1
|
Duval P, Martin E, Vallon L, Antonelli P, Girard M, Signoret A, Luis P, Abrouk D, Wiest L, Fildier A, Bonnefoy C, Jame P, Bonjour E, Cantarel A, Gervaix J, Vulliet E, Cazabet R, Minard G, Valiente Moro C. Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens. FEMS Microbiol Ecol 2024; 100:fiae129. [PMID: 39327012 PMCID: PMC11523617 DOI: 10.1093/femsec/fiae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
The Asian tiger mosquito Aedes albopictus is well adapted to urban environments and takes advantage of the artificial containers that proliferate in anthropized landscapes. Little is known about the physicochemical, pollutant, and microbiota compositions of Ae. albopictus-colonized aquatic habitats and whether these properties differ with noncolonized habitats. We specifically addressed this question in French community gardens by investigating whether pollution gradients (characterized either by water physicochemical properties combined with pollution variables or by the presence of organic molecules in water) influence water microbial composition and then the presence/absence of Ae. albopictus mosquitoes. Interestingly, we showed that the physicochemical and microbial compositions of noncolonized and colonized waters did not significantly differ, with the exception of N2O and CH4 concentrations, which were higher in noncolonized water samples. Moreover, the microbial composition of larval habitats covaried differentially along the pollution gradients according to colonization status. This study opens new avenues on the impact of pollution on mosquito habitats in urban areas and raises questions on the influence of biotic and abiotic interactions on adult life-history traits and their ability to transmit pathogens to humans.
Collapse
Affiliation(s)
- Penelope Duval
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Edwige Martin
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laurent Vallon
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Pierre Antonelli
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Maxime Girard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Aymeric Signoret
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Patricia Luis
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Danis Abrouk
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christelle Bonnefoy
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Patrick Jame
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Erik Bonjour
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Amelie Cantarel
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Jonathan Gervaix
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Rémy Cazabet
- UMR 5205, Laboratoire d'Informatique en image et systèmes d'information, Université de Lyon, Villeurbanne, France
| | - Guillaume Minard
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Claire Valiente Moro
- Universite Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| |
Collapse
|
2
|
Hafsia S, Barbar T, Alout H, Baudino F, Lebon C, Gomard Y, Wilkinson DA, Fourié T, Mavingui P, Atyame C. Vector competence of Aedes albopictus field populations from Reunion Island exposed to local epidemic dengue viruses. PLoS One 2024; 19:e0310635. [PMID: 39298440 DOI: 10.1371/journal.pone.0310635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is considered to be a secondary vector of DENV. However, it was responsible for a recent DENV outbreak of unprecedented magnitude in Reunion Island, a French island in the South West Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially heterogeneous pattern across the island, leading to questions about the differential vector competence of mosquito populations from different geographic areas. The aim of this study was to gain a better understanding of the vector competence of the Ae. albopictus populations from Reunion Island for local DENV epidemic strains, while considering their infection by Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus sampled across Reunion Island and exposed to three DENV strains: one strain of DENV serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector competence parameters including infection rate, dissemination efficiency and transmission efficiency, at different days post-exposition (dpe). We also assessed whether there was a correlation between the density of Wolbachia and viral load/vector competence parameters. Our results show that the Ae. albopictus populations tested were not able to transmit the two DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 strain, probably due to difference in viral titres. Statistical analyses showed that the parameters mosquito population, generation, dpe and area of sampling significantly affect the transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to mosquito population, no significant correlation was found between Wolbachia density and either viral load or vector competence parameters for DENV-1. Our results highlight the importance of using natural mosquito populations for a better understanding of transmission patterns of dengue.
Collapse
Affiliation(s)
- Sarah Hafsia
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Tatiana Barbar
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Haoues Alout
- Unité Mixte de Recherche Animal Santé Territoires Risques Écosystèmes, F-34398, CIRAD/INRAE/Université de Montpellier, Université de Montpellier, Montpellier, France
| | - Fiona Baudino
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Cyrille Lebon
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - David A Wilkinson
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Toscane Fourié
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| | - Célestine Atyame
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), CNRS 9192, INSERM 1187, IRD 249, La Réunion, France
| |
Collapse
|
3
|
Liu H, Yin J, Huang X, Zang C, Zhang Y, Cao J, Gong M. Mosquito Gut Microbiota: A Review. Pathogens 2024; 13:691. [PMID: 39204291 PMCID: PMC11357333 DOI: 10.3390/pathogens13080691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Mosquitoes are vectors of many important human diseases. The prolonged and widespread use of insecticides has led to the development of mosquito resistance to these insecticides. The gut microbiota is considered the master of host development and physiology; it influences mosquito biology, disease pathogen transmission, and resistance to insecticides. Understanding the role and mechanisms of mosquito gut microbiota in mosquito insecticide resistance is useful for developing new strategies for tackling mosquito insecticide resistance. We searched online databases, including PubMed, MEDLINE, SciELO, Web of Science, and the Chinese Science Citation Database. We searched all terms, including microbiota and mosquitoes, or any specific genera or species of mosquitoes. We reviewed the relationships between microbiota and mosquito growth, development, survival, reproduction, and disease pathogen transmission, as well as the interactions between microbiota and mosquito insecticide resistance. Overall, 429 studies were included in this review after filtering 8139 search results. Mosquito gut microbiota show a complex community structure with rich species diversity, dynamic changes in the species composition over time (season) and across space (environmental setting), and variation among mosquito species and mosquito developmental stages (larval vs. adult). The community composition of the microbiota plays profound roles in mosquito development, survival, and reproduction. There was a reciprocal interaction between the mosquito midgut microbiota and virus infection in mosquitoes. Wolbachia, Asaia, and Serratia are the three most studied bacteria that influence disease pathogen transmission. The insecticide resistance or exposure led to the enrichment or reduction in certain microorganisms in the resistant mosquitoes while enhancing the abundance of other microorganisms in insect-susceptible mosquitoes, and they involved many different species/genera/families of microorganisms. Conversely, microbiota can promote insecticide resistance in their hosts by isolating and degrading insecticidal compounds or altering the expression of host genes and metabolic detoxification enzymes. Currently, knowledge is scarce about the community structure of mosquito gut microbiota and its functionality in relation to mosquito pathogen transmission and insecticide resistance. The new multi-omics techniques should be adopted to find the links among environment, mosquito, and host and bring mosquito microbiota studies to the next level.
Collapse
Affiliation(s)
- Hongmei Liu
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Jianhai Yin
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Xiaodan Huang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Chuanhui Zang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Ye Zhang
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| | - Jianping Cao
- Key Laboratory of Parasite and Vector Biology, National Health Commission of People’s Republic of China, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai 200025, China;
- World Health Organization Collaborating Centre for Tropical Diseases, Shanghai 200025, China
| | - Maoqing Gong
- Digestive Disease Hospital of Shandong First Medical University, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining 272000, China; (X.H.); (C.Z.); (Y.Z.)
| |
Collapse
|
4
|
Baril C, Cassone BJ. Metatranscriptomic analysis of common mosquito vector species in the Canadian Prairies. mSphere 2024; 9:e0020324. [PMID: 38912793 PMCID: PMC11288045 DOI: 10.1128/msphere.00203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 06/25/2024] Open
Abstract
The microbiome plays vital roles in the life history of mosquitoes, including their development, immunity, longevity, and vector competence. Recent advances in sequencing technologies have allowed for detailed exploration into the diverse microorganisms harbored by these medically important insects. Although these meta-studies have cataloged the microbiomes of mosquitoes in several continents, much of the information currently available for North America is limited to the state of California. In this study, we collected >35,000 mosquitoes throughout Manitoba, Canada, over a 3-year period and then harnessed RNA sequencing and targeted reverse transcriptase-PCR to characterize the microbiomes of the eight most pervasive and important vector and pest species. The consensus microbiome of each species was overwhelmingly composed of viruses but also included fungi, bacteria, protozoa, and parasitic invertebrates. The microbial assemblages were heterogeneous between species, even within the same genus. We detected notable pathogens, including the causal agents of Cache Valley Fever, avian malaria, and canine heartworm. The remaining microbiome consisted largely of putatively insect-specific viruses that are not well characterized, including 17 newly discovered viruses from 10 different families. Future research should focus on evaluating the potential application of these viruses in biocontrol, as biomarkers, and/or in disrupting mosquito vectorial capacity. Interestingly, we also detected viruses that naturally infect honeybees and thrips, which were presumably acquired indirectly through nectar foraging behaviors. Overall, we provide the first comprehensive catalog of the microorganisms harbored by the most common and important mosquito vectors and pests in the Canadian Prairies. IMPORTANCE Mosquitoes are the most dangerous animals on the planet, responsible for over 800,000 deaths per year globally. This is because they carry and transmit a plethora of human disease-causing microorganisms, such as West Nile virus and the malaria parasite. Recent innovations in nucleic acid sequencing technologies have enabled researchers unparalleled opportunities to characterize the suite of microorganisms harbored by different mosquito species, including the causal agents of disease. In our study, we carried out 3 years of intensive mosquito surveillance in Canada. We collected and characterized the microorganisms harbored by >35,000 mosquitoes, including the identification of the agents of Cache Valley fever, avian malaria, and canine heartworm. We also detected insect-specific viruses and discovered 17 new viruses that have never been reported. This study, which is the first of its kind in Canada and one of only a handful globally, will greatly aid in future infectious disease research.
Collapse
Affiliation(s)
- Cole Baril
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| | - Bryan J. Cassone
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| |
Collapse
|
5
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
6
|
Akintola AA, Hwang UW. Microbiome profile of South Korean vector mosquitoes. Acta Trop 2024; 255:107213. [PMID: 38608996 DOI: 10.1016/j.actatropica.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
This research offers a comprehensive exploration of the microbial communities associated with vector mosquitoes from South Korea. Aedes albopictus, Anopheles sinensis, and Culex molestus are vectors of pathogens, and understanding the intricacies of their microbiome profile is paramount for unraveling their roles in disease transmission dynamics. In this study, we characterized the microbiome of the midguts of adult female vector mosquitoes collected from different locations in South Korea. After DNA extraction from dissected mosquito midguts, we used the Illumina MiSeq next-generation sequencing to obtain sequences spanning the V4 hypervariable region of the bacteria 16S rRNA. Morphological and molecular characterization using 506-bp mitochondrial 16S rRNA was used to identify the mosquito species before amplicon sequencing. Across the three vector mosquitoes surveyed, 21 bacteria genera belonging to 20 families and 5 phyla were discovered. Proteobacteria and Bacteriodota were the major phyla of bacteria associated with the three mosquito species. There were significant differences in the gut microbiome genera composition between the species and little variation in the gut microbiome between individuals of the same mosquito species. Wolbachia is the most dominant genus in Aedes while Aeromonas, Acinetobacter, and unassigned taxa are the most common in An. sinensis. In addition to that, Chromobacterium, Chryseobacterium, and Aeromonas are dominant in Cx. molestus. This study sheds light on the complex interactions between mosquitoes and their microbiome, revealing potential implications for vector competence, disease transmission, and vector control strategies.
Collapse
Affiliation(s)
- Ashraf Akintayo Akintola
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ui Wook Hwang
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biology, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea; Institute for Korean Herb-Bio Convergence Promotion, Kyungpook National University, Daegu, 41566, Republic of Korea; Phylomics Inc., Daegu, 41910, Republic of Korea.
| |
Collapse
|
7
|
De Coninck L, Soto A, Wang L, De Wolf K, Smitz N, Deblauwe I, Mbigha Donfack KC, Müller R, Delang L, Matthijnssens J. Lack of abundant core virome in Culex mosquitoes from a temperate climate region despite a mosquito species-specific virome. mSystems 2024; 9:e0001224. [PMID: 38742876 PMCID: PMC11237611 DOI: 10.1128/msystems.00012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
In arthropod-associated microbial communities, insect-specific viruses (ISVs) are prevalent yet understudied due to limited infectivity outside their natural hosts. However, ISVs might play a crucial role in regulating mosquito populations and influencing arthropod-borne virus transmission. Some studies have indicated a core virome in mosquitoes consisting of mostly ISVs. Employing single mosquito metagenomics, we comprehensively profiled the virome of native and invasive mosquito species in Belgium. This approach allowed for accurate host species determination, prevalence assessment of viruses and Wolbachia, and the identification of novel viruses. Contrary to our expectations, no abundant core virome was observed in Culex mosquitoes from Belgium. In that regard, we caution against rigidly defining mosquito core viromes and encourage nuanced interpretations of other studies. Nonetheless, our study identified 45 viruses of which 28 were novel, enriching our understanding of the mosquito virome and ISVs. We showed that the mosquito virome in this study is species-specific and less dependent on the location where mosquitoes from the same species reside. In addition, because Wolbachia has previously been observed to influence arbovirus transmission, we report the prevalence of Wolbachia in Belgian mosquitoes and the detection of several Wolbachia mobile genetic elements. The observed prevalence ranged from 83% to 92% in members from the Culex pipiens complex.IMPORTANCECulex pipiens mosquitoes are important vectors for arboviruses like West Nile virus and Usutu virus. Virome studies on individual Culex pipiens, and on individual mosquitoes in general, have been lacking. To mitigate this, we sequenced the virome of 190 individual Culex and 8 individual Aedes japonicus mosquitoes. We report the lack of a core virome in these mosquitoes from Belgium and caution the interpretation of other studies in this light. The discovery of new viruses in this study will aid our comprehension of insect-specific viruses and the mosquito virome in general in relation to mosquito physiology and mosquito population dynamics.
Collapse
Affiliation(s)
- Lander De Coninck
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Alina Soto
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, Leuven, Belgium
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, Leuven, Belgium
| | - Katrien De Wolf
- Department Biomedical Sciences, The Unit of Entomology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Ghent, Belgium
| | - Nathalie Smitz
- Department of Biology, Royal Museum for Central Africa (Barcoding Facility for Organisms and Tissues of Policy Concern), Tervuren, Belgium
| | - Isra Deblauwe
- Department Biomedical Sciences, The Unit of Entomology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Karelle Celes Mbigha Donfack
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Ruth Müller
- Department Biomedical Sciences, The Unit of Entomology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology, & Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Mosquito Virology Team, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, Laboratory of Viral Metagenomics, Leuven, Belgium
| |
Collapse
|
8
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
9
|
Li J, Du J, Ding G, Zhang W, Zhou Y, Xu Y, Zhou D, Sun Y, Liu X, Shen B. Isolation, characterization and functional analysis of a bacteriophage targeting Culex pipiens pallens resistance-associated Aeromonas hydrophila. Parasit Vectors 2024; 17:222. [PMID: 38745242 PMCID: PMC11094981 DOI: 10.1186/s13071-024-06281-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.
Collapse
Affiliation(s)
- Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangshuo Ding
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenxing Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinghui Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yidan Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqiu Liu
- Department of Pathogen Biology, China Medical University, Shenyang, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Siriyasatien P, Intayot P, Chitcharoen S, Sutthanont N, Boonserm R, Ampol R, Schmidt-Chanasit J, Phumee A. Comparative analysis of midgut bacterial communities in Chikungunya virus-infected and non-infected Aedes aegypti Thai laboratory strain mosquitoes. Sci Rep 2024; 14:10814. [PMID: 38734695 PMCID: PMC11088667 DOI: 10.1038/s41598-024-61027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Chikungunya virus (CHIKV) poses a significant global health threat, re-emerging as a mosquito-transmitted pathogen that caused high fever, rash, and severe arthralgia. In Thailand, a notable CHIKV outbreak in 2019-2020 affected approximately 20,000 cases across 60 provinces, underscoring the need for effective mosquito control protocols. Previous studies have highlighted the role of midgut bacteria in the interaction between mosquito vectors and pathogen infections, demonstrating their ability to protect the insect from invading pathogens. However, research on the midgut bacteria of Aedes (Ae.) aegypti, the primary vector for CHIKV in Thailand remains limited. This study aims to characterize the bacterial communities in laboratory strains of Ae. aegypti, both infected and non-infected with CHIKV. Female mosquitoes from a laboratory strain of Ae. aegypti were exposed to a CHIKV-infected blood meal through membrane feeding, while the control group received a non-infected blood meal. At 7 days post-infection (dpi), mosquito midguts were dissected for 16S rRNA gene sequencing to identify midgut bacteria, and CHIKV presence was confirmed by E1-nested RT-PCR using mosquito carcasses. The study aimed to compare the bacterial communities between CHIKV-infected and non-infected groups. The analysis included 12 midgut bacterial samples, divided into three groups: CHIKV-infected (exposed and infected), non-infected (exposed but not infected), and non-exposed (negative control). Alpha diversity indices and Bray-Curtis dissimilarity matrix revealed significant differences in bacterial profiles among the three groups. The infected group exhibited an increased abundance of bacteria genus Gluconobacter, while Asaia was prevalent in both non-infected and negative control groups. Chryseobacterium was prominent in the negative control group. These findings highlight potential alterations in the distribution and abundance of gut microbiomes in response to CHIKV infection status. This study provides valuable insights into the dynamic relationship between midgut bacteria and CHIKV, underscoring the potential for alterations in bacterial composition depending on infection status. Understanding the relationships between mosquitoes and their microbiota holds promise for developing new methods and tools to enhance existing strategies for disease prevention and control. This research advances our understanding of the circulating bacterial composition, opening possibilities for new approaches in combating mosquito-borne diseases.
Collapse
Affiliation(s)
- Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Proawpilart Intayot
- Pharmaceutical Ingredient and Medical Device Research Division, Research Development and Innovation Department, The Government Pharmaceutical Organization, Bangkok, Thailand
| | - Suwalak Chitcharoen
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nataya Sutthanont
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungfar Boonserm
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rinnara Ampol
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Atchara Phumee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand.
- Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
11
|
Garrido M, Minard G, Veiga J, Martínez-de la Puente J. Editorial: Ecological interactions between mosquitoes and their microbiota: implications for pathogen transmission. Front Microbiol 2024; 15:1395348. [PMID: 38605712 PMCID: PMC11008769 DOI: 10.3389/fmicb.2024.1395348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Affiliation(s)
- Mario Garrido
- Department of Parasitology, University of Granada, Campus Universitario de Cartuja, Granada, Spain
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Jesús Veiga
- Department of Parasitology, University of Granada, Campus Universitario de Cartuja, Granada, Spain
| | - Josué Martínez-de la Puente
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD, CSIC), Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
12
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
13
|
Kriefall NG, Seabourn PS, Yoneishi NM, Davis K, Nakayama KK, Weber DE, Hynson NA, Medeiros MCI. Abiotic factors shape mosquito microbiomes that enhance host development. THE ISME JOURNAL 2024; 18:wrae181. [PMID: 39315733 PMCID: PMC11481732 DOI: 10.1093/ismejo/wrae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Metazoans rely on interactions with microorganisms through multiple life stages. For example, developmental trajectories of mosquitoes can vary depending on the microorganisms available during their aquatic larval phase. However, the role that the local environment plays in shaping such host-microbe dynamics and the consequences for the host organism remain inadequately understood. Here, we examine the influence of abiotic factors, locally available bacteria, and their interactions on the development and associated microbiota of the mosquito Aedes albopictus. Our findings reveal that leaf detritus infused into the larval habitat water, sourced from native Hawaiian tree 'ōhi'a lehua Metrosideros polymorpha, invasive strawberry guava Psidium cattleianum, or a pure water control, displayed a more substantial influence than either temperature variations or simulated microbial dispersal regimes on bacterial community composition in adult mosquitoes. However, specific bacteria exhibited divergent patterns within mosquitoes across detrital infusions that did not align with their abundance in the larval habitat. Specifically, we observed a higher relative abundance of a Chryseobacterium sp. strain in mosquitoes from the strawberry guava infusion than the pure water control, whereas the opposite trend was observed for a Pseudomonas sp. strain. In a follow-up experiment, we manipulated the presence of these two bacterial strains and found larval developmental success was enhanced by including the Chryseobacterium sp. strain in the strawberry guava infusion and the Pseudomonas sp. strain in the pure water control. Collectively, these data suggest that interactions between abiotic factors and microbes of the larval environment can help shape mosquito populations' success.
Collapse
Affiliation(s)
- Nicola G Kriefall
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Priscilla S Seabourn
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole M Yoneishi
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kahiwahiwa Davis
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Danya E Weber
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| |
Collapse
|
14
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
15
|
LaReau JC, Hyde J, Brackney DE, Steven B. Introducing an environmental microbiome to axenic Aedes aegypti mosquitoes documents bacterial responses to a blood meal. Appl Environ Microbiol 2023; 89:e0095923. [PMID: 38014951 PMCID: PMC10734439 DOI: 10.1128/aem.00959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The blood meal of the female mosquito serves as a nutrition source to support egg development, so is an important aspect of its biology. Yet, the roles the microbiome may play in blood digestion are poorly characterized. We employed axenic mosquitoes to investigate how the microbiome differs between mosquitoes reared in the insectary versus mosquitoes that acquire their microbiome from the environment. Environmental microbiomes were more diverse and showed larger temporal shifts over the course of blood digestion. Importantly, only bacteria from the environmental microbiome performed hemolysis in culture, pointing to functional differences between bacterial populations. These data highlight that taxonomic differences between the microbiomes of insectary-reared and wild mosquitoes are potentially also related to their functional ecology. Thus, axenic mosquitoes colonized with environmental bacteria offer a way to investigate the role of bacteria from the wild in mosquito processes such as blood digestion, under controlled laboratory conditions.
Collapse
Affiliation(s)
- Jacquelyn C. LaReau
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Josephine Hyde
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Doug E. Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Gómez M, Martínez D, Páez-Triana L, Luna N, De Las Salas JL, Hernández C, Flórez AZ, Muñoz M, Ramírez JD. Characterizing viral species in mosquitoes (Culicidae) in the Colombian Orinoco: insights from a preliminary metagenomic study. Sci Rep 2023; 13:22081. [PMID: 38086841 PMCID: PMC10716246 DOI: 10.1038/s41598-023-49232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Mosquitoes (Diptera: Culicidae) are primary vectors of arthropod-borne viruses (arboviruses) that pose significant public health threats. Recent advances in sequencing technology emphasize the importance of understanding the arboviruses and insect-specific viruses (ISVs) hosted by mosquitoes, collectively called the "virome". Colombia, a tropical country with favorable conditions for the development and adaptation of multiple species of Culicidae, offers a favorable scenario for the transmission of epidemiologically important arboviruses. However, entomovirological surveillance studies are scarce in rural areas of the country, where humans, mosquitoes, and animals (both domestic and wild) coexist, leading to a higher risk of transmission of zoonotic diseases to humans. Thus, our study aimed to perform a preliminary metagenomic analysis of the mosquitoes of special relevance to public health belonging to the genera Ochlerotatus, Culex, Limatus, Mansonia, Psorophora, and Sabethes, within a rural savanna ecosystem in the Colombian Orinoco. We employed third-generation sequencing technology (Oxford Nanopore Technologies; ONT) to describe the virome of mosquitoes samples. Our results revealed that the virome was primarily shaped by insect-specific viruses (ISVs), with the Iflaviridae family being the most prevalent across all mosquito samples. Furthermore, we identified a group of ISVs that were common in all mosquito species tested, displaying the highest relative abundance concerning other groups of viruses. Notably, Hanko iflavirus-1 was especially prevalent in Culex eknomios (88.4%) and Ochlerotatus serratus (88.0%). Additionally, other ISVs, such as Guadalupe mosquito virus (GMV), Hubei mosquito virus1 (HMV1), Uxmal virus, Tanay virus, Cordoba virus, and Castlerea virus (all belonging to the Negevirus genus), were found as common viral species among the mosquitoes, although in lower proportions. These initial findings contribute to our understanding of ISVs within mosquito vectors of the Culicidae family in the Eastern Plains of Colombia. We recommend that future research explore deeper into ISV species shared among diverse vector species, and their potential interactions with arboviruses. In addition, we also showed the need for a thorough exploration of the influence of local rural habitat conditions on the shape of the virome in mosquito vectors.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Meier CJ, Martin LE, Hillyer JF. Mosquito larvae exposed to a sublethal dose of photosensitive insecticides have altered juvenile development but unaffected adult life history traits. Parasit Vectors 2023; 16:412. [PMID: 37951916 PMCID: PMC10638795 DOI: 10.1186/s13071-023-06004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Larvicides are critical for the control of mosquito-borne diseases. However, even sublethal exposure to a larvicide can alter development and life history traits, which can then affect population density and disease transmission dynamics. Photosensitive insecticides (PSIs) are a promising class of larvicide that are toxic when ingested and activated by light. We investigated whether the time of day when exposure occurs, or the process of pupation, affects larval susceptibility to PSI phototoxicity in the mosquito Anopheles gambiae, and whether sublethal exposure to PSIs alters life history traits. METHODS Larvae were treated with lethal concentrations of the PSIs methylene blue (MB) and rose bengal (RB), and larval survival was measured at various times of day. Additionally, larvae were exposed to two concentrations of each PSI that resulted in low and medium mortality, and the life history traits of the surviving larvae were measured. RESULTS Pupation, which predominantly occurs in the evening, protected larvae from PSI toxicity, but the toxicity of PSIs against larvae that had yet to pupate was unaffected by time of day. Larval exposure to a sublethal concentration of MB, but not RB, shortened the time to pupation. However, larval exposure to a sublethal concentration of RB, but not MB, increased pupal mortality. Neither PSI had a meaningful effect on the time to eclosion, adult longevity, or adult melanization potential. CONCLUSIONS PSIs are lethal larvicides. Sublethal PSI exposure alters mosquito development, but does not affect adult life history traits.
Collapse
Affiliation(s)
- Cole J Meier
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA
| | - Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-16342, Nashville, TN, 37235, USA.
| |
Collapse
|
18
|
Garrigós M, Garrido M, Panisse G, Veiga J, Martínez-de la Puente J. Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens 2023; 12:1287. [PMID: 38003752 PMCID: PMC10675824 DOI: 10.3390/pathogens12111287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The flavivirus West Nile virus (WNV) naturally circulates between mosquitoes and birds, potentially affecting humans and horses. Different species of mosquitoes play a role as vectors of WNV, with those of the Culex pipiens complex being particularly crucial for its circulation. Different biotic and abiotic factors determine the capacity of mosquitoes for pathogen transmission, with the mosquito gut microbiota being recognized as an important one. Here, we review the published studies on the interactions between the microbiota of the Culex pipiens complex and WNV infections in mosquitoes. Most articles published so far studied the interactions between bacteria of the genus Wolbachia and WNV infections, obtaining variable results regarding the directionality of this relationship. In contrast, only a few studies investigate the role of the whole microbiome or other bacterial taxa in WNV infections. These studies suggest that bacteria of the genera Serratia and Enterobacter may enhance WNV development. Thus, due to the relevance of WNV in human and animal health and the important role of mosquitoes of the Cx. pipiens complex in its transmission, more research is needed to unravel the role of mosquito microbiota and those factors affecting this microbiota on pathogen epidemiology. In this respect, we finally propose future lines of research lines on this topic.
Collapse
Affiliation(s)
- Marta Garrigós
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Mario Garrido
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Guillermo Panisse
- CEPAVE—Centro de Estudios Parasitológicos y de Vectores CONICET-UNLP, La Plata 1900, Argentina;
| | - Jesús Veiga
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
19
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
20
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DY, Khanipov K, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype-dependent. PLoS Pathog 2023; 19:e1011727. [PMID: 37903174 PMCID: PMC10635568 DOI: 10.1371/journal.ppat.1011727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can have carry-over effects on adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we showed that the bacterial community structure differs between the two genotypes of Ae. aegypti when given identical microbiomes, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific larval microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti. We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Laura C. Multini
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Babakar Diouf
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques Sine Saloum University El Hadji Ibrahima NIASS (USSEIN), Kaffrine, Senegal
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mawlouth Diallo
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Alioune Gaye
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
21
|
Polidori C, Ferrari A, Borruso L, Mattarelli P, Dindo ML, Modesto M, Carrieri M, Puggioli A, Ronchetti F, Bellini R. Aedes albopictus microbiota: Differences between wild and mass-reared immatures do not suggest negative impacts from a diet based on black soldier fly larvae and fish food. PLoS One 2023; 18:e0292043. [PMID: 37751428 PMCID: PMC10521979 DOI: 10.1371/journal.pone.0292043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The "Sterile Insect Technique" (SIT), a promising method to control Aedes albopictus, the Asian tiger mosquito, is gaining increasing interest. Recently, the role of microbiota in mosquito fitness received attention, but the link between microbiota and larval diet in mass rearing programs for SIT remains largely unexplored. We characterized the microbiota of four larval instars, pupae and eggs of non-wild (NW) lab-reared Ae. albopictus fed with a diet based on Black soldier fly (Hermetia illucens) larvae powder and fish food KOI pellets. We compared it with wild (W) field-collected individuals and the bacterial community occurring in rearing water-diet (DIET). A total of 18 bacterial classes with > 0.10% abundance were found overall in the samples, with seven classes being especially abundant. Overall, the microbiota profile significantly differed among NW, W and DIET. Verrucomicrobiae were significantly more abundant in W and DIET, Bacteroidia were more abundant in NW and DIET, and Gammaproteobacteria were only more abundant in W than in DIET. W-eggs microbiota differed from all the other groups. Large differences also appeared at the bacterial genus-level, with the abundance of 14 genera differing among groups. Three ASVs of Acinetobacter, known to have positive effects on tiger mosquitoes, were more abundant in NW than in W, while Serratia, known to have negative or neutral effects on another Aedes species, was less abundant in NW than in W. The bacterial community of W-eggs was the richest in species, while dominance and diversity did not differ among groups. Our data show that the diet based on Black soldier fly powder and fish food KOI influences the microbiota of NW tiger mosquito immature stages, but not in a way that may suggest a negative impact on their quality in SIT programs.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria, Milan, Italy
| | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria, Milan, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, Bolzano, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Marco Carrieri
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| | - Arianna Puggioli
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| | - Federico Ronchetti
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| |
Collapse
|
22
|
Edwards CC, McConnel G, Ramos D, Gurrola-Mares Y, Dhondiram Arole K, Green MJ, Cañas-Carrell JE, Brelsfoard CL. Microplastic ingestion perturbs the microbiome of Aedes albopictus (Diptera: Culicidae) and Aedes aegypti. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:884-898. [PMID: 37478409 DOI: 10.1093/jme/tjad097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Microplastics (MPs) are common environmental pollutants; however, little is known about their effects after ingestion by insects. Here we fed Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) mosquito larvae 1 µm polystyrene MPs and examined the impacts of ingestion on adult emergence rates, gut damage, and fungal and bacterial microbiota. Results show that MPs accumulate in the larval guts, resulting in gut damage. However, little impact on adult emergence rates was observed. MPs are also found in adult guts postemergence from the pupal stage, and adults expel MPs in their frass after obtaining sugar meals. Moreover, MPs effects on insect microbiomes need to be better defined. To address this knowledge gap, we investigated the relationship between MP ingestion and the microbial communities in Ae. albopictus and Ae. aegypti. The microbiota composition was altered by the ingestion of increasing concentrations of MPs. Amplicon sequence variants (ASVs) that contributed to differences in the bacterial and fungal microbiota composition between MP treatments were from the genera Elizabethkingia and Aspergillus, respectively. Furthermore, a decrease in the alpha diversity of the fungal and bacterial microbiota was observed in treatments where larvae ingested MPs. These results highlight the potential for the bacterial and fungal constituents in the mosquito microbiome to respond differently to the ingestion of MPs. Based on our findings and the effects of MP ingestion on the mosquito host micro- and mycobiome, MP pollution could impact the vector competence of important mosquito-transmitted viruses and parasites that cause human and animal diseases.
Collapse
Affiliation(s)
- Carla-Cristina Edwards
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| | - Gabriella McConnel
- Department of Environmental Toxicology, Texas Tech University, 1207 S. Gilbert Drive, Lubbock, TX 79416, USA
| | - Daniela Ramos
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| | - Yaizeth Gurrola-Mares
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| | - Kailash Dhondiram Arole
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Micah J Green
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jaclyn E Cañas-Carrell
- Department of Environmental Toxicology, Texas Tech University, 1207 S. Gilbert Drive, Lubbock, TX 79416, USA
| | - Corey L Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| |
Collapse
|
23
|
Gil P, Exbrayat A, Loire E, Rakotoarivony I, Charriat F, Morel C, Baldet T, Boisseau M, Marie A, Frances B, L’Ambert G, Bessat M, Otify Y, Goffredo M, Mancini G, Busquets N, Birnberg L, Talavera S, Aranda C, Ayari E, Mejri S, Sghaier S, Bennouna A, El Rhaffouli H, Balenghien T, Chlyeh G, Fassi Fihri O, Reveillaud J, Simonin Y, Eloit M, Gutierrez S. Spatial scale influences the distribution of viral diversity in the eukaryotic virome of the mosquito Culex pipiens. Virus Evol 2023; 9:vead054. [PMID: 37719779 PMCID: PMC10504824 DOI: 10.1093/ve/vead054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Our knowledge of the diversity of eukaryotic viruses has recently undergone a massive expansion. This diversity could influence host physiology through yet unknown phenomena of potential interest to the fields of health and food production. However, the assembly processes of this diversity remain elusive in the eukaryotic viromes of terrestrial animals. This situation hinders hypothesis-driven tests of virome influence on host physiology. Here, we compare taxonomic diversity between different spatial scales in the eukaryotic virome of the mosquito Culex pipiens. This mosquito is a vector of human pathogens worldwide. The experimental design involved sampling in five countries in Africa and Europe around the Mediterranean Sea and large mosquito numbers to ensure a thorough exploration of virus diversity. A group of viruses was found in all countries. This core group represented a relatively large and diverse fraction of the virome. However, certain core viruses were not shared by all host individuals in a given country, and their infection rates fluctuated between countries and years. Moreover, the distribution of coinfections in individual mosquitoes suggested random co-occurrence of those core viruses. Our results also suggested differences in viromes depending on geography, with viromes tending to cluster depending on the continent. Thus, our results unveil that the overlap in taxonomic diversity can decrease with spatial scale in the eukaryotic virome of C. pipiens. Furthermore, our results show that integrating contrasted spatial scales allows us to identify assembly patterns in the mosquito virome. Such patterns can guide future studies of virome influence on mosquito physiology.
Collapse
Affiliation(s)
- Patricia Gil
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Antoni Exbrayat
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Etienne Loire
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Ignace Rakotoarivony
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Florian Charriat
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Côme Morel
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Thierry Baldet
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Michel Boisseau
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | | | | | | | - Mohamed Bessat
- Department of Parasitology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 5410012, Egypt
| | - Yehia Otify
- Department of Parasitology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 5410012, Egypt
| | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo 64100, Italy
| | - Giuseppe Mancini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo 64100, Italy
| | - Núria Busquets
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Lotty Birnberg
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Sandra Talavera
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Carles Aranda
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
- Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, Barcelona 08980, Spain
| | - Emna Ayari
- Institut de la Recherche Vétérinaire de Tunisie - Université Tunis El Manar, Tunis 1068, Tunisia
| | - Selma Mejri
- Institut de la Recherche Vétérinaire de Tunisie - Université Tunis El Manar, Tunis 1068, Tunisia
| | - Soufien Sghaier
- Institut de la Recherche Vétérinaire de Tunisie - Université Tunis El Manar, Tunis 1068, Tunisia
| | - Amal Bennouna
- Department of Animal Pathology and Public Health, Hassan II Agronomy & Veterinary Institute, Rabat BP 6202, Morocco
| | | | - Thomas Balenghien
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
- Department of Animal Pathology and Public Health, Hassan II Agronomy & Veterinary Institute, Rabat BP 6202, Morocco
| | - Ghita Chlyeh
- Département de Production, Protection et Biotechnologies Végétales, Unité de Zoologie, Institute of Agronomy and Veterinary Medicine Hassan II, Rabat BP 6202, Morocco
| | - Ouafaa Fassi Fihri
- Department of Animal Pathology and Public Health, Hassan II Agronomy & Veterinary Institute, Rabat BP 6202, Morocco
| | - Julie Reveillaud
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| | - Yannick Simonin
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, Montpellier 34394, France
| | - Marc Eloit
- Institut Pasteur, Université Paris Cité, Pathogen Discovery Laboratory, Paris 75015, France
- Institut Pasteur, The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris 75724, France
- École nationale vétérinaire d’Alfort, Maisons-Alfort 94700, France
| | - Serafin Gutierrez
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, Languedoc-Roussillon 34398, France
| |
Collapse
|
24
|
Luo Y, Liu D, Wang Y, Zhang F, Xu Y, Pu Q, Zhao L, Wei T, Fan T, Lou Y, Liu S. Combined analysis of the proteome and metabolome provides insight into microRNA-1174 function in Aedes aegypti mosquitoes. Parasit Vectors 2023; 16:271. [PMID: 37559132 PMCID: PMC10413549 DOI: 10.1186/s13071-023-05859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Pathogenic viruses can be transmitted by female Aedes aegypti (Ae. aegypti) mosquitoes during blood-meal acquisition from vertebrates. Silencing of mosquito- and midgut-specific microRNA (miRNA) 1174 (miR-1174) impairs blood intake and increases mortality. Determining the identity of the proteins and metabolites that respond to miR-1174 depletion will increase our understanding of the molecular mechanisms of this miRNA in controlling blood-feeding and nutrient metabolism of mosquitoes. METHODS Antisense oligonucleotides (antagomirs [Ant]) Ant-1174 and Ant-Ct were injected into female Ae. aegypti mosquitoes at 12-20 h posteclosion, and depletion of miR-1174 was confirmed by reverse transcription quantitative real-time PCR (RT-qPCR). Ant-1174-injected and control mosquitoes were collected before the blood meal at 72 h post-injection for tandem mass tag-based proteomic analysis and liquid chromatography-tandom mass spectrometry non-target metabolomic analysis to identify differentially expressed proteins and metabolites, respectively. RNA interference (RNAi) using double-stranded RNA (dsRNA) injection was applied to investigate the biological roles of these differentially expressed genes. The RNAi effect was verified by RT-qPCR and western blotting assays. Triglyceride content and ATP levels were measured using the appropriate assay kits, following the manufacturers' instructions. Statistical analyses were conducted with GraphPad7 software using the Student's t-test. RESULTS Upon depletion of mosquito- and midgut-specific miR-1174, a total of 383 differentially expressed proteins (DEPs) were identified, among which 258 were upregulated and 125 were downregulated. Functional analysis of these DEPs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggested that miR-1174 plays important regulatory roles in amino acid metabolism, nucleotide metabolism, fatty acid metabolism and sugar metabolism pathways. A total of 292 differential metabolites were identified, of which 141 were upregulated and 151 were downregulated. Integrative analysis showed that the associated differential proteins and metabolites were mainly enriched in a variety of metabolic pathways, including glycolysis, citrate cycle, oxidative phosphorylation and amino acid metabolism. Specifically, the gene of one upregulated protein in miR-1174-depleted mosquitoes, purine nucleoside phosphorylase (PNP; AAEL002269), was associated with the purine, pyrimidine and niacin-nicotinamide metabolism pathways. PNP knockdown seriously inhibited blood digestion and ovary development and increased adult mortality. Mechanically, PNP depletion led to a significant downregulation of the vitellogenin gene (Vg); in addition, some important genes in the ecdysone signaling and insulin-like peptide signaling pathways related to ovary development were affected. CONCLUSIONS This study demonstrates differential accumulation of proteins and metabolites in miR-1174-depleted Ae. aegypti mosquitoes using proteomic and metabolomic techniques. The results provide functional evidence for the role of the upregulated gene PNP in gut physiological activities. Our findings highlight key molecular changes in miR-1174-depleted Ae. aegypti mosquitoes and thus provide a basis and novel insights for increased understanding of the molecular mechanism involved in a lineage-specific miRNA in mosquito vectors.
Collapse
Affiliation(s)
- Yangrui Luo
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Dun Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, Shandong, People's Republic of China
| | - Yuanmei Wang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Fan Zhang
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Yuqi Lou
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing, 400716, People's Republic of China.
| |
Collapse
|
25
|
Zheng R, Wang Q, Wu R, Paradkar PN, Hoffmann AA, Wang GH. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. THE ISME JOURNAL 2023; 17:1143-1152. [PMID: 37231184 PMCID: PMC10356850 DOI: 10.1038/s41396-023-01436-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito's microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.
Collapse
Affiliation(s)
- Ronger Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Runbiao Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Garrido M, Veiga J, Garrigós M, Martínez-de la Puente J. The interplay between vector microbial community and pathogen transmission on the invasive Asian tiger mosquito, Aedes albopictus: current knowledge and future directions. Front Microbiol 2023; 14:1208633. [PMID: 37577425 PMCID: PMC10413570 DOI: 10.3389/fmicb.2023.1208633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The invasive Asian tiger mosquito Aedes albopictus is nowadays broadly distributed with established populations in all continents except Antarctica. In the invaded areas, this species represents an important nuisance for humans and, more relevant, it is involved in the local transmission of pathogens relevant under a public health perspective. Aedes albopictus is a competent vector of parasites such as Dirofilaria and viruses including dengue virus, Zika virus, and chikungunya virus, among others. The mosquito microbiota has been identified as one of the major drivers of vector competence, acting upon relevant vector functions as development or immunity. Here, we review the available literature on the interaction between Ae. albopictus microbiota and pathogen transmission and identify the knowledge gaps on the topic. Most studies are strictly focused on the interplay between pathogens and Wolbachia endosymbiont while studies screening whole microbiota are still scarce but increasing in recent years, supported on Next-generation sequencing tools. Most experimental trials use lab-reared mosquitoes or cell lines, exploring the molecular mechanisms of the microbiota-pathogen interaction. Yet, correlational studies on wild populations are underrepresented. Consequently, we still lack sufficient evidence to reveal whether the microbiota of introduced populations of Ae. albopictus differ from those of native populations, or how microbiota is shaped by different environmental and anthropic factors, but especially, how these changes affect the ability of Ae. albopictus to transmit pathogens and favor the occurrence of outbreaks in the colonized areas. Finally, we propose future research directions on this research topic.
Collapse
Affiliation(s)
- Mario Garrido
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesús Veiga
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Marta Garrigós
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Josué Martínez-de la Puente
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
27
|
Ogola EO, Bastos ADS, Rotich G, Kopp A, Slothouwer I, Omoga DCA, Sang R, Torto B, Junglen S, Tchouassi DP. Analyses of Mosquito Species Composition, Blood-Feeding Habits and Infection with Insect-Specific Flaviviruses in Two Arid, Pastoralist-Dominated Counties in Kenya. Pathogens 2023; 12:967. [PMID: 37513814 PMCID: PMC10386387 DOI: 10.3390/pathogens12070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Insect-specific flaviviruses (ISFs), although not known to be pathogenic to humans and animals, can modulate the transmission of arboviruses by mosquitoes. In this study, we screened 6665 host-seeking, gravid and blood-fed mosquitoes for infection with flaviviruses and assessed the vertebrate hosts of the blood-fed mosquitoes sampled in Baringo and Kajiado counties; both dryland ecosystem counties in the Kenyan Rift Valley. Sequence fragments of two ISFs were detected. Cuacua virus (CuCuV) was found in three blood-fed Mansonia (Ma.) africana. The genome was sequenced by next-generation sequencing (NGS), confirming 95.8% nucleotide sequence identity to CuCuV detected in Mansonia sp. in Mozambique. Sequence fragments of a potential novel ISF showing nucleotide identity of 72% to Aedes flavivirus virus were detected in individual blood-fed Aedes aegypti, Anopheles gambiae s.l., Ma. africana and Culex (Cx.) univittatus, all having fed on human blood. Blood-meal analysis revealed that the collected mosquitoes fed on diverse hosts, primarily humans and livestock, with a minor representation of wild mammals, amphibians and birds. The potential impact of the detected ISFs on arbovirus transmission requires further research.
Collapse
Affiliation(s)
- Edwin O Ogola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa
| | - Armanda D S Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa
| | - Gilbert Rotich
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| | - Anne Kopp
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Inga Slothouwer
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Dorcus C A Omoga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag 20, Pretoria 0028, South Africa
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya
| |
Collapse
|
28
|
Accoti A, Damiani C, Nunzi E, Cappelli A, Iacomelli G, Monacchia G, Turco A, D’Alò F, Peirce MJ, Favia G, Spaccapelo R. Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding. Front Microbiol 2023; 14:1157613. [PMID: 37533823 PMCID: PMC10392944 DOI: 10.3389/fmicb.2023.1157613] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. Methods Using both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. Results To eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. Discussion These data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Gloria Iacomelli
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Giulia Monacchia
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Antonella Turco
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Francesco D’Alò
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Matthew J. Peirce
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), Trieste, Italy
| |
Collapse
|
29
|
Cappelli A, Damiani C, Capone A, Bozic J, Mensah P, Clementi E, Spaccapelo R, Favia G, Ricci I. Tripartite interactions comprising yeast-endobacteria systems in the gut of vector mosquitoes. Front Microbiol 2023; 14:1157299. [PMID: 37396392 PMCID: PMC10311912 DOI: 10.3389/fmicb.2023.1157299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Jovana Bozic
- Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Department of Entomology, Penn State University, University Park, PA, United States
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Emanuela Clementi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, CIRM Italian Malaria Network, Functional Genomic Center (C.U.R.Ge.F), Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| |
Collapse
|
30
|
Lee JH, Kim HW, Mustafa B, Lee HI, Kwon HW. The relationships between microbiome diversity and epidemiology in domestic species of malaria-mediated mosquitoes of Korea. Sci Rep 2023; 13:9081. [PMID: 37277359 DOI: 10.1038/s41598-023-35641-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023] Open
Abstract
Microbiota in the mosquito plays an important role in their behavior and vector competence. The composition of their microbiome is strongly influenced by the environment, especially their habitat. The microbiome profiles of adult female Anopheles sinensis mosquitoes from malaria hyperendemic and hypoendemic areas in Republic of Korea were compared using 16S rRNA Illumina sequencing. In different epidemiology groups, the alpha and beta diversity analyses were significant. The major bacterial phylum was Proteobacteria. The most abundant species in the microbiome of hyperendemic mosquitoes were the genera Staphylococcus, Erwinia, Serratia, and Pantoea. Notably, a distinct microbiome profile characterized by the dominance of Pseudomonas synxantha was identified in the hypoendemic area, suggesting a potential correlation between the microbiome profiles and the incidence of malaria cases.
Collapse
Affiliation(s)
- Jeong Hyeon Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Hyun-Woo Kim
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong2-ro, Osong-eup, Heungdeok-gu, Chunbuk, Cheongju, 28159, Republic of Korea
| | - Bilal Mustafa
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Hee Il Lee
- Division of Vectors and Parasitic Diseases, Korea Disease Control and Prevention Agency, 187 Osongsaenmyeong2-ro, Osong-eup, Heungdeok-gu, Chunbuk, Cheongju, 28159, Republic of Korea.
| | - Hyung Wook Kwon
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
31
|
Seabourn PS, Weber DE, Spafford H, Medeiros MCI. Aedes albopictus microbiome derives from environmental sources and partitions across distinct host tissues. Microbiologyopen 2023; 12:e1364. [PMID: 37379424 PMCID: PMC10261752 DOI: 10.1002/mbo3.1364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The mosquito microbiome consists of a consortium of interacting microorganisms that reside on and within culicid hosts. Mosquitoes acquire most of their microbial diversity from the environment over their life cycle. Once present within the mosquito host, the microbes colonize distinct tissues, and these symbiotic relationships are maintained by immune-related mechanisms, environmental filtering, and trait selection. The processes that govern how environmental microbes assemble across the tissues within mosquitoes remain poorly resolved. We use ecological network analyses to examine how environmental bacteria assemble to form bacteriomes among Aedes albopictus host tissues. Mosquitoes, water, soil, and plant nectar were collected from 20 sites in the Mānoa Valley, Oahu. DNA was extracted and associated bacteriomes were inventoried using Earth Microbiome Project protocols. We find that the bacteriomes of A. albopictus tissues were compositional taxonomic subsets of environmental bacteriomes and suggest that the environmental microbiome serves as a source pool that supports mosquito microbiome diversity. Within the mosquito, the microbiomes of the crop, midgut, Malpighian tubules, and ovaries differed in composition. This microbial diversity partitioned among host tissues formed two specialized modules: one in the crop and midgut, and another in the Malpighian tubules and ovaries. The specialized modules may form based on microbe niche preferences and/or selection of mosquito tissues for specific microbes that aid unique biological functions of the tissue types. A strong niche-driven assembly of tissue-specific microbiotas from the environmental species pool suggests that each tissue has specialized associations with microbes, which derive from host-mediated microbe selection.
Collapse
Affiliation(s)
- Priscilla S. Seabourn
- Plant and Environmental Protection SciencesHonoluluHawaiiUSA
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaiiUSA
| | - Danya E. Weber
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaiiUSA
| | - Helen Spafford
- Plant and Environmental Protection SciencesHonoluluHawaiiUSA
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Matthew C. I. Medeiros
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaiiUSA
- Center for Microbiome Analysis through Island Knowledge and InvestigationUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| |
Collapse
|
32
|
Baltar JMC, Pavan MG, Corrêa-Antônio J, Couto-Lima D, Maciel-de-Freitas R, David MR. Gut Bacterial Diversity of Field and Laboratory-Reared Aedes albopictus Populations of Rio de Janeiro, Brazil. Viruses 2023; 15:1309. [PMID: 37376609 DOI: 10.3390/v15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The mosquito microbiota impacts different parameters in host biology, such as development, metabolism, immune response and vector competence to pathogens. As the environment is an important source of acquisition of host associate microbes, we described the microbiota and the vector competence to Zika virus (ZIKV) of Aedes albopictus from three areas with distinct landscapes. METHODS Adult females were collected during two different seasons, while eggs were used to rear F1 colonies. Midgut bacterial communities were described in field and F1 mosquitoes as well as in insects from a laboratory colony (>30 generations, LAB) using 16S rRNA gene sequencing. F1 mosquitoes were infected with ZIKV to determine virus infection rates (IRs) and dissemination rates (DRs). Collection season significantly affected the bacterial microbiota diversity and composition, e.g., diversity levels decreased from the wet to the dry season. Field-collected and LAB mosquitoes' microbiota had similar diversity levels, which were higher compared to F1 mosquitoes. However, the gut microbiota composition of field mosquitoes was distinct from that of laboratory-reared mosquitoes (LAB and F1), regardless of the collection season and location. A possible negative correlation was detected between Acetobacteraceae and Wolbachia, with the former dominating the gut microbiota of F1 Ae. albopictus, while the latter was absent/undetectable. Furthermore, we detected significant differences in infection and dissemination rates (but not in the viral load) between the mosquito populations, but it does not seem to be related to gut microbiota composition, as it was similar between F1 mosquitoes regardless of their population. CONCLUSIONS Our results indicate that the environment and the collection season play a significant role in shaping mosquitoes' bacterial microbiota.
Collapse
Affiliation(s)
- João M C Baltar
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Márcio G Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Mariana R David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
33
|
Mosquera KD, Nilsson LKJ, de Oliveira MR, Rocha EM, Marinotti O, Håkansson S, Tadei WP, de Souza AQL, Terenius O. Comparative assessment of the bacterial communities associated with Anopheles darlingi immature stages and their breeding sites in the Brazilian Amazon. Parasit Vectors 2023; 16:156. [PMID: 37127597 PMCID: PMC10150499 DOI: 10.1186/s13071-023-05749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/19/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The neotropical anopheline mosquito Anopheles darlingi is a major malaria vector in the Americas. Studies on mosquito-associated microbiota have shown that symbiotic bacteria play a major role in host biology. Mosquitoes acquire and transmit microorganisms over their life cycle. Specifically, the microbiota of immature forms is largely acquired from their aquatic environment. Therefore, our study aimed to describe the microbial communities associated with An. darlingi immature forms and their breeding sites in the Coari municipality, Brazilian Amazon. METHODS Larvae, pupae, and breeding water were collected in two different geographical locations. Samples were submitted for DNA extraction and high-throughput 16S rRNA gene sequencing was conducted. Microbial ecology analyses were performed to explore and compare the bacterial profiles of An. darlingi and their aquatic habitats. RESULTS We found lower richness and diversity in An. darlingi microbiota than in water samples, which suggests that larvae are colonized by a subset of the bacterial community present in their breeding sites. Moreover, the bacterial community composition of the immature mosquitoes and their breeding water differed according to their collection sites, i.e., the microbiota associated with An. darlingi reflected that in the aquatic habitats where they developed. The three most abundant bacterial classes across the An. darlingi samples were Betaproteobacteria, Clostridia, and Gammaproteobacteria, while across the water samples they were Gammaproteobacteria, Bacilli, and Alphaproteobacteria. CONCLUSIONS Our findings reinforce the current evidence that the environment strongly shapes the composition and diversity of mosquito microbiota. A better understanding of mosquito-microbe interactions will contribute to identifying microbial candidates impacting host fitness and disease transmission.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Louise K J Nilsson
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Marta Rodrigues de Oliveira
- Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG-BIONORTE), Universidade do Estado do Amazonas, Manaus, Brazil
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Elerson Matos Rocha
- School of Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central Multi User Laboratory, São Paulo State University (UNESP), Botucatu, Brazil
| | | | - Sebastian Håkansson
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Wanderli P Tadei
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Antonia Queiroz Lima de Souza
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Brazil
| | - Olle Terenius
- Department of Cell and Molecular Biology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden.
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| |
Collapse
|
34
|
dos Santos NAC, de Carvalho VR, Souza-Neto JA, Alonso DP, Ribolla PEM, Medeiros JF, Araujo MDS. Bacterial Microbiota from Lab-Reared and Field-Captured Anopheles darlingi Midgut and Salivary Gland. Microorganisms 2023; 11:1145. [PMID: 37317119 PMCID: PMC10224351 DOI: 10.3390/microorganisms11051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Anopheles darlingi is a major malaria vector in the Amazon region and, like other vectors, harbors a community of microorganisms with which it shares a network of interactions. Here, we describe the diversity and bacterial composition from the midguts and salivary glands of lab-reared and field-captured An. darlingi using metagenome sequencing of the 16S rRNA gene. The libraries were built using the amplification of the region V3-V4 16S rRNA gene. The bacterial community from the salivary glands was more diverse and richer than the community from the midguts. However, the salivary glands and midguts only showed dissimilarities in beta diversity between lab-reared mosquitoes. Despite that, intra-variability was observed in the samples. Acinetobacter and Pseudomonas were dominant in the tissues of lab-reared mosquitoes. Sequences of Wolbachia and Asaia were both found in the tissue of lab-reared mosquitoes; however, only Asaia was found in field-captured An. darlingi, but in low abundance. This is the first report on the characterization of microbiota composition from the salivary glands of An. darlingi from lab-reared and field-captured individuals. This study can provide invaluable insights for future investigations regarding mosquito development and interaction between mosquito microbiota and Plasmodium sp.
Collapse
Affiliation(s)
- Najara Akira Costa dos Santos
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Vanessa Rafaela de Carvalho
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Diego Peres Alonso
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Paulo Eduardo Martins Ribolla
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Jansen Fernandes Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais–PPGReN, Departament of Biology, Fundação Universidade Federal de Rondônia, Campus José Ribeiro Filho, Porto Velho 76801-059, RO, Brazil
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho 76812-329, RO, Brazil
| |
Collapse
|
35
|
Mosquera KD, Martínez Villegas LE, Rocha Fernandes G, Rocha David M, Maciel-de-Freitas R, A Moreira L, Lorenzo MG. Egg-laying by female Aedes aegypti shapes the bacterial communities of breeding sites. BMC Biol 2023; 21:97. [PMID: 37101136 PMCID: PMC10134544 DOI: 10.1186/s12915-023-01605-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Aedes aegypti, the main arboviral mosquito vector, is attracted to human dwellings and makes use of human-generated breeding sites. Past research has shown that bacterial communities associated with such sites undergo compositional shifts as larvae develop and that exposure to different bacteria during larval stages can have an impact on mosquito development and life-history traits. Based on these facts, we hypothesized that female Ae. aegypti shape the bacteria communities of breeding sites during oviposition as a form of niche construction to favor offspring fitness. RESULTS To test this hypothesis, we first verified that gravid females can act as mechanical vectors of bacteria. We then elaborated an experimental scheme to test the impact of oviposition on breeding site microbiota. Five different groups of experimental breeding sites were set up with a sterile aqueous solution of larval food, and subsequently exposed to (1) the environment alone, (2) surface-sterilized eggs, (3) unsterilized eggs, (4) a non-egg laying female, or (5) oviposition by a gravid female. The microbiota of these differently treated sites was assessed by amplicon-oriented DNA sequencing once the larvae from the sites with eggs had completed development and formed pupae. Microbial ecology analyses revealed significant differences between the five treatments in terms of diversity. In particular, between-treatment shifts in abundance profiles were detected, showing that females induce a significant decrease in microbial alpha diversity through oviposition. In addition, indicator species analysis pinpointed bacterial taxa with significant predicting values and fidelity coefficients for the samples in which single females laid eggs. Furthermore, we provide evidence regarding how one of these indicator taxa, Elizabethkingia, exerts a positive effect on the development and fitness of mosquito larvae. CONCLUSIONS Ovipositing females impact the composition of the microbial community associated with a breeding site, promoting certain bacterial taxa over those prevailing in the environment. Among these bacteria, we found known mosquito symbionts and showed that they can improve offspring fitness if present in the water where eggs are laid. We deem this oviposition-mediated bacterial community shaping as a form of niche construction initiated by the gravid female.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Luis Eduardo Martínez Villegas
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH, 43210, USA
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana Rocha David
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratory of Hematozoa Transmitting Mosquitoes, Oswaldo Cruz Institute-FIOCRUZ, Rio de Janeiro, Brazil
| | - Luciano A Moreira
- Mosquito Vectors: Endosymbionts and Pathogen-Vector Interactions Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, René Rachou Institute-FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
36
|
Wei X, Peng H, Li Y, Meng B, Wang S, Bi S, Zhao X. Pyrethroids exposure alters the community and function of the internal microbiota in Aedes albopictus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114579. [PMID: 36706527 DOI: 10.1016/j.ecoenv.2023.114579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), β-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in β-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and β-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and β-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.
Collapse
Affiliation(s)
- Xiao Wei
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Hong Peng
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Yan Li
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Biao Meng
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shichao Wang
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Shanzheng Bi
- Centers for Disease Control and Prevention of PLA, Beijing, China
| | - Xiangna Zhao
- Centers for Disease Control and Prevention of PLA, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
37
|
Villegas LEM, Radl J, Dimopoulos G, Short SM. Bacterial communities of Aedes aegypti mosquitoes differ between crop and midgut tissues. PLoS Negl Trop Dis 2023; 17:e0011218. [PMID: 36989328 PMCID: PMC10085046 DOI: 10.1371/journal.pntd.0011218] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/10/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microbiota studies of Aedes aegypti and other mosquitoes generally focus on the bacterial communities found in adult female midguts. However, other compartments of the digestive tract maintain communities of bacteria which remain almost entirely unstudied. For example, the Dipteran crop is a food storage organ, but few studies have looked at the microbiome of crops in mosquitoes, and only a single previous study has investigated the crop in Ae. aegypti. In this study, we used both culture-dependent and culture-independent methods to compare the bacterial communities in midguts and crops of laboratory reared Ae. aegypti. Both methods revealed a trend towards higher abundance, but also higher variability, of bacteria in the midgut than the crop. When present, bacteria from the genus Elizabethkingia (family Weeksellaceae) dominated midgut bacterial communities. In crops, we found a higher diversity of bacteria, and these communities were generally dominated by acetic acid bacteria (family Acetobacteriaceae) from the genera Tanticharoenia and Asaia. These three taxa drove significant community structure differences between the tissues. We used FAPROTAX to predict the metabolic functions of these communities and found that crop bacterial communities were significantly more likely to contain bacteria capable of methanol oxidation and methylotrophy. Both the presence of acetic acid bacteria (which commonly catabolize sugar to produce acetic acid) and the functional profile that includes methanol oxidation (which is correlated with bacteria found with natural sources like nectar) may relate to the presence of sugar, which is stored in the mosquito crop. A better understanding of what bacteria are present in the digestive tract of mosquitoes and how these communities assemble will inform how the microbiota impacts mosquito physiology and the full spectrum of functions provided by the microbiota. It may also facilitate better methods of engineering the mosquito microbiome for vector control or prevention of disease transmission.
Collapse
Affiliation(s)
| | - James Radl
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
38
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|
39
|
Trzebny A, Slodkowicz-Kowalska A, Björkroth J, Dabert M. Microsporidian Infection in Mosquitoes (Culicidae) Is Associated with Gut Microbiome Composition and Predicted Gut Microbiome Functional Content. MICROBIAL ECOLOGY 2023; 85:247-263. [PMID: 34939130 PMCID: PMC9849180 DOI: 10.1007/s00248-021-01944-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Anna Slodkowicz-Kowalska
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Poznan, Poland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
40
|
de Angeli Dutra D, Salloum PM, Poulin R. Vector microbiome: will global climate change affect vector competence and pathogen transmission? Parasitol Res 2023; 122:11-17. [PMID: 36401142 DOI: 10.1007/s00436-022-07734-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases are among the greatest causes of human suffering globally. Several studies have linked climate change and increasing temperature with rises in vector abundance, and in the incidence and geographical distribution of diseases. The microbiome of vectors can have profound effects on how efficiently a vector sustains pathogen development and transmission. Growing evidence indicates that the composition of vectors' gut microbiome might change with shifts in temperature. Nonetheless, due to a lack of studies on vector microbiome turnover under a changing climate, the consequences for vector-borne disease incidence are still unknown. Here, we argue that climate change effects on vector competence are still poorly understood and the expected increase in vector-borne disease transmission might not follow a relationship as simple and straightforward as past research has suggested. Furthermore, we pose questions that are yet to be answered to enhance our current understanding of the effect of climate change on vector microbiomes, competence, and, ultimately, vector-borne diseases transmission.
Collapse
Affiliation(s)
| | | | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
41
|
Carvalho KS, Rezende TMT, Romão TP, Rezende AM, Chiñas M, Guedes DRD, Paiva-Cavalcanti M, Silva-Filha MHNL. Aedes aegypti Strain Subjected to Long-Term Exposure to Bacillus thuringiensis svar. israelensis Larvicides Displays an Altered Transcriptional Response to Zika Virus Infection. Viruses 2022; 15:72. [PMID: 36680112 PMCID: PMC9866606 DOI: 10.3390/v15010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Bacillus thuringiensis svar. israelensis (Bti) larvicides are effective in controlling Aedes aegypti; however, the effects of long-term exposure need to be properly evaluated. We established an Ae. aegypti strain that has been treated with Bti for 30 generations (RecBti) and is still susceptible to Bti, but females exhibited increased susceptibility to Zika virus (ZIKV). This study compared the RecBti strain to a reference strain regarding: first, the relative transcription of selected immune genes in ZIKV-challenged females (F30) with increased susceptibility detected in a previous study; then, the whole transcriptomic profile using unchallenged females (F35). Among the genes compared by RT-qPCR in the ZIKV-infected and uninfected females from RecBti (F30) and the reference strain, hop, domeless, relish 1, defensin A, cecropin D, and gambicin showed a trend of repression in RecBti infected females. The transcriptome of RecBti (F35) unchallenged females, compared with a reference strain by RNA-seq, showed a similar profile and only 59 differentially expressed genes were found among 9202 genes analyzed. Our dataset showed that the long-term Bti exposure of the RecBti strain was associated with an alteration of the expression of genes potentially involved in the response to ZIKV infection in challenged females, which is an important feature found under this condition.
Collapse
Affiliation(s)
- Karine S. Carvalho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | | | - Tatiany P. Romão
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Antônio M. Rezende
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife 50670-420, Brazil
| | - Marcos Chiñas
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
| | | | | | | |
Collapse
|
42
|
Abstract
The mosquito microbiota has a profound impact on multiple biological processes ranging from reproduction to disease transmission. Interestingly, the adult mosquito microbiota is largely derived from the larval microbiota, which in turn is dependent on the microbiota of their water habitat. The larval microbiota not only plays a crucial role in larval development but also has a significant impact on the adult stage of the mosquito. By precisely engineering the larval microbiota, it is feasible to alter larval development and other life history traits of the mosquitoes. Bacteriophages, given their host specificity, can serve as a tool for modulating the microbiota. For this proof-of-principle study, we selected representative strains of five common Anopheles mosquito-associated bacterial genera, namely, Enterobacter, Serratia, Pseudomonas, Elizabethkingia, and Asaia. Our results with monoaxenic cultures showed that Anopheles larvae with Enterobacter and Pseudomonas displayed normal larval development with no significant mortality. However, monoaxenic Anopheles larvae with Elizabethkingia showed delayed larval development and higher mortality. Serratia and Asaia gnotobiotic larvae failed to develop past the first instar. We isolated and characterized three novel bacteriophages (EP1, SP1, and EKP1) targeting Enterobacter, Serratia, and Elizabethkingia, respectively, and utilized a previously characterized bacteriophage (GH1) targeting Pseudomonas to modulate larval water microbiota. Gnotobiotic Anopheles larvae with all five bacterial genera showed reduced survival and larval development with the addition of bacteriophages EP1 and GH1, targeting Enterobacter and Pseudomonas, respectively. The effect was synergistic when both EP1 and GH1 were added together. Our results demonstrate a novel application of bacteriophages for mosquito control. IMPORTANCE Mosquitoes are efficient vectors of multiple human and animal pathogens. The biology of mosquitoes is strongly affected by their associated microbiota. Because of the important role of the larval microbiota in mosquito biology, the microbiota can potentially serve as a target for altering mosquito life-history traits. Our study provides proof of principle that bacteriophages can be used as tools to modulate the mosquito larval habitat microbiota and can, in turn, affect larval development and survival. These results highlight the utility of bacteriophages in mosquito microbiota research and also provide a new potential mosquito control tool.
Collapse
|
43
|
Liu W, Du Q, Zhang H, Han D. The gut microbiome and obstructive sleep apnea syndrome in children. Sleep Med 2022; 100:462-471. [PMID: 36252415 DOI: 10.1016/j.sleep.2022.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/11/2023]
Abstract
Obstructive sleep apnea syndrome (OSAS) in children has become a major public health problem that affects the physical and mental growth of children. OSAS can result in adverse outcomes during growth and development, inhibiting the normal development of the metabolic, cardiovascular, and immune systems. OSAS is characterized by partial or complete obstruction of the upper airway, and prolonged obstruction that causes intermittent hypoxia and sleep fragmentation in children. The human microbiota is a complex community that is in dynamic equilibrium in the human body. Intermittent hypoxia and sleep fragmentation induced by childhood OSAS alter the composition of the gut microbiome. At the same time, changes in the gut microbiome affect sleep patterns in children through immunomodulatory and metabolic mechanisms, and induce further comorbidities, such as obesity, hypertension, and cardiovascular disease. This article discusses recent progress in research into the mechanisms of OSAS-induced changes in the gut microbiota and its pathophysiology in children.
Collapse
Affiliation(s)
- Wenxin Liu
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Qingqing Du
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China
| | - Hong Zhang
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| | - Dingding Han
- Children's Hospital of Shanghai Jiao Tong University, Clinical Lab in Children's Hospital of Shanghai, Shanghai, 200040, China; Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, 200062, Shanghai, China.
| |
Collapse
|
44
|
Zhang X, Meng H, Hu X, Yuan Z. Diversity and functional profile of gut symbiotic bacteria between Lysinibacillus sphaericus C 3-41 susceptible and resistant Culex quinquefasciatus Say as revealed by 16S rRNA gene high-throughput sequencing. Front Microbiol 2022; 13:991105. [PMID: 36406384 PMCID: PMC9668892 DOI: 10.3389/fmicb.2022.991105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2023] Open
Abstract
Previous studies have demonstrated that symbiotic gut bacteria in insects are involved in the development of insecticide resistance, but the relationship between the symbiotic gut bacteria and resistance to Lysinibacillus sphaericus C3-41 in Culex pipiens quinquefasciatus remains unclear. In this study, the abundance and diversity of gut symbionts of Cx. quinquefasciatus that were resistant (RLCql) or susceptible (SLCql) to L. sphaericus C3-41 were analyzed by high-throughput 16S rRNA sequencing. The main phyla among the symbiotic gut bacterial communities of Cx. quinquefasciatus were Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. However, the relative abundance of Firmicutes, Proteobacteria, and unidentified Bacteria in the gut of the resistant strain of Cx. quequinfasciatus (RLCql colony) was higher compared to the susceptible strain (SLCql colony). The NMDS (Non-Metric Multi-Dimensional Scaling) and unweighted unifrac PCoA analyses also revealed significant differences between the symbiotic gut bacterial communities from the resistant and susceptible strains, suggesting that bacterial insecticides can alter bacterial composition. Ultimately, the changes in the bacterial community likely occurred after the development of resistance to L. sphaericus C3-41. These results provide guidance for further research into the mechanisms of gut symbionts involved in resistance against L. sphaericus C3-41 in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Hubei Engineering Technology Research Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haoran Meng
- Hubei Engineering Technology Research Center for Forewarning and Management of Agricultural and Forestry Pests, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
45
|
Genomic Characterization of Twelve Lytic Bacteriophages Infecting Midgut Bacteria of Aedes aegypti. Curr Microbiol 2022; 79:385. [DOI: 10.1007/s00284-022-03092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
46
|
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations. Viruses 2022; 14:v14102197. [PMID: 36298752 PMCID: PMC9609292 DOI: 10.3390/v14102197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015-16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito's viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. METHODS Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda-cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. RESULTS We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda-cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda-cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. CONCLUSIONS Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda-cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses.
Collapse
|
47
|
A comprehensive overview of the existing microbial symbionts in mosquito vectors: An important tool for impairing pathogen -transmission. Exp Parasitol 2022; 243:108407. [DOI: 10.1016/j.exppara.2022.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
|
48
|
Mosquera KD, Khan Z, Wondwosen B, Alsanius B, Hill SR, Ignell R, Lorenzo MG. Odor-mediated response of gravid Aedes aegypti to mosquito-associated symbiotic bacteria. Acta Trop 2022; 237:106730. [PMID: 36280207 DOI: 10.1016/j.actatropica.2022.106730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Complex oviposition decisions allow gravid Aedes aegypti mosquitoes to select suitable sites for egg-laying to increase the probability that their progeny will thrive. The bacterial communities present in larval niches influence mosquito oviposition behavior, and gravid mosquitoes transmit key microbial associates to breeding sites during oviposition. Our study evaluated whether symbiotic Klebsiella sp., which are strongly associated with mosquitoes, emit volatiles that affect mosquito oviposition decisions. Dual-choice behavioral assays demonstrated that volatile organic compounds emitted by Klebsiella sp. induce a preference in oviposition decisions by Ae. aegypti. Bacterial headspace volatiles were sampled by solid-phase microextraction, and subsequent combined gas chromatography and electroantennogram detection analysis, revealed that the antennae of gravid females detect two compounds present in the Klebsiella sp. headspace. These compounds were identified by gas chromatography and mass spectrometry as 2-ethyl hexanol and 2,4-di‑tert-butylphenol. The binary blend of these compounds elicited a dose-dependent egg-laying preference by gravid mosquitoes. We propose that bacterial symbionts, which are associated with gravid mosquitoes and may be transferred to aquatic habitats during egg-laying, together with their volatiles act as oviposition cues indicating the suitability of active breeding sites to conspecific females.
Collapse
Affiliation(s)
- Katherine D Mosquera
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| | - Zaid Khan
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Betelehem Wondwosen
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Beatrix Alsanius
- Microbial Horticulture Group, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sharon R Hill
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Marcelo G Lorenzo
- Vector Behavior and Pathogen Interaction Group, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil.
| |
Collapse
|
49
|
Bidirectional Interactions between Arboviruses and the Bacterial and Viral Microbiota in Aedes aegypti and Culex quinquefasciatus. mBio 2022; 13:e0102122. [PMID: 36069449 PMCID: PMC9600335 DOI: 10.1128/mbio.01021-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mosquitoes are important vectors for many arboviruses. It is becoming increasingly clear that various symbiotic microorganisms (including bacteria and insect-specific viruses; ISVs) in mosquitoes have the potential to modulate the ability of mosquitoes to transmit arboviruses. In this study, we compared the bacteriome and virome (both eukaryotic viruses and bacteriophages) of female adult Aedes aegypti and Culex quinquefasciatus mosquitoes fed with sucrose/water, blood, or blood spiked with Zika virus (ZIKV) or West Nile virus (WNV), respectively. Furthermore, we investigated associations between the microbiota and vector competence. We show that the influence of arboviruses on the mosquito microbiome—and vice versa—is distinct for each combination of arbovirus/mosquito species. The presence of ZIKV resulted in a temporarily increased Aedes ISV diversity. However, this effect was distinct for different ISVs: some ISVs decreased following the blood meal (Aedes aegypti totivirus), whereas other ISVs increased only when the blood contained ZIKV (Guadeloupe mosquito virus). Also, the diversity of the Aedes bacteriome depended on the diet and the presence of ZIKV, with a lower diversity observed for mosquitoes receiving blood without ZIKV. In Cx. quinquefasciatus, some ISVs increased in WNV-infected mosquitoes (Guadeloupe Culex tymo-like virus). Particularly, the presence of Wenzhou sobemo-like virus 3 (WSLV3) was associated with the absence of infectious WNV in mosquito heads, suggesting that WSLV3 might affect vector competence for WNV. Distinct profiles of bacteriophages were identified in Culex mosquitoes depending on diet, despite the lack of clear changes in the bacteriome. Overall, our data demonstrate a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus–mosquito combinations. A better understanding of these interactions may lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures.
Collapse
|
50
|
Antonelli P, Duval P, Luis P, Minard G, Valiente Moro C. Reciprocal interactions between anthropogenic stressors and insect microbiota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64469-64488. [PMID: 35864395 DOI: 10.1007/s11356-022-21857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Insects play many important roles in nature due to their diversity, ecological role, and impact on agriculture or human health. They are directly influenced by environmental changes and in particular anthropic activities that constitute an important driver of change in the environmental characteristics. Insects face numerous anthropogenic stressors and have evolved various detoxication mechanisms to survive and/or resist to these compounds. Recent studies highligted the pressure exerted by xenobiotics on insect life-cycle and the important role of insect-associated bacterial microbiota in the insect responses to environmental changes. Stressor exposure can have various impacts on the composition and structure of insect microbiota that in turn may influence insect biology. Moreover, bacterial communities associated with insects can be directly or indirectly involved in detoxification processes with the selection of certain microorganisms capable of degrading xenobiotics. Further studies are needed to assess the role of insect-associated microbiota as key contributor to the xenobiotic metabolism and thus as a driver for insect adaptation to polluted habitats.
Collapse
Affiliation(s)
- Pierre Antonelli
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Pénélope Duval
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Patricia Luis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, 69622, Villeurbanne, France.
| |
Collapse
|