorado Denver, School of Medicine, Department of Pharmacology, Aurora, CO
| | - Kirk C Hansen
- University of Colorado Denver, School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, CO
| | - Angelo D'Alessandro
- University of Colorado Denver, School of Medicine, Department of Biochemistry and Molecular Genetics, Aurora, CO
| | - Christopher C Silliman
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
- University of Colorado Denver, School of Medicine, Department of Pediatrics, Aurora, CO
- Vitalant Research Institute, Denver, CO
| | - Fabrice Dabertrand
- University of Colorado Denver, School of Medicine, Department of Anesthesiology, Aurora, CO
- University of Colorado Denver, School of Medicine, Department of Pharmacology, Aurora, CO
| | - Mitchell J Cohen
- University of Colorado Denver, School of Medicine, Department of Surgery, Trauma Research Center, Aurora, CO
| |
Collapse
|
18
|
Iba T, Helms J, Neal MD, Levy JH. Mechanisms and management of the coagulopathy of trauma and sepsis: trauma-induced coagulopathy, sepsis-induced coagulopathy, and disseminated intravascular coagulation. J Thromb Haemost 2023; 21:3360-3370. [PMID: 37722532 PMCID: PMC10873124 DOI: 10.1016/j.jtha.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 09/20/2023]
Abstract
Disseminated intravascular coagulation can occur due to different causes but commonly following sepsis. Trauma-induced coagulopathy (TIC) occurs on hospital arrival in approximately 25% of seriously injured patients who initially presents with impaired hemostasis and a bleeding phenotype that can later progress to a prothrombotic phase. Following traumatic injury, ineffective hemostasis is driven by massive blood loss, tissue damage, and hyperfibrinolysis. This initial impaired hemostasis continues until surgical or other management strategies not only to stop the causes of hemorrhage but also progresses to a prothrombotic and hypofibrinolytic state, also termed fibrinolytic shutdown. Prothrombotic progression is also promoted by inflammatory mediator release, endothelial injury, and platelet dysregulation, which is commonly seen in sepsis with increased mortality. Unlike TIC, the early phase of sepsis is frequently complicated by multiorgan dysfunction described as sepsis-induced coagulopathy (SIC) that lacks a hemorrhagic phase. The phenotypes of SIC and TIC are different, especially in their initial presentations; however, patients who survive TIC may also develop subsequent infections and potentially sepsis and SIC. Although the pathophysiology of SIC and TIC are different, endothelial injury, dysregulated fibrinolysis, and coagulation abnormalities are common. Management includes treatment of the underlying cause, tissue injury vs infection is critical, and supportive therapies, such as hemostatic resuscitation and circulatory support are essential, and adjunct therapies are recommended in guidelines. Based on clinical studies and certain guidelines, additional therapies include tranexamic acid in the limited timing of initial traumatic injury and anticoagulants, such as antithrombin and recombinant thrombomodulin in disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Julie Helms
- Strasbourg University (UNISTRA); Strasbourg University Hospital, Medical Intensive Care Unit - NHC; INSERM (French National Institute of Health and Medical Research), Strasbourg, France
| | - Matthew D Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA. https://twitter.com/JerroldLevy
| |
Collapse
|
19
|
Obonyo NG, Sela DP, Raman S, Rachakonda R, Schneider B, Hoe LES, Fanning JP, Bassi GL, Maitland K, Suen JY, Fraser JF. Resuscitation-associated endotheliopathy (RAsE): a conceptual framework based on a systematic review and meta-analysis. Syst Rev 2023; 12:221. [PMID: 37990333 PMCID: PMC10664580 DOI: 10.1186/s13643-023-02385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Shock-induced endotheliopathy (SHINE), defined as a profound sympathoadrenal hyperactivation in shock states leading to endothelial activation, glycocalyx damage, and eventual compromise of end-organ perfusion, was first described in 2017. The aggressive resuscitation therapies utilised in treating shock states could potentially lead to further worsening endothelial activation and end-organ dysfunction. OBJECTIVE This study aimed to systematically review the literature on resuscitation-associated and resuscitation-induced endotheliopathy. METHODS A predetermined structured search of literature published over an 11-year and 6-month period (1 January 2011 to 31 July 2023) was performed in two indexed databases (PubMed/MEDLINE and Embase) per PRISMA guidelines. Inclusion was restricted to original studies published in English (or with English translation) reporting on endothelial dysfunction in critically ill human subjects undergoing resuscitation interventions. Reviews or studies conducted in animals were excluded. Qualitative synthesis of studies meeting the inclusion criteria was performed. Studies reporting comparable biomarkers of endothelial dysfunction post-resuscitation were included in the quantitative meta-analysis. RESULTS Thirty-two studies met the inclusion criteria and were included in the final qualitative synthesis. Most of these studies (47%) reported on a combination of mediators released from endothelial cells and biomarkers of glycocalyx breakdown, while only 22% reported on microvascular flow changes. Only ten individual studies were included in the quantitative meta-analysis based on the comparability of the parameters assessed. Eight studies measured syndecan-1, with a heterogeneity index, I2 = 75.85% (pooled effect size, mean = 0.27; 95% CI - 0.07 to 0.60; p = 0.12). Thrombomodulin was measured in four comparable studies (I2 = 78.93%; mean = 0.41; 95% CI - 0.10 to 0.92; p = 0.12). Three studies measured E-selectin (I2 = 50.29%; mean = - 0.15; 95% CI - 0.64 to 0.33; p = 0.53), and only two were comparable for the microvascular flow index, MFI (I2 = 0%; mean = - 0.80; 95% CI - 1.35 to - 0.26; p < 0.01). CONCLUSION Resuscitation-associated endotheliopathy (RAsE) refers to worsening endothelial dysfunction resulting from acute resuscitative therapies administered in shock states. In the included studies, syndecan-1 had the highest frequency of assessment in the post-resuscitation period, and changes in concentrations showed a statistically significant effect of the resuscitation. There are inadequate data available in this area, and further research and standardisation of the ideal assessment and panel of biomarkers are urgently needed.
Collapse
Affiliation(s)
- Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.
- Initiative to Develop African Research Leaders (IDeAL), Kilifi, Kenya.
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Wellcome Trust Centre for Global Health Research, Imperial College London, London, UK.
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia.
| | - Declan P Sela
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sainath Raman
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Reema Rachakonda
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Bailey Schneider
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jonathon P Fanning
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Intensive Care Unit, St. Andrews War Memorial Hospital, Brisbane, QLD, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Intensive Care Unit, St. Andrews War Memorial Hospital, Brisbane, QLD, Australia
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Imperial College London, London, UK
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Intensive Care Unit, St. Andrews War Memorial Hospital, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Douin DJ, Fernandez-Bustamante A. Early Fibrinogen Replacement to Treat the Endotheliopathy of Trauma: Novel Resuscitation Strategies in Severe Trauma. Anesthesiology 2023; 139:675-683. [PMID: 37815472 PMCID: PMC10575674 DOI: 10.1097/aln.0000000000004711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The authors provide a comprehensive review of the endothelial glycocalyx, the components that may be targeted to improve clinical outcomes, and the next steps for evaluation in human subjects.
Collapse
Affiliation(s)
- David J Douin
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado
| | | |
Collapse
|
21
|
van den Brink DP, Kleinveld DJB, Bongers A, Vos J, Roelofs JTH, Weber NC, van Buul JD, Juffermans NP. The Effects of Heparan Sulfate Infusion on Endothelial and Organ Injury in a Rat Pneumosepsis Model. J Clin Med 2023; 12:6438. [PMID: 37892576 PMCID: PMC10607557 DOI: 10.3390/jcm12206438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Septic shock is characterized by endothelial dysfunction, leading to tissue edema and organ failure. Heparan sulfate (HS) is essential for vascular barrier integrity, possibly via albumin as a carrier. We hypothesized that supplementing fluid resuscitation with HS would improve endothelial barrier function, thereby reducing organ edema and injury in a rat pneumosepsis model. Following intratracheal inoculation with Streptococcus pneumoniae, Sprague Dawley rats were randomized to resuscitation with a fixed volume of either Ringer's Lactate (RL, standard of care), RL supplemented with 7 mg/kg HS, 5% human albumin, or 5% human albumin supplemented with 7 mg/kg HS (n = 11 per group). Controls were sham inoculated animals. Five hours after the start of resuscitation, animals were sacrificed. To assess endothelial permeability, 70 kD FITC-labelled dextran was administered before sacrifice. Blood samples were taken to assess markers of endothelial and organ injury. Organs were harvested to quantify pulmonary FITC-dextran leakage, organ edema, and for histology. Inoculation resulted in sepsis, with increased lactate levels, pulmonary FITC-dextran leakage, pulmonary edema, and pulmonary histologic injury scores compared to healthy controls. RL supplemented with HS did not reduce median pulmonary FITC-dextran leakage compared to RL alone (95.1 CI [62.0-105.3] vs. 87.1 CI [68.9-139.3] µg/mL, p = 0.76). Similarly, albumin supplemented with HS did not reduce pulmonary FITC-dextran leakage compared to albumin (120.0 [93.8-141.2] vs. 116.2 [61.7 vs. 160.8] µg/mL, p = 0.86). No differences were found in organ injury between groups. Heparan sulfate, as an add-on therapy to RL or albumin resuscitation, did not reduce organ or endothelial injury in a rat pneumosepsis model. Higher doses of heparan sulfate may decrease organ and endothelial injury induced by shock.
Collapse
Affiliation(s)
- Daan P. van den Brink
- Amsterdam UMC, Department of Intensive Care Medicine, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Derek J. B. Kleinveld
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Erasmus MC, Department Anesthesiology, Erasmus University of Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Annabel Bongers
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Jaël Vos
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
| | - Joris T. H. Roelofs
- Amsterdam UMC, Department of Pathology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam UMC, Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Nina C. Weber
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Amsterdam UMC, Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Molecular Cell Biology Laboratory, Department Molecular Hematology, 1066 CX Amsterdam, The Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | - Nicole P. Juffermans
- Amsterdam UMC, Laboratory of Experimental Intensive Care and Anesthesiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands (N.C.W.); (N.P.J.)
- Erasmus MC, Department of Intensive Care, Erasmus University of Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
22
|
van den Brink DP, Kleinveld DJB, Bongers A, Vos J, Roelofs JJTH, Weber NC, van Buul JD, Juffermans NP. The effects of resuscitation with different plasma products on endothelial permeability and organ injury in a rat pneumosepsis model. Intensive Care Med Exp 2023; 11:62. [PMID: 37728777 PMCID: PMC10511387 DOI: 10.1186/s40635-023-00549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Endothelial injury and permeability are a hallmark of sepsis. Initial resuscitation of septic patients with crystalloids is associated with aggravation of endothelial permeability, which may be related either to low protein content or to volume. We investigated whether initial resuscitation with different types of plasma or albumin decreases endothelial dysfunction and organ injury in a pneumosepsis rat model compared to the same volume of crystalloids. STUDY DESIGN AND METHODS Sprague-Dawley rats were intratracheally inoculated with Streptococcus pneumoniae. Twenty-four hours after inoculation, animals were randomized to 2 control groups and 5 intervention groups (n = 11 per group) to receive resuscitation with a fixed volume (8 mL/kg for 1 h) of either Ringer's Lactate, 5% human albumin, fresh frozen plasma derived from syngeneic donor rats (rFFP), human-derived plasma (hFFP) or human-derived solvent detergent plasma (SDP). Controls were non-resuscitated (n = 11) and healthy animals. Animals were sacrificed 5 h after start of resuscitation (T = 5). Pulmonary FITC-dextran leakage as a reflection of endothelial permeability was used as the primary outcome. RESULTS Inoculation with S. Pneumoniae resulted in sepsis, increased median lactate levels (1.6-2.8 mM, p < 0.01), pulmonary FITC-dextran leakage (52-134 µg mL-1, p < 0.05) and lung injury scores (0.7-6.9, p < 0.001) compared to healthy controls. Compared to animals receiving no resuscitation, animals resuscitated with rFFP had reduced pulmonary FITC leakage (134 vs 58 µg/mL, p = 0.011). However, there were no differences in any other markers of organ or endothelial injury. Resuscitation using different human plasma products or 5% albumin showed no differences in any outcome. CONCLUSIONS Resuscitation with plasma did not reduce endothelial and organ injury when compared to an equal resuscitation volume of crystalloids. Rat-derived FFP may decrease pulmonary leakage induced by shock.
Collapse
Affiliation(s)
- Daan P van den Brink
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Derek J B Kleinveld
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Erasmus MC, Erasmus University of Rotterdam, Rotterdam, The Netherlands
| | - Annabel Bongers
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaël Vos
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, OLVG Hospital, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Pichon TJ, White NJ, Pun SH. ENGINEERED INTRAVENOUS THERAPIES FOR TRAUMA. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 27:100456. [PMID: 37456984 PMCID: PMC10343715 DOI: 10.1016/j.cobme.2023.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Trauma leading to severe hemorrhage and shock on average kills patients within 3 to 6 hours after injury. With average prehospital transport times reaching 1-6 hours in low- to middle-income countries, stopping the bleeding and reversing hemorrhagic shock is vital. First-generation intravenous hemostats rely on traditional drug delivery platforms, such as self-assembling systems, fabricated nanoparticles, and soluble polymers due to their active targeting, biodistribution, and safety. We discuss some challenges translating these therapies to patients, as very few have successfully made it through preclinical evaluation in large-animals, and none have translated to the clinic. Finally, we discuss the physiology of hemorrhagic shock, highlight a new low volume resuscitant (LVR) PEG-20k, and end with considerations for the rational design of LVRs.
Collapse
Affiliation(s)
- Trey J. Pichon
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15 Avenue NE, Box 355061, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Nathan J. White
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15 Avenue NE, Box 355061, Seattle, Washington 98105, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| |
Collapse
|
24
|
Soussi S, Dos Santos C, Jentzer JC, Mebazaa A, Gayat E, Pöss J, Schaubroeck H, Billia F, Marshall JC, Lawler PR. Distinct host-response signatures in circulatory shock: a narrative review. Intensive Care Med Exp 2023; 11:50. [PMID: 37592121 PMCID: PMC10435428 DOI: 10.1186/s40635-023-00531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/01/2023] [Indexed: 08/19/2023] Open
Abstract
Circulatory shock is defined syndromically as hypotension associated with tissue hypoperfusion and often subcategorized according to hemodynamic profile (e.g., distributive, cardiogenic, hypovolemic) and etiology (e.g., infection, myocardial infarction, trauma, among others). These shock subgroups are generally considered homogeneous entities in research and clinical practice. This current definition fails to consider the complex pathophysiology of shock and the influence of patient heterogeneity. Recent translational evidence highlights previously under-appreciated heterogeneity regarding the underlying pathways with distinct host-response patterns in circulatory shock syndromes. This heterogeneity may confound the interpretation of trial results as a given treatment may preferentially impact distinct subgroups. Re-analyzing results of major 'neutral' treatment trials from the perspective of biological mechanisms (i.e., host-response signatures) may reveal treatment effects in subgroups of patients that share treatable traits (i.e., specific biological signatures that portend a predictable response to a given treatment). In this review, we discuss the emerging literature suggesting the existence of distinct biomarker-based host-response patterns of circulatory shock syndrome independent of etiology or hemodynamic profile. We further review responses to newly prescribed treatments in the intensive care unit designed to personalize treatments (biomarker-driven or endotype-driven patient selection in support of future clinical trials).
Collapse
Affiliation(s)
- Sabri Soussi
- Department of Anesthesia and Pain Management, University Health Network (UHN), Women's College Hospital, University of Toronto, Toronto Western Hospital, 399 Bathurst St, ON, M5T 2S8, Toronto, Canada.
- St Michael's Hospital, Keenan Research Centre for Biomedical Science and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Claudia Dos Santos
- St Michael's Hospital, Keenan Research Centre for Biomedical Science and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Jacob C Jentzer
- Department of Cardiovascular Medicine, Mayo Clinic Rochester, Rochester, MN, 55905, USA
| | - Alexandre Mebazaa
- Department of Anesthesiology, Critical Care, Lariboisière-Saint-Louis Hospitals, DMU Parabol, AP-HP Nord; Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Etienne Gayat
- Department of Anesthesiology, Critical Care, Lariboisière-Saint-Louis Hospitals, DMU Parabol, AP-HP Nord; Inserm UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France
| | - Janine Pöss
- Department of Internal Medicine/Cardiology, Heart Center Leipzig at the University of Leipzig, Strümpellstraße, 39 04289, Leipzig, Germany
| | - Hannah Schaubroeck
- Department of Intensive Care Medicine, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Filio Billia
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Ted Roger's Center for Heart Research, University Health Network, University of Toronto, Toronto, ON, Canada
| | - John C Marshall
- St Michael's Hospital, Keenan Research Centre for Biomedical Science and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Patrick R Lawler
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Balan C, Ciuhodaru T, Bubenek-Turconi SI. Kidney Injury in Critically Ill Patients with COVID-19 - From Pathophysiological Mechanisms to a Personalized Therapeutic Model. J Crit Care Med (Targu Mures) 2023; 9:148-161. [PMID: 37588184 PMCID: PMC10425930 DOI: 10.2478/jccm-2023-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Acute kidney injury is a common complication of COVID-19, frequently fuelled by a complex interplay of factors. These include tubular injury and three primary drivers of cardiocirculatory instability: heart-lung interaction abnormalities, myocardial damage, and disturbances in fluid balance. Further complicating this dynamic, renal vulnerability to a "second-hit" injury, like a SARS-CoV-2 infection, is heightened by advanced age, chronic kidney disease, cardiovascular diseases, and diabetes mellitus. Moreover, the influence of chronic treatment protocols, which may constrain the compensatory intrarenal hemodynamic mechanisms, warrants equal consideration. COVID-19-associated acute kidney injury not only escalates mortality rates but also significantly affects long-term kidney function recovery, particularly in severe instances. Thus, the imperative lies in developing and applying therapeutic strategies capable of warding off acute kidney injury and decelerating the transition into chronic kidney disease after an acute event. This narrative review aims to proffer a flexible diagnostic and therapeutic strategy that recognizes the multi-faceted nature of COVID-19-associated acute kidney injury in critically ill patients and underlines the crucial role of a tailored, overarching hemodynamic and respiratory framework in managing this complex clinical condition.
Collapse
Affiliation(s)
- Cosmin Balan
- Prof. Dr. C. C. Iliescu Emergency Cardiovascular Diseases Institute, Bucharest, Romania
| | - Tudor Ciuhodaru
- Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iași, Romania
| | - Serban-Ion Bubenek-Turconi
- Prof. Dr. C. C. Iliescu Emergency Cardiovascular Diseases Institute, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
26
|
Taghavi S, Abdullah S, Shaheen F, Packer J, Duchesne J, Braun SE, Steele C, Pociask D, Kolls JK, Jackson-Weaver O. EXOSOMES AND MICROVESICLES FROM ADIPOSE-DERIVED MESENCHYMAL STEM CELLS PROTECTS THE ENDOTHELIAL GLYCOCALYX FROM LPS INJURY. Shock 2023; 60:56-63. [PMID: 37086080 DOI: 10.1097/shk.0000000000002133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
ABSTRACT Introduction: Endothelial glycocalyx damage occurs in numerous pathological conditions and results in endotheliopathy. Extracellular vesicles, including exosomes and microvesicles, isolated from adipose-derived mesenchymal stem cells (ASCs) have therapeutic potential in multiple disease states; however, their role in preventing glycocalyx shedding has not been defined. We hypothesized that ASC-derived exosomes and microvesicles would protect the endothelial glycocalyx from damage by LPS injury in cultured endothelial cells. Methods : Exosomes and microvesicles were collected from ASC conditioned media by centrifugation (10,000 g for microvesicles, 100,000 g for exosomes). Human umbilical vein endothelial cells (HUVECs) were exposed to 1 μg/mL lipopolysaccharide (LPS). LPS-injured cells (n = 578) were compared with HUVECS with concomitant LPS injury plus 1.0 μg/mL of exosomes (n = 540) or microvesicles (n = 510) for 24 hours. These two cohorts were compared with control HUVECs that received phosphate-buffered saline only (n = 786) and HUVECs exposed to exosomes (n = 505) or microvesicles (n = 500) alone. Cells were fixed and stained with FITC-labeled wheat germ agglutinin to quantify EGX. Real-time quantitative reverse-transcription polymerase chain reaction was used on HUVECs cell lystate to quantify hyaluron synthase-1 (HAS1) expression. Results: Exosomes alone decreased endothelial glycocalyx staining intensity when compared with control (4.94 vs. 6.41 AU, P < 0.001), while microvesicles did not cause a change glycocalyx staining intensity (6.39 vs. 6.41, P = 0.99). LPS injury resulted in decreased glycocalyx intensity as compared with control (5.60 vs. 6.41, P < 0.001). Exosomes (6.85 vs. 5.60, P < 0.001) and microvesicles (6.35 vs. 5.60, P < 0.001) preserved endothelial glycocalyx staining intensity after LPS injury. HAS1 levels were found to be higher in the exosome (1.14 vs. 3.67 RE, P = 0.02) and microvesicle groups (1.14 vs. 3.59 RE, P = 0.02) when compared with LPS injury. Hyaluron synthase-2 and synthase-3 expressions were not different in the various experimental groups. Conclusions: Exosomes alone can damage the endothelial glycocalyx. However, in the presence of LPS injury, both exosomes and microvesicles protect the glycocalyx layer. This effect seems to be mediated by HAS1. Level of Evidence : Basic science study.
Collapse
Affiliation(s)
- Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jacob Packer
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| | - Stephen E Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Derek Pociask
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, Louisiana
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
27
|
Abdullah S, Ghio M, Cotton-Betteridge A, Vinjamuri A, Drury R, Packer J, Aras O, Friedman J, Karim M, Engelhardt D, Kosowski E, Duong K, Shaheen F, McGrew PR, Harris CT, Reily R, Sammarco M, Chandra PK, Pociask D, Kolls J, Katakam PV, Smith A, Taghavi S, Duchesne J, Jackson-Weaver O. Succinate metabolism and membrane reorganization drives the endotheliopathy and coagulopathy of traumatic hemorrhage. SCIENCE ADVANCES 2023; 9:eadf6600. [PMID: 37315138 PMCID: PMC10266735 DOI: 10.1126/sciadv.adf6600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Acute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however. Here, we show that succinate accumulation within endothelial cells drives glycocalyx degradation through a membrane reorganization-mediated mechanism. We investigated this mechanism in a cultured endothelial cell hypoxia-reoxygenation model, in a rat model of hemorrhage, and in trauma patient plasma samples. We found that succinate metabolism by succinate dehydrogenase mediates glycocalyx damage through lipid oxidation and phospholipase A2-mediated membrane reorganization, promoting the interaction of matrix metalloproteinase 24 (MMP24) and MMP25 with glycocalyx constituents. In a rat hemorrhage model, inhibiting succinate metabolism or membrane reorganization prevented glycocalyx damage and coagulopathy. In patients with trauma, succinate levels were associated with glycocalyx damage and the development of coagulopathy, and the interaction of MMP24 and syndecan-1 was elevated compared to healthy controls.
Collapse
Affiliation(s)
- Sarah Abdullah
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Michael Ghio
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Robert Drury
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jacob Packer
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Oguz Aras
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessica Friedman
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mardeen Karim
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | - Kelby Duong
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Farhana Shaheen
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Patrick R. McGrew
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Charles T. Harris
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Robert Reily
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Mimi Sammarco
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K. Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Derek Pociask
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Jay Kolls
- Tulane University School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA, USA
| | - Prasad V. Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alison Smith
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
- University Medical Center, New Orleans, LA, USA
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
28
|
Li SR, Moheimani H, Herzig B, Kail M, Krishnamoorthi N, Wu J, Abdelhamid S, Scioscia J, Sung E, Rosengart A, Bonaroti J, Johansson PI, Stensballe J, Neal MD, Das J, Kar U, Sperry J, Billiar TR. High-dimensional proteomics identifies organ injury patterns associated with outcomes in human trauma. J Trauma Acute Care Surg 2023; 94:803-813. [PMID: 36787435 PMCID: PMC10205666 DOI: 10.1097/ta.0000000000003880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Severe traumatic injury with shock can lead to direct and indirect organ injury; however, tissue-specific biomarkers are limited in clinical panels. We used proteomic and metabolomic databases to identify organ injury patterns after severe injury in humans. METHODS Plasma samples (times 0, 24, and 72 hours after arrival to trauma center) from injured patients enrolled in two randomized prehospital trials were subjected to multiplexed proteomics (SomaLogic Inc., Boulder, CO). Patients were categorized by outcome: nonresolvers (died >72 hours or required ≥7 days of critical care), resolvers (survived to 30 days and required <7 days of critical care), and low Injury Severity Score (ISS) controls. Established tissue-specific biomarkers were identified through a literature review and cross-referenced with tissue specificity from the Human Protein Atlas. Untargeted plasma metabolomics (Metabolon Inc., Durham, NC), inflammatory mediators, and endothelial damage markers were correlated with injury biomarkers. Kruskal-Wallis/Mann-Whitney U tests with false discovery rate correction assessed differences in biomarker expression across outcome groups (significance; p < 0.1). RESULTS Of 142 patients, 78 were nonresolvers (median ISS, 30), 34 were resolvers (median ISS, 22), and 30 were low ISS controls (median ISS, 1). A broad release of tissue-specific damage markers was observed at admission; this was greater in nonresolvers. By 72 hours, nine cardiac, three liver, eight neurologic, and three pulmonary proteins remained significantly elevated in nonresolvers compared with resolvers. Cardiac damage biomarkers showed the greatest elevations at 72 hours in nonresolvers and had significant positive correlations with proinflammatory mediators and endothelial damage markers. Nonresolvers had lower concentrations of fatty acid metabolites compared with resolvers, particularly acyl carnitines and cholines. CONCLUSION We identified an immediate release of tissue-specific biomarkers with sustained elevation in the liver, pulmonary, neurologic, and especially cardiac injury biomarkers in patients with complex clinical courses after severe injury. The persistent myocardial injury in nonresolvers may be due to a combination of factors including metabolic stress, inflammation, and endotheliopathy.
Collapse
Affiliation(s)
- Shimena R Li
- From the Department of Surgery (S.L., H.M., B.H., M.K., N.K., J.W., S.A., J. Scioscia, E.S., A.R., J.B., M.N., U.K., J. Sperry, T.R.B.) and Pittsburgh Transfusion and Trauma Research Center (S.L., H.M., B.H., M.K., N.K., J.W., S.A., J. Scioscia, E.S., A.R., J.B., M.N., U.K., J. Sperry, T.R.B.), University of Pittsburgh, Pittsburgh; Lake Erie College of Osteopathic Medicine (B.H.), Erie, Pennsylvania; Department of Cardiology (J.W.), The Third Xiangya Hospital, Central South University, Changsha, China; Section for Transfusion Medicine (P.I.J., J. Stensballe), Capital Region Blood Bank, Rigshospitalet and Department of Anesthesia and Trauma Center (J. Stensballe), Centre of Head and Orthopaedics, Rigshospitalet, Copenhagen University Hospital, Copenhagen; Emergency Medical Services (J. Stensballe), The Capital Region of Denmark, Hillerød, Denmark; and Center for Systems Immunology, Departments of Immunology (J.D.) and Computational and Systems Biology (J.D.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Leung CH, Rizoli SB, Trypcic S, Rhind SG, Battista AP, Ailenberg M, Rotstein OD. Effect of remote ischemic conditioning on the immune-inflammatory profile in patients with traumatic hemorrhagic shock in a randomized controlled trial. Sci Rep 2023; 13:7025. [PMID: 37120600 PMCID: PMC10148877 DOI: 10.1038/s41598-023-33681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023] Open
Abstract
Resuscitation induced ischemia/reperfusion predisposes trauma patients to systemic inflammation and organ dysfunction. We investigated the effect of remote ischemic conditioning (RIC), a treatment shown to prevent ischemia/reperfusion injury in experimental models of hemorrhagic shock/resuscitation, on the systemic immune-inflammatory profile in trauma patients in a randomized trial. We conducted a prospective, single-centre, double-blind, randomized, controlled trial involving trauma patients sustaining blunt or penetrating trauma in hemorrhagic shock admitted to a Level 1 trauma centre. Patients were randomized to receive RIC (four cycles of 5-min pressure cuff inflation at 250 mmHg and deflation on the thigh) or a Sham intervention. The primary outcomes were neutrophil oxidative burst activity, cellular adhesion molecule expression, and plasma levels of myeloperoxidase, cytokines and chemokines in peripheral blood samples, drawn at admission (pre-intervention), 1 h, 3 h, and 24 h post-admission. Secondary outcomes included ventilator, ICU and hospital free days, incidence of nosocomial infections, 24 h and 28 day mortality. 50 eligible patients were randomized; of which 21 in the Sham group and 18 in the RIC group were included in the full analysis. No treatment effect was observed between Sham and RIC groups for neutrophil oxidative burst activity, adhesion molecule expression, and plasma levels of myeloperoxidase and cytokines. RIC prevented significant increases in Th2 chemokines TARC/CCL17 (P < 0.01) and MDC/CCL22 (P < 0.05) at 24 h post-intervention in comparison to the Sham group. Secondary clinical outcomes were not different between groups. No adverse events in relation to the RIC intervention were observed. Administration of RIC was safe and did not adversely affect clinical outcomes. While trauma itself modified several immunoregulatory markers, RIC failed to alter expression of the majority of markers. However, RIC may influence Th2 chemokine expression in the post resuscitation period. Further investigation into the immunomodulatory effects of RIC in traumatic injuries and their impact on clinical outcomes is warranted.ClinicalTrials.gov number: NCT02071290.
Collapse
Affiliation(s)
- C H Leung
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada
| | - S B Rizoli
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - S Trypcic
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada
| | - S G Rhind
- The Defence Research and Development Canada, Toronto Research Centre, Toronto, Canada
| | - A P Battista
- The Defence Research and Development Canada, Toronto Research Centre, Toronto, Canada
| | - M Ailenberg
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada.
| | - O D Rotstein
- The Keenan Research Centre for Biomedical Science and the Department of Surgery, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Li Ka Shing Knowledge Institute 3-305, Toronto, ON, M5B 1W8, Canada.
- Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
30
|
Roquet F, Godier A, Garrigue-Huet D, Hanouz JL, Vardon-Bounes F, Legros V, Pirracchio R, Ausset S, Duranteau J, Vigué B, Hamada SR. Comprehensive analysis of coagulation factor delivery strategies in a cohort of trauma patients. Anaesth Crit Care Pain Med 2023; 42:101180. [PMID: 36460214 DOI: 10.1016/j.accpm.2022.101180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/18/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The 5th edition of The European recommendations for the management of major bleeding and coagulopathy following trauma leaves room for various coagulation factor administration strategies. The present study examines these strategies reporting prevalence and timing of administration, quantity dispensed, and transfusion ratios in French trauma centers and their compliance with recommendations alongside associated mortality data. METHODS All adult patients, admitted directly to participating centers between 2011 and 2019, were extracted from a trauma registry. Two subpopulations were studied: severe hemorrhage (SH) and massive transfusion (MT) groups. RESULTS A total of 19,396 patients were included, among whom 8.4% (1630) experienced SH and 3% (579) received MT. Within the first 24 hours, 10% received fresh frozen plasma (FFP), rising to 93% and 99% in the subgroups of patients experiencing SH and MT respectively. Only, 8% received fibrinogen concentrate (FC), increasing to 75% and 92% in subgroups SH and MT respectively. Co-administration of FFP and FC became the dominant strategy with 68% of patients at 6 h and 72% at 24 h in SH subgroup. In unadjusted data, mortality was systematically lower in groups that complied with recommendations, a lower mortality than expected was mostly observed in contrast to non-compliant subgroups. The per-patient compliance to studied recommendations was 21% and 22% in SH and MT subgroups. CONCLUSION The main hemostatic strategy for major bleeding combined the administration of both FFP and FC, favoring an early additional supply of fibrinogen. Compliance with the recommendations was low in SH and MT subgroups.
Collapse
Affiliation(s)
- Florian Roquet
- Département d'Anesthésie Réanimation, Assistance Publique-Hôpitaux de Paris, HEGP, Université de Paris, Paris, France; INSERM UMR 1153, Université de Paris, Paris, France.
| | - Anne Godier
- Département d'Anesthésie Réanimation, Assistance Publique-Hôpitaux de Paris, HEGP, Université de Paris, Paris, France; INSERM UMRS-1140, Université de Paris, Paris, France
| | | | - Jean-Luc Hanouz
- CHU de Caen, Département d'Anesthésie Réanimation, Caen, France
| | | | - Vincent Legros
- CHU de Reims, Département d'Anesthésie Réanimation, Reims, France
| | - Romain Pirracchio
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | | | - Jacques Duranteau
- Département d'Anesthésie Réanimation, CHU de Bicêtre, Le Kremlin Bicêtre, France
| | - Bernard Vigué
- Centre d'Étude et de Santé des Populations INSERM U 10-18, Université Paris-Saclay, Paris, France
| | - Sophie Rym Hamada
- Département d'Anesthésie Réanimation, Assistance Publique-Hôpitaux de Paris, HEGP, Université de Paris, Paris, France; Centre d'Étude et de Santé des Populations INSERM U 10-18, Université Paris-Saclay, Paris, France
| | | |
Collapse
|
31
|
Diebel LN, Liberati DM, Carge M. Effect of albumin solutions on endothelial oxidant injury: A microfluidic study. Surgery 2023; 173:876-882. [PMID: 36372576 DOI: 10.1016/j.surg.2022.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Studies have suggested a beneficial effect of early plasma-based resuscitation in patients following trauma-hemorrhagic shock. The underlying mechanism(s) are unknown but may be owing to protective effects of plasma components on the endothelium and its glycocalyx layer. Albumin, the major protein in plasma, influences vascular integrity and has antioxidant properties in vivo. Sphingosine 1-phosphate is a bioactive sphingolipid with diverse signaling functions, which include endothelial barrier protection in part owing to preservation of the glycocalyx. Sphingosine 1-phosphate is bound mainly to albumin and high-density lipids in the plasma. Debate continues about the beneficial effect of albumin solutions in shock resuscitation. Pharmacologic preparations may modify constituents of albumin solutions for clinical use. We examined the relative effects of sphingosine 1-phosphate concentrations in albumin solutions on the endothelial-glycocalyx barrier in an in vitro microfluidic platform. METHODS Endothelial cell monolayers were established in microfluidic perfusion devices and exposed to control or biomimetic shock conditions followed by 5% plasma or different albumin solutions ± exogenous sphingosine 1-phosphate perfusion. Biomarkers of endothelial and glycocalyx activation, damage, and oxidant injury were then determined. RESULTS Endothelial cell and glycocalyx barriers were damaged after biomimetic shock conditions. Plasma and sphingosine 1-phosphate loaded albumin solutions protected against barrier injury. Modest protective effects were noted with albumin alone; the efficacy varied with sphingosine 1-phosphate content of the albumin solution. CONCLUSION The protective effect of albumin on the endothelia-glycocalyx barrier against oxidant injury was dependent on its sphingosine 1-phosphate concentration. Our data may help explain the discrepancies regarding the effectiveness of albumin solutions in shock resuscitation.
Collapse
Affiliation(s)
- Lawrence N Diebel
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI.
| | - David M Liberati
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| | - Michael Carge
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| |
Collapse
|
32
|
Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study. J Clin Med 2023; 12:jcm12041707. [PMID: 36836242 PMCID: PMC9966073 DOI: 10.3390/jcm12041707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Shock index (a ratio between heart rate and systolic blood pressure) predicts transfusion requirements and the need for haemostatic resuscitation in severe trauma patients. In the present study, we aimed to determine whether prehospital and on-admission shock index values can be used to predict low plasma fibrinogen in trauma patients. Between January 2016 and February 2017, trauma patients admitted from the helicopter emergency medical service into two large trauma centres in the Czech Republic were prospectively assessed for demographic, laboratory and trauma-associated variables and shock index at scene, during transport and at admission to the emergency department. Hypofibrinogenemia defined as fibrinogen plasma level of 1.5 g·L-l was deemed as a cut-off for further analysis. Three hundred and twenty-two patients were screened for eligibility. Of these, 264 (83%) were included for further analysis. The hypofibrinogenemia was predicted by the worst prehospital shock index with the area under the receiver operating characteristics curve (AUROC) of 0.79 (95% CI 0.64-0.91) and by the admission shock index with AUROC of 0.79 (95% CI 0.66-0.91). For predicting hypofibrinogenemia, the prehospital shock index ≥ 1 has 0.5 sensitivity (95% CI 0.19-0.81), 0.88 specificity (95% CI 0.83-0.92) and a negative predictive value of 0.98 (0.96-0.99). The shock index may help to identify trauma patients at risk of hypofibrinogenemia early in the prehospital course.
Collapse
|
33
|
Effect of tranexamic acid on endothelial von Willebrand factor/ADAMTS-13 response to in vitro shock conditions. J Trauma Acute Care Surg 2023; 94:273-280. [PMID: 36322025 DOI: 10.1097/ta.0000000000003831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Traumatic/hemorrhagic shock, sepsis and other inflammatory processes lead to endothelial activation and a loss of the endothelial glycocalyx. von Willebrand factor (vWF) is an acute phase reactant that is released from endothelial cells and megakaryocytes. Stimulated but not basal vWF leads to significant formation of ultralarge multimers (ultralarge vWF [ULvWF]) and risk for thrombotic complications. Ultralarge vWF is cleaved by a disintegrin and metalloproteinase with a thrombospondin type motif 13 (ADAMTS 13); alterations in ULvWF/ADAMTS 13 ratio may contribute to trauma-induced coagulopathy. Salutary effects of tranexamic acid (TXA) on trauma-induced coagulopathy have been described. These effects appear apart from antifibrinolytic actions of TXA and include protection of the endothelial glycocalyx. Ultralarge vWF is in part anchored to the glycocalyx layer of the endothelium. Tranexamic acid protected the endothelial glycocalyx layer from degradation using a microfluidic model of the microcirculation subjected to hypoxia-reoxygenation and catecholamine excess. We hypothesized that TXA administration following shock conditions would impact the vWF-ADAMTS-13 axis by protecting the glycocalyx from degradation. This was studied in a endothelial microfluidic flow study. METHODS Human umbilical vein endothelial cells were established under flow conditions and subjected to biomimetic shock. Tranexamic acid was added after 90 minutes of perfusion. von Willebrand factor antigen and ADAMTS-13 activity were measured. Western blot analysis was performed for vWF characterization from perfusion media. RESULTS Shock conditions increased vWF antigen and decreased ADAMTS 13 activity. Tranexamic acid ameliorated shock induced cleavage in the ADAMTS 13-vWF axis with a reduction of the thrombogenic ULvWF. CONCLUSION These results suggest another mechanism whereby administration of TXA early following traumatic/hemorrhagic shock mitigates microvascular perfusion abnormalities and subsequent organ failure. The resultant effects on platelet adhesion and aggregation require further study.
Collapse
|
34
|
Walker AE, Cole JA, Krishna Kumaran S, Kato JI, Zhuang X, Wolf JR, Henson GD, McCully BH. INFLUENCE OF OBESITY ON VASCULAR DYSFUNCTION AFTER TRAUMATIC HEMORRHAGE. Shock 2023; 59:318-325. [PMID: 36731028 DOI: 10.1097/shk.0000000000001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Background: Obesity increases the risk for morbidity and mortality after trauma. These complications are associated with profound vascular damage. Traumatic hemorrhage acutely attenuates vascular responsiveness, but the impact of obesity on this dysfunction is not known. The local inflammatory response in vascular cells is also unknown. We hypothesized that obesity potentiates trauma-induced vascular inflammation and dysfunction. Methods: Male Sprague-Dawley rats (~250 g) were fed normal chow (NC; 13.5% kcal fat, n = 20) or high-fat (HF; 60% kcal fat, n = 20) diets for 6 to 8 weeks. Under anesthesia, hemorrhage was induced by a mesenteric artery laceration, a Grade V splenic injury, and hypotension (MAP = 30-40 mm Hg) for 30 minutes. Vascular responsiveness was assessed ex vivo in isolated mesenteric arteries prehemorrhage and posthemorrhage. Gene expression for IL-1β, and IL-6, prooxidant nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), and α-adrenergic receptor were assessed in carotid artery endothelial cells (ECs) and non-ECs (media + adventitia). Results: In NC rats, hemorrhage attenuated norepinephrine-induced vasoconstriction and endothelium-dependent vasodilation to acetylcholine. In HF rats, baseline norepinephrine-induced vasoconstriction was attenuated compared with NC, but vasoconstriction and endothelium-dependent vasodilation did not change prehemorrhage to posthemorrhage. Hemorrhage led to elevated IL-1β gene expression in ECs and elevated IL1β, IL-6, NOX2, and α-adrenergic receptor gene expression in the media + adventitia compared with sham. HF rats had greater EC IL-1 β and NOX2 gene expression compared with NC rats. The hemorrhage-induced elevation of IL-1β in the media + adventitia was greatest in HF rats. Conclusion: Traumatic hemorrhage attenuates vascular responsiveness and induces vascular inflammation. The attenuated vascular responsiveness after hemorrhage is absent in obese rats, while the elevated vascular inflammation persists. A HF diet amplifies the arterial inflammation after hemorrhage. Altered vascular responsiveness and vascular inflammation may contribute to worse outcomes in obese trauma patients.
Collapse
Affiliation(s)
- Ashley E Walker
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Jazmin A Cole
- Department of Human Physiology, University of Oregon, Eugene, OR
| | | | - Jonathan I Kato
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Xinhao Zhuang
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Julia R Wolf
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Grant D Henson
- Department of Human Physiology, University of Oregon, Eugene, OR
| | | |
Collapse
|
35
|
Ferrada P, Cannon JW, Kozar RA, Bulger EM, Sugrue M, Napolitano LM, Tisherman SA, Coopersmith CM, Efron PA, Dries DJ, Dunn TB, Kaplan LJ. Surgical Science and the Evolution of Critical Care Medicine. Crit Care Med 2023; 51:182-211. [PMID: 36661448 DOI: 10.1097/ccm.0000000000005708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surgical science has driven innovation and inquiry across adult and pediatric disciplines that provide critical care regardless of location. Surgically originated but broadly applicable knowledge has been globally shared within the pages Critical Care Medicine over the last 50 years.
Collapse
Affiliation(s)
- Paula Ferrada
- Division of Trauma and Acute Care Surgery, Department of Surgery, Inova Fairfax Hospital, Falls Church, VA
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemary A Kozar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Eileen M Bulger
- Division of Trauma, Burn and Critical Care Surgery, Department of Surgery, University of Washington at Seattle, Harborview, Seattle, WA
| | - Michael Sugrue
- Department of Surgery, Letterkenny University Hospital, County of Donegal, Ireland
| | - Lena M Napolitano
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Samuel A Tisherman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Craig M Coopersmith
- Division of General Surgery, Department of Surgery, Emory University, Emory Critical Care Center, Atlanta, GA
| | - Phil A Efron
- Department of Surgery, Division of Critical Care, University of Florida, Gainesville, FL
| | - David J Dries
- Department of Surgery, University of Minnesota, Regions Healthcare, St. Paul, MN
| | - Ty B Dunn
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lewis J Kaplan
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Section of Surgical Critical Care, Surgical Services, Philadelphia, PA
| |
Collapse
|
36
|
Ando T, Uzawa K, Yoshikawa T, Mitsuda S, Akimoto Y, Yorozu T, Ushiyama A. The effect of tetrastarch on the endothelial glycocalyx layer in early hemorrhagic shock using fluorescence intravital microscopy: a mouse model. J Anesth 2023; 37:104-118. [PMID: 36427094 PMCID: PMC9870981 DOI: 10.1007/s00540-022-03138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/12/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate vascular endothelial dysfunction based on glycocalyx impairment in massive hemorrhage and to evaluate fluid therapy. METHODS In this randomized controlled animal study, we withdrew 1.5 mL blood and administered 1.5 mL resuscitation fluid. Mice were divided into six groups according to the infusion type and administration timing: NS-NS (normal saline), NS-HES ([hydroxyethyl starch]130), HES-NS, NS-ALB (albumin), ALB-NS, and C (control) groups. RESULTS The glycocalyx index (GCXI) of a 40-μm artery was significantly larger in group C than in other groups (P < 0.01). Similarly, the GCXI for a 60-μm artery was significantly higher in group C than in NS-NS (P ≤ 0.05), NS-HES (P ≤ 0.01), and NS-ALB groups (P ≤ 0.05). The plasma syndecan-1 concentration, at 7.70 ± 5.71 ng/mL, was significantly lower in group C than in group NS-NS (P ≤ 0.01). The tetramethylrhodamine-labeled dextran (TMR-DEX40) fluorescence intensity in ALB-NS and HES-NS groups and the fluorescein isothiocyanate-labeled hydroxyethyl starch (FITC-HES130) fluorescence intensity in NS-HES and HES-NS groups were not significantly different from those of group C at any time point. FITC-HES130 was localized on the inner vessel wall in groups without HES130 infusion but uniformly distributed in HES130-treated groups in intravital microscopy. FITC-FITC-HES130 was localized remarkably in the inner vessel walls in group HES-NS in electron microscopy. CONCLUSIONS In an acute massive hemorrhage mouse model, initial fluid resuscitation therapy with saline administration impaired glycocalyx and increased vascular permeability. Prior colloid-fluid administration prevented the progression of glycocalyx damage and improve prognosis. Prior HES130 administration may protect endothelial cell function.
Collapse
Affiliation(s)
- Tadao Ando
- Department of Anaesthesiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Kohji Uzawa
- Department of Anaesthesiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan.
| | - Takahiro Yoshikawa
- Department of Anaesthesiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Shingo Mitsuda
- Department of Anaesthesiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Tomoko Yorozu
- Department of Anaesthesiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-Shi, Tokyo, 181-8611, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wakou, Saitama, 351-0197, Japan
| |
Collapse
|
37
|
C-Reactive Protein and White Blood Cell Count in Cardiogenic Shock. J Clin Med 2023; 12:jcm12030965. [PMID: 36769613 PMCID: PMC9917886 DOI: 10.3390/jcm12030965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
This study examines the prognostic impact of C-reactive protein (CRP) and white blood cell (WBC) counts in patients with cardiogenic shock (CS). Data regarding the prognostic impact of inflammatory biomarkers in CS are scarce. All consecutive patients with CS from 2019 to 2021 admitted to a cardiac intensive care unit (ICU) were included at one institution. Laboratory measurements were retrieved from the day of admission (i.e., day 1), as well as days 2, 3, 4, and 8. The primary endpoint was 30-day all-cause mortality. Statistical analyses included univariate t-tests, Spearman's correlations, C-statistics, Kaplan-Meier, and Cox regression analyses. From a total of 240 consecutive patients admitted with CS, 55% died within 30 days. CRP levels on days 3 to 8 were associated with reliable discrimination for 30-day all-cause mortality (area under the curve (AUC): 0.623-0.754), whereas CRP on day 1 was not (AUC = 0.514). In line, CRP > 100 mg/L on day 3 (56% vs. 37%; log-rank p = 0.023; HR = 1.702; 95% CI 1.060-2.735; p = 0.028) and especially a CRP increase of at least 200% from days 1 to day 3 (51% vs. 35%; log-rank p = 0.040; HR = 1.720; 95% CI 1.006-2.943; p = 0.048) were associated with an increased risk of all-cause mortality. Furthermore, WBC on day 1 discriminated 30-day all-cause mortality (AUC = 0.605; p = 0.005) with an increased risk of all-cause mortality in patients admitted with WBC > 10 × 106/mL (59% vs. 40%; log-rank p = 0.036; HR = 1.643; 95% CI 1.010-2.671; p = 0.045). In conclusion, WBC count on admission as well as CRP levels during the course of ICU treatment were associated with 30-day all-cause mortality. Specifically, an increase of CRP levels by at least 200% from day 1 to day 3 during the course of ICU treatment was associated with an increased risk of 30-day all-cause mortality. The present study is one of the first to describe the prognostic value of inflammatory biomarkers in consecutive all-comer CS patients treated at a cardiac ICU.
Collapse
|
38
|
Henriksen HH, Marín de Mas I, Nielsen LK, Krocker J, Stensballe J, Karvelsson ST, Secher NH, Rolfsson Ó, Wade CE, Johansson PI. Endothelial Cell Phenotypes Demonstrate Different Metabolic Patterns and Predict Mortality in Trauma Patients. Int J Mol Sci 2023; 24:2257. [PMID: 36768579 PMCID: PMC9916682 DOI: 10.3390/ijms24032257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
In trauma patients, shock-induced endotheliopathy (SHINE) is associated with a poor prognosis. We have previously identified four metabolic phenotypes in a small cohort of trauma patients (N = 20) and displayed the intracellular metabolic profile of the endothelial cell by integrating quantified plasma metabolomic profiles into a genome-scale metabolic model (iEC-GEM). A retrospective observational study of 99 trauma patients admitted to a Level 1 Trauma Center. Mass spectrometry was conducted on admission samples of plasma metabolites. Quantified metabolites were analyzed by computational network analysis of the iEC-GEM. Four plasma metabolic phenotypes (A-D) were identified, of which phenotype D was associated with an increased injury severity score (p < 0.001); 90% (91.6%) of the patients who died within 72 h possessed this phenotype. The inferred EC metabolic patterns were found to be different between phenotype A and D. Phenotype D was unable to maintain adequate redox homeostasis. We confirm that trauma patients presented four metabolic phenotypes at admission. Phenotype D was associated with increased mortality. Different EC metabolic patterns were identified between phenotypes A and D, and the inability to maintain adequate redox balance may be linked to the high mortality.
Collapse
Affiliation(s)
- Hanne H. Henriksen
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Igor Marín de Mas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lars K. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 Brisbane, Australia
| | - Joseph Krocker
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jakob Stensballe
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Anesthesia and Trauma Center, Center of Head and Orthopedics, Rigshospitalet, 2100 Copenhagen, Denmark
| | | | - Niels H. Secher
- Department of Anesthesiology, Centre for Cancer and Organ Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Pär I. Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Center for Translational Injury Research, Department of Surgery, University of Texas Health Science Center, Houston, TX 77030, USA
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
39
|
Frassetto FP, Rosemberg S. Neuropathology of yellow fever autopsy cases. Trop Dis Travel Med Vaccines 2023; 9:1. [PMID: 36707912 PMCID: PMC9883951 DOI: 10.1186/s40794-022-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/14/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Yellow fever is a viral hemorrhagic fever caused by yellow fever virus, a mosquito-borne flavivirus. Despite an effective vaccine, major outbreaks continue to occur around the world. Even though it is not a proven neurotropic virus, neurological symptoms in more severe clinical forms are frequent. The understanding of this apparent paradox is still rarely addressed in literature. METHODS The brains of thirty-eight patients with yellow fever confirmed by RT-PCR, who underwent autopsy, were analyzed morphologically to identify and characterize neuropathological changes. The data were compared with brains collected from individuals without the disease, as a control group. Both cases and controls were subdivided according to the presence or absence of co-concurrent septic shock, to exclude changes of the sepsis associated encephalopathy. To verify possible morphological differences between the yellow fever cases groups, between the control groups, and between the cases and the controls, we applied the statistical tests Fisher's exact test and chi-square, with p values < 0.05 considered statistically significant. RESULTS All cases and controls presented, at least focally, neuropathological changes, which included edema, meningeal and parenchymal inflammatory infiltrate and hemorrhages, and perivascular inflammatory infiltrate. We did not find an unequivocal aspect of encephalitis. The only parameter that, after statistical analysis, can be attributed to yellow fever was the perivascular inflammatory infiltrate. CONCLUSIONS The neuropathological findings are sufficient to justify the multiple clinical neurologic disturbances detected in the YF cases. Since most of the parameters evaluated did not show statistically significant difference between cases and controls, an explanation for most of the neuropathological findings may be the vascular changes, consequent to shock induced endotheliopathy, associated with stimulation of the immune system inherent to systemic infectious processes. The statistical difference obtained in yellow fever cases regarding perivascular infiltrate can be can be explained by the immune activation inherent to the condition.
Collapse
Affiliation(s)
- Fernando Pereira Frassetto
- grid.11899.380000 0004 1937 0722Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, SP Brazil ,grid.261331.40000 0001 2285 7943Present Address: Department of Radiation Oncology, Ohio State University, OH Columbus, United States of America
| | - Sergio Rosemberg
- grid.11899.380000 0004 1937 0722Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, SP Brazil
| |
Collapse
|
40
|
Bunch CM, Chang E, Moore EE, Moore HB, Kwaan HC, Miller JB, Al-Fadhl MD, Thomas AV, Zackariya N, Patel SS, Zackariya S, Haidar S, Patel B, McCurdy MT, Thomas SG, Zimmer D, Fulkerson D, Kim PY, Walsh MR, Hake D, Kedar A, Aboukhaled M, Walsh MM. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock. Front Physiol 2023; 14:1094845. [PMID: 36923287 PMCID: PMC10009294 DOI: 10.3389/fphys.2023.1094845] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function-including fibrinolysis-to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.
Collapse
Affiliation(s)
- Connor M Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Eric Chang
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States
| | - Hunter B Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States.,Department of Transplant Surgery, Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph B Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Mahmoud D Al-Fadhl
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Anthony V Thomas
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Nuha Zackariya
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Shivani S Patel
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sufyan Zackariya
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Saadeddine Haidar
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Bhavesh Patel
- Division of Critical Care, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott G Thomas
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Donald Zimmer
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - Daniel Hake
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Archana Kedar
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Michael Aboukhaled
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Mark M Walsh
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States.,Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| |
Collapse
|
41
|
Zhou G, Liu J, Zhang H, Wang X, Liu D. Elevated endothelial dysfunction-related biomarker levels indicate the severity and predict sepsis incidence. Sci Rep 2022; 12:21935. [PMID: 36536028 PMCID: PMC9763325 DOI: 10.1038/s41598-022-26623-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
This study was conducted to investigate the relationship between serum endothelial dysfunction-related biomarker levels and organ dysfunction severity in septic patients and the predictive value of these levels during sepsis. In total, 105 patients admitted to the Department of Critical Care Medicine were enrolled between September 2020 and November 2021. Serum syndecan-1 and soluble thrombomodulin(sTM) levels were measured by enzyme-linked immunosorbent assay, and clinical and laboratory data were recorded. Enroll patients were divided into the infection (n = 28), septic nonshock (n = 31), and septic shock (n = 46) groups . Serum syndecan-1 (102.84 ± 16.53 vs. 55.38 ± 12.34 ng/ml), and sTM(6.60 ± 1.44 ng/ml vs. 5.23 ± 1.23 ng/ml, P < 0.01) levels were increased in the septic group compared with those in the infection group. Serum syndecan-1 levels were closely positively correlated with serum sTM (rs = 0.712, r2 = 0.507, P < 0.001). Additionally, serum syndecan-1(rs = 0.687, r2 = 0.472, P < 0.001) and sTM levels (rs = 0.6, r2 = 0.36, P < 0.01) levels were significantly positively correlated with the sequential organ failure assessment scores respectively. Syndecan-1 (AUC 0.95 ± 0.02, P < 0.0001) was more valuable for prediction sepsis than was sTM (AUC 0.87 ± 0.04, P < 0.0001). Compared with sTM (AUC 0.88 ± 0.03, P < 0.001), syndecan-1 (AUC 0.95 ± 0.02, P < 0.001) and SOFA score (AUC 0.95 ± 0.02, P < 0.001) were better predictors of septic shock. Serum syndecan-1 and sTM levels were associated with organ dysfunction severity in septic patients, and both were good predictors for early identification of sepsis, particularly in patients undergoing septic shock.
Collapse
Affiliation(s)
- Gaosheng Zhou
- grid.506261.60000 0001 0706 7839Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Jingjing Liu
- grid.506261.60000 0001 0706 7839Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Hongmin Zhang
- grid.506261.60000 0001 0706 7839Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Xiaoting Wang
- grid.506261.60000 0001 0706 7839Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Dawei Liu
- grid.506261.60000 0001 0706 7839Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| |
Collapse
|
42
|
Conventional and Pro-Inflammatory Pathways of Fibrinolytic Activation in Non-Traumatic Hyperfibrinolysis. J Clin Med 2022; 11:jcm11247305. [PMID: 36555922 PMCID: PMC9787796 DOI: 10.3390/jcm11247305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Hyperfibrinolysis (HF) frequently occurs after severe systemic hypoperfusion during major trauma and out-of-hospital cardiac arrest (OHCA). In trauma-induced HF, hypoperfusion, the activation of protein C (APC), and the release of tissue plasminogen activator (t-PA) have been identified as the driving elements of premature clot breakdown. The APC pathway also plays a role in inflammatory responses such as neutrophil extracellular trap formation (NETosis), which might contribute to lysis through cleavage of fibrin by neutrophil elastases. We investigated whether the APC and the plasminogen pathway were general drivers of HF, even in the absence of a traumatic incident. Additionally, we were interested in inflammatory activation such as the presence of NETs as potential contributing factors to HF. A total of 41 patients with OHCA were assigned to a HF and a non-HF group based on maximum lysis (ML) in thromboelastometry. Thrombin-antithrombin (TAT)-complex, soluble thrombomodulin (sTM), APC-PC inhibitor complex, t-PA, PAI-1, t-PA-PAI-1 complex, plasmin-antiplasmin (PAP), d-dimers, neutrophil elastase, histonylated DNA (hDNA) fragments, and interleukin-6 were assessed via immunoassays in the HF group vs. non-HF. APC-PC inhibitor complex is significantly higher in HF patients. Antigen levels of t-PA and PAI-1 do not differ between groups. However, t-PA activity is significantly higher and t-PA-PAI-1 complex significantly lower in the HF group. Consistent with these results, PAP and d-dimers are significantly elevated in HF. HDNA fragments and neutrophil elastase are not elevated in HF patients, but show a high level of correlation, suggesting NETosis occurs in OHCA as part of inflammatory activation and cellular decay. Just as in trauma, hypoperfusion, the activation of protein C, and the initiation of the plasminogen pathway of fibrinolysis manifest themselves in the HF of cardiac arrest. Despite features of NETosis being detectable in OHCA patients, early pro-inflammatory responses do not appear be associated with HF in cardiac arrest.
Collapse
|
43
|
Impact of high-dose glucocorticoid on endothelial damage after liver resection - a double-blinded randomized substudy. Eur J Gastroenterol Hepatol 2022; 34:1178-1186. [PMID: 36170688 DOI: 10.1097/meg.0000000000002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Postoperative endothelial damage potentially results in increased vascular leakage, tissue edema and subsequent complications. The preventive effect of glucocorticoids on endothelial damage after surgery is sparsely described, including the relation between endothelial damage and the postoperative inflammatory response. Thus, we aimed to assess the preventive effect of high-dose glucocorticoids on postoperative endothelial damage, and the association between endothelial damage and inflammation after surgery. METHODS This was a predefined substudy of a randomized double-blinded clinical trial of methylprednisolone 10 mg/kg (high dose) vs. dexamethasone 8 mg (low dose) in patients undergoing liver resection at Rigshospitalet, Copenhagen. In total 25 patients undergoing major liver resection (11 in the high-dose group and 14 in the low-dose group) were included. The primary outcome was changed in five endothelial biomarkers and the secondary outcome was changes in inflammation [C-reactive protein (CRP)] for the first three postoperative days. RESULTS No statistically significant difference was found for any endothelial biomarkers postoperatively between the two groups (P > 0.15, for all). High-dose glucocorticoids significantly reduced CRP on day 3 compared to low-dose glucocorticoids [median difference on a postoperative day 3, 59.6 g/L, (84.2; 27.1), P < 0.002]. No significant correlation between endothelial damage and CRP levels was seen. CONCLUSIONS No significant effect of high- vs. low-dose glucocorticoids on development in endothelial biomarkers after major liver resection was observed. High-dose glucocorticoids reduce the inflammatory response though without correlation to endothelial damage. Future studies should assess the clinical impact of increased endothelial biomarkers for clinical perioperative outcomes.
Collapse
|
44
|
Hegde S, Zheng Y, Cancelas JA. Novel blood derived hemostatic agents for bleeding therapy and prophylaxis. Curr Opin Hematol 2022; 29:281-289. [PMID: 35942861 PMCID: PMC9547927 DOI: 10.1097/moh.0000000000000737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Hemorrhage is a major cause of preventable death in trauma and cancer. Trauma induced coagulopathy and cancer-associated endotheliopathy remain major therapeutic challenges. Early, aggressive administration of blood-derived products with hypothesized increased clotting potency has been proposed. A series of early- and late-phase clinical trials testing the safety and/or efficacy of lyophilized plasma and new forms of platelet products in humans have provided light on the future of alternative blood component therapies. This review intends to contextualize and provide a critical review of the information provided by these trials. RECENT FINDINGS The beneficial effect of existing freeze-dried plasma products may not be as high as initially anticipated when tested in randomized, multicenter clinical trials. A next-generation freeze dried plasma product has shown safety in an early phase clinical trial and other freeze-dried plasma and spray-dried plasma with promising preclinical profiles are embarking in first-in-human trials. New platelet additive solutions and forms of cryopreservation or lyophilization of platelets with long-term shelf-life have demonstrated feasibility and logistical advantages. SUMMARY Recent trials have confirmed logistical advantages of modified plasma and platelet products in the treatment or prophylaxis of bleeding. However, their postulated increased potency profile remains unconfirmed.
Collapse
Affiliation(s)
- Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jose A Cancelas
- Hoxworth Blood Center, University of Cincinnati Academic Health Center
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
45
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
46
|
Feng Z, Fan Y, Xie J, Liu S, Duan C, Wang Q, Ye Y, Yin W. HIF-1α promotes the expression of syndecan-1 and inhibits the NLRP3 inflammasome pathway in vascular endothelial cells under hemorrhagic shock. Biochem Biophys Res Commun 2022; 637:83-92. [DOI: 10.1016/j.bbrc.2022.10.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
47
|
Yang Z, Le TD, Simovic MO, Liu B, Fraker TL, Cancio TS, Cap AP, Wade CE, DalleLucca JJ, Li Y. Traumatized triad of complementopathy, endotheliopathy, and coagulopathy ˗ Impact on clinical outcomes in severe polytrauma patients. Front Immunol 2022; 13:991048. [PMID: 36341368 PMCID: PMC9632416 DOI: 10.3389/fimmu.2022.991048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
Complementopathy, endotheliopathy, and coagulopathy following a traumatic injury are key pathophysiological mechanisms potentially associated with multiple-organ failure (MOF) and mortality. However, the heterogeneity in the responses of complementopathy, endotheliopathy, and coagulopathy to trauma, the nature and extent of their interplay, and their relationship to clinical outcomes remain unclear. Fifty-four poly-trauma patients were enrolled and divided into three subgroups based on their ISS. Biomarkers in blood plasma reflecting complement activation, endothelial damage, and coagulopathy were measured starting from admission to the emergency department and at 3, 6, 12, 24, and 120 hours after admission. Comparative analyses showed that severely injured patients (ISS>24) were associated with longer days on mechanical ventilation, in the intensive care unit and hospital stays, and a higher incidence of hyperglycemia, bacteremia, respiratory failure and pneumonia compared to mildly (ISS<16) or moderately (ISS=16-24) injured patients. In this trauma cohort, complement was activated early, primarily through the alternative complement pathway. As measured in blood plasma, severely injured patients had significantly higher levels of complement activation products (C3a, C5a, C5b-9, and Bb), endothelial damage markers (syndecan-1, sTM, sVEGFr1, and hcDNA), and fibrinolytic markers (D-dimer and LY30) compared to less severely injured patients. Severely injured patients also had significantly lower thrombin generation (ETP and peak) and lower levels of coagulation factors (I, V, VIII, IX, protein C) than less severely injured patients. Complement activation correlated with endothelial damage and hypocoagulopathy. Logistic regression analyses revealed that Bb >1.57 μg/ml, syndecan-1 >66.6 ng/ml or D-dimer >6 mg/L at admission were associated with a higher risk of MOF/mortality. After adjusting for ISS, each increase of the triadic score defined above (Bb>1.57 µg/ml/Syndecan-1>66.6 ng/ml/D-dimer>6.0mg/L) was associated with a 6-fold higher in the odds ratio of MOF/death [OR: 6.83 (1.04-44.96, P=0.046], and a 4-fold greater in the odds of infectious complications [OR: 4.12 (1.04-16.36), P=0.044]. These findings provide preliminary evidence of two human injury response endotypes (traumatized triad and non-traumatized triad) that align with clinical trajectory, suggesting a potential endotype defined by a high triadic score. Patients with this endotype may be considered for timely intervention to create a pro-survival/organ-protective phenotype and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhangsheng Yang
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
| | - Tuan D. Le
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
| | - Milomir O. Simovic
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
- Trauma Immunomodulation Program, The Geneva Foundation, Tacoma, WA, United States
| | - Bin Liu
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
| | - Tamara L. Fraker
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
- Trauma Immunomodulation Program, The Geneva Foundation, Tacoma, WA, United States
| | - Tomas S. Cancio
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
| | - Andrew P. Cap
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
| | - Charles E. Wade
- Department of Surgery, University of Texas Health McGovern Medical School, Houston, TX, United States
| | - Jurandir J. DalleLucca
- Scientific Research Department, Armed Forces Radiobiological Research Institute, Bethesda, MD, United States
| | - Yansong Li
- United States Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, TX, United States
- Trauma Immunomodulation Program, The Geneva Foundation, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
48
|
Takahashi M, Wada T, Nakae R, Fujiki Y, Kanaya T, Takayama Y, Suzuki G, Naoe Y, Yokobori S. Antithrombin activity levels for predicting long-term outcomes in the early phase of isolated traumatic brain injury. Front Immunol 2022; 13:981826. [PMID: 36248813 PMCID: PMC9558212 DOI: 10.3389/fimmu.2022.981826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Coagulopathy management is an important strategy for preventing secondary brain damage in patients with traumatic brain injury (TBI). Antithrombin (AT) is a natural anticoagulant that controls coagulation and inflammation pathways. However, the significance of AT activity levels for outcomes in patients with trauma remains unclear. This study aimed to investigate the relationship between AT activity levels and long-term outcomes in patients with TBI; this was a sub-analysis of a prior study that collected blood samples of trauma patients prospectively in a tertiary care center in Kawaguchi City, Japan. We included patients with isolated TBI (iTBI) aged ≥16 years admitted directly to our hospital within 1 h after injury between April 2018 and March 2021. General coagulofibrinolytic and specific molecular biomarkers, including AT, were measured at 1, 3, 6, 12, and 24 h after injury. We analyzed changes in the AT activity levels during the study period and the impact of the AT activity levels on long-term outcomes, the Glasgow Outcome Scale-Extended (GOSE), 6 months after injury. 49 patients were included in this study; 24 had good neurological outcomes (GOSE 6-8), and 25 had poor neurological outcomes (GOSE 1-5). Low AT activity levels were shown within 1 h after injury in patients in the poor GOSE group; this was associated with poor outcomes. Furthermore, AT activity levels 1 h after injury had a strong predictive value for long-term outcomes (area under the receiver operating characteristic curve of 0.871; 95% CI: 0.747-0.994). Multivariate logistic regression analysis with various biomarkers showed that AT was an independent factor of long-term outcome (adjusted odds ratio: 0.873; 95% CI: 0.765-0.996; p=0.043). Another multivariate analysis with severity scores showed that low AT activity levels were associated with poor outcomes (adjusted odds ratio: 0.909; 95% CI: 0.822-1.010; p=0.063). We demonstrated that the AT activity level soon after injury could be a predictor of long-term neurological prognosis in patients with iTBI.
Collapse
Affiliation(s)
- Masaki Takahashi
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Ryuta Nakae
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Yu Fujiki
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Takahiro Kanaya
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Yasuhiro Takayama
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Go Suzuki
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Yasutaka Naoe
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
49
|
Pitter SELT, Steinthorsdottir KJ, Johansson PI, Nørgaard P, Schultz N, Kehlet H, Aasvang EK. Impact of high-dose glucocorticoid on endothelial damage after liver resection - a double-blinded randomized substudy. Eur J Gastroenterol Hepatol 2022; Publish Ahead of Print:00042737-990000000-00075. [PMID: 36165063 DOI: 10.1097/mxheg.0000000000002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Postoperative endothelial damage potentially results in increased vascular leakage, tissue edema and subsequent complications. The preventive effect of glucocorticoids on endothelial damage after surgery is sparsely described, including the relation between endothelial damage and the postoperative inflammatory response. Thus, we aimed to assess the preventive effect of high-dose glucocorticoids on postoperative endothelial damage, and the association between endothelial damage and inflammation after surgery. METHODS This was a predefined substudy of a randomized double-blinded clinical trial of methylprednisolone 10 mg/kg (high dose) vs. dexamethasone 8 mg (low dose) in patients undergoing liver resection at Rigshospitalet, Copenhagen. In total 25 patients undergoing major liver resection (11 in the high-dose group and 14 in the low-dose group) were included. The primary outcome was changed in five endothelial biomarkers and the secondary outcome was changes in inflammation [C-reactive protein (CRP)] for the first three postoperative days. RESULTS No statistically significant difference was found for any endothelial biomarkers postoperatively between the two groups (P > 0.15, for all). High-dose glucocorticoids significantly reduced CRP on day 3 compared to low-dose glucocorticoids [median difference on a postoperative day 3, 59.6 g/L, (84.2; 27.1), P < 0.002]. No significant correlation between endothelial damage and CRP levels was seen. CONCLUSIONS No significant effect of high- vs. low-dose glucocorticoids on development in endothelial biomarkers after major liver resection was observed. High-dose glucocorticoids reduce the inflammatory response though without correlation to endothelial damage. Future studies should assess the clinical impact of increased endothelial biomarkers for clinical perioperative outcomes.
Collapse
Affiliation(s)
- Sandra E L T Pitter
- Department of Anesthesiology, Center for Cancer and Organ diseases, Rigshospitalet
| | | | | | - Peter Nørgaard
- Department of Organ surgery and transplantation, Center for Cancer and Organ diseases, Rigshospitalet
| | - Nicolai Schultz
- Department of Organ surgery and transplantation, Center for Cancer and Organ diseases, Rigshospitalet
| | - Henrik Kehlet
- Section of surgical Pathophysiology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Eske K Aasvang
- Department of Anesthesiology, Center for Cancer and Organ diseases, Rigshospitalet
| |
Collapse
|
50
|
Jacobs R, Wise RD, Myatchin I, Vanhonacker D, Minini A, Mekeirele M, Kirkpatrick AW, Pereira BM, Sugrue M, De Keulenaer B, Bodnar Z, Acosta S, Ejike J, Tayebi S, Stiens J, Cordemans C, Van Regenmortel N, Elbers PWG, Monnet X, Wong A, Dabrowski W, Jorens PG, De Waele JJ, Roberts DJ, Kimball E, Reintam Blaser A, Malbrain MLNG. Fluid Management, Intra-Abdominal Hypertension and the Abdominal Compartment Syndrome: A Narrative Review. Life (Basel) 2022; 12:1390. [PMID: 36143427 PMCID: PMC9502789 DOI: 10.3390/life12091390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND General pathophysiological mechanisms regarding associations between fluid administration and intra-abdominal hypertension (IAH) are evident, but specific effects of type, amount, and timing of fluids are less clear. OBJECTIVES This review aims to summarize current knowledge on associations between fluid administration and intra-abdominal pressure (IAP) and fluid management in patients at risk of intra-abdominal hypertension and abdominal compartment syndrome (ACS). METHODS We performed a structured literature search from 1950 until May 2021 to identify evidence of associations between fluid management and intra-abdominal pressure not limited to any specific study or patient population. Findings were summarized based on the following information: general concepts of fluid management, physiology of fluid movement in patients with intra-abdominal hypertension, and data on associations between fluid administration and IAH. RESULTS We identified three randomized controlled trials (RCTs), 38 prospective observational studies, 29 retrospective studies, 18 case reports in adults, two observational studies and 10 case reports in children, and three animal studies that addressed associations between fluid administration and IAH. Associations between fluid resuscitation and IAH were confirmed in most studies. Fluid resuscitation contributes to the development of IAH. However, patients with IAH receive more fluids to manage the effect of IAH on other organ systems, thereby causing a vicious cycle. Timing and approach to de-resuscitation are of utmost importance, but clear indicators to guide this decision-making process are lacking. In selected cases, only surgical decompression of the abdomen can stop deterioration and prevent further morbidity and mortality. CONCLUSIONS Current evidence confirms an association between fluid resuscitation and secondary IAH, but optimal fluid management strategies for patients with IAH remain controversial.
Collapse
Affiliation(s)
- Rita Jacobs
- Intensive Care Department, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Robert D. Wise
- Faculty Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Discipline of Anesthesiology and Critical Care, School of Clinical Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Adult Intensive Care, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, OX3 9DU Oxford, UK
| | - Ivan Myatchin
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Emergency Medicine Department, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600 Genk, Belgium
| | - Domien Vanhonacker
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andrea Minini
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy
| | - Michael Mekeirele
- Intensive Care Department, University Hospital Brussels, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Andrew W. Kirkpatrick
- Departments of Critical Care Medicine and Surgery, The Trauma Program, University of Calgary, Victoria, BC V8W 2Y2, Canada
- The TeleMentored Ultrasound Supported Medical Interventions (TMUSMI) Research Group, Calgary, AB T3H 3W8, Canada
| | - Bruno M. Pereira
- Department of Surgery, Health Applied Sciences, Vassouras University, Vassouras 27700, Brazil
- Campinas Holy House Residency Program, Terzius Institute, Campinas 13010, Brazil
| | - Michael Sugrue
- Donegal Clinical Research Academy and Emergency Surgery Outcome Advancement Project (eSOAP), F94 A0W2 Donegal, Ireland
| | - Bart De Keulenaer
- Department of Intensive Care, Fiona Stanley Hospital; Professor at the School of Surgery, The University of Western Australia, Perth, WA 6907, Australia
- Department of Intensive Care at SJOG Murdoch Hospital, Murdoch, WA 6150, Australia
| | - Zsolt Bodnar
- Consultant General Surgeon, Letterkenny University Hospital, F92 AE81 Letterkenny, Ireland
| | - Stefan Acosta
- Department of Clinical Sciences, Lund University, Box 117, SE-221 00 Lund, Sweden
| | - Janeth Ejike
- Department of Pediatrics, Loma Linda University Children’s Hospital, Loma Linda, CA 92354, USA
| | - Salar Tayebi
- Faculty of Engineering, Department of Electronics and Informatics, Vrije Universiteit Brussel (VUB), 1040 Etterbeek, Belgium
| | - Johan Stiens
- Department of Intensive Care, AZ Sint-Maria Hospital, 1500 Halle, Belgium
| | - Colin Cordemans
- Department of Intensive Care Medicine, Campus Stuivenberg, Ziekenhuis Netwerk Antwerpen, 2050 Antwerp, Belgium
| | - Niels Van Regenmortel
- Intensive Care Department, Antwerp University Hospital, 2650 Edegem, Belgium
- Department of Intensive Care Medicine, Campus Stuivenberg, Ziekenhuis Netwerk Antwerpen, 2050 Antwerp, Belgium
| | - Paul W. G. Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science (AMDS), Amsterdam UMC, Vrije Universiteit, 1081 Amsterdam, The Netherlands
| | - Xavier Monnet
- Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, FHU SEPSIS, 94275 Le Kremlin-Bicêtre, France
| | - Adrian Wong
- Faculty Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Critical Care, King’s College Hospital NHS Foundation Trust London, London SE5 9RS, UK
| | - Wojciech Dabrowski
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Philippe G. Jorens
- Intensive Care Department, Antwerp University Hospital, 2650 Edegem, Belgium
- University of Antwerp, Laboratory of Experimental Medicine and Pediatrics (LEMP), 2000 Antwerpen, Belgium
| | - Jan J. De Waele
- Intensive Care Unit, University Hospital Ghent, 9000 Ghent, Belgium
| | - Derek J. Roberts
- Division of Vascular and Endovascular Surgery, Department of Surgery, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 1H3, Canada
| | - Edward Kimball
- Department of Surgery and Critical Care, U Health OND&T, Salt Lake City, UT 84105, USA
- Department of Surgical Critical Care SLC VA Medical Center, Salt Lake City, UT 84148, USA
| | - Annika Reintam Blaser
- Department of Anesthesiology and Intensive Care, University of Tartu, 50090 Tartu, Estonia
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, 6110 Lucerne, Switzerland
| | - Manu L. N. G. Malbrain
- First Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Medical Data Management, Medaman, 2440 Geel, Belgium
- International Fluid Academy, 3360 Lovenjoel, Belgium
| |
Collapse
|