1
|
Peng X, Li F, Xia L, Lu M. Macrophage heterogeneity regulation by small extracellular vesicles from adipose-derived stem cells: A promising approach for treating chronic prostatitis/pelvic pain syndrome. BIOMATERIALS ADVANCES 2025; 166:214066. [PMID: 39413706 DOI: 10.1016/j.bioadv.2024.214066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an intractable aseptic disease. Modulating the transition of macrophages from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype offers an attractive therapeutic approach. Recently, small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) reportedly have potent modulatory abilities, however, their applications are limited by suboptimal targeting. Our group hypothesized that surface modification of sEVs derived from ADSCs are useful for the management of CP/CPPS by promoting M1/M2 macrophage phenotypic transformation. In this study, a novel nanomaterial (CD86-sEVs) is designed for CP/CPPS treatment using click chemistry, a bioconjugation technique enabling robust covalent linkages. The results of immunofluorescence staining, western blot and ELISA confirmed that azide-modified CD86 antibody was successfully conjugated onto the sEVs surface. In vitro, CD86-sEVs significantly accelerated M1 macrophage polarization to M2 and upregulated anti-inflammatory factors. In vivo, CD86-sEVs targeted the prostatic lesion region, alleviated chronic pelvic pain, and inhibited inflammation by promoting M1/M2 phenotype shift. Furthermore, miRNA array analysis identified specific miRNAs (miR-26a, miR-147, miR-17, miR-21, miR-182, miR-451a) within CD86-sEVs that likely contributed to these observed effects. In sum, this study presents a novel paradigm for the treatment of CP/CPPS.
Collapse
Affiliation(s)
- Xufeng Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Fangzhou Li
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lei Xia
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| | - Mujun Lu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China.
| |
Collapse
|
2
|
Yang W, Zhang X, Wang Z, Zheng X, Wu W, Chen Q. PLGA microspheres carrying EMSCs-CM for the effective treatment of murine ulcerative colitis. Int Immunopharmacol 2024; 141:112883. [PMID: 39153305 DOI: 10.1016/j.intimp.2024.112883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Ectodermal mesenchymal stem cells-derived conditioned medium (EMSCs-CM) has been reported to protect against ulcerative colitis (UC) in mice, but its underlying mechanism in alleviating UC need to be further elucidated. Here, it is reported that EMSCs-CM could attenuate pro-inflammatory response of LPS-induced IEC-6 cells and regulate the polarization of macrophages towards anti-inflammatory type in vitro. Furthermore, PLGA microspheres prepared by the double emulsion method were constructed for oral delivery of EMSCs-CM (EMSCs-CM-PLGA), which are beneficial for colon-targeted adhesion of EMSCs-CM to the damaged colon mucosa. The results showed that orally-administered of EMSCs-CM-PLGA microspheres reduced inflammatory cells infiltration and maintained the intestinal mucosal barrier. Further investigation found that EMSCs-CM-PLGA microspheres treatment gradually inhibited the activation of NF-κB pathway to regulate M1/M2 polarization balance in colon tissue macrophages, thereby alleviating DSS-induced UC. These results of this study will provide a theoretical basis for clinical application of EMSCs-CM in UC repair.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| | - Xingxing Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowen Zheng
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Weijiang Wu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Peng T, Chai M, Chen Z, Wu M, Li X, Han F, Chen S, Liao C, Yue M, Song YQ, Wu H, Tian L, An G. Exosomes from Hypoxia Preconditioned Muscle-Derived Stem Cells Enhance Cell-Free Corpus Cavernosa Angiogenesis and Reproductive Function Recovery. Adv Healthc Mater 2024; 13:e2401406. [PMID: 39007245 DOI: 10.1002/adhm.202401406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns. Therefore, acellular tissue regeneration may avoid these issues. Exosomes are used from muscle-derived stem cells (MDSCs) to modify 3D-printed hydrogel scaffolds for acellular tissue regeneration. Hypoxia-preconditioned MDSC-derived exosomes are obtained to enhance the therapeutic effect. In contrast to normoxic exosomes (N-Exos), hypoxic exosomes (H-Exos) are found to markedly enhance the proliferation, migration, and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). High-throughput sequencing analysis of miRNAs isolated from both N-Exos and H-Exos revealed a significant upregulation of miR-21-5p in H-Exos following hypoxic preconditioning. Further validation demonstrated that the miR-21-5p/PDCD4 pathway promoted the proliferation of HUVECs. Epigallocatechin gallate (EGCG) is introduced to improve the mechanical properties and biocompatibility of GelMA hydrogels. EGCG-GelMA scaffolds loaded with different types of Exos are transplanted to repair rabbit penile corpora cavernosa defects, observed the blood flow and repair status of the defect site through color Doppler ultrasound and magnetic resonance imaging, and ultimately restored the rabbit penile erection function and successfully bred offspring. Thus, acellular hydrogel scaffolds offer an effective treatment for penile corpora cavernosa defects.
Collapse
Affiliation(s)
- Tianwen Peng
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Muyuan Chai
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhicong Chen
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Man Wu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Feixue Han
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Shuyan Chen
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Chen Liao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Ming Yue
- School of Biomedical Sciences, AIDS Institute and Department of Microbiology, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - You-Qiang Song
- School of Biomedical Sciences, The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
| | - Long Tian
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, P. R. China
| | - Geng An
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| |
Collapse
|
4
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
5
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Muskan M, Abeysinghe P, Cecchin R, Branscome H, Morris KV, Kashanchi F. Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles. Mol Ther 2024; 32:2939-2949. [PMID: 38414242 PMCID: PMC11403218 DOI: 10.1016/j.ymthe.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/21/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.
Collapse
Affiliation(s)
- Muskan Muskan
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Pevindu Abeysinghe
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Riccardo Cecchin
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Heather Branscome
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA
| | - Kevin V Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
| | - Fatah Kashanchi
- George Mason University, School of Systems Biology, Fairfax, VA 22030, USA.
| |
Collapse
|
7
|
He S, Wang S, Liu R, Chen H, Wang Q, Jia D, Chen L, Dai J, Li X. Conditioned Medium of Infrapatellar Fat Stem Cells Alleviates Degradation of Chondrocyte Extracellular Matrix and Delays Development of Osteoarthritis. Gerontology 2024; 70:1171-1187. [PMID: 39159625 DOI: 10.1159/000540505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a prevalent clinical chronic degenerative condition characterized by the degeneration of articular cartilage. Currently, drug treatments for OA come with varying degrees of side effects, making the development of new therapeutic approaches for OA imperative. Mesenchymal stem cells (MSCs) are known to mitigate the progression of OA primarily through paracrine effects. The conditioned medium (CM) derived from MSCs encapsulates a variety of paracrine factors secreted by these cells. METHODS In this study, we investigated the effect of the CM of infrapatellar fat pad-derived MSCs (IPFSCs) on OA in vitro and in vivo, as well as and the potential underlying mechanisms. We established three experimental groups: the normal group, the OA group, and the CM intervention group. In vitro experiments, we used methods such as qPCR, Western blot, immunofluorescence, and flow cytometry to detect the impact of CM on OA chondrocytes. In vivo experiments, we evaluated the changes in the knee joints of OA rats after intra-articular injection of CM treatment. RESULTS The results showed that injection of CM into the knee joint inhibited OA development in a rat model induced by destabilization of the medial meniscus and anterior cruciate ligament transection. The CM increased the deposition of extracellular matrix-related components (type II collagen and Proteoglycan). The activation of PI3K/AKT/NF-κB signaling pathway was induced by IL-1β in chondrocytes, which was finally inhibited by CM-IPFSCs treatment. CONCLUSION In summary, IPFSCs-CM may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Shiping He
- Panzhihua Central Hospital, Panzhihua, China
| | - Shihan Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Ruizhou Liu
- Medical College of Zhejiang University, Hangzhou, China,
| | - Hui Chen
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Qiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Dazhou Jia
- Department of Orthopedics, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Longchi Chen
- Yangzhou Clinical School of Xuzhou Medical University, Yangzhou, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaolei Li
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Zhou B, Chen Q, Zhang Q, Tian W, Chen T, Liu Z. Therapeutic potential of adipose-derived stem cell extracellular vesicles: from inflammation regulation to tissue repair. Stem Cell Res Ther 2024; 15:249. [PMID: 39113098 PMCID: PMC11304935 DOI: 10.1186/s13287-024-03863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Inflammation is a key pathological feature of many diseases, disrupting normal tissue structure and resulting in irreversible damage. Despite the need for effective inflammation control, current treatments, including stem cell therapies, remain insufficient. Recently, extracellular vesicles secreted by adipose-derived stem cells (ADSC-EVs) have garnered attention for their significant anti-inflammatory properties. As carriers of bioactive substances, these vesicles have demonstrated potent capabilities in modulating inflammation and promoting tissue repair in conditions such as rheumatoid arthritis, osteoarthritis, diabetes, cardiovascular diseases, stroke, and wound healing. Consequently, ADSC-EVs are emerging as promising alternatives to conventional ADSC-based therapies, offering advantages such as reduced risk of immune rejection, enhanced stability, and ease of storage and handling. However, the specific mechanisms by which ADSC-EVs regulate inflammation under pathological conditions are not fully understood. This review discusses the role of ADSC-EVs in inflammation control, their impact on disease prognosis, and their potential to promote tissue repair. Additionally, it provides insights into future clinical research focused on ADSC-EV therapies for inflammatory diseases, which overcome some limitations associated with cell-based therapies.
Collapse
Affiliation(s)
- Bohuai Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiuwen Zhang
- The Affiliated Stomatological Hospital Southwest Medical University, Luzhou, 646000, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Shang C, Su Y, Ma J, Li Z, Wang P, Ma H, Song J, Zhang Z. Huanshaodan regulates microglial glucose metabolism reprogramming to alleviate neuroinflammation in AD mice through mTOR/HIF-1α signaling pathway. Front Pharmacol 2024; 15:1434568. [PMID: 39130642 PMCID: PMC11310104 DOI: 10.3389/fphar.2024.1434568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Abnormal glucose metabolism in microglial is closely associated with Alzheimer's disease (AD). Reprogramming of microglial glucose metabolism is centered on regulating the way in which microglial metabolize glucose to alter microglial function. Therefore, reprogramming microglial glucose metabolism is considered as a therapeutic strategy for AD. Huanshaodan (HSD) is a Chinese herbal compound which shows significant efficacy in treating AD, however, the precise mechanism by which HSD treats AD remains unclear. This study is aim to investigate whether HSD exerts anti-AD effects by regulating the metabolic reprogramming of microglial through the mTOR/HIF-1α signaling pathway. SAMP8 mice and BV2 cells were used to explore the alleviative effect of HSD on AD and the molecular mechanism in vivo and in vitro. The pharmacodynamic effects of HSD was evaluated by behavioral tests. The pathological deposition of Aβ in brain of mice was detected by immunohistochemistry. ELISA method was used to measure the activity of HK2 and the expression of PKM2, IL-6 and TNF-α in hippocampus and cortex tissues of mice. Meanwhile, proteins levels of p-mTOR, mTOR, HIF-1α, CD86, Arg1 and IL-1β were detected by Western-blot. LPS-induced BV2 cells were treated with HSD-containing serum. The analysis of the expression profiles of the CD86 and CD206 markers by flow cytometry allows us to distinguish the BV2 polarization. Glucose, lactic acid, ATP, IL-6 and TNF-α levels, as well as lactate dehydrogenase and pyruvate dehydrogenase activities were evaluated in the BV2. Western-blot analysis was employed to detect mTOR, p-mTOR, HIF-1α and IL-1β levels in BV2. And the mTOR agonist MHY1485 (MHY) was chosen to reverse validate. In this study, it is found that HSD improved cognitive impairment in SAMP8 mice and reduced Aβ deposition, suppressed the levels of glycolysis and neuroinflammation in mice. In LPS-induced BV2 cells, HSD also regulated glycolysis and neuroinflammation, and suppressed the mTOR/HIF-1α signaling pathway. More importantly, these effects were reversed by MHY. It is demonstrated that HSD regulated microglial glucose metabolism reprogramming by inhibiting the mTOR/HIF-1α signaling pathway, alleviated neuroinflammation, and exerted anti-AD effects. This study provided scientific evidence for the clinical application of HSD for treating AD.
Collapse
Affiliation(s)
- Congcong Shang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunfang Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinlian Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhonghua Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Pan Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Junying Song
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Cai H, Zhang Y, Meng F, Li Y. Effects of spinal cord injury associated exosomes delivered tRF-41 on the progression of spinal cord injury progression. Genomics 2024; 116:110885. [PMID: 38866256 DOI: 10.1016/j.ygeno.2024.110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating neurological and pathological condition. Exosomal tsRNAs have reported to be promising biomarkers for cancer diagnosis and therapy. This study aimed to investigate the roles of SCI-associated exosomes, and related tsRNA mechanisms in SCI. METHODS The serum of healthy controls and SCI patients at the acute stage were collected for exosomes isolation, and the two different exosomes were used to treat human astrocytes (HA). The cell viability, apoptosis, and cycle were determined, and the expression of the related proteins were detected by western blot. Then, the two different exosomes were sent for tsRNA sequencing, and four significant known differentially expressed tsRNAs (DE-tsRNAs) were selected for RT-qPCR validation. Finally, tRT-41 was chosen to further explore its roles and related mechanisms in SCI. RESULTS After sequencing, 21 DE-tsRNAs were identified, which were significantly enriched in pathways of Apelin, AMPK, Hippo, MAPK, Ras, calcium, PI3K-Akt, and Rap1. RT-qPCR showed that tRF-41 had higher levels in the SCI-associated exosomes. Compared with the control HA, healthy exosomes did not significantly affect the growth of HA cells, but SCI-associated exosomes inhibited viability of HA cells, while promoted their apoptosis and increased the HA cells in G2/M phase; but tRF-41 inhibitor reversed the actions of SCI-associated exosomes. Additionally, SCI-associated exosomes, similar with tRF-41 mimics, down-regulated IGF-1, NGF, Wnt3a, and β-catenin, while up-regulated IL-1β and IL-6; but tRF-41 inhibitor had the opposite actions, and reversed the effects induced by SCI-associated exosomes. CONCLUSIONS SCI-associated exosomes delivered tRF-41 may inhibit the growth of HA through regulating Wnt/ β-catenin pathway and inflammation response, thereby facilitating the progression of SCI.
Collapse
Affiliation(s)
- Hongfei Cai
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Zhang
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Fanyu Meng
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Li
- Department of Thoracic Surgery, Organ Transplantation Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
11
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|
12
|
Liu X, Chen H, Lei L, Yang P, Ju Y, Fan X, Fang B. Exosomes-carried curcumin based on polysaccharide hydrogel promote flap survival. Int J Biol Macromol 2024; 270:132367. [PMID: 38750860 DOI: 10.1016/j.ijbiomac.2024.132367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Flap grafting is a common technique used to repair skin defects in orthopedics and plastic and reconstructive surgeries. However, oxidative stress injury caused by ischemia and ischemia-reperfusion injury at the distal end of the skin flap can cause flap necrosis. Curcumin is a natural compound with anti-inflammatory and antioxidant properties that tackle oxidative stress. However, its applicability is limited by its poor water solubility. Exosomes are membranous vesicles that can be loaded with hydrophobic drugs. They are widely studied in drug delivery applications and can be investigated to augment curcumin efficiency. In this study, a self-healing oxidized pullulan polysaccharide-carboxymethylated chitosan composite hydrogel was used as a curcumin-loaded exosome delivery system to evaluate its impact on the viability of skin flaps. The hydrogel exhibited good self-healing properties that allowed the continuous and stable release of drugs. It had anti-inflammatory and antioxidant properties that could reduce oxidative stress damage due to early ischemia and hypoxia of the skin flap in vitro. Moreover, this composite hydrogel attenuated inflammatory responses, promoted angiogenesis, and reduced the distal necrosis of the flap in vivo. Therefore, our hydrogel provides a novel strategy for skin flap graft protection with reduced necrosis and the potential for broad clinical applications.
Collapse
Affiliation(s)
- Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, 410011 Changsha, China.
| |
Collapse
|
13
|
He J, Shan S, Jiang T, Zhou S, Qin J, Li Q, Yu Z, Cao D, Fang B. Mechanical stretch preconditioned adipose-derived stem cells elicit polarization of anti-inflammatory M2-like macrophages and improve chronic wound healing. FASEB J 2024; 38:e23626. [PMID: 38739537 DOI: 10.1096/fj.202300586r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taoran Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sizheng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Qin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheyuan Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dejun Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Yu M, Wu Y, Li Q, Hong W, Yang Y, Hu X, Yang Y, Lu T, Zhao X, Wei X. Colony-stimulating factor-1 receptor inhibition combined with paclitaxel exerts effective antitumor effects in the treatment of ovarian cancer. Genes Dis 2024; 11:100989. [PMID: 38303927 PMCID: PMC10831816 DOI: 10.1016/j.gendis.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/08/2023] [Indexed: 02/03/2024] Open
Abstract
Ovarian cancer is the tumor with the highest mortality among gynecological malignancies. Studies have confirmed that paclitaxel chemoresistance is associated with increased infiltration of tumor-associated macrophages (TAMs) in the microenvironment. Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) plays a key role in regulating the number and differentiation of macrophages in certain solid tumors. There are few reports on the effects of targeted inhibition of CSF-1R in combination with chemotherapy on ovarian cancer and the tumor microenvironment. Here, we explored the antitumor efficacy and possible mechanisms of the CSF - 1R inhibitor pexidartinib (PLX3397) when combined with the first-line chemotherapeutic agent paclitaxel in the treatment of ovarian cancer. We found that CSF-1R is highly expressed in ovarian cancer cells and correlates with poor prognosis. Treatment by PLX3397 in combination with paclitaxel significantly inhibited the growth of ovarian cancer both in vitro and in vivo. Blockade of CSF-1R altered the macrophage phenotype and reprogrammed the immunosuppressive cell population in the tumor microenvironment.
Collapse
Affiliation(s)
- Meijia Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Yiming Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyi Hu
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanfei Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
15
|
Feng Q, Zhang M, Zhang G, Mei H, Su C, Liu L, Wang X, Wan Z, Xu Z, Hu L, Nie Y, Li J. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J Mater Chem B 2024; 12:3719-3740. [PMID: 38529844 DOI: 10.1039/d3tb02898d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.
Collapse
Affiliation(s)
- Qingchen Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Guanning Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, China
| | - Hongxiang Mei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Chongying Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Lisa Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Xiaoxia Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Ziqianhong Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| | - Liangkui Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, no. 14, 3rd section, Renmin South Rd, Chengdu 610041, Sichuan, China.
| |
Collapse
|
16
|
Safhi AY, Albariqi AH, Sabei FY, Alsalhi A, Khalil FMA, Waheed A, Arbi FM, White A, Anthony S, Alissa M. Journey into tomorrow: cardiovascular wellbeing transformed by nano-scale innovations. Curr Probl Cardiol 2024; 49:102428. [PMID: 38311274 DOI: 10.1016/j.cpcardiol.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Worldwide, cardiovascular diseases (CVDs) account for the vast majority of deaths and place enormous financial strains on healthcare systems. Gold nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes, and lipids are innovative nanomaterials promising in tackling CVDs. In the setting of CVDs, these nanomaterials actively impact cellular responses due to their distinctive properties, including surface energy and topographies. Opportunities to more precisely target CVDs have arisen due to recent developments in nanomaterial science, which have introduced fresh approaches. An in-depth familiarity with the illness and its targeted mechanisms is necessary to use nanomaterials in CVDs effectively. We support the academic community's efforts to prioritize Nano-technological techniques in addressing risk factors linked with cardiovascular diseases, acknowledging the far-reaching effects of these conditions. The significant impact of nanotechnology on the early detection and treatment of cardiovascular diseases highlights the critical need for novel approaches to this pressing health problem, which is affecting people worldwide.
Collapse
Affiliation(s)
- Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ahmed H Albariqi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Collage of Science and Art, Department of Biology, Mohayil Asir Abha 61421, Saudi Arabia
| | | | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Alexandra White
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, PR China
| | - Stefan Anthony
- Cardiovascular Center of Excellence at Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
17
|
Duan J, Chen Z, Liang X, Chen Y, Li H, Liu K, Gui L, Wang X, Li Y, Yang J. Engineering M2-type macrophages with a metal polyphenol network for peripheral artery disease treatment. Free Radic Biol Med 2024; 213:138-149. [PMID: 38218551 DOI: 10.1016/j.freeradbiomed.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Functional cell treatment for critical limb ischemia is limited by cell viability loss and dysfunction resulting from a harmful ischemic microenvironment. Metal-polyphenol networks have emerged as novel cell delivery vehicles for protecting cells from the detrimental ischemic microenvironment and prolonging the survival rate of cells in the ischemic microenvironment. M2 macrophages are closely related to tissue repair, and they secrete anti-inflammatory factors that contribute to lesion repair. However, these cells are easily metabolized in the body with low efficiency. Herein, M2 macrophages were decorated with a metal‒polyphenol network that contains copper ions and epigallocatechin gallate (Cu-EGCG@M2) to increase cell survival and therapeutic potential. Cu-EGCG@M2 synergistically promoted angiogenesis through the inherent angiogenesis effect of M2 macrophages and copper ions. We found that Cu-EGCG@M2 increased in vitro viability and strengthened the in vivo therapeutic effect on the ischemic hindlimbs of mice, which promoted the recovery of blood and muscle regeneration, resulting in superior limb salvage. These therapeutic effects were ascribed to the increased survival rate and therapeutic period of M2 macrophages, as well as the ameliorated microenvironment at the ischemic site. Additionally, Cu-EGCG exhibited antioxidant, anti-inflammatory, and proangiogenic effects. Our findings provide a feasible option for cell-based treatment of CLI.
Collapse
Affiliation(s)
- Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China; Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Nankai University Affiliated Third Center Hospital, Tianjin ECMO Treatment and Training Base, Artificial Cell Engineering Technology Research Center, Tianjin, 300170, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, 300192, PR China.
| |
Collapse
|
18
|
Wang BJ, Chen YY, Chang HH, Chen RJ, Wang YJ, Lee YH. Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury. Part Fibre Toxicol 2024; 21:9. [PMID: 38419076 PMCID: PMC10900617 DOI: 10.1186/s12989-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs. RESULTS We demonstrated that ZnONPs exacerbated mouse skin damage after UVB exposure, followed by increased transepidermal water loss (TEWL) levels, cell death and epithelial thickness. In addition, ZnONPs could penetrate through the damaged epithelium, gain access to the dermis cells, and lead to severe inflammation by activation of M1 macrophage. Mechanistic studies indicated that co-exposure of keratinocytes to UVB and ZnONPs lysosomal impairment and autophagy dysfunction, which increased cell exosome release. However, these exosomes could be taken up by macrophages, which accelerated M1 macrophage polarization. Furthermore, ZnONPs also induced a lasting inflammatory response in M1 macrophages and affected epithelial cell repair by regulating the autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. CONCLUSIONS Our findings propose a new concept for ZnONP-induced skin toxicity mechanisms and the safety issue of ZnONPs application on vulnerable skin. The process involved an interplay of lysosomal impairment, autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. The current finding is valuable for evaluating the effects of ZnONPs for cosmetics applications.
Collapse
Affiliation(s)
- Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, 70403, Taiwan
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hui-Hsuan Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 406040, Taiwan.
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
19
|
Ju Y, Yang P, Liu X, Qiao Z, Shen N, Lei L, Fang B. Microenvironment Remodeling Self-Healing Hydrogel for Promoting Flap Survival. Biomater Res 2024; 28:0001. [PMID: 38390027 PMCID: PMC10882600 DOI: 10.34133/bmr.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024] Open
Abstract
Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia-reperfusion injury and inadequate blood supply to the distal flap. Ischemia-reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin-chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.
Collapse
Affiliation(s)
- Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhihua Qiao
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
20
|
Zhang RY, Cheng K, Huang ZY, Zhang XS, Li Y, Sun X, Yang XQ, Hu YG, Hou XL, Liu B, Chen W, Fan JX, Zhao YD. M1 macrophage-derived exosome for reprograming M2 macrophages and combining endogenous NO gas therapy with enhanced photodynamic synergistic therapy in colorectal cancer. J Colloid Interface Sci 2024; 654:612-625. [PMID: 37862809 DOI: 10.1016/j.jcis.2023.10.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Reprogramming immunosuppressive M2 macrophages into M1 macrophages in tumor site provides a new strategy for the immunotherapy of colorectal cancer. In this study, M1 macrophage-derived exosome nanoprobe (M1UC) with Ce6-loaded upconversion material is designed to enhance the photodynamic performance of Ce6 while reprogramming M2 macrophages at tumor site and producing NO gas for three-mode synergistic therapy. Under the excitation of near-infrared light at 808 nm, the probe can generate 660 nm up-conversion fluorescence, which enables the photosensitizer Ce6 to produce ROS efficiently. In addition, the probe leads the production of NO by nitric oxide synthase on exosomes. Confocal laser and flow cytometry results show that M1UC probe reprograms M2 macrophages into M1 macrophages with an efficiency of 95.12%. The cell experiments show that the apoptosis rate of the three-mode synergistic therapy group is 78.8%, and the therapeutic effect is significantly higher than those of the other single treatment groups. In vivo experiments results show that M1UC probes maximally gather at the tumor site after 12 h of intravenous injection in orthotopic colorectal cancer mice. After 808 nm laser irradiation, the survival rate of mice is 100% and the recurrence rate was 0 within 60 d, and the therapeutic effect is significantly higher than those of other single treatment groups, which is also confirmed by immunohistochemistry. This M1 macrophage-derived exosome nanoplatform which is based on the three modes of immunotherapy, gas therapy and photodynamic therapy, provides a new design idea for the diagnosis and treatment of deep tumors.
Collapse
Affiliation(s)
- Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, Hubei, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zhuo-Yao Huang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Basic Medical Laboratory, General Hospital of Central Theater Command, Wuhan 430081, Hubei, PR China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xing Sun
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
21
|
Wies Mancini VSB, Mattera VS, Pasquini JM, Pasquini LA, Correale JD. Microglia-derived extracellular vesicles in homeostasis and demyelination/remyelination processes. J Neurochem 2024; 168:3-25. [PMID: 38055776 DOI: 10.1111/jnc.16011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Microglia (MG) play a crucial role as the predominant myeloid cells in the central nervous system and are commonly activated in multiple sclerosis. They perform essential functions under normal conditions, such as actively surveying the surrounding parenchyma, facilitating synaptic remodeling, engulfing dead cells and debris, and protecting the brain against infectious pathogens and harmful self-proteins. Extracellular vesicles (EVs) are diverse structures enclosed by a lipid bilayer that originate from intracellular endocytic trafficking or the plasma membrane. They are released by cells into the extracellular space and can be found in various bodily fluids. EVs have recently emerged as a communication mechanism between cells, enabling the transfer of functional proteins, lipids, different RNA species, and even fragments of DNA from donor cells. MG act as both source and recipient of EVs. Consequently, MG-derived EVs are involved in regulating synapse development and maintaining homeostasis. These EVs also directly influence astrocytes, significantly increasing the release of inflammatory cytokines like IL-1β, IL-6, and TNF-α, resulting in a robust inflammatory response. Furthermore, EVs derived from inflammatory MG have been found to inhibit remyelination, whereas Evs produced by pro-regenerative MG effectively promote myelin repair. This review aims to provide an overview of the current understanding of MG-derived Evs, their impact on neighboring cells, and the cellular microenvironment in normal conditions and pathological states, specifically focusing on demyelination and remyelination processes.
Collapse
Affiliation(s)
- V S B Wies Mancini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - V S Mattera
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L A Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J D Correale
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| |
Collapse
|
22
|
Ahmed W, Huang S, Chen L. Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opin Drug Deliv 2024; 21:91-110. [PMID: 38258509 DOI: 10.1080/17425247.2024.2306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Using engineered exosomes produced from stem cells is an experimental therapeutic approach for treating brain diseases. According to reports, preclinical research has demonstrated notable neurogenesis and angiogenesis effects using modified stem cell-derived exosomes. These biological nanoparticles have a variety of anti-apoptotic, anti-inflammatory, and antioxidant properties that make them very promising for treating nervous system disorders. AREAS COVERED This review examines different ways to enhance the delivery of modified stem cell-derived exosomes, how they infiltrate the blood-brain barrier (BBB), and how they facilitate their access to the brain. We would also like to determine whether these nanoparticles have the most significant transmission rates through BBB when targeting brain lesions. EXPERT OPINION Using engineered stem cell-derived exosomes for treating brain disorders has generated considerable attention toward clinical research and application. However, stem cell-derived exosomes lack consistency, and their mechanisms of action are uncertain. Therefore, upcoming research needs to prioritize examining the underlying mechanisms and strategies via which these nanoparticles combat neurological disorders.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Songze Huang
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Zhong T, Gao N, Guan Y, Liu Z, Guan J. Co-Delivery of Bioengineered Exosomes and Oxygen for Treating Critical Limb Ischemia in Diabetic Mice. ACS NANO 2023; 17:25157-25174. [PMID: 38063490 PMCID: PMC10790628 DOI: 10.1021/acsnano.3c08088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Diabetic patients with critical limb ischemia face a high rate of limb amputation. Regeneration of the vasculature and skeletal muscles can salvage diseased limbs. Therapy using stem cell-derived exosomes that contain multiple proangiogenic and promyogenic factors represents a promising strategy. Yet the therapeutic efficacy is not optimal because exosomes alone cannot efficiently rescue and recruit endothelial and skeletal muscle cells and restore their functions under hyperglycemic and ischemic conditions. To address these limitations, we fabricated ischemic-limb-targeting stem cell-derived exosomes and oxygen-releasing nanoparticles and codelivered them in order to recruit endothelial and skeletal muscle cells, improve cell survival under ischemia before vasculature is established, and restore cell morphogenic function under high glucose and ischemic conditions. The exosomes and oxygen-releasing nanoparticles, delivered by intravenous injection, specifically accumulated in the ischemic limbs. Following 4 weeks of delivery, the exosomes and released oxygen synergistically stimulated angiogenesis and muscle regeneration without inducing substantial inflammation and reactive oxygen species overproduction. Our work demonstrates that codelivery of exosomes and oxygen is a promising treatment solution for saving diabetic ischemic limbs.
Collapse
Affiliation(s)
- Ting Zhong
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ning Gao
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ya Guan
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhongting Liu
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jianjun Guan
- Department of Mechanical Engineering & Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
24
|
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, Lin J, Wang J, Pan X, Xue X. MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnology 2023; 21:486. [PMID: 38105181 PMCID: PMC10726686 DOI: 10.1186/s12951-023-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tian Xia
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiguang Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shoaib Iqbal
- Feik School of Pharmacy, University of the Incarnate Word, Broadway, San Antonio, 4301, USA
| | - Haixiao Liu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jilong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Holvoet P. Aging and Metabolic Reprogramming of Adipose-Derived Stem Cells Affect Molecular Mechanisms Related to Cardiovascular Diseases. Cells 2023; 12:2785. [PMID: 38132104 PMCID: PMC10741778 DOI: 10.3390/cells12242785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
We performed a systematic search of the PubMed database for English-language articles related to the function of adipose-derived stem cells in the pathogenesis of cardiovascular diseases. In preclinical models, adipose-derived stem cells protected arteries and the heart from oxidative stress and inflammation and preserved angiogenesis. However, clinical trials did not reiterate successful treatments with these cells in preclinical models. The low success in patients may be due to aging and metabolic reprogramming associated with the loss of proliferation capacity and increased senescence of stem cells, loss of mitochondrial function, increased oxidative stress and inflammation, and adipogenesis with increased lipid deposition associated with the low potential to induce endothelial cell function and angiogenesis, cardiomyocyte survival, and restore heart function. Then, we identify noncoding RNAs that may be mechanistically related to these dysfunctions of human adipose-derived stem cells. In particular, a decrease in let-7, miR-17-92, miR-21, miR-145, and miR-221 led to the loss of their function with obesity, type 2 diabetes, oxidative stress, and inflammation. An increase in miR-34a, miR-486-5p, and mir-24-3p contributed to the loss of function, with a noteworthy increase in miR-34a with age. In contrast, miR-146a and miR-210 may protect stem cells. However, a systematic analysis of other noncoding RNAs in human adipose-derived stem cells is warranted. Overall, this review gives insight into modes to improve the functionality of human adipose-derived stem cells.
Collapse
Affiliation(s)
- Paul Holvoet
- Division of Experimental Cardiology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
26
|
Guo D, Huang Y, Wang K, Yang C, Ma L, Zhang Y, Yu H, Cui M, Tang Z. Preparation and Characterization Evaluation of Poly(L-Glutamic Acid)- g-Methoxy Poly(Ethylene Glycol)/Combretastatin A4/BLZ945 Nanoparticles for Cervical Cancer Therapy. Int J Nanomedicine 2023; 18:6901-6914. [PMID: 38026524 PMCID: PMC10676729 DOI: 10.2147/ijn.s441131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Cervical cancer (CC) is a highly vascularized tumor with abundant abnormal blood vessel, which could be targeted by therapeutic strategies. Poly(L-glutamic acid)-g-methoxy poly(ethylene glycol)/combretastatin A4 (CA4)/BLZ945 nanoparticles (CB-NPs) have shown great potential as nano vascular disrupting agents (VDAs) in the realm of synergistic cancer therapy. Methods In this study, we investigated the nanocharacteristics of CB-NPs, focusing on active pharmaceutical ingredients (API), as well as lyophilized samples combining API with protective agents (PAs). The in vivo efficacy of final sample (API + PAs) was evaluated. Results The assembled sphere of API with complex core and thin-shell structure was confirmed. PAs were found to significantly influence in vivo efficacy. Collaborative efforts between API and PAs, namely mannitol and lactose, resulted in the most promising lyophilized sample, ie, the final sample (FS2) for CC therapy. Impressively, FS2 demonstrated an exceptional 100% cure rate on the CC U14-bearing mice model. Conclusion FS2 has provided significant insights for cervical cancer therapy. It is also crucial to develop a comprehensive evaluation strategy for the formulation of nanomedicine, which has the potential to serve as a guideline for future clinical trials.
Collapse
Affiliation(s)
- Dongmei Guo
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, People’s Republic of China
| | - Yue Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Kun Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chenguang Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Lili Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Haiyang Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Manhua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin Province, 130041, People’s Republic of China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| |
Collapse
|
27
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
28
|
Zeng Y, Gao Y, He L, Ge W, Liu J, Yu Y, Xie X. Multifunctional polysaccharide composited microneedle for oral ulcers healing. Mater Today Bio 2023; 22:100782. [PMID: 37706204 PMCID: PMC10495667 DOI: 10.1016/j.mtbio.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Oral ulcers have periodicity and recurrence, and the etiology and causative mechanisms remain unclear; therefore, it is difficult to treat oral ulcers effectively. Current clinical treatment methods mainly include pain relief and administration of anti-inflammatories to prevent secondary infections and a prolonged recurrence cycle. However, these traditional treatment methods are administered independently and are susceptible to muscle movements and constant salivary secretion in the mouth, resulting in ineffective drug functioning. Therefore, development of a novel treatment to reduce wound infection and accelerate wound healing for oral ulcers is required for effective treatment. Herein, we report a multifunctional polysaccharide composite microneedle patch based on hyaluronic acid (HA) and hydroxypropyl trimethyl ammonium chloride chitosan (HACC) loaded with dexamethasone (DXMS) and basic fibroblast growth factor (bFGF) for oral ulcer healing. DXMS and bFGF encapsulated the HA tip portion of the microneedle patch, endowing the microneedle patches with anti-inflammatory and angiogenic properties. HACC was applied to the back of the microneedle patch, adding antibacterial properties. The experimental results indicated that the prepared dressings exhibited good antibacterial activity and effectively promoted cell migration growth and angiogenesis. More importantly, animal experiments have shown that multifunctional microneedle patches can effectively promote oral ulcer healing. Thus, these novel multifunctional polysaccharide composite microneedle patches have great potential for oral ulcers treatment.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital, Changsha, 410004, PR China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Junhui Liu
- Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410000, PR China
| | - Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| |
Collapse
|
29
|
Khanduri I, Maru DM, Parra ER. Exploratory study of macrophage polarization and spatial distribution in colorectal cancer liver metastasis: a pilot study. Front Immunol 2023; 14:1223864. [PMID: 37637998 PMCID: PMC10449458 DOI: 10.3389/fimmu.2023.1223864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Background The liver is the most typical site of metastatic disease for patients with colorectal cancer (CRC), and up to half the patients with CRC will develop colorectal liver metastasis (CLM). Studying the tumor microenvironment, particularly macrophages and their spatial distribution, can give us critical insight into treatment. Methods Ten CLMs (five treatment-naïve and five post-neoadjuvant chemotherapy) were stained with multiplex immunofluorescence panels against cytokeratins, CD68, Arg1, CD206, CD86, CD163, PD-L1, and MRP8-14. Densities of cell phenotypes and their spatial distribution in the tumor center and the normal liver-tumor interface were correlated with clinicopathological variables. Results M2 macrophages were the predominant subtype in both the tumor center and the periphery, with a relatively higher density at the periphery. The larger tumors, more than 3.9 cm, were associated with higher densities of total CD68+ macrophages and CD68+CD163+ CD206neg and CD68+CD206+ CD163neg M2 macrophage subtypes. Total macrophages in the tumor periphery demonstrated significantly greater proximity to malignant cells than did those in the tumor center (p=0.0371). The presence of higher than median CD68+MRP8-14+CD86neg M1 macrophages in the tumor center was associated with poor overall survival (median 2.34 years) compared to cases with lower than median M1 macrophages at the tumor center (median 6.41 years) in univariate analysis. Conclusion The dominant polarization of the M2 macrophage subtype could drive new therapeutic approaches in CLM patients.
Collapse
Affiliation(s)
- Isha Khanduri
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin R. Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
30
|
Xu L, Zhu Y, Cai H, Liu S, Cao Q, Zhuang Q. CX3CR1 regulates the development of renal interstitial fibrosis through macrophage polarization. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:957-966. [PMID: 37724398 PMCID: PMC10930042 DOI: 10.11817/j.issn.1672-7347.2023.220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 09/20/2023]
Abstract
OBJECTIVES The binding of CX3C chemokine receptor 1 (CX3CR1) and its unique ligand CX3C chemokine ligand 1 (CX3CL1) can promote the migration of inflammatory cells to the lesion and affect the progression of renal interstitial fibrosis, but the underlying mechanisms remain unclear. This study aims to investigate whether CX3CR1 affects renal interstitial fibrosis by macrophage polarization. METHODS A mouse model of renal interstitial fibrosis was established by unilateral ureteral obstruction (UUO). C57/B6 mice were divided into a CX3CR1 inhibitor group (injected with CX3CR1 inhibitor AZD8797) and a model group (injected with physiological saline). After continuous intraperitoneal injection for 5 days, the ligated lateral kidneys of mice were obtained on the 7th day. Hematoxylin and eosin (HE) staining and Masson staining were used to observe the infiltration of inflammatory cells and the collagen fiber deposition in renal interstitium, respectively. The mRNA and protein expressions of CX3CR1, alpha-smooth muscle actin (α-SMA) and fibronectin (FN) in the kidneys were detected by reverse transcription PCR (RT-PCR) and Western blotting, respectively. Differentially expressed genes in kidney of the 2 groups were identified by whole genome sequencing and the differential expression of arginase-1 (Arg-1) was verified by RT-PCR. Flow cytometry was used to detect the proportion of M2 type macrophages in kidneys of the 2 groups. RESULTS The infiltration of inflammatory cells and the collagen fiber deposition in renal interstitium were significantly reduced in the CX3CR1 inhibitor group. The mRNA and protein levels of CX3CR1 and the mRNA levels of α-SMA and FN in the CX3CR1 inhibitor group were significantly lower than those of the model group (all P<0.05). Whole genome sequencing showed that the top 5 differentially expressed genes in kidney of the 2 groups were Ugt1a6b, Serpina1c, Arg-1, Retnla, and Nup62. RT-PCR verified that the expression level of Arg-1 in kidney of the CX3CR1 inhibitor group was significantly higher than that of the model group (P<0.001). Flow cytometry showed that the proportion of Arg1+CD206+M2 macrophages in kidney of the CX3CR1 inhibitor group was significantly higher than that of the model group (P<0.01). CONCLUSIONS Inhibiting CX3CR1 can effectively prevent the progression of renal interstitial fibrosis. The mechanism may be related to macrophage polarization towards M2 type and upregulation of Arg-1 expression.
Collapse
Affiliation(s)
- Linyong Xu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013.
- School of Life Science, Central South University, Changsha 410013.
| | - Yanping Zhu
- School of Life Science, Central South University, Changsha 410013.
| | - Haozheng Cai
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Shu Liu
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Qingtai Cao
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Quan Zhuang
- Transplantation Center, Third Xiangya Hospital, Central South University, Changsha 410013.
- Research Center of National Health Commission on Transplantation Medicine, Changsha 410013, China.
| |
Collapse
|
31
|
Liu X, Liu H, Deng Y. Efferocytosis: An Emerging Therapeutic Strategy for Type 2 Diabetes Mellitus and Diabetes Complications. J Inflamm Res 2023; 16:2801-2815. [PMID: 37440994 PMCID: PMC10335275 DOI: 10.2147/jir.s418334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence indicates that chronic, low-grade inflammation is a significant contributor to the fundamental pathogenesis of type 2 diabetes mellitus (T2DM). Efferocytosis, an effective way to eliminate apoptotic cells (ACs), plays a critical role in inflammation resolution. Massive accumulation of ACs and the proliferation of persistent inflammation caused by defective efferocytosis have been proven to be closely associated with pancreatic islet β cell destruction, adipose tissue inflammation, skeletal muscle dysfunction, and liver metabolism abnormalities, which together are considered the most fundamental pathological mechanism underlying T2DM. Therefore, here we outline the association between the molecular mechanisms of efferocytosis in glucose homeostasis, T2DM, and its complications, and we analyzed the present constraints and potential future prospects for therapeutic targets in T2DM and its complications.
Collapse
Affiliation(s)
- Xun Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| | - Hua Liu
- Southern Theater General Hospital of the Chinese People’s Liberation Army, Guangzhou, Guangdong, 510010, People’s Republic of China
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People’s Republic of China
| |
Collapse
|
32
|
Han X, Yan T, Wang L, He B, Yu H. Knockdown of PTEN promotes colon cancer progression and induces M2 macrophage polarization in the colon cancer cell environment. INDIAN J PATHOL MICR 2023; 66:478-487. [PMID: 37530327 DOI: 10.4103/ijpm.ijpm_786_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective This article aims to study the effect of phosphate and tension homolog deleted on chromosome ten (PTEN) knockdown on colon cancer progression and macrophage polarization in the cancer environment. Materials and Methods and Results The expression of PTEN in colon cancer tissues and colon cancer cells was significantly lower than in precancerous tissues or CCD-18Co cells, and the decrease was most evident in SW620 cells. The expressions of phosphate (p)-p38, c-Jun N-terminal kinase (JNK), activator protein 1 (AP-1), B-cell lymphoma-2 (Bcl-2) protein in colon cancer tissues and cells were significantly higher than in precancerous tissues or CCD-18Co cells (P-values < 0.05). Bcl-2-associated X (Bax) and Caspase-3 expressions in colon cancer tissues and cells were significantly lower than in precancerous tissues or CCD-18Co cells (P-values < 0.05). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was applied to measure cell viability. Transwell evaluated the cell migration and invasion ability. Si-PTEN improved the proliferation, migration, and invasion of SW620 cells (P-values < 0.05). The expression levels of arginase-1 (Arg-1), CD163, CD206 in colon cancer tissues were significantly higher than in precancerous tissues (P-values < 0.05). The cell cycle, the number of M1 and M2 double-positive cells were assessed by flow cytometry. Si-PTEN reduced the expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and inducible nitric oxide synthase (iNOS), which upregulated the expression of Arg-1, CD206, CD163, p-p38, JNK, and AP-1 (P-values < 0.05). Conclusion Si-PTEN promoted colon cancer progression and induced the polarization of M2 tumor-associated macrophages in the colon cancer cell environment.
Collapse
Affiliation(s)
- Xu Han
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| | - Ting Yan
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| | - Lina Wang
- Department of General Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Bin He
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| | - Huaxu Yu
- General Surgery Department, The Fourth Hospital of Changsha, Changsha City, Hunan Province, China
| |
Collapse
|
33
|
Chen N, Wang YL, Sun HF, Wang ZY, Zhang Q, Fan FY, Ma YC, Liu FX, Zhang YK. Potential regulatory effects of stem cell exosomes on inflammatory response in ischemic stroke treatment. World J Stem Cells 2023; 15:561-575. [PMID: 37424949 PMCID: PMC10324506 DOI: 10.4252/wjsc.v15.i6.561] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023] Open
Abstract
The high incidence and disability rates of stroke pose a heavy burden on society. Inflammation is a significant pathological reaction that occurs after an ischemic stroke. Currently, therapeutic methods, except for intravenous thrombolysis and vascular thrombectomy, have limited time windows. Mesenchymal stem cells (MSCs) can migrate, differentiate, and inhibit inflammatory immune responses. Exosomes (Exos), which are secretory vesicles, have the characteristics of the cells from which they are derived, making them attractive targets for research in recent years. MSC-derived exosomes can attenuate the inflammatory response caused by cerebral stroke by modulating damage-associated molecular patterns. In this review, research on the inflammatory response mechanisms associated with Exos therapy after an ischemic injury is discussed to provide a new approach to clinical treatment.
Collapse
Affiliation(s)
- Na Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yan-Lin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hui-Fang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhuo-Ya Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fei-Yan Fan
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yu-Cheng Ma
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Fei-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Yun-Ke Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
34
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
35
|
Zhang Y, Fang M, Xie W, Zhang YA, Jiang C, Li N, Li L, Tian J, Zhou C. Sprayable alginate hydrogel dressings with oxygen production and exosome loading for the treatment of diabetic wounds. Int J Biol Macromol 2023:125081. [PMID: 37245773 DOI: 10.1016/j.ijbiomac.2023.125081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Chronic wound unhealing is a common complication in diabetic patients, which is mainly caused by tissue hypoxia, slow vascular recovery, and a long period of inflammation. Here we present a sprayable alginate hydrogel (SA) dressing consisting of oxygen-productive (CP) microspheres and exosomes (EXO) to promote local oxygen generation, accelerate macrophage towards M2 polarization, and improve cell proliferation in diabetic wounds. Results show that the release of oxygen continues for up to 7 days, reducing the expression of hypoxic factors in fibroblasts. In vivo, the diabetic wounds experiment showed that the CP/EXO/SA dressing apparently accelerated full-thickness wound healing characteristics such as the promotion of wound healing efficiency, rapid re-epithelization, favorable collagen deposition, abundant angiogenesis at the wound beds, and shortened inflammation period. EXO synergistic oxygen (CP/EXO/SA) dressing suggests a promising treatment measure for diabetic wounds.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Min Fang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Weijian Xie
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Yu-Ang Zhang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Chengye Jiang
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Na Li
- Foshan Stomatology Hospital, School of Medicine, Foshan University, Foshan, China
| | - Lihua Li
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China.
| | - Jinhuan Tian
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Engineering Research Center of Artificial Organs and Materials, Jinan University, Guangzhou 510632, China
| |
Collapse
|
36
|
Wang HW, Tang J, Sun L, Li Z, Deng M, Dai Z. Mechanism of immune attack in the progression of obesity-related type 2 diabetes. World J Diabetes 2023; 14:494-511. [PMID: 37273249 PMCID: PMC10236992 DOI: 10.4239/wjd.v14.i5.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity and overweight are widespread issues in adults, children, and adolescents globally, and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus (T2DM). Chronic low-grade inflammation is an important promotor of the pathogenesis of obesity-related T2DM. This proinflammatory activation occurs in multiple organs and tissues. Immune cell-mediated systemic attack is considered to contribute strongly to impaired insulin secretion, insulin resistance, and other metabolic disorders. This review focused on highlighting recent advances and underlying mechanisms of immune cell infiltration and inflammatory responses in the gut, islet, and insulin-targeting organs (adipose tissue, liver, skeletal muscle) in obesity-related T2DM. There is current evidence that both the innate and adaptive immune systems contribute to the development of obesity and T2DM.
Collapse
Affiliation(s)
- Hua-Wei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
37
|
Liu YJ, Wang C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun Signal 2023; 21:77. [PMID: 37055761 PMCID: PMC10100201 DOI: 10.1186/s12964-023-01103-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/15/2023] [Indexed: 04/15/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound structures that are released from cells into the surrounding environment. These structures can be categorized as exosomes, microvesicles, or apoptotic vesicles, and they play an essential role in intercellular communication. These vesicles are attracting significant clinical interest as they offer the potential for drug delivery, disease diagnosis, and therapeutic intervention. To fully understand the regulation of intercellular communication through EVs, it is essential to investigate the underlying mechanisms. This review aims to provide a summary of the current knowledge on the intercellular communications involved in EV targeting, binding, and uptake, as well as the factors that influence these interactions. These factors include the properties of the EVs, the cellular environment, and the recipient cell. As the field of EV-related intercellular communication continues to expand and techniques improve, we can expect to uncover more information about this complex area, despite the current limitations in our knowledge.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, D02 VF25, Ireland.
| |
Collapse
|
38
|
Gu L, Wang Z, Gu H, Wang H, Liu L, Zhang WB. Atf4 regulates angiogenic differences between alveolar bone and long bone macrophages by regulating M1 polarization, based on single-cell RNA sequencing, RNA-seq and ATAC-seq analysis. J Transl Med 2023; 21:193. [PMID: 36918894 PMCID: PMC10012539 DOI: 10.1186/s12967-023-04046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
In the repair of maxillofacial bone defects, autogenous craniofacial bone can often provide superior clinical results over long bone grafts. Most current studies have focused on the osteogenic differences between alveolar bone marrow (ABM) and long bone marrow (LBM), however, studies about the angiogenic differences between the two are currently lacking. We downloaded single-cell RNA sequencing (scRNA-seq) of mouse ABM and LBM respectively from the public database, and the data were processed by using Seurat package. CellphoneDB2 results showed that macrophages had the strongest interaction with mesenchymal stem cells (MSCs) and endothelial cells (ECs). ELISA results confirmed that ABM macrophages secreted a higher level of vascular endothelial growth factor A (Vegfa) compared to LBM macrophages, which further promoted angiogenesis of ECs and MSCs. Using SCENIC package, six key transcription factors (TFs) were identified to regulate the difference between ABM and LBM macrophages, and activating transcription factor 4 (Atf4) was confirmed to be more expressed in ABM macrophages by polymerase chain reaction (PCR) and western blot (WB), with predicted target genes including Vegfa. Besides, the result of scRNA-seq implied ABM macrophages more in M1 status than LBM macrophages, which was confirmed by the following experiments. From the results of another assay for transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq about M1 macrophages, Atf4 was also confirmed to regulate the M1 polarization. So, we suspected that Atf4 regulated the different expression of Vegfa between ABM and LBM macrophages by activating M1 polarization. After knocking down Atf4, the expression of M1 polarization markers and Vegfa were downregulated and vasculogenic differences were eliminated, which were subsequently reversed by the addition of LPS/IFN-γ. Our study might provide a new idea to improve the success rate of autologous bone grafting and treatment of oral diseases.
Collapse
Affiliation(s)
- Lanxin Gu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Zhongyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hong Gu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210029, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Luwei Liu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, 210029, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China.
| | - Wei-Bing Zhang
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China.
- Department of Stomatology, Medical Center of Soochow University, Suzhou, China.
- Department of Stomatology, Suzhou Dushu Lake Hospital, Suzhou, China.
| |
Collapse
|
39
|
Kang S, Yasuhara R, Tokumasu R, Funatsu T, Mishima K. Adipose-derived mesenchymal stem cells promote salivary duct regeneration via a paracrine effect. J Oral Biosci 2023; 65:104-110. [PMID: 36736698 DOI: 10.1016/j.job.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVES The self-regeneration of exocrine tissues, including salivary glands, is limited and their regeneration mechanism has not yet been fully elucidated. Here we identify the role of adipose-derived mesenchymal stem cells (AMSCs) in salivary gland regeneration. METHODS AMSCs expressing mesenchymal stem cell markers were applied to a submandibular gland injury model and the mechanism of salivary gland repair and regeneration was analyzed. RESULTS Transplanted green fluorescent protein (GFP)-labeled AMSCs grew tightly together and promoted ductal regeneration in the regenerative nodule, with slight infiltration of nonspecific immune cells. A comprehensive gene analysis through RNA-sequencing revealed increased expression of bone morphogenetic protein (BMP), transforming growth factor (TGF), and Wnt in AMSC-transplanted regenerative nodules. The factors released from AMSCs scavenge hydrogen peroxidase-induced reactive oxygen species (ROS) through Wnt promoter activity in vitro. Furthermore, AMSC-conditioned medium recovered the growth of the hydrogen peroxidase-damaged primordium of the submandibular gland culture ex vivo. CONCLUSIONS These results suggest that AMSC-released factors scavenge ROS and maintain salivary gland repair and regeneration via paracrine effects. Thus, AMSCs could be a practical and applicable tool for use in salivary gland regeneration.
Collapse
Affiliation(s)
- Seya Kang
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Special Needs Dentistry, Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
| | - Rino Tokumasu
- Department of Special Needs Dentistry, Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Takahiro Funatsu
- Department of Special Needs Dentistry, Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
40
|
Moeinabadi-Bidgoli K, Rezaee M, Hossein-Khannazer N, Babajani A, Aghdaei HA, Arki MK, Afaghi S, Niknejad H, Vosough M. Exosomes for angiogenesis induction in ischemic disorders. J Cell Mol Med 2023; 27:763-787. [PMID: 36786037 PMCID: PMC10003030 DOI: 10.1111/jcmm.17689] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Ischaemic disorders are leading causes of morbidity and mortality worldwide. While the current therapeutic approaches have improved life expectancy and quality of life, they are unable to "cure" ischemic diseases and instate regeneration of damaged tissues. Exosomes are a class of extracellular vesicles with an average size of 100-150 nm, secreted by many cell types and considered a potent factor of cells for paracrine effects. Since exosomes contain multiple bioactive components such as growth factors, molecular intermediates of different intracellular pathways, microRNAs and nucleic acids, they are considered as cell-free therapeutics. Besides, exosomes do not rise cell therapy concerns such as teratoma formation, alloreactivity and thrombotic events. In addition, exosomes are stored and utilized more convenient. Interestingly, exosomes could be an ideal complementary therapeutic tool for ischemic disorders. In this review, we discussed therapeutic functions of exosomes in ischemic disorders including angiogenesis induction through various mechanisms with specific attention to vascular endothelial growth factor pathway. Furthermore, different delivery routes of exosomes and different modification strategies including cell preconditioning, gene modification and bioconjugation, were highlighted. Finally, pre-clinical and clinical investigations in which exosomes were used were discussed.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siamak Afaghi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
41
|
Tumor Suppressor miR-613 Alleviates Non-Small Cell Lung Cancer Cell via Repressing M2 Macrophage Polarization. JOURNAL OF ONCOLOGY 2023; 2023:2311231. [PMID: 36844868 PMCID: PMC9950322 DOI: 10.1155/2023/2311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 02/18/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a crucial crux of cancer-related death, and M2 macrophage polarization facilitates NSCLC development. MicroRNA-613 (miR-613) is a tumor suppressor. This research aimed to clarify the miR-613 function in NSCLC and its impact on M2 macrophage polarization. Methods. miR-613 expressions in NSCLC tissues and cells were evaluated using quantitative real-time PCR. For miR-613 function in NSCLC, cell proliferation analysis, cell counting kit-8, flow cytometry, western blot, transwell, and wound-healing were conducted. Meanwhile, the miR-613 impact on M2 macrophage polarization was assessed by the NSCLC models. Results. miR-613 was lessened in NSCLC cells and tissues. It was corroborated that miR-613 overexpression retrained NSCLC cell proliferation, invasion, and migration but facilitated cell apoptosis. Moreover, miR-613 overexpression restrained NSCLC development by repressing M2 macrophage polarization. Conclusion Tumor suppressor miR-613 ameliorated NSCLC by restraining M2 macrophage polarization.
Collapse
|
42
|
Ding Y, Wan S, Ma L, Wei K, Ye K. PER1 promotes functional recovery of mice with hindlimb ischemia by inducing anti-inflammatory macrophage polarization. Biochem Biophys Res Commun 2023; 644:62-69. [PMID: 36634583 DOI: 10.1016/j.bbrc.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Hindlimb ischemia (HLI) is an arterial occlusive disease that exposes the patients to the risk of limb gangrene and loss. Polarization of macrophages is related to HLI-induced inflammation. Period circadian regulator 1 (PER1) is a core component of the circadian clock. We first showed, based upon bioinformatics analysis of microarray data, that PER1 expression was reduced in monocytes from patients with critical limb ischemia. The proximal femoral artery in the left hindlimb of male mice was ligated and then the femoral artery and its collateral branches were removed to establish the HLI mouse model. After modeling, a single intramuscular injection of 1 × 109 pfu Ad-PER1 was performed at the adductor and gastrocnemius muscles. The gastrocnemius muscle tissues were collected at day 0, 3, 7, 14, 21 post-HLI. There was obvious pathological necrosis, accompanied with reduced expression of PER1 in the muscle tissues of HLI mice. Expression of CD68 and CD31 seemed to be corresponded to PER1 in gastrocnemius muscle, implying the potential of PER1 in regulating macrophage-related inflammation and angiogenesis. PER1 overexpression diminished myocyte damage, promoted blood flow restoration and improved behavioral scores of HLI mice. Immunostaining of CD31 and α-SMA revealed that PER1 upregulation reversed HLI-induced decreases in capillary and arteriole density. In vitro, RAW264.7 cells were cultured in hypoxia (1% O2) for 24 h. The percentage of pro-inflammatory CD86+ macrophages (M1 type) was decreased and that of anti-inflammatory CD206+ macrophages (M2 type) was increased when PER1 was overexpressed. Moreover, the expression levels of TNF-α, IL-6 and M1-type marker iNOS were decreased, and levels of IL-10 and M2-type marker Arg-1 were increased by PER1 in gastrocnemius muscle of HLI mice and hypoxia-treated RAW264.7 cells. PER1 might reduce M1 macrophage polarization and promote M2 macrophage polarization, and thus exert anti-inflammatory and pro-angiogenic actions. Our findings suggest that PER1 overexpression promotes functional recovery of mice with HLI through regulating macrophage polarization.
Collapse
Affiliation(s)
- Yang Ding
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Shengyun Wan
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Long Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Kaikai Wei
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Kun Ye
- Department of Vascular Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
43
|
Ren S, Lin Y, Liu W, Yang L, Zhao M. MSC-Exos: Important active factor of bone regeneration. Front Bioeng Biotechnol 2023; 11:1136453. [PMID: 36814713 PMCID: PMC9939647 DOI: 10.3389/fbioe.2023.1136453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Bone defect and repair is a common but difficult problem in restorative and reconstructive surgery. Bone tissue defects of different sizes caused by different reasons bring functional limitations and cosmetic deformities to patients. Mesenchymal stem cells (MSC), a major hotspot in the field of regeneration in recent years, have been widely used in various studies on bone tissue regeneration. Numerous studies have shown that the bone regenerative effects of MSC can be achieved through exosome-delivered messages. Although its osteogenic mechanism is still unclear, it is clear that MSC-Exos can directly or indirectly support the action of bone regeneration. It can act directly on various cells associated with osteogenesis, or by carrying substances that affect cellular activators or the local internal environment in target cells, or it can achieve activation of the osteogenic framework by binding to materials. Therefore, this review aims to summarize the types and content of effective contents of MSC-Exos in bone regeneration, as well as recent advances in the currently commonly used methods to enable the binding of MSC-Exos to the framework and to conclude that MSC-Exos is effective in promoting osteogenesis.
Collapse
Affiliation(s)
- Sihang Ren
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China,NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Yuyang Lin
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Wenyue Liu
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Department of Biomaterials, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| | - Muxin Zhao
- Department of Plastic Surgery, The Second Hospital of Dalian Medical University, Dalian, China,*Correspondence: Liqun Yang, ; Muxin Zhao,
| |
Collapse
|
44
|
Extracellular vesicles derived from hypoxia-preconditioned bone marrow mesenchymal stem cells ameliorate lower limb ischemia by delivering miR-34c. Mol Cell Biochem 2023; 478:1645-1658. [PMID: 36729282 DOI: 10.1007/s11010-023-04666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Hypoxic mesenchymal stem cell-derived extracellular vesicles (EVs) have been suggested as a promising therapy for various diseases. This study aims to determine the effect of EVs derived from bone marrow mesenchymal stem cells (BMMSCs) under hypoxia on lower limb ischemia and the underlying mechanism. Human BMMSCs were subjected to hypoxia or normoxia followed by the isolation of EVs. Nanoparticle trafficking analysis (NTA), transmission electron microscopy (TEM), and Western Blotting using corresponding markers were performed to confirm the EVs. The EVs from BMMSCs under hypoxia condition (Hyp-EVs) or normoxia condition (Nor-EVs) were subjected to hindlimb ischemia (HI) mice. MiR-34c expression in BMMSCs and BMMSC-EVs was detected. The role of miR-34c in regulating M2 macrophage polarization, as well as the target of miR-34c, were explored. HI mice with Hyp-EV treatment, as compared to the Nor-EV or the PBS group, had better blood flow and higher capillary density. MiR-34c expression was increased in BMMSCs, BMMSC-EVs, and the adductor muscle of HI mice. Hyp-EVs promoted the M2 macrophage polarization and anti-inflammatory cytokine production, and enhanced the blood flow and capillary density in HI mice, while the knockdown of miR-34c partly reversed these effects. PTEN is a target of miR-34c, and the PTEN silencing facilitated M2 macrophage polarization, whereas the inhibition of AKT signaling partly abolished the effect. Hyp-EVs promoted M2 macrophage polarization by delivering miR-34c via PTEN/AKT pathway, which could be a promising therapeutic strategy to ameliorate lower limb ischemia.
Collapse
|
45
|
Li B, Sun S, Li JJ, Yuan JP, Sun SR, Wu Q. Adipose tissue macrophages: implications for obesity-associated cancer. Mil Med Res 2023; 10:1. [PMID: 36593475 PMCID: PMC9809128 DOI: 10.1186/s40779-022-00437-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Obesity is one of the most serious global health problems, with an incidence that increases yearly and coincides with the development of cancer. Adipose tissue macrophages (ATMs) are particularly important in this context and contribute to linking obesity-related inflammation and tumor progression. However, the functions of ATMs on the progression of obesity-associated cancer remain unclear. In this review, we describe the origins, phenotypes, and functions of ATMs. Subsequently, we summarize the potential mechanisms on the reprogramming of ATMs in the obesity-associated microenvironment, including the direct exchange of dysfunctional metabolites, inordinate cytokines and other signaling mediators, transfer of extracellular vesicle cargo, and variations in the gut microbiota and its metabolites. A better understanding of the properties and functions of ATMs under conditions of obesity will lead to the development of new therapeutic interventions for obesity-related cancer.
Collapse
Affiliation(s)
- Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing-Ping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
46
|
The immunolocalization of cluster of differentiation 31, phalloidin and alpha smooth muscle actin on vascular network of normal and ischemic rat brain. Sci Rep 2022; 12:22288. [PMID: 36566295 PMCID: PMC9789995 DOI: 10.1038/s41598-022-26831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Cluster of differentiation 31 (CD31), phalloidin and alpha smooth muscle actin (α-SMA) have been widely applied to label the cerebral blood vessels in the past years. Although CD31 is mainly used as endothelial marker in determining the cerebral capillaries, it seems likely that its labeling efficiency is closely correlated with the antibodies from the polyclonal or monoclonal one, as well as the conditions of blood vessels. In order to test this phenomenon, we compared the labeling characteristics of goat polyclonal anti-CD31 (gP-CD31) and mouse monoclonal anti-CD31 (mM-CD31) with those of phalloidin and α-SMA on the rat brain in health and ischemia/reperfusion (I/R) with the middle cerebral artery occlusion. By multiple immunofluorescence staining, it was found that gP-CD31 labeling expressed extensively on the cerebral capillaries forming the vascular networks on the normal and ischemic regions, but mM-CD31 labeling mainly presented on the capillaries in the ischemic region. In contrast to the vascular labeling with gP-CD31, phalloidin and α-SMA were mainly expressed on the wall of cortical penetrating arteries, and less on that of capillaries. By three-dimensional reconstruction analysis, it was clearly shown that gP-CD31 labeling was mainly located on the lumen side of vascular wall and was surrounded by phalloidin labeling and α-SMA labeling. These results indicate that gP-CD31 is more sensitive than mM-CD31 for labeling the cerebral vasculature, and is highly compatible with phalloidin and α-SMA for evaluating the cerebral vascular networks under the physiological and pathological conditions.
Collapse
|
47
|
Ghosal K, Chakraborty D, Roychowdhury V, Ghosh S, Dutta S. Recent Advancement of Functional Hydrogels toward Diabetic Wound Management. ACS OMEGA 2022; 7:43364-43380. [PMID: 36506219 PMCID: PMC9730497 DOI: 10.1021/acsomega.2c05538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/02/2022] [Indexed: 06/10/2023]
Abstract
Wound healing is a dynamic, orchestrated process comprising partially overlapping phases of hemostasis, inflammation, proliferation, and remodeling. This programmed process, dysregulated in diabetic individuals, results in chronic diabetic wounds. The normal process of healing halts at the inflammatory stage, and this prolonged inflammatory phase is characteristic of diabetic wounds. There are a few U.S. Food & Drug Administration approved skin substitutes; dermal matrixes are commercially available to manage diabetic wounds. However, expensiveness and nonresponsiveness in a few instances are the major limitations of such modalities. To address the issues, several treatment strategies have been exploited to treat chronic wounds; among them hydrogel-based systems showed promise due to favorable properties such as excellent absorption capabilities, porous structure, tunable mechanical strength, and biocompatibility. In the past two decades, hydrogels have become one of the most acceptable systems in the field of wound dressing material, offering single functionality to multifunctionality. This review focuses on the advancement of functional hydrogels explored for diabetic wound management. The process of diabetic wound healing is discussed in the light of the normal healing process, and the role of macrophages in the process is explained. This review also discusses the different approaches to treat diabetic wounds using functional hydrogels, along with their future opportunities.
Collapse
Affiliation(s)
- Krishanu Ghosal
- The
Wolfson Faculty of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Debojit Chakraborty
- Department
of Materials Science and Engineering, Indian
Institute of Technology (IIT), Delhi, New Delhi 110016, India
| | - Victor Roychowdhury
- Department
of Pharmaceutical Technology, JIS University, Agarpara, West Bengal 700109, India
| | - Santanu Ghosh
- Department
of Pharmaceutical Technology, JIS University, Agarpara, West Bengal 700109, India
| | - Soumyarup Dutta
- Department
of Pharmaceutical Technology, JIS University, Agarpara, West Bengal 700109, India
| |
Collapse
|
48
|
Liu Y, Wang L, Li S, Zhang T, Chen C, Hu J, Sun D, Lu H. Mechanical stimulation improves rotator cuff tendon-bone healing via activating IL-4/JAK/STAT signaling pathway mediated macrophage M2 polarization. J Orthop Translat 2022; 37:78-88. [PMID: 36262964 PMCID: PMC9550856 DOI: 10.1016/j.jot.2022.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is well known that appropriate mechanical stimulation benefits tendon-bone (T-B) healing, however, the mechanisms behind this are still uncovered completely. Here, we aimed to explore whether the IL-4/JAK/STAT signaling pathway mediated macrophage polarization was involved in mechanical stimulation induced T-B healing. Method C57BL/6 mice rotator cuff (RC) repair model was established, and the mice were randomly allocated to the following group. 1. Mice were allowed for free cage activities after surgery (FC group); 2. Mice received treadmill running initiated on postoperative day 7 (TR group); 3. Mice only received a local injection of hydrogel containing IL-4 neutralizing antibody without postoperative intervention (FC + AF-404-SP group); 4. Mice received a local injection of hydrogel containing IL-4 neutralizing antibody and postoperative treadmill running (TR + AF-404-SP group). The expression of IL-4 within supraspinatus tendon (SST) enthesis was measured by Enzyme-linked immunosorbent assay (ELISA). In addition, the activation of JAK/STAT signaling pathway in macrophages and identification of macrophage phenotype at the RC insertion site was detected by Flow cytometry and qRT-PCR. T-B healing quality in this RC repair model was evaluated by histological staining, Micro-computed tomography (Micro-CT) scanning, and biomechanical testing. Result In this study, using the RC repair model, we confirmed that generation of IL-4, activation of the JAK/STAT signaling pathway in macrophages, the ability of macrophages to polarize towards M2 subtype, and T-B healing quality were significantly enhanced in TR group compared to FC group. When comparing FC + AF-404-SP group with TR + AF-404-SP group, it was found that the mechanical stimulation induced this effect was depleted following the blockade of the IL-4/JAK/STAT signaling pathway. Conclusion Our finding suggested that mechanical stimulation could accelerate T-B healing via activating the IL-4/JAK/STAT signaling pathway that modulates macrophages to polarize towards M2 subtype. The translational potential of this article This is the first study to reveal a significant role of mechanical stimulation in the IL-4/JAK/STAT signaling pathway activation and macrophage polarization during RC T-B healing, which highlights the IL-4/JAK/STAT signaling pathway as a potential target to mediate macrophage M2 polarization and improves T-B healing for RC repair.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Zhou F, Li K, Yang K. Adipose-Derived Stem Cell Exosomes and Related microRNAs in Atherosclerotic Cardiovascular Disease. J Cardiovasc Transl Res 2022; 16:453-462. [PMID: 36223051 DOI: 10.1007/s12265-022-10329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death from noncommunicable diseases worldwide. The pathological development of ASCVD begins with atherosclerosis, followed by the narrowing and occlusion of the vascular lumen and, subsequently, ischemic necrosis in coronary arteries. Preventing atherosclerosis development and delaying ischemia progression may be effective ways of pre-diagnosing and treating ASCVD. Studies have demonstrated that exosomes from adipose-derived stem cells play an increasingly important role in basic research on cardiovascular diseases in terms of the impact of macrophage polarization and the endothelial, anti-apoptosis, and angiogenesis effects. The related microRNAs play a significant role in ASCVD. This study was novel in reviewing the role of exosomes from adipose-derived stem cells and related microRNAs in ASCVD. Therapeutic potentials of adipose-derived stem cell exosomes in terms of their impact on macrophage polarization, endothelial effect, anti-apoptosis intervention, and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Ke Li
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Keping Yang
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
50
|
Hamel KM, Liimatta KQ, Belgodere JA, Bunnell BA, Gimble JM, Martin EC. Adipose-Derived Stromal/Stem Cell Response to Tumors and Wounds: Evaluation of Patient Age. Stem Cells Dev 2022; 31:579-592. [PMID: 35262397 PMCID: PMC9836707 DOI: 10.1089/scd.2021.0280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/05/2022] [Indexed: 01/22/2023] Open
Abstract
Tumors were characterized as nonhealing wounds by Virchow in 1858 and Dvorak in 1986. Since then, researchers have analyzed tumors from a new perspective. The parallels between tumorigenesis and physiological wound healing can provide a new framework for developing antitumor therapeutics. One commonality between tumors and wounds is the involvement of the stromal environment, particularly adipose stromal/stem cells (ASCs). ASCs exhibit dual functions, in which they stimulate tumor progression and assist in tissue repair and regeneration. Numerous studies have focused on the role of ASCs in cancer and wound healing, but none to date has linked age, cancer, and wound healing. Furthermore, very few studies have focused on the role of donor-specific characteristics of ASCs, such as age and their role in facilitating ASC behavior in cancer and wound healing. This review article is designed to provide important insights into the impact of donor age on ASC tumor and wound response and their role in facilitating ASC behavior in cancer and wound healing.
Collapse
Affiliation(s)
- Katie M. Hamel
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kara Q. Liimatta
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jorge A. Belgodere
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bruce A. Bunnell
- University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | | - Elizabeth C. Martin
- Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|