1
|
Yang F, Yan Q, Wang Y, Li Q, Wang J, Zeng X, Pi Y, Zhang M, Wei L. AMP1-1 alleviates bone loss in weightless rats by reducing peripheral 5-HT content via the microbiota-gut-bone axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156447. [PMID: 39923429 DOI: 10.1016/j.phymed.2025.156447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Weightlessness-induced bone loss (WIBL) refers to the reduction of bone mass and the decline of bone resistance to load in a weightless environment. However, current treatment strategies aimed at increasing bone mass are associated with various limitations and side effects, highlighting the urgent need for safer and more effective therapeutic options to address WIBL. PURPOSE We aimed to further explore the potential mechanism of the anti-WIBL effect of Atractylodes macrocephalon polysaccharide1-1(AMP1-1). To find a better way to treat WIBL and provide new insights for the development of therapeutic drugs for this condition. METHODS Firstly, the anti-weightlessness bone loss of AMP1-1 was verified by micro-computed tomography (Micro-CT), three-point mechanical bending test and Western Blot (WB). Subsequently, the intestinal barrier was examined using histopathology, immunohistochemistry (IHC), and WB. Finally, validation experiments were performed using fecal microbiota transplantation (FMT). After FMT, 16S rDNA sequencing was used to analyze the gut microbiota composition in the rat feces. RESULTS AMP1-1 was able to inhibit WIBL by enhancing bone mass, improving toughness, and increasing osteogenic activity. Meanwhile, AMP1-1 reduced peripheral 5-HT content by restoring enterochromaffin cell function through gut microbiota regulation and tight junction repair. FMT of rat fecal microbiota after gavage of AMP1-1 into tail suspension rats still has the effects of regulating gut microbiota, repairing intestinal barrier and reducing bone loss. CONCLUSION Our results demonstrate that AMP1-1 exerts a protective effect against WIBL in rats, potentially by modulating 5-HT content and 5-HT-related metabolism in bone tissue through microbiota-gut-bone axis. This study is the first to elucidate the mechanism of AMP1-1 in mitigating WIBL through the perspective of the microbiota-gut-bone axis. Moreover, this research integrates plant extract research with the issue of bone loss induced by microgravity (aerospace medicine), thereby opening new avenues for natural drug research.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiuxin Yan
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yunhao Wang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiao Li
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Jinpeng Wang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Xiangyin Zeng
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yaning Pi
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Manrui Zhang
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Lijun Wei
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China.
| |
Collapse
|
2
|
Wang Z, Wang C, Yuan B, Liu L, Zhang H, Zhu M, Chai H, Peng J, Huang Y, Zhou S, Liu J, Wu L, Wang W. Akkermansia muciniphila and its metabolite propionic acid maintains neuronal mitochondrial division and autophagy homeostasis during Alzheimer's disease pathologic process via GPR41 and GPR43. MICROBIOME 2025; 13:16. [PMID: 39833898 PMCID: PMC11744907 DOI: 10.1186/s40168-024-02001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disease (ND). In recent years, multiple clinical and animal studies have shown that mitochondrial dysfunction may be involved in the pathogenesis of AD. In addition, short-chain fatty acids (SCFA) produced by intestinal microbiota metabolism have been considered to be important factors affecting central nervous system (CNS) homeostasis. Among the main mediators of host-microbe interactions, volatile fatty acids play a crucial role. Nevertheless, the influence and pathways of microorganisms and their metabolites on Alzheimer's disease (AD) remain uncertain. RESULTS In this study, we present distinctions in blood and fecal SCFA levels and microbiota composition between healthy individuals and those diagnosed with AD. We found that AD patients showed a decrease in the abundance of Akkermansia muciniphila and a decrease in propionic acid both in fecal and in blood. In order to further reveal the effects and the mechanisms of propionic acid on AD prevention, we systematically explored the effects of propionic acid administration on AD model mice and cultured hippocampal neuronal cells. Results showed that oral propionate supplementation ameliorated cognitive impairment in AD mice. Propionate downregulated mitochondrial fission protein (DRP1) via G-protein coupled receptor 41 (GPR41) and enhanced PINK1/PARKIN-mediated mitophagy via G-protein coupled receptor 43 (GPR43) in AD pathophysiology which contribute to maintaining mitochondrial homeostasis both in vivo and in vitro. Administered A. muciniphila to AD mice before disease onset showed improved cognition, mitochondrial division and mitophagy in AD mice. CONCLUSIONS Taken together, our results demonstrate that A. muciniphila and its metabolite propionate protect against AD-like pathological events in AD mouse models by targeting mitochondrial homeostasis, making them promising therapeutic candidates for the prevention and treatment of AD. Video Abstract.
Collapse
Affiliation(s)
- Zifan Wang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 110866, China
| | - Cai Wang
- Internal Medicine Ward, Zhanlan Road Hospital, Xicheng District, Beijing, 100044, China
| | - Boyu Yuan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haoming Zhang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Mingqiang Zhu
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Hongxia Chai
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Jie Peng
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Yanhua Huang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Shuo Zhou
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China
| | - Juxiong Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, Jilin University, Changchun, 130062, China.
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Wei Wang
- Innovative Institute of Animal Health Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangdong Province, Guangzhou, 510025, China.
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Kumar D, Bishnoi M, Kondepudi KK, Sharma SS. Gut Microbiota-Based Interventions for Parkinson's Disease: Neuroprotective Mechanisms and Current Perspective. Probiotics Antimicrob Proteins 2025:10.1007/s12602-024-10433-x. [PMID: 39809955 DOI: 10.1007/s12602-024-10433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis. Neuroprotective effects of these interventions are mediated by several mechanisms, including the enhancement of neurotrophin and activation of the PI3K/AKT/mTOR signaling pathway, GLP-1-mediated gut-brain axis signaling, Nrf2/ARE pathway, and autophagy. Other pathways, such as free fatty acid receptor activation, synaptic plasticity improvement, and blood-brain and gut barrier integrity maintenance, also contribute to neuroprotection. Furthermore, the inhibition of the TLR4/NF-кB pathway, MAPK pathway, GSK-3β signaling pathway, miR-155-5p-mediated neuroinflammation, and ferroptosis could account for their protective effects. Clinical studies involving gut microbiota-based interventions have shown therapeutic benefits in PD patients, particularly in improving gastrointestinal dysfunction and some neurological symptoms. However, the effectiveness in alleviating motor symptoms remains mild. Large-scale clinical trials are still needed to confirm these findings. This review emphasizes the neuroprotective mechanisms of gut microbiota-based interventions in PD as supported by both preclinical and clinical studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biomanufacturing Institute (NABI), Knowledge City-Sector 81, S.A.S. Nagar, Punjab, 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
4
|
Zhang T, Li XY, Kuang DD, Pan LH, Li QM, Luo JP, Zha XQ. Bone-brain communication mediates the amelioration of Polgonatum cyrtonema Hua polysaccharide on fatigue in chronic sleep-deprived mice. Int J Biol Macromol 2025; 296:139706. [PMID: 39793823 DOI: 10.1016/j.ijbiomac.2025.139706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively. Additionally, serum activities of CAT, GSH-Px, and SOD enzymes rose by 53.56 %, 37.69 % and 53.67 %, respectively, while MDA, lactic acid and BUN levels decreased by 22.90 %, 17.48 % and 24.61 %. The crosstalk between bone and brain is crucial for maintaining energy homeostasis. Molecular docking studies indicated a spontaneous and strong mutual binding between PCP and the bone-promoting target protein BMPR1A. Furthermore, it was observed that PCP enhanced osteogenic differentiation via the BMP-2/Smad1 pathway, leading to an upregulation of osteocalcin expression, which in turn regulated neurotransmitter balance and improved central arousal capacity. Moreover, PCP treatment stimulated neurogenesis by activating the CREB/BDNF/Akt signaling cascade, exhibiting neurotrophic effects. Additionally, PCP increased AMPK phosphorylation and destabilized TXNIP, facilitating astrocyte glucose uptake, glycolysis, and lactate conversion to support neuronal activity. These findings suggested that PCP could effectively respond to energy demands through bone-brain crosstalk, ultimately exerting anti-fatigue properties.
Collapse
Affiliation(s)
- Ting Zhang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Ying Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Dan-Dan Kuang
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
5
|
Wang M, Xu P, Zhou J, Ge J, Xu G. Characterization of the molecular, cellular, and behavioral changes caused by exposure to a saline-alkali environment in the Chinese mitten crab, Eriocheir sinensis. ENVIRONMENTAL RESEARCH 2024; 262:119956. [PMID: 39255905 DOI: 10.1016/j.envres.2024.119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
In the context of global warming, the accelerated evaporation of seawater will lead to a continuous expansion of saline-alkali land area. As an important economic freshwater crustacean, investigation on the mechanism of damage to Eriocheir sinensis (E. sinensis) under saline-alkali environment will provide a valuable precedent for understanding the detrimental effect of climate change on crustaceans. In this study, histopathological analysis and integrative omics analysis were employed to explore the injury mechanism on the cerebral nervous system of E. sinensis exposure to saline-alkali stress. Our findings revealed that under this stress E. sinensis exhibited behavioral disorders and damage to cerebral neurosecretory cells and key organelles. Additionally, several pathways related to detoxification metabolism, neurotransmitter synthesis, and antioxidant defense were significantly down-regulated. Collectively, these results show, for the first time, that saline-alkali stress can induce neurodegenerative disease-like symptoms in E. sinensis, and provide critical information for understanding the harmful effects of saline-alkali environments.
Collapse
Affiliation(s)
- Meiyao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
6
|
Liu Z, Lin Z, Chen Y, Lu M, Hong W, Yu B, Liu G. Lipoteichoic Acid Rescued Age-Related Bone Loss by Enhancing Neuroendocrine and Growth Hormone Secretion Through TLR2/COX2/PGE2 Signalling Pathway. J Cell Mol Med 2024; 28:e70247. [PMID: 39622781 PMCID: PMC11611525 DOI: 10.1111/jcmm.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
The phenomenon of brain-bone crosstalk pertains to the intricate interaction and communication pathways between the central nervous system and the skeletal system. Disruption in brain-bone crosstalk, particularly in disorders such as osteoporosis, can result in skeletal irregularities. Consequently, investigating and comprehending this communication network holds paramount importance in the realm of bone disease prevention and management. In this study, we found that Staphylococcus aureus lipoteichoic acid promoted the conversion of arachidonic acid to PGE2 by interacting with TLR2 receptors acting on the surface of microglial cells in the pituitary gland, leading to the upregulation of COX-2 expression. Subsequently, PGE2 bound to the EP4 receptor of growth hormone-secreting cells and activated the intracellular CREB signalling pathway, promoting GH secretion and ameliorating age-related bone loss.
Collapse
Affiliation(s)
- Zixian Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- The Second Hospital and Clinical Medical SchoolLanzhou UniversityLanzhouChina
| | - Zexin Lin
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yingqi Chen
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mincheng Lu
- Department of Orthopedic, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Weisheng Hong
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bin Yu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guanqiao Liu
- Department of Orthopaedics, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
7
|
Yang X, Zhang X, Ma Y, Li S, Wang Q, Hong JS, Yu G, Qi B, Wang J, Liu C, Shang Q, Wu X, Zhao J. Fucoidan ameliorates rotenone-induced Parkinsonism in mice by regulating the microbiota-gut-brain axis. Int J Biol Macromol 2024; 283:137373. [PMID: 39521225 DOI: 10.1016/j.ijbiomac.2024.137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Microbiota-gut-brain axis, the bidirectional relationship between the gut microbiota and the brain, has been increasingly appreciated in the pathogenesis of Parkinson's disease (PD). Fucoidan, a sulphate-rich polysaccharide, has been shown to be neuroprotective by reducing oxidative stress in PD models. However, the role of microbiota-gut-brain axis in the neuroprotective activity of fucoidan has not been revealed. In this study, the therapeutic effects of fucoidan and involvement of microbiota-gut-brain axis in rotenone (ROT)-induced PD were investigated. The results showed that fucoidan gavage attenuated neuroinflammation, dopamine neuronal damage and motor dysfunction in ROT-induced PD mice. In addition, fucoidan treatment ameliorated gut dysfunction, intestinal inflammation and disruption of the intestinal barrier in PD mice. Fucoidan also affected the composition of gut microbiota in PD mice, indicated particularly by decreased abundance of Akkermansia muciniphila and Lactobacillus johnsonii and increased abundance of Lactobacillus murinus. Mechanistic studies showed that fecal microbiota transplantation (FMT) from the fucoidan-treated mice and probiotic Lactobacillus murinus supplement are as potent as fucoidan treatment in attenuating peripheral and central inflammation and ameliorating dopamine neuronal damage, which might be attributed to the downregulation of LPS/TLR4/NF-κB signaling pathway. Our study suggests that fucoidan might be potential candidates for the treatment of PD.
Collapse
Affiliation(s)
- Xiaojing Yang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bing Qi
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Jie Wang
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Chengkang Liu
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xuefei Wu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China; Department of Medical Physiology, Dalian Medical University, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Feng M, Zou Z, Shou P, Peng W, Liu M, Li X. Gut microbiota and Parkinson's disease: potential links and the role of fecal microbiota transplantation. Front Aging Neurosci 2024; 16:1479343. [PMID: 39679259 PMCID: PMC11638248 DOI: 10.3389/fnagi.2024.1479343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and seriously affects the quality of life of elderly patients. PD is characterized by the loss of dopaminergic neurons in the substantia nigra as well as abnormal accumulation of α-synuclein in neurons. Recent research has deepened our understanding of the gut microbiota, revealing that it participates in the pathological process of PD through the gut-brain axis, suggesting that the gut may be the source of PD. Therefore, studying the relationship between gut microbiota and PD is crucial for improving our understanding of the disease's prevention, diagnosis, and treatment. In this review, we first describe the bidirectional regulation of the gut-brain axis by the gut microbiota and the mechanisms underlying the involvement of gut microbiota and their metabolites in PD. We then summarize the different species of gut microbiota found in patients with PD and their correlations with clinical symptoms. Finally, we review the most comprehensive animal and human studies on treating PD through fecal microbiota transplantation (FMT), discussing the challenges and considerations associated with this treatment approach.
Collapse
Affiliation(s)
- Maosen Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhiyan Zou
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Pingping Shou
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Peng
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxue Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- Department of Gastroenterology, National Clinical Key Specialty, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
9
|
Liu T, Wu H, Li J, Zhu C, Wei J. Unraveling the Bone-Brain Axis: A New Frontier in Parkinson's Disease Research. Int J Mol Sci 2024; 25:12842. [PMID: 39684552 DOI: 10.3390/ijms252312842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD), as a widespread neurodegenerative disorder, significantly impacts patients' quality of life. Its primary symptoms include motor disturbances, tremor, muscle stiffness, and balance disorders. In recent years, with the advancement of research, the concept of the bone-brain axis has gradually become a focal point in the field of PD research. The bone-brain axis refers to the interactions and connections between the skeletal system and the central nervous system (CNS), playing a crucial role in the pathogenesis and pathological processes of PD. The purpose of this review is to comprehensively and deeply explore the bone-brain axis in PD, covering various aspects such as the complex relationship between bone metabolism and PD, the key roles of neurotransmitters and hormones in the bone-brain axis, the role of inflammation and immunity, microRNA (miRNA) functional regulation, and potential therapeutic strategies. Through a comprehensive analysis and in-depth discussion of numerous research findings, this review aims to provide a solid theoretical foundation for a deeper understanding of the pathogenesis of PD and to offer strong support for the development of new treatment methods.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haojie Wu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingwen Li
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, Center for Translational Neurourology, Huaihe Hospital of Henan University, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Bian X, Wang Y, Zhang W, Ye C, Li J. GPR37 and its neuroprotective mechanisms: bridging osteocalcin signaling and brain function. Front Cell Dev Biol 2024; 12:1510666. [PMID: 39633709 PMCID: PMC11614806 DOI: 10.3389/fcell.2024.1510666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Osteocalcin (OCN) is a hormone secreted by osteoblasts and has attracted widespread attention for its role in regulating brain function. Clinical studies indicate a positive correlation between levels of circulating OCN and cognitive performance. Indeed, lower circulating OCN has been detected in various neurodegenerative diseases (NDs), while OCN supplementation under certain conditions may improve cognitive function. GPR37, a G protein-coupled receptor, has recently been identified as a receptor for OCN. It exhibits distinct expression patterns across various brain regions and cell types, potentially influencing its functional roles within the brain. Research indicates that GPR37 regulates neuronal migration, cell proliferation, differentiation, and myelination. Furthermore, GPR37 has been shown to mitigate inflammation and apoptosis through various mechanisms, exerting neuroprotective effects. However, its regulatory influence on brain function exhibits inconsistency, highlighting a duality in its actions. Therefore, this review thoroughly summarizes the roles and mechanisms of GPR37 in modulating cellular physiological activities and its involvement in immune responses, stress reactions, and neuroprotection. It aims to enhance the understanding of how GPR37 modulates brain function and facilitate the identification of novel therapeutic targets or strategies for related diseases.
Collapse
Affiliation(s)
- Xuepeng Bian
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, China
| | - Yangping Wang
- Physical Education College, Shanghai University, Shanghai, China
| | - Weijie Zhang
- Physical Education College, Shanghai University, Shanghai, China
| | - Changlin Ye
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jingjing Li
- Physical Education College, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
Shi F, Xing Y, Niu Y, Cheng L, Xu Y, Li X, Ren L, Zong S, Tao J. Unveiling winter survival strategies: physiological and metabolic responses to cold stress of Monochamus saltuarius larvae during overwintering. PEST MANAGEMENT SCIENCE 2024; 80:5656-5671. [PMID: 38979967 DOI: 10.1002/ps.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Monochamus saltuarius is a destructive trunk-borer of pine forest and an effective dispersal vector for pinewood nematode (PWN), a causative agent of pine wilt disease (PWD), which leads to major ecological disasters. Cold winter temperatures determine insect survival and distribution. However, little is known about the cold tolerance and potential physiological mechanisms of M. saltuarius. RESULTS We demonstrated that dead Pinus koraiensis trunks do not provide larvae with insulation. The M. saltuarius larvae are freeze-tolerant species. Unlike most other freeze-tolerant insects, they can actively freeze extracellular fluid at higher subzero temperatures by increasing their supercooling points. The main energy sources for larvae overwintering are glycogen and the mid-late switch to lipid. The water balance showed a decrease in free and an increase in bound water of small magnitude. Cold stress promoted lipid peroxidation, thus activating the antioxidant system to prevent cold-induced oxidative damage. We found eight main pathways linked to cold stress and 39 important metabolites, ten of which are cryoprotectants, including maltose, UDP-glucose, d-fructose 6P, galactinol, dulcitol, inositol, sorbitol, l-methionine, sarcosine, and d-proline. The M. saltuarius larvae engage in a dual respiration process involving both anaerobic and aerobic pathways when their bodily fluids freeze. Cysteine and methionine metabolism, as well as alanine, aspartate, and glutamate metabolism, are the most important pathways linked to antioxidation and energy production. CONCLUSIONS The implications of our findings may help strengthen and supplement the management strategies for monitoring, quarantine, and control of this pest, thereby contributing to controlling the further spread of PWD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengming Shi
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yu Xing
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yiming Niu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Ling Cheng
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yabei Xu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xinyu Li
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Lili Ren
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Chen L, Zhang K, Liu J, Li X, Liu Y, Ma H, Yang J, Li J, Chen L, Hsu C, Zeng J, Xie X, Wang Q. The role of the microbiota-gut-brain axis in methamphetamine-induced neurotoxicity: Disruption of microbial composition and short-chain fatty acid metabolism. Acta Pharm Sin B 2024; 14:4832-4857. [PMID: 39664442 PMCID: PMC11628825 DOI: 10.1016/j.apsb.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/08/2024] [Accepted: 07/24/2024] [Indexed: 12/13/2024] Open
Abstract
Methamphetamine (METH) abuse is associated with significant neurotoxicity, high addiction potential, and behavioral abnormalities. Recent studies have identified a connection between the gut microbiota and METH-induced neurotoxicity and behavioral disorders. However, the underlying causal mechanisms linking the gut microbiota to METH pathophysiology remain largely unexplored. In this study, we employed fecal microbiota transplantation (FMT) and antibiotic (Abx) intervention to manipulate the gut microbiota in mice administered METH. Furthermore, we supplemented METH-treated mice with short-chain fatty acids (SCFAs) and pioglitazone (Pio) to determine the protective effects on gut microbiota metabolism. Finally, we assessed the underlying mechanisms of the gut-brain neural circuit in vagotomized mice. Our data provide compelling evidence that modulation of the gut microbiome through FMT or microbiome knockdown by Abx plays a crucial role in METH-induced neurotoxicity, behavioral disorders, gut microbiota disturbances, and intestinal barrier impairment. Furthermore, our findings highlight a novel prevention strategy for mitigating the risks to both the nervous and intestinal systems caused by METH, which involves supplementation with SCFAs or Pio.
Collapse
Affiliation(s)
- Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongsheng Ma
- Shunde Police in Foshan City, Foshan 528300, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Wang G, Cao L, Li S, Zhang M, Li Y, Duan J, Li Y, Hu Z, Wu J, Ni J, Lan D, Li T, Lu J. Gut microbiota dysbiosis-mediated ceramides elevation contributes to corticosterone-induced depression by impairing mitochondrial function. NPJ Biofilms Microbiomes 2024; 10:111. [PMID: 39468065 PMCID: PMC11519513 DOI: 10.1038/s41522-024-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
The role of gut microbiota (GM) dysbiosis in the pathogenesis of depression has received widespread attention, but the mechanism remains elusive. Corticosterone (CORT)-treated mice showed depression-like behaviors, reduced hippocampal neurogenesis, and altered composition of the GM. Fecal microbial transplantation from CORT-treated mice transferred depression-like phenotypes and their dominant GM to the recipients. Fecal metabolic profiling exposed remarkable increase of gut ceramides in CORT-treated and recipient mice. Oral gavage with Bifidobacterium pseudolongum and Lactobacillus reuteri could induce elevations of gut ceramides in mice. Ceramides-treated mice showed depressive-like phenotypes, significant downregulation of oxidative phosphorylation-associated genes, and hippocampal mitochondrial dysfunction. Our study demonstrated a link between chronic exposure to CORT and its impact on GM composition, which induces ceramides accumulation, ultimately leading to hippocampal mitochondrial dysfunction. This cascade of events plays a critical role in reducing adult hippocampal neurogenesis and is strongly associated with the development of depression-like behaviors.
Collapse
Affiliation(s)
- Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Danmei Lan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tianming Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
14
|
Trouki C, Campanella B, Onor M, Vornoli A, Pozzo L, Longo V, Bramanti E. Probing the alterations in mice cecal content due to high-fat diet. Food Chem 2024; 455:139856. [PMID: 38823144 DOI: 10.1016/j.foodchem.2024.139856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The global prevalence of obesity more than doubled between 1990 and 2022. By 2022, 2.5 billion adults aged 18 and older were overweight, with over 890 million of them living with obesity. The urgent need for understanding the impact of high-fat diet, together with the demanding of analytical methods with low energy/chemicals consumption, can be fulfilled by rapid, high-throughput spectroscopic techniques. To understand the impact of high-fat diet on the metabolic signatures of mouse cecal contents, we characterized metabolite variations in two diet-groups (standard vs high-fat diet) using FTIR spectroscopy and multivariate analysis. Their cecal content showed distinct spectral features corresponding to high- and low-molecular-weight metabolites. Further quantification of 13 low-molecular-weight metabolites using liquid chromatography showed significant reduction in the production of short chain fatty acids and amino acids associated with high-fat diet samples. These findings demonstrated the potential of spectroscopy to follow changes in gut metabolites.
Collapse
Affiliation(s)
- Cheherazade Trouki
- CNR-IPCF, Institute of Chemical and Physical Processes, National Research Council, via Moruzzi 1, Pisa 56124, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Beatrice Campanella
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, Pisa 56124, Italy.
| | - Massimo Onor
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, Pisa 56124, Italy
| | - Andrea Vornoli
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Luisa Pozzo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Vincenzo Longo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56124, Italy
| | - Emilia Bramanti
- CNR-ICCOM, Institute of Chemistry of Organometallic Compounds, National Research Council, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
15
|
Qi X, He X, Peng Y, He X, Yang Q, Jiao K, Liu H. Roles of osteocalcin in the central nervous system. CNS Neurosci Ther 2024; 30:e70016. [PMID: 39252492 PMCID: PMC11386255 DOI: 10.1111/cns.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Bone-derived protein osteocalcin, which has beneficial effects on brain function, may be a future research direction for neurological disorders. A growing body of evidence suggests a link between osteocalcin and neurological disorders, but the exact relationship is contradictory and unclear. SCOPE OF REVIEW The aim of this review is to summarize the current research on the interaction between osteocalcin and the central nervous system and to propose some speculative future research directions. MAJOR CONCLUSIONS In the normal central nervous system, osteocalcin is involved in neuronal structure, neuroprotection, and the regulation of cognition and anxiety. Studies on osteocalcin-related abnormalities in the central nervous system are divided into animal model studies and human studies, depending on the subject. In humans, the link between osteocalcin and brain function is inconsistent. These conflicting data may be due to methodological inconsistencies. By reviewing the related literature on osteocalcin, some comorbidities of the bone and nervous system and future research directions related to osteocalcin are proposed.
Collapse
Affiliation(s)
- Xiao‐Shan Qi
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Xin He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Ying Peng
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Xing‐Hong He
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| | - Qian‐Yu Yang
- The First Clinical Medical CollegeZunyi Medical UniversityZunyiChina
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, School of StomatologyThe Fourth Military Medical UniversityXi‘anChina
| | - Heng Liu
- Department of RadiologyAffiliated Hospital of Zunyi Medical University, Engineering Research Center of Intelligent Medical Imaging in Guizhou Higher Education lnstitutions, Medical Imaging Center of Guizhou ProvinceZunyiChina
| |
Collapse
|
16
|
Huang F, Wang Z, Zhang Z, Liu X, Liang Y, Qian J, Tu J, Tang X, Zhang C, Fang B. Comprehensive evaluation of the mechanism of Banxia Baizhu Tianma Decoction in ameliorating posterior circulation ischemia vertigo based on integrating fecal short-chain fatty acids and 16S rRNA sequencing. J Pharm Biomed Anal 2024; 247:116195. [PMID: 38810328 DOI: 10.1016/j.jpba.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Posterior circulation ischemia vertigo (PCIV) is vertebrobasilar insufficiency resulting in vertigo. Banxia Baizhu Tianma Decoction (BBTD) is broadly applied to treat PCIV in China, but its efficacy and detailed mechanism remains unclear. Therefore, this study aims to investigate the effects of BBTD on PCIV, and identify important gut microbiota and its derived short-chain fatty acid (SCFA) changes and the detailed mechanism through 16 S rRNA sequencing with SCFAs profiling. In this study, the model of PCIV was established by surgical ligation of the right subclavian artery (RSCA) and right common carotid artery (RCCA). We found that BBTD administration effectively reduced the volume of cerebral infarction and improved neurologic functions, reduced neuronal apoptosis and neuroinflammatory. Moreover, BBTD significantly modulated the diversity and composition of the gut microbiota, including increasing the relative abundance of Lactobacillus, Prevotella and Akkermansia and decreasing relative abundances of Lachnospiraceae, Bacteroidetes (S24-7) and Ruminococcaceae. BBTD treatment also increased propionate content. Propionate mediates the the recovery of neurological functions and anti-apoptotic effects of BBTD in PCIV rat. Our findings wish to discover the potential mechanism of BBTD treatment on PCIV and promote its clinical application.
Collapse
Affiliation(s)
- Fangfang Huang
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zilin Wang
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zilong Zhang
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Xinbang Liu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yingda Liang
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jingyi Qian
- Department of Pediatric Rehabilitation Medicine, Maternal and Child Health Hospital of HuBei Province, Wuhan, China
| | - Jia Tu
- Department of Neurology, Wuhan Hankou Hospital, Wuhan China
| | - Xuan Tang
- Department of Neurology, Wuhan Hankou Hospital, Wuhan China
| | - Chen Zhang
- Department of Emergency, Hubei Provincial Integrative Chinese and Western Medicine Hospital (Xinhua affiliated hospital, Hubei University of Chinese Medicine), Wuhan 430010, China
| | - Bangjiang Fang
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Department of Emergency, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai China.
| |
Collapse
|
17
|
Zeng J, Li Y, Yan J, Chang R, Xu M, Zhou G, Meng J, Liu D, Mao Z, Yang Y. Gut microbiota from patients with Parkinson's disease causes motor deficits in honeybees. Front Microbiol 2024; 15:1418857. [PMID: 39070266 PMCID: PMC11272988 DOI: 10.3389/fmicb.2024.1418857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Parkinson's disease (PD) is possibly caused by genetic factors, environmental factors, and gut microbiota dysbiosis. This study aims to explore whether the microbiota contributes to the behavior abnormalities of PD. Methods We transplanted gut microbiota from patients with PD or healthy controls (HC) into microbiota-free honeybees. We also established two more groups, namely the rotenone (ROT) group, in which PD-like symptoms of honeybees were induced by rotenone, and the conventional (CV) group, in which honeybees were colonized with conventional gut microbiota. The climbing assay was performed to assess the motor capabilities of honeybees. Histopathological examination was conducted to evaluate the integrity of gut mucosa. Tyrosine hydroxylase (TH) gene expression levels and dopamine (DA) concentrations in the brain were also examined. Additionally, metagenomics and full-length 16S rRNA analyses were performed to identify alterations in gut microbiota profiles, both in PD patients and honeybees. Results Honeybees in the PD and ROT groups exhibited slower climbing speeds, downregulated TH gene expression, and impaired gut barriers. Both the HC and PD groups of honeybees successfully harbored a portion of gut microbiota from corresponding human donors, and differences in microbial composition were identified. Morganella morganii and Erysipelatoclostridium ramosum exhibited significantly increased relative abundance in the HC group, while Dorea longicatena, Collinsella aerofaciens, Lactococcus garvieae, Holdemanella biformis, Gemmiger formicilis, and Blautia obeum showed significantly increased relative abundance in the PD group. Functional predictions of microbial communities in the PD group indicated an increased synthesis of hydrogen sulfide and methane. Conclusion A novel PD model was induced in honeybees with rotenone and gut microbiota from PD patients. This study linked PD-related behaviors to altered gut microbiota, highlighting a potential gut microbiota-brain axis involvement in PD pathogenesis. We identify previously unrecognized associations of Dorea longicatena, Collinsella aerofaciens, Lactococcus garvieae, Holdemanella biformis, Gemmiger formicilis, and Blautia obeum with PD. Additionally, pathways related to hydrogen sulfide and methane synthesis have been previously suggested as potential contributors to the development of PD, and our research further supports this hypothesis.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiyuan Li
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingshuang Yan
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruqi Chang
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guanzhou Zhou
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Meng
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Di Liu
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Soni D, Upadhayay S, Dhureja M, Arthur R, Kumar P. Crosstalk between gut-brain axis: unveiling the mysteries of gut ROS in progression of Parkinson's disease. Inflammopharmacology 2024:10.1007/s10787-024-01510-2. [PMID: 38992324 DOI: 10.1007/s10787-024-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
"Path to a good mood lies through the gut." This statement seems to imply that it has long been believed that the gut is connected with the brain. Research has shown that eating food activates the reward system and releases dopamine (DA), establishing a link between the peripheral and central nervous system. At the same time, researchers also trust that the gut is involved in the onset of many diseases, including Parkinson's disease (PD), in which gastrointestinal dysfunction is considered a prevalent symptom. Reports suggest that PD starts from the gut and reaches the brain via the vagus nerve. Recent studies have revealed an intriguing interaction between the gut and brain, which links gut dysbiosis to the etiology of PD. This review aims to explore the mechanistic pathway how reactive oxygen species (ROS) generation in the gut affects the makeup and operation of the dopamine circuitry in the brain. Our primary concern is ROS generation in the gut, which disrupts the gut microbiome (GM), causing α-synuclein accumulation and inflammation. This trio contributes to the loss of DA neurons in the brain, resulting in PD development. This review also compiles pre-clinical and clinical studies on antioxidants, demonstrating that antioxidants reduce ROS and increase DA levels. Collectively, the study highlights the necessity of comprehending the gut-brain axis for unraveling the riddles of PD pathogenesis and considering new therapeutic approaches.
Collapse
Affiliation(s)
- Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
19
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
20
|
Hou YF, Shan C, Zhuang SY, Zhuang QQ, Ghosh A, Zhu KC, Kong XK, Wang SM, Gong YL, Yang YY, Tao B, Sun LH, Zhao HY, Guo XZ, Wang WQ, Ning G, Gu YY, Li ST, Liu JM. Correction: Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson's disease. MICROBIOME 2024; 12:111. [PMID: 38907261 PMCID: PMC11191255 DOI: 10.1186/s40168-024-01846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Affiliation(s)
- Yan-Fang Hou
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Si-Yue Zhuang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian-Qian Zhuang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arijit Ghosh
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Cheng Zhu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Xiao-Ke Kong
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Shu-Min Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Yan-Ling Gong
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Xing-Zhi Guo
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Wei-Qing Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China
| | - Yan-Yun Gu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China.
| | - Sheng-Tian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai, 200025, China.
| |
Collapse
|
21
|
Hu L, Sun L, Yang C, Zhang DW, Wei YY, Yang MM, Wu HM, Fei GH. Gut microbiota-derived acetate attenuates lung injury induced by influenza infection via protecting airway tight junctions. J Transl Med 2024; 22:570. [PMID: 38879538 PMCID: PMC11179378 DOI: 10.1186/s12967-024-05376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Gut microbiota (GM) have been implicated as important regulators of gastrointestinal symptom which is commonly occurred along with respiratory influenza A virus (IAV) infection, suggesting the involvement of the gut-to-lung axis in a host's response to IAV. IAV primarily destroys airway epithelium tight junctions (TJs) and consequently causes acute respiratory disease syndrome. It is known that GM and their metabolism produce an anti-influenza effect, but their role in IAV-induced airway epithelial integrity remains unknown. METHODS A mouse model of IAV infection was established. GM were analyzed using 16S rRNA gene sequencing, and short-chain fatty acids (SCFAs) levels were measured. GM depletion and fecal microbiota transplantation (FMT) were conducted to validate the role of GM in IAV infection. A pair-feeding experiment was conducted to reveal whether IAV-induced GM dysbiosis is attributed to impaired food intake. Furthermore, human bronchial epithelial (HBE) cells were cocultured with IAV in the presence or absence of acetate. TJs function was analyzed by paracellular permeability and transepithelial electronic resistance (TEER). The mechanism of how acetate affects TJs integrity was evaluated in HBE cells transfected with G protein-coupled receptor 43 (GPR43) short hairpin RNA (shRNA). RESULTS IAV-infected mice exhibited lower relative abundance of acetate-producing bacteria (Bacteroides, Bifidobacterium, and Akkermansia) and decreased acetate levels in gut and serum. These changes were partly caused by a decrease in food consumption (due to anorexia). GM depletion exacerbated and FMT restored IAV-induced lung inflammatory injury. IAV infection suppressed expressions of TJs (occludin, ZO-1) leading to disrupted airway epithelial barrier function as evidenced by decreased TEER and increased permeability. Acetate pretreatment activated GPR43, partially restored IAV-induced airway epithelial barrier function, and reduced inflammatory cytokines levels (TNF-α, IL-6, and IL-1β). Such protective effects of acetate were absent in HBE cells transfected with GPR43 shRNA. Acetate and GPR43 improved TJs in an AMP-activated protein kinase (AMPK)-dependent manner. CONCLUSION Collectively, our results demonstrated that GM protected airway TJs by modulating GPR43-AMPK signaling in IAV-induced lung injury. Therefore, improving GM dysbiosis may be a potential therapeutic target for patients with IAV infection.
Collapse
Affiliation(s)
- Lei Hu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Chun Yang
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Ming-Ming Yang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
| | - Hui-Mei Wu
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China
- Department of Geriatric Respiratory and Critical Care Medicine, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, China.
| |
Collapse
|
22
|
Huang Y, Wang YF, Miao J, Zheng RF, Li JY. Short-chain fatty acids: Important components of the gut-brain axis against AD. Biomed Pharmacother 2024; 175:116601. [PMID: 38749177 DOI: 10.1016/j.biopha.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/03/2024] Open
Abstract
Alzheimer's disease (AD) comprises a group of neurodegenerative disorders with some changes in the brain, which could lead to the deposition of certain proteins and result in the degeneration and death of brain cells. Patients with AD manifest primarily as cognitive decline, psychiatric symptoms, and behavioural disorders. Short-chain fatty acids (SCFAs) are a class of saturated fatty acids (SFAs) produced by gut microorganisms through the fermentation of dietary fibre ingested. SCFAs, as a significant mediator of signalling, can have diverse physiological and pathological roles in the brain through the gut-brain axis, and play a positive effect on AD via multiple pathways. Firstly, differences in SCFAs and microbial changes have been stated in AD cases of humans and mice in this paper. And then, mechanisms of three main SCFAs in treating with AD have been summarized, as well as differences of gut bacteria. Finally, functions of SCFAs played in regulating intestinal flora homeostasis, modulating the immune system, and the metabolic system, which were considered to be beneficial for the treatment of AD, have been elucidated, and the key roles of gut bacteria and SCFAs were pointed out. All in all, this paper provides an overview of SCFAs and gut bacteria in AD, and can help people to understand the importance of gut-brain axis in AD.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Yi Feng Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830004, China.
| | - Rui Fang Zheng
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi 830004, China.
| | - Jin Yao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830004, China.
| |
Collapse
|
23
|
Sinder SB, Sharma SV, Shirvaikar IS, Pradhyumnan H, Patel SH, Cabeda Diaz I, Perez GG, Bramlett HM, Raval AP. Impact of menopause-associated frailty on traumatic brain injury. Neurochem Int 2024; 176:105741. [PMID: 38621511 DOI: 10.1016/j.neuint.2024.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Navigating menopause involves traversing a complex terrain of hormonal changes that extend far beyond reproductive consequences. Menopausal transition is characterized by a decrease in estradiol-17β (E2), and the impact of menopause resonates not only in the reproductive system but also through the central nervous system, musculoskeletal, and gastrointestinal domains. As women undergo menopausal transition, they become more susceptible to frailty, amplifying the risk and severity of injuries, including traumatic brain injury (TBI). Menopause triggers a cascade of changes leading to a decline in muscle mass, accompanied by diminished tone and excitability, thereby restricting the availability of irisin, a crucial hormone derived from muscles. Concurrently, bone mass undergoes reduction, culminating in the onset of osteoporosis and altering the dynamics of osteocalcin, a hormone originating from bones. The diminishing levels of E2 during menopause extend their influence on the gut microbiota, resulting in a reduction in the availability of tyrosine, tryptophan, and serotonin metabolites, affecting neurotransmitter synthesis and function. Understanding the interplay between menopause, frailty, E2 decline, and the intricate metabolisms of bone, gut, and muscle is imperative when unraveling the nuances of TBI after menopause. The current review underscores the significance of accounting for menopause-associated frailty in the incidence and consequences of TBI. The review also explores potential mechanisms to enhance gut, bone, and muscle health in menopausal women, aiming to mitigate frailty and improve TBI outcomes.
Collapse
Affiliation(s)
- Sophie B Sinder
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sabrina V Sharma
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Isha S Shirvaikar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Hari Pradhyumnan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shahil H Patel
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Indy Cabeda Diaz
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Gina G Perez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory (CVDRL), Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
24
|
Mousavi Ghahfarrokhi SS, Mohamadzadeh M, Samadi N, Fazeli MR, Khaki S, Khameneh B, Khameneh Bagheri R. Management of Cardiovascular Diseases by Short-Chain Fatty Acid Postbiotics. Curr Nutr Rep 2024; 13:294-313. [PMID: 38656688 DOI: 10.1007/s13668-024-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW Global health concerns persist in the realm of cardiovascular diseases (CVDs), necessitating innovative strategies for both prevention and treatment. This narrative review aims to explore the potential of short-chain fatty acids (SCFAs)-namely, acetate, propionate, and butyrate-as agents in the realm of postbiotics for the management of CVDs. RECENT FINDINGS We commence our discussion by elucidating the concept of postbiotics and their pivotal significance in mitigating various aspects of cardiovascular diseases. This review centers on a comprehensive examination of diverse SCFAs and their associated receptors, notably GPR41, GPR43, and GPR109a. In addition, we delve into the intricate cellular and pharmacological mechanisms through which these receptors operate, providing insights into their specific roles in managing cardiovascular conditions such as hypertension, atherosclerosis, heart failure, and stroke. The integration of current information in our analysis highlights the potential of both SCFAs and their receptors as a promising path for innovative therapeutic approaches in the field of cardiovascular health. The idea of postbiotics arises as an optimistic and inventive method, presenting new opportunities for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazeli
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Khaki
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ramin Khameneh Bagheri
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Jia X, Wang Q, Liu M, Ding JY. The interplay between gut microbiota and the brain-gut axis in Parkinson's disease treatment. Front Neurol 2024; 15:1415463. [PMID: 38867886 PMCID: PMC11168434 DOI: 10.3389/fneur.2024.1415463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
This study delves into the pivotal role of the gut microbiota and the brain-gut axis in Parkinson's Disease (PD), a neurodegenerative disorder with significant motor and non-motor implications. It posits that disruptions in gut microbiota-dysbiosis-and alterations in the brain-gut axis contribute to PD's pathogenesis. Our findings highlight the potential of the gastrointestinal system's early involvement in PD, suggested by the precedence of gastrointestinal symptoms before motor symptoms emerge. This observation implies a possible gut-originated disease pathway. The analysis demonstrates that dysbiosis in PD patients leads to increased intestinal permeability and systemic inflammation, which in turn exacerbates neuroinflammation and neurodegeneration. Such insights into the interaction between gut microbiota and the brain-gut axis not only elucidate PD's underlying mechanisms but also pave the way for novel therapeutic interventions. We propose targeted treatment strategies, including dietary modifications and fecal microbiota transplantation, aimed at modulating the gut microbiota. These approaches hold promise for augmenting current PD treatment modalities by alleviating both motor and non-motor symptoms, thereby potentially improving patient quality of life. This research underscores the significance of the gut microbiota in the progression and treatment of PD, advocating for an integrated, multidisciplinary approach to develop personalized, efficacious management strategies for PD patients, combining insights from neurology, microbiology, and nutritional science.
Collapse
Affiliation(s)
- Xi Jia
- First Ward of Neurology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Qin Wang
- Department of Rehabilitation, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Meilingzi Liu
- Third Ward of Neurology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jia-yuan Ding
- Second Ward of Gastroenterology Department, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
26
|
Mruk-Mazurkiewicz H, Kulaszyńska M, Czarnecka W, Podkówka A, Ekstedt N, Zawodny P, Wierzbicka-Woś A, Marlicz W, Skupin B, Stachowska E, Łoniewski I, Skonieczna-Żydecka K. Insights into the Mechanisms of Action of Akkermansia muciniphila in the Treatment of Non-Communicable Diseases. Nutrients 2024; 16:1695. [PMID: 38892628 PMCID: PMC11174979 DOI: 10.3390/nu16111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This comprehensive review delineates the extensive roles of Akkermansia muciniphila in various health domains, spanning from metabolic and inflammatory diseases to neurodegenerative disorders. A. muciniphila, known for its ability to reside in the mucous layer of the intestine, plays a pivotal role in maintaining gut integrity and interacting with host metabolic processes. Its influence extends to modulating immune responses and potentially easing symptoms across several non-communicable diseases, including obesity, diabetes, inflammatory bowel disease, and cancer. Recent studies highlight its capacity to interact with the gut-brain axis, suggesting a possible impact on neuropsychiatric conditions. Despite the promising therapeutic potential of A. muciniphila highlighted in animal and preliminary human studies, challenges remain in its practical application due to stability and cultivation issues. However, the development of pasteurized forms and synthetic mediums offers new avenues for its use in clinical settings, as recognized by regulatory bodies like the European Food Safety Authority. This narrative review serves as a crucial resource for understanding the broad implications of A. muciniphila across different health conditions and its potential integration into therapeutic strategies.
Collapse
Affiliation(s)
- Honorata Mruk-Mazurkiewicz
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Natalia Ekstedt
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Piotr Zawodny
- Medical Center Zawodny Clinic, Ku Słońcu 58, 71-047 Szczecin, Poland;
| | | | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Unii Lubelskiej, 71-252 Szczecin, Poland
| | - Błażej Skupin
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland (N.E.); (I.Ł.)
| |
Collapse
|
27
|
Guo X, Yang YY, Zhou R, Tian G, Shan C, Liu JM, Li R. Causal effect of blood osteocalcin on the risk of Alzheimer's disease and the mediating role of energy metabolism. Transl Psychiatry 2024; 14:205. [PMID: 38769320 PMCID: PMC11106250 DOI: 10.1038/s41398-024-02924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating glucose and lipid metabolism, and the risk of Alzheimer's disease (AD). However, the causality of these associations and the underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association studies (GWAS) on the human blood proteome (N = 3301 to 35,892). Two distinct summary statistics datasets on AD from the International Genomics of Alzheimer's Project (IGAP, N = 63,926) and a recent study including familial-proxy AD patients (FPAD, N = 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds ratio [OR, 95%CI] = 0.83[0.72-0.96], P = 0.013; FPAD: OR = 0.81 [0.70-0.93], P = 0.002). Similar estimates with the same trend direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR = 0.97[0.80-1.17], P = 0.753; FPAD: OR = 0.98 [0.84-1.15], P = 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying physio-pathological mechanisms.
Collapse
Affiliation(s)
- Xingzhi Guo
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yu-Ying Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Rong Zhou
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ge Tian
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Chang Shan
- Department of Endocrinology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Rui Li
- Department of Geriatric Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
- Department of Geriatric Neurology, the Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
28
|
He W, Wang X, Yang X, Zhang G, Zhang J, Chen L, Niu P, Chen T. Melatonin mitigates manganese-induced neural damage via modulation of gut microbiota-metabolism in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171474. [PMID: 38447734 DOI: 10.1016/j.scitotenv.2024.171474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Manganese (Mn), a common environmental and occupational risk factor for Parkinson's disease (PD), can cause central nervous system damage and gastrointestinal dysfunction. The melatonin has been shown to effectively improve neural damage and intestinal microbiota disturbances in animal models. This research investigated the mechanism by which exogenous melatonin prevented Mn-induced neurogenesis impairment and neural damage. Here, we established subchronic Mn-exposed mice model and melatonin supplement tests to evaluate the role of melatonin in alleviating Mn-induced neurogenesis impairment. Mn induced neurogenesis impairment and microglia overactivation, behavioral dysfunction, gut microbiota dysbiosis and serum metabolic disorder in mice. All these events were reversed with the melatonin supplement. The behavioral tests revealed that melatonin group showed approximately 30 % restoration of motor activity. According to quantitative real time polymerase chain reaction (qPCR) results, melatonin group showed remarkable restoration of the expression of dopamine neurons and neurogenesis markers, approximately 46.4 % (TH), 68.4 % (DCX in hippocampus) and 48 % (DCX in striatum), respectively. Interestingly, melatonin increased neurogenesis probably via the gut microbiota and metabolism modulation. The correlation analysis of differentially expressed genes associated with hippocampal neurogenesis indicated that Firmicutes-lipid metabolism might mediate the critical repair role of melatonin in neurogenesis in Mn-exposed mice. In conclusion, exogenous melatonin supplementation can promote neurogenesis, and restore neuron loss and neural function in Mn-exposed mice, and the multi-omics results provide new research ideas for future mechanistic studies.
Collapse
Affiliation(s)
- Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Gaoman Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
29
|
Liu J, Chen Q, Su R. Interplay of human gastrointestinal microbiota metabolites: Short-chain fatty acids and their correlation with Parkinson's disease. Medicine (Baltimore) 2024; 103:e37960. [PMID: 38669388 PMCID: PMC11049718 DOI: 10.1097/md.0000000000037960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Short-chain fatty acids (SCFAs) are, the metabolic byproducts of intestinal microbiota that, are generated through anaerobic fermentation of undigested dietary fibers. SCFAs play a pivotal role in numerous physiological functions within the human body, including maintaining intestinal mucosal health, modulating immune functions, and regulating energy metabolism. In recent years, extensive research evidence has indicated that SCFAs are significantly involved in the onset and progression of Parkinson disease (PD). However, the precise mechanisms remain elusive. This review comprehensively summarizes the progress in understanding how SCFAs impact PD pathogenesis and the underlying mechanisms. Primarily, we delve into the synthesis, metabolism, and signal transduction of SCFAs within the human body. Subsequently, an analysis of SCFA levels in patients with PD is presented. Furthermore, we expound upon the mechanisms through which SCFAs induce inflammatory responses, oxidative stress, abnormal aggregation of alpha-synuclein, and the intricacies of the gut-brain axis. Finally, we provide a critical analysis and explore the potential therapeutic role of SCFAs as promising targets for treating PD.
Collapse
Affiliation(s)
- Jiaji Liu
- Inner Mongolia Medical University, Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qi Chen
- The Third Clinical Medical College of Ningxia Medical University, Ningxia, China
| | - Ruijun Su
- Inner Mongolia Medical University, Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
30
|
Duan WX, Wang F, Liu JY, Liu CF. Relationship Between Short-chain Fatty Acids and Parkinson's Disease: A Review from Pathology to Clinic. Neurosci Bull 2024; 40:500-516. [PMID: 37755674 PMCID: PMC11003953 DOI: 10.1007/s12264-023-01123-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 09/28/2023] Open
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.
Collapse
Affiliation(s)
- Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake Hospital affiliated to Soochow University, Suzhou, 215125, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
31
|
Chen R, Li K, Wang Y, Song L, Wang R, Fan W, Zhao N, Zou W, Yang Z, Yan J. Valeric acid reduction by chitosan oligosaccharide induces autophagy in a Parkinson's disease mouse model. J Drug Target 2024; 32:423-432. [PMID: 38315456 DOI: 10.1080/1061186x.2024.2315468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Parkinson's disease (PD) is a central nervous system disease with the highest disability and mortality rate worldwide, and it is caused by a variety of factors. The most common medications for PD have side effects with limited therapeutic outcomes. Many studies have reported that chitosan oligosaccharide (COS) crossed blood-brain barrier to achieve a neuroprotective effect in PD. However, the role of COS in PD remains unclear. The present study demonstrated that COS increased dopaminergic neurons in the substantia nigra (SN) and ameliorated dyskinesia in a PD mouse model. Moreover, COS reduced gut microbial diversity and faecal short-chain fatty acids. Valeric acid supplementation enhanced the inflammatory response in the colon and SN, and it reversed COS - suppressed dopamine neurons damage. Autophagy was involved in COS modulating inflammation through valeric acid. These results suggest that COS reduces bacterial metabolites - valeric acid, which diminishes inflammation via activating autophagy, ultimately alleviating PD.
Collapse
Affiliation(s)
- Rongsha Chen
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Ke Li
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Yinying Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Liyun Song
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ruohua Wang
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Wenhui Fan
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Ninghui Zhao
- Neurosurgery department of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zou
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jinyuan Yan
- Center Laboratory of the Second Hospital affiliated, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
32
|
Wang C, Yang M, Liu D, Zheng C. Metabolic rescue of α-synuclein-induced neurodegeneration through propionate supplementation and intestine-neuron signaling in C. elegans. Cell Rep 2024; 43:113865. [PMID: 38412096 DOI: 10.1016/j.celrep.2024.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Microbial metabolites that can modulate neurodegeneration are promising therapeutic targets. Here, we found that the short-chain fatty acid propionate protects against α-synuclein-induced neuronal death and locomotion defects in a Caenorhabditis elegans model of Parkinson's disease (PD) through bidirectional regulation between the intestine and neurons. Both depletion of dietary vitamin B12, which induces propionate breakdown, and propionate supplementation suppress neurodegeneration and reverse PD-associated transcriptomic aberrations. Neuronal α-synuclein aggregation induces intestinal mitochondrial unfolded protein response (mitoUPR), which leads to reduced propionate levels that trigger transcriptional reprogramming in the intestine and cause defects in energy production. Weakened intestinal metabolism exacerbates neurodegeneration through interorgan signaling. Genetically enhancing propionate production or overexpressing metabolic regulators downstream of propionate in the intestine rescues neurodegeneration, which then relieves mitoUPR. Importantly, propionate supplementation suppresses neurodegeneration without reducing α-synuclein aggregation, demonstrating metabolic rescue of neuronal proteotoxicity downstream of protein aggregates. Our study highlights the involvement of small metabolites in the gut-brain interaction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Meigui Yang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dongyao Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
33
|
Bashir B, Alam S, Khandale N, Birla D, Vishwas S, Pandey NK, Gupta G, Paudel KR, Dureja H, Kumar P, Singh TG, Kuppusamy G, Zacconi FC, Pinto TDJA, Dhanasekaran M, Gulati M, Dua K, Singh SK. Opening avenues for treatment of neurodegenerative disease using post-biotics: Breakthroughs and bottlenecks in clinical translation. Ageing Res Rev 2024; 95:102236. [PMID: 38369026 DOI: 10.1016/j.arr.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Recent studies have indicated the significant involvement of the gut microbiome in both human physiology and pathology. Additionally, therapeutic interventions based on microbiome approaches have been employed to enhance overall health and address various diseases including aging and neurodegenerative disease (ND). Researchers have explored potential links between these areas, investigating the potential pathogenic or therapeutic effects of intestinal microbiota in diseases. This article provides a summary of established interactions between the gut microbiome and ND. Post-biotic is believed to mediate its neuroprotection by elevating the level of dopamine and reducing the level of α-synuclein in substantia nigra, protecting the loss of dopaminergic neurons, reducing the aggregation of NFT, reducing the deposition of amyloid β peptide plagues and ameliorating motor deficits. Moreover, mediates its neuroprotective activity by inhibiting the inflammatory response (decreasing the expression of TNFα, iNOS expression, free radical formation, overexpression of HIF-1α), apoptosis (i.e. active caspase-3, TNF-α, maintains the level of Bax/Bcl-2 ratio) and promoting BDNF secretion. It is also reported to have good antioxidant activity. This review offers an overview of the latest findings from both preclinical and clinical trials concerning the use of post-biotics in ND.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Shahbaz Alam
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Nikhil Khandale
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Devendra Birla
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Professor Lineu Prestes Street, Sao Paulo 05508-000, Brazil
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, AL 36849, USA
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
34
|
Liu J, Lv X, Ye T, Zhao M, Chen Z, Zhang Y, Yang W, Xie H, Zhan L, Chen L, Liu WC, Su KP, Sun J. Microbiota-microglia crosstalk between Blautia producta and neuroinflammation of Parkinson's disease: A bench-to-bedside translational approach. Brain Behav Immun 2024; 117:270-282. [PMID: 38211635 DOI: 10.1016/j.bbi.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024] Open
Abstract
Parkinson's disease (PD) is intricately linked to abnormal gut microbiota, yet the specific microbiota influencing clinical outcomes remain poorly understood. Our study identified a deficiency in the microbiota genus Blautia and a reduction in fecal short-chain fatty acid (SCFA) butyrate level in PD patients compared to healthy controls. The abundance of Blautia correlated with the clinical severity of PD. Supplementation with butyrate-producing bacterium B. producta demonstrated neuroprotective effects, attenuating neuroinflammation and dopaminergic neuronal death in mice, consequently ameliorating motor dysfunction. A pivotal inflammatory signaling pathway, the RAS-related pathway, modulated by butyrate, emerged as a key mechanism inhibiting microglial activation in PD. The change of RAS-NF-κB pathway in PD patients was observed. Furthermore, B. producta-derived butyrate demonstrated the inhibition of microglial activation in PD through regulation of the RAS-NF-κB pathway. These findings elucidate the causal relationship between specific gut microbiota and PD, presenting a novel microbiota-based treatment perspective for PD.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xinhuang Lv
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Ye
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Zhao
- Department of Neurosurgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Zhibo Chen
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Zhang
- Department of Neurology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Wenwen Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huijia Xie
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Zhan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuzhu Chen
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan.
| | - Jing Sun
- Department of Geriatrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
35
|
Cheng J, Hu H, Ju Y, Liu J, Wang M, Liu B, Zhang Y. Gut microbiota-derived short-chain fatty acids and depression: deep insight into biological mechanisms and potential applications. Gen Psychiatr 2024; 37:e101374. [PMID: 38390241 PMCID: PMC10882305 DOI: 10.1136/gpsych-2023-101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem known as the 'second brain'. Composing the microbiota-gut-brain axis, the gut microbiota and its metabolites regulate the central nervous system through neural, endocrine and immune pathways to ensure the normal functioning of the organism, tuning individuals' health and disease status. Short-chain fatty acids (SCFAs), the main bioactive metabolites of the gut microbiota, are involved in several neuropsychiatric disorders, including depression. SCFAs have essential effects on each component of the microbiota-gut-brain axis in depression. In the present review, the roles of major SCFAs (acetate, propionate and butyrate) in the pathophysiology of depression are summarised with respect to chronic cerebral hypoperfusion, neuroinflammation, host epigenome and neuroendocrine alterations. Concluding remarks on the biological mechanisms related to gut microbiota will hopefully address the clinical value of microbiota-related treatments for depression.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongkun Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Mi Wang
- Department of Mental Health Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| |
Collapse
|
36
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
37
|
Islam M, Hasan Majumder M, Hussein M, Hossain KM, Miah M. A review of machine learning and deep learning algorithms for Parkinson's disease detection using handwriting and voice datasets. Heliyon 2024; 10:e25469. [PMID: 38356538 PMCID: PMC10865258 DOI: 10.1016/j.heliyon.2024.e25469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder with significant clinical implications. Early and accurate diagnosis of PD is crucial for timely intervention and personalized treatment. In recent years, Machine Learning (ML) and Deep Learning (DL) techniques have emerged as promis-ing tools for improving PD diagnosis. This review paper presents a detailed analysis of the current state of ML and DL-based PD diagnosis, focusing on voice, handwriting, and wave spiral datasets. The study also evaluates the effectiveness of various ML and DL algorithms, including classifiers, on these datasets and highlights their potential in enhancing diagnostic accuracy and aiding clinical decision-making. Additionally, the paper explores the identifi-cation of biomarkers using these techniques, offering insights into improving the diagnostic process. The discussion encompasses different data formats and commonly employed ML and DL methods in PD diagnosis, providing a comprehensive overview of the field. This review serves as a roadmap for future research, guiding the development of ML and DL-based tools for PD detection. It is expected to benefit both the scientific community and medical practitioners by advancing our understanding of PD diagnosis and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Md.Ariful Islam
- Department of Robotics and Mechatronics Engineering, University of Dhaka, Nilkhet Rd, Dhaka, 1000, Bangladesh
| | - Md.Ziaul Hasan Majumder
- Institute of Electronics, Bangladesh Atomic Energy Commission, Dhaka, 1207, Bangladesh
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md.Alomgeer Hussein
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Khondoker Murad Hossain
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md.Sohel Miah
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
- Moulvibazar Polytechnic Institute, Bangladesh
| |
Collapse
|
38
|
Lee YJ, Son SE, Im DS. Free fatty acid 3 receptor agonist AR420626 reduces allergic responses in asthma and eczema in mice. Int Immunopharmacol 2024; 127:111428. [PMID: 38159551 DOI: 10.1016/j.intimp.2023.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Free fatty acid 3 receptor (FFA3; previously GPR41) is a G protein-coupled receptor that senses short-chain fatty acids and dietary metabolites produced by the gut microbiota. FFA3 deficiency reportedly exacerbates inflammatory events in asthma. Herein, we aimed to determine the therapeutic potential of FFA3 agonists in treating inflammatory diseases. We investigated the effects of N-(2,5-dichlorophenyl)-4-(furan-2-yl)-2-methyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxamide (AR420626), an FFA3 agonist, in in vivo models of chemically induced allergic asthma and eczema in BALB/c mice. Administration of AR420626 decreased the number of immune cells in the bronchoalveolar lavage fluid and skin. AR420626 suppressed inflammatory cytokine expression in the lung and skin tissues. Histological examination revealed that AR420626 suppressed inflammation in the lungs and skin. Treatment with AR420626 significantly suppressed the enhanced lymph node size and inflammatory cytokine levels. Overall, FFA3 agonist AR420626 could suppress allergic asthma and eczema, implying that activation of FFA3 might be a therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Biomedical and Pharmaceutical Sciences, Seoul 02446, Republic of Korea
| | - So-Eun Son
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Seoul 02446, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.
| |
Collapse
|
39
|
Lai TT, Tsai YH, Liou CW, Fan CH, Hou YT, Yao TH, Chuang HL, Wu WL. The gut microbiota modulate locomotion via vagus-dependent glucagon-like peptide-1 signaling. NPJ Biofilms Microbiomes 2024; 10:2. [PMID: 38228675 DOI: 10.1038/s41522-024-00477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Tian Hou
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
40
|
Luo X, Yang X, Tan S, Zhang Y, Liu Y, Tian X, Huang Y, Zhou Y, He C, Yin K, Xu D, Li X, Sun F, Tang R, Cao J, Zheng K, Yu Y, Pan W. Gut microbiota mediates anxiety-like behaviors induced by chronic infection of Toxoplasma gondii in mice. Gut Microbes 2024; 16:2391535. [PMID: 39182245 PMCID: PMC11346544 DOI: 10.1080/19490976.2024.2391535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Chronic infection with the neurotropic parasite Toxoplasma gondii (T. gondii) can cause anxiety and gut microbiota dysbiosis in hosts. However, the potential role of gut microbiota in anxiety induced by the parasite remains unclear. METHODS C57BL/6J mice were infected with 10 cysts of T. gondii. Antibiotic depletion of gut microbiota and fecal microbiota transplantation experiments were utilized to investigate the causal relationship between gut microbiota and anxiety. Anxiety-like behaviors were examined by the elevated plus maze test and the open field test; blood, feces, colon and amygdala were collected to evaluate the profiles of serum endotoxin (Lipopolysaccharide, LPS) and serotonin (5-hydroxytryptamine, 5-HT), gut microbiota composition, metabolomics, global transcriptome and neuroinflammation in the amygdala. Furthermore, the effects of Diethyl butylmalonate (DBM, an inhibitor of mitochondrial succinate transporter, which causes the accumulation of endogenous succinate) on the disorders of the gut-brain axis were evaluated. RESULTS Here, we found that T. gondii chronic infection induced anxiety-like behaviors and disturbed the composition of the gut microbiota in mice. In the amygdala, T. gondii infection triggered the microglial activation and neuroinflammation. In the colon, T. gondii infection caused the intestinal dyshomeostasis including elevated colonic inflammation, enhanced bacterial endotoxin translocation to blood and compromised intestinal barrier. In the serum, T. gondii infection increased the LPS levels and decreased the 5-HT levels. Interestingly, antibiotics ablation of gut microbiota alleviated the anxiety-like behaviors induced by T. gondii infection. More importantly, transplantation of the fecal microbiota from T. gondii-infected mice resulted in anxiety and the transcriptomic alteration in the amygdala of the antibiotic-pretreated mice. Notably, the decreased abundance of succinate-producing bacteria and the decreased production of succinate were observed in the feces of the T. gondii-infected mice. Moreover, DBM administration ameliorated the anxiety and gut barrier impairment induced by T. gondii infection. CONCLUSIONS The present study uncovers a novel role of gut microbiota in mediating the anxiety-like behaviors induced by chronic T. gondii infection. Moreover, we show that DBM supplementation has a beneficial effect on anxiety. Overall, these findings provide new insights into the treatment of T. gondii-related mental disorders.
Collapse
Affiliation(s)
- Xiaotong Luo
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shimin Tan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongsheng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yunqiu Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaokang Tian
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingting Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuying Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fenfen Sun
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| |
Collapse
|
41
|
Yan Z, Zhao G. The Associations Among Gut Microbiota, Branched Chain Amino Acids, and Parkinson's Disease: Mendelian Randomization Study. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1129-1138. [PMID: 39177611 PMCID: PMC11380289 DOI: 10.3233/jpd-240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Background In experimental and observational studies, the characteristics of gut microbiota have been associated with Parkinson's disease (PD), among which metabolic pathways played an important role. However, the causality remained unclear. Objective Herein, we aimed to determine the potential impact of gut microbiota and gut microbiota-derived metabolites on PD risk using a Mendelian randomization (MR) approach. Methods We included as exposures gut microbial taxa abundance and gut-derived metabolites (branched chain amino acids [BCAAs]), with PD as the outcome. In addition, we explored whether BCAAs act as a mediating factor in the pathway from gut microbiota to PD. Results We found evidence of a causality of 15 microbial taxa and PD before and after sensitivity analyses, but not after multiple testing correction. There was significant association between BCAAs levels and the risk of PD, especially isoleucine (OR = 0.995, 95% CI 0.992-0.999, p = 0.004, pFDR = 0.012). In addition, the causality of gut microbiota and BCAAs was also explored that the increased g_Coprococcus abundance can result in the decrease in isoleucine level (OR = 1.046; 95% CI, 1.009-1.085; p = 0.016). Conclusions Our findings indicated suggestive association between gut microbiota and its metabolites and PD. Furthermore, higher BCAAs levels were associated with the decreased PD risk. This study may provide new targets for PD treatment, such as dietary BCAAs supplementation.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Patil RS, Tupe RS. Communal interaction of glycation and gut microbes in diabetes mellitus, Alzheimer's disease, and Parkinson's disease pathogenesis. Med Res Rev 2024; 44:365-405. [PMID: 37589449 DOI: 10.1002/med.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation. Remarkably, proteins linked with diabetes, AD, and PD share this characteristic. This modulates protein's structure, aggregation tendency, and toxicity, highlighting renovated attention. Gut microbes and microbial metabolites marked their importance in human health and diseases. Though many scientific shreds of evidence are proposed for possible change and dysbiosis in gut flora in these diseases, very little is known about the mechanisms. Screening and unfolding their functionality in metabolic and neurodegenerative disorders is essential in hunting the gut treasure. Therefore, it is imperative to evaluate the role of glycation as a common link in diabetes and neurodegenerative diseases, which helps to clarify if modulation of nonenzymatic glycation may act as a beneficial therapeutic strategy and gut microbes/metabolites may answer some of the crucial questions. This review briefly emphasizes the common functional attributes of glycation and gut microbes, the possible linkages, and discusses current treatment options and therapeutic challenges.
Collapse
Affiliation(s)
- Rahul Shivaji Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Rashmi Santosh Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Pune, Maharashtra, India
| |
Collapse
|
43
|
Zhong HJ, Zhuang YP, Xie X, Song JY, Wang SQ, Wu L, Zhan YQ, Wu Q, He XX. Washed microbiota transplantation promotes homing of group 3 innate lymphoid cells to the liver via the CXCL16/CXCR6 axis: a potential treatment for metabolic-associated fatty liver disease. Gut Microbes 2024; 16:2372881. [PMID: 38940400 PMCID: PMC11216104 DOI: 10.1080/19490976.2024.2372881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Despite the observed decrease in liver fat associated with metabolic-associated fatty liver disease (MAFLD) in mice following fecal microbiota transplantation, the clinical effects and underlying mechanisms of washed microbiota transplantation (WMT), a refined method of fecal microbiota transplantation, for the treatment of MAFLD remain unclear. In this study, both patients and mice with MAFLD exhibit an altered gut microbiota composition. WMT increases the levels of beneficial bacteria, decreases the abundance of pathogenic bacteria, and reduces hepatic steatosis in MAFLD-affected patients and mice. Downregulation of the liver-homing chemokine receptor CXCR6 on ILC3s results in an atypical distribution of ILC3s in patients and mice with MAFLD, characterized by a significant reduction in ILC3s in the liver and an increase in ILC3s outside the liver. Moreover, disease severity is negatively correlated with the proportion of hepatic ILC3s. These hepatic ILC3s demonstrate a mitigating effect on hepatic steatosis through the release of IL-22. Mechanistically, WMT upregulates CXCR6 expression on ILC3s, thereby facilitating their migration to the liver of MAFLD mice via the CXCL16/CXCR6 axis, ultimately contributing to the amelioration of MAFLD. Overall, these findings highlight that WMT and targeting of liver-homing ILC3s could be promising strategies for the treatment of MAFLD.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jia-Yin Song
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Si-Qi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yong-Qiang Zhan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
44
|
Cui C, Song H, Han Y, Yu H, Li H, Yang Y, Zhang B. Gut microbiota-associated taurine metabolism dysregulation in a mouse model of Parkinson's disease. mSphere 2023; 8:e0043123. [PMID: 37819112 PMCID: PMC10732050 DOI: 10.1128/msphere.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE PD is recognized as a multisystem disease concerning GI dysfunction and microbiota dysbiosis but still lacks ideal therapies. Recently, aberrant microbiota-derived metabolites are emerging as important participants in PD etiology. However, the alterations of gut microbiota community and serum untargeted metabolite profile have not been fully investigated in a PD mice model. Here, we discover sharply reduced levels of Lactobacillus and taurine in MPTP-treated mice. Moreover, Lactobacillus, Adlercreutzia, and taurine-related metabolites showed the most significant correlation with pathological and GI performance of PD mice. The abundances of microbial transporter and enzymes participating in the degeneration of taurine were disturbed in PD mice. Most importantly, taurine supplement ameliorates MPTP-induced motor deficits, DA neuron loss, and microglial activation. Our data highlight the impaired taurine-based microbiome-metabolism axis during the progression of PD and reveal a novel and previously unrecognized role of genera in modulating taurine metabolism.
Collapse
Affiliation(s)
- Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yumei Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
45
|
Jia X, Chen Q, Zhang Y, Asakawa T. Multidirectional associations between the gut microbiota and Parkinson's disease, updated information from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. Front Cell Infect Microbiol 2023; 13:1296713. [PMID: 38173790 PMCID: PMC10762314 DOI: 10.3389/fcimb.2023.1296713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse range of microorganisms, collectively known as the gut microbiota, which form a vast and complex ecosystem. It has been reported that the microbiota-gut-brain axis plays a crucial role in regulating host neuroprotective function. Studies have shown that patients with Parkinson's disease (PD) have dysbiosis of the gut microbiota, and experiments involving germ-free mice and fecal microbiota transplantation from PD patients have revealed the pathogenic role of the gut microbiota in PD. Interventions targeting the gut microbiota in PD, including the use of prebiotics, probiotics, and fecal microbiota transplantation, have also shown efficacy in treating PD. However, the causal relationship between the gut microbiota and Parkinson's disease remains intricate. This study reviewed the association between the microbiota-gut-brain axis and PD from the perspectives of humoral pathway, cellular immune pathway and neuronal pathway. We found that the interactions among gut microbiota and PD are very complex, which should be "multidirectional", rather than conventionally regarded "bidirectional". To realize application of the gut microbiota-related mechanisms in the clinical setting, we propose several problems which should be addressed in the future study.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanyuan Zhang
- Department of Acupuncture and Moxibustion, The Affiliated Traditional Chinese Medicine (TCM) Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, the Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
46
|
Zeng SY, Liu YF, Liu JH, Zeng ZL, Xie H, Liu JH. Potential Effects of Akkermansia Muciniphila in Aging and Aging-Related Diseases: Current Evidence and Perspectives. Aging Dis 2023; 14:2015-2027. [PMID: 37199577 PMCID: PMC10676789 DOI: 10.14336/ad.2023.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/25/2023] [Indexed: 05/19/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is an anaerobic bacterium that widely colonizes the mucus layer of the human and animal gut. The role of this symbiotic bacterium in host metabolism, inflammation, and cancer immunotherapy has been extensively investigated over the past 20 years. Recently, a growing number of studies have revealed a link between A. muciniphila, and aging and aging-related diseases (ARDs). Research in this area is gradually shifting from correlation analysis to exploration of causal relationships. Here, we systematically reviewed the association of A. muciniphila with aging and ARDs (including vascular degeneration, neurodegenerative diseases, osteoporosis, chronic kidney disease, and type 2 diabetes). Furthermore, we summarize the potential mechanisms of action of A. muciniphila and offer perspectives for future studies.
Collapse
Affiliation(s)
- Shi-Yu Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Jiang-Hua Liu
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhao-Lin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
47
|
Qian X, Hai W, Chen S, Zhang M, Jiang X, Tang H. Multi-omics data reveals aberrant gut microbiota-host glycerophospholipid metabolism in association with neuroinflammation in APP/PS1 mice. Gut Microbes 2023; 15:2282790. [PMID: 37992400 PMCID: PMC10730179 DOI: 10.1080/19490976.2023.2282790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Numerous studies have described the notable impact of gut microbiota on the brain in Alzheimer's disease (AD) via the gut - brain axis. However, the molecular mechanisms underlying the involvement of gut microbiota in the development of AD are limited. This study aimed to explore the potential mechanisms of gut microbiota in AD by integrating multi-omics data. In this study, APP/PS1 and WT mice at nine months of age were used as study mouse model. Cognitive function was assessed using the Morris water maze test. The levels of Aβ plaque and neuroinflammation in the brain were detected using immunofluorescence and PET/CT. In addition, we not only used 16S rRNA gene sequencing and metabolomics to explore the variation characteristics of gut microbiota and serum metabolism abundance, but also combined spatial metabolomics and transcriptomics to explore the change in the brain and identify their potential correlation. APP/PS1 mice showed significant cognitive impairment and amyloid-β deposits in the brain. The abundance of gut microbiota was significantly changed in APP/PS1 mice, including decreased Desulfoviobrio, Enterococcus, Turicibacter, and Ruminococcus and increased Pseudomonas. The integration of serum untargeted metabolomics and brain spatial metabolomics showed that glycerophospholipid metabolism was a common alteration pathway in APP/PS1 mice. Significant proliferation and activation of astrocyte and microglia were observed in APP/PS1 mice, accompanied by alterations in immune pathways. Integration analysis and fecal microbiota transplantation (FMT) intervention revealed potential association of gut microbiota, host glycerophospholipid metabolism, and neuroinflammation levels in APP/PS1 mice.
Collapse
Affiliation(s)
- Xiaohang Qian
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyue Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Jiang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidong Tang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Kang Y, Yao J, Gao X, Zhong H, Song Y, Di X, Feng Z, Xie L, Zhang J. Exercise ameliorates anxious behavior and promotes neuroprotection through osteocalcin in VCD-induced menopausal mice. CNS Neurosci Ther 2023; 29:3980-3994. [PMID: 37402694 PMCID: PMC10651954 DOI: 10.1111/cns.14324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
AIMS As the ovaries age and women transition to menopause and postmenopause, reduced estradiol levels are associated with anxiety and depression. Exercise contributes to alleviate anxiety and depression and the bone-derived hormone osteocalcin has been reported to be necessary to prevent anxiety-like behaviors. The aim of this study was to investigate the effects of exercise on anxiety behaviors in climacteric mice and whether it was related to osteocalcin. METHODS Menopausal mouse model was induced by intraperitoneal injection of 4-vinylcyclohexene diepoxide (VCD). Open field, elevated plus maze, and light-dark tests were used to detect anxious behavior in mice. The content of serum osteocalcin was measured and its correlation with anxiety behavior was analyzed. BRDU and NEUN co-localization cells were detected with immunofluorescence. Western blot was applied to obtain apoptosis-related proteins. RESULTS The VCD mice showed obvious anxiety-like behaviors and 10 weeks of treadmill exercise significantly ameliorated the anxiety and increased circulating osteocalcin in VCD mice. Exercise increased the number of BRDU and NEUN co-localization cells in hippocampal dentate gyrus, reduced the number of impaired hippocampal neurons, inhibited the expression of BAX, cleaved Caspase3, and cleaved PARP, promoted the expression of BCL-2. Importantly, circulating osteocalcin levels were positively associated with the improvements of anxiety, the number of BRDU and NEUN co-localization cells in hippocampal dentate gyrus and negatively related to impaired hippocampal neurons. CONCLUSION Exercise ameliorates anxiety behavior, promotes hippocampal dentate gyrus neurogenesis, and inhibits hippocampal cell apoptosis in VCD-induced menopausal mice. They are related to circulating osteocalcin, which are increased by exercise.
Collapse
Affiliation(s)
- Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Jie Yao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
- School of NursingShaanxi University of Chinese MedicineXianyangChina
| | - Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Hao Zhong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Yifei Song
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Zeguo Feng
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Lin Xie
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
49
|
Xie Z, Zhang M, Luo Y, Jin D, Guo X, Yang W, Zheng J, Zhang H, Zhang L, Deng C, Zheng W, Tan EK, Jin K, Zhu S, Wang Q. Healthy Human Fecal Microbiota Transplantation into Mice Attenuates MPTP-Induced Neurotoxicity via AMPK/SOD2 Pathway. Aging Dis 2023; 14:2193-2214. [PMID: 37199590 PMCID: PMC10676800 DOI: 10.14336/ad.2023.0309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
Increasing evidence has shown that gut dysbacteriosis may play a crucial role in neuroinflammation in Parkinson's disease (PD). However, the specific mechanisms that link gut microbiota to PD remain unexplored. Given the critical roles of blood-brain barrier (BBB) dysfunction and mitochondrial dysfunction in the development of PD, we aimed to evaluate the interactions among the gut microbiota, BBB, and mitochondrial resistance to oxidation and inflammation in PD. We investigated the effects of fecal microbiota transplantation (FMT) on the physiopathology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. The aim was to explore the role of fecal microbiota from PD patients and healthy human controls in neuroinflammation, BBB components, and mitochondrial antioxidative capacity via the AMPK/SOD2 pathway. Compared to control mice, MPTP-treated mice exhibited elevated levels of Desulfovibrio, whereas mice given FMT from PD patients exhibited enriched levels of Akkermansia and mice given FMT from healthy humans showed no significant alterations in gut microbiota. Strikingly, FMT from PD patients to MPTP-treated mice significantly aggravated motor impairments, dopaminergic neurodegeneration, nigrostriatal glial activation and colonic inflammation, and inhibited the AMPK/SOD2 signaling pathway. However, FMT from healthy human controls greatly improved the aforementioned MPTP-caused effects. Surprisingly, the MPTP-treated mice displayed a significant loss in nigrostriatal pericytes, which was restored by FMT from healthy human controls. Our findings demonstrate that FMT from healthy human controls can correct gut dysbacteriosis and ameliorate neurodegeneration in the MPTP-induced PD mouse model by suppressing microgliosis and astrogliosis, ameliorating mitochondrial impairments via the AMPK/SOD2 pathway, and restoring the loss of nigrostriatal pericytes and BBB integrity. These findings raise the possibility that the alteration in the human gut microbiota may be a risk factor for PD and provide evidence for potential application of FMT in PD preclinical treatment.
Collapse
Affiliation(s)
- Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Mahui Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Dana Jin
- College of Biological Science, University of California, Davis, CA 95616, USA.
| | - Xingfang Guo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Hongfei Zhang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangdong, China.
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, Australia.
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau, China.
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Bai XB, Xu S, Zhou LJ, Meng XQ, Li YL, Chen YL, Jiang YH, Lin WZ, Chen BY, Du LJ, Tian GC, Liu Y, Duan SZ, Zhu YQ. Oral pathogens exacerbate Parkinson's disease by promoting Th1 cell infiltration in mice. MICROBIOME 2023; 11:254. [PMID: 37978405 PMCID: PMC10655362 DOI: 10.1186/s40168-023-01685-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common chronic neurological disorder with a high risk of disability and no cure. Periodontitis is an infectious bacterial disease occurring in periodontal supporting tissues. Studies have shown that periodontitis is closely related to PD. However, direct evidence of the effect of periodontitis on PD is lacking. Here, we demonstrated that ligature-induced periodontitis with application of subgingival plaque (LIP-SP) exacerbated motor dysfunction, microglial activation, and dopaminergic neuron loss in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. RESULTS The 16S rRNA gene sequencing revealed that LIP-SP induced oral and gut dysbiosis. Particularly, Veillonella parvula (V. parvula) and Streptococcus mutans (S. mutans) from oral ligatures were increased in the fecal samples of MPTP + LIP-SP treated mice. We further demonstrated that V. parvula and S. mutans played crucial roles in LIP-SP mediated exacerbation of motor dysfunction and neurodegeneration in PD mice. V. parvula and S. mutans caused microglial activation in the brain, as well as T helper 1 (Th1) cells infiltration in the brain, cervical lymph nodes, ileum and colon in PD mice. Moreover, we observed a protective effect of IFNγ neutralization on dopaminergic neurons in V. parvula- and S. mutans-treated PD mice. CONCLUSIONS Our study demonstrates that oral pathogens V. parvula and S. mutans necessitate the existence of periodontitis to exacerbate motor dysfunction and neurodegeneration in MPTP-induced PD mice. The underlying mechanisms include alterations of oral and gut microbiota, along with immune activation in both brain and peripheral regions. Video Abstract.
Collapse
Affiliation(s)
- Xue-Bing Bai
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuo Xu
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lu-Jun Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiao-Qian Meng
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yu-Lin Li
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan-Lin Chen
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yi-Han Jiang
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wen-Zhen Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Bo-Yan Chen
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lin-Juan Du
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Guo-Cai Tian
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yan Liu
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Sheng-Zhong Duan
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ya-Qin Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|