1
|
Rawtani H, Jackson J, Gao F, Mellouk N, Myer I, Mora KC, Fenton SE, Feng L. Whole mount preparation and analysis of rabbit mammary gland. Reprod Toxicol 2024:108740. [PMID: 39481499 DOI: 10.1016/j.reprotox.2024.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
The mammary gland undergoes dynamic structural and compositional changes throughout life, influenced significantly by hormonal fluctuations and environmental factors. From embryonic development through menopause, this tissue adapts to accommodate phases such as postnatal expansion, pregnancy-induced lactation, and post-weaning involution. Hormones, growth factors, cytokines, and exogenous factors regulate these innate processes, affecting mammary epithelial cell proliferation and sensitivity, particularly in terminal end buds (TEB) and lobules, which are highly susceptible to endocrine disruption. Rodent models have provided invaluable insights into mammary gland biology, yet differences exist compared to human development, prompting the exploration of alternative models like rabbits. Additionally, there is momentum to move away from the use of nonhuman primates in safety assessments, increasing the need for evaluation tools for all tissues in the rabbit model. Rabbit mammary glands exhibit similarities to humans, making them promising for studying breast biology and pathology. However, protocols for whole-mount analysis of rabbit mammary glands are lacking due to the technical challenges of working with thicker tissue than rodent mammary glands. Here, we developed a methodology modified from rodent studies for preparing and analyzing rabbit mammary gland whole mounts, which is essential for advancing research in mammary gland biology and understanding the effects of hormonal and toxicant-induced disruption of mammary gland growth and function.
Collapse
Affiliation(s)
- Harshal Rawtani
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Fumei Gao
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA; Department of Obstetrics & Gynecology, Peking University Peoples' Hospital, Beijing, China
| | - Namya Mellouk
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Karina Cuevas Mora
- Integrated Toxicology & Environmental Health Program, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
2
|
Hamed M, Vats A, Lim IE, Sapkota B, Abdelmoneim A. Effects of developmental exposure to individual and combined PFAS on development and behavioral stress responses in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123912. [PMID: 38570156 DOI: 10.1016/j.envpol.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread use and persistence in the environment. Laboratory and epidemiological studies investigating these compounds have signaled their neurotoxic and endocrine-disrupting propensities, prompting further research into their effects on behavioral stress responses and their potential role as risk factors for stress-related disorders such as anxiety and depression. This study elucidates the ramifications of early developmental exposures to individual and combined PFAS on the development and behavioral stress responses of larval zebrafish (Danio rerio), an established model in toxicological research. Wild-type zebrafish embryos were enzymatically dechorionated and exposed to PFOS, PFOA, PFHxS, and PFHxA between 6 and 120 h post-fertilization (hpf). We targeted environmentally relevant concentrations stemming from the USEPA 2016 Hazard Advisory Limit (HAL, 0.07 μg/L) and folds higher (0.35, 0.7, 1.75, and 3.5 μg/L). Evaluations at 120 hpf encompassed mortality, overall development, developmental defects, and larval activity both at baseline stress levels and following exposure to acute stressors (acoustic and visual). Larval exposure to PFOA, PFOS, or PFHxS (0.07 μg/L or higher) elicited significant increases in mortality rates, which capped at 23.1%. Exposure to individual chemicals resulted in limited effects on overall development but increased the prevalence of developmental defects in the body axis, swim bladder, pigmentation, and eyes, as well as the prevalence of yolk sac and pericardial edemas. Larval activity at baseline stress levels and following exposure to acute stimuli was significantly altered. Combined exposure to all four chemicals intensified the breadth of developmental and behavioral alterations, suggesting possible additive or synergistic effects. Our findings shed light on the developmental and neurobehavioral disturbances associated with developmental exposure to PFAS at environmentally relevant concentrations, the added risks of combined exposures to these chemicals, and their possible role as environmental risk factors for stress-related disorders.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ajn Vats
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ignitius Ezekiel Lim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Biplov Sapkota
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
3
|
Goldberg M, Chang CJ, Ogunsina K, O’Brien KM, Taylor KW, White AJ, Sandler DP. Personal Care Product Use during Puberty and Incident Breast Cancer among Black, Hispanic/Latina, and White Women in a Prospective US-Wide Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27001. [PMID: 38306193 PMCID: PMC10836586 DOI: 10.1289/ehp13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Some personal care products (PCPs) contain endocrine-disrupting chemicals that may affect breast cancer (BC) risk. Patterns of use vary by race and ethnicity. Use often starts in adolescence, when rapidly developing breast tissue may be more susceptible to environmental carcinogens. Few studies have examined associations of BC with PCP use during this susceptible window. OBJECTIVES We characterized race and ethnicity-specific patterns of PCP use at 10-13 years of age and estimated associations of use with incident BC. METHODS At enrollment (2003-2009), Sister Study participants (n = 4,049 Black, 2,104 Latina, and 39,312 White women) 35-74 years of age reported use of 37 "everyday" PCPs during the ages of 10-13 y (did not use, sometimes, or frequently used). We conducted race and ethnicity-specific latent class analyses to separately identify groups of women with similar patterns of beauty, hair, and skincare/hygiene product use. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for associations of identified PCP classes and single products with incident BC using Cox proportional hazards regression. RESULTS During a mean follow-up time of 10.8 y, 280 Black, 128 Latina, and 3,137 White women were diagnosed with BC. Classes of adolescent PCP use were not clearly associated with BC diagnosis among Black, Latina, or White women. HRs were elevated but imprecise for frequent nail product and perfume use in Black women (HR = 1.34; 95% CI: 0.85, 2.12) and greater hair product use in Black (HR = 1.28; 95% CI: 0.91, 1.80) and Latina (HR = 1.42; 95% CI: 0.81, 2.48) women compared with lighter use. In single-product models, we observed higher BC incidence associated with frequent use of lipstick, nail products, pomade, perfume, makeup remover, and acne/blemish products in at least one group. DISCUSSION This work provides some support for the hypothesis that PCP use during puberty is associated with BC risk. More research is needed to confirm these novel findings. https://doi.org/10.1289/EHP13882.
Collapse
Affiliation(s)
- Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kemi Ogunsina
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Kyla W. Taylor
- Integrative Health Assessments Branch, Division of Translational Toxicology, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
4
|
Kay JE, Brody JG, Schwarzman M, Rudel RA. Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available in Vivo, in Vitro, and in Silico Data. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17002. [PMID: 38197648 PMCID: PMC10777819 DOI: 10.1289/ehp13233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Chemicals that induce mammary tumors in rodents or activate estrogen or progesterone signaling are likely to increase breast cancer (BC) risk. Identifying chemicals with these activities can prompt steps to protect human health. OBJECTIVES We compiled data on rodent tumors, endocrine activity, and genotoxicity to assess the key characteristics (KCs) of rodent mammary carcinogens (MCs), and to identify other chemicals that exhibit these effects and may therefore increase BC risk. METHODS Using authoritative databases, including International Agency for Research on Cancer (IARC) Monographs and the US Environmental Protection's (EPA) ToxCast, we selected chemicals that induce mammary tumors in rodents, stimulate estradiol or progesterone synthesis, or activate the estrogen receptor (ER) in vitro. We classified these chemicals by their genotoxicity and strength of endocrine activity and calculated the overrepresentation (enrichment) of these KCs among MCs. Finally, we evaluated whether these KCs predict whether a chemical is likely to induce mammary tumors. RESULTS We identified 279 MCs and an additional 642 chemicals that stimulate estrogen or progesterone signaling. MCs were significantly enriched for steroidogenicity, ER agonism, and genotoxicity, supporting the use of these KCs to predict whether a chemical is likely to induce rodent mammary tumors and, by inference, increase BC risk. More MCs were steroidogens than ER agonists, and many increased both estradiol and progesterone. Enrichment among MCs was greater for strong endocrine activity vs. weak or inactive, with a significant trend. DISCUSSION We identified hundreds of compounds that have biological activities that could increase BC risk and demonstrated that these activities are enriched among MCs. We argue that many of these should not be considered low hazard without investigating their ability to affect the breast, and chemicals with the strongest evidence can be targeted for exposure reduction. We describe ways to strengthen hazard identification, including improved assessments for mammary effects, developing assays for more KCs, and more comprehensive chemical testing. https://doi.org/10.1289/EHP13233.
Collapse
Affiliation(s)
| | | | - Megan Schwarzman
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Family and Community Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
5
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Pedersen JE, Hansen J. Parental occupational exposure to chemicals and risk of breast cancer in female offspring. ENVIRONMENTAL RESEARCH 2023; 227:115817. [PMID: 37011793 DOI: 10.1016/j.envres.2023.115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES Parental exposure to chemicals at work has been hypothesized to be a potential predisposing factor for breast cancer in next generations. The objective of the present nationwide nested case-control study was to contribute with evidence to this area. METHODS Women with primary breast cancer were identified using the Danish Cancer Registry and they were required to have information on either maternal or paternal employment history, which resulted in the inclusion of 5587 cases. For each case, 20 female cancer free controls were matched on year of birth using the Danish Civil Registration System. Employment history was linked to job exposure matrices to assess specific occupational chemical exposures. RESULTS For maternal exposures, we observed an association between ever exposure to diesel exhaust (OR = 1.13, 95% CI: 1.01-1.27) and exposure to bitumen fumes in the perinatal period (OR = 1.51, 95% CI: 1.00-2.26) and breast cancer in female offspring. Highest cumulative exposure to benzo(a)pyrene, diesel exhaust, gasoline and bitumen fumes was further indicated to increase the risk. Results further indicated a stronger association between diesel exhaust (OR = 1.23, 95% CI: 1.01-1.50) and benzo(a)pyrene exposure (OR = 1.23, 95% CI: 0.96-1.57) and estrogen receptor negative tumors than tumors with ER expression, while bitumen fumes seemed to elevate the risk of both hormonal subtypes. For paternal exposures, the main results did not indicate any associations with breast cancer in female offspring. CONCLUSIONS Our study suggests an elevated breast cancer risk in daughters of women occupational exposed to some occupational pollutants, including diesel exhaust, benzo(a)pyrene and bitumen fumes. These findings need to be confirmed in future large-scale studies before any firm conclusions can be reached.
Collapse
Affiliation(s)
| | - Johnni Hansen
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
7
|
Jiménez T, Pollán M, Domínguez-Castillo A, Lucas P, Sierra MÁ, Castelló A, Fernández de Larrea-Baz N, Lora-Pablos D, Salas-Trejo D, Llobet R, Martínez I, Pino MN, Martínez-Cortés M, Pérez-Gómez B, Lope V, García-Pérez J. Mammographic density in the environs of multiple industrial sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162768. [PMID: 36907418 DOI: 10.1016/j.scitotenv.2023.162768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Mammographic density (MD), defined as the percentage of dense fibroglandular tissue in the breast, is a modifiable marker of the risk of developing breast cancer. Our objective was to evaluate the effect of residential proximity to an increasing number of industrial sources in MD. METHODS A cross-sectional study was conducted on 1225 premenopausal women participating in the DDM-Madrid study. We calculated distances between women's houses and industries. The association between MD and proximity to an increasing number of industrial facilities and industrial clusters was explored using multiple linear regression models. RESULTS We found a positive linear trend between MD and proximity to an increasing number of industrial sources for all industries, at distances of 1.5 km (p-trend = 0.055) and 2 km (p-trend = 0.083). Moreover, 62 specific industrial clusters were analyzed, highlighting the significant associations found between MD and proximity to the following 6 industrial clusters: cluster 10 and women living at ≤1.5 km (β = 10.78, 95 % confidence interval (95%CI) = 1.59; 19.97) and at ≤2 km (β = 7.96, 95%CI = 0.21; 15.70); cluster 18 and women residing at ≤3 km (β = 8.48, 95%CI = 0.01; 16.96); cluster 19 and women living at ≤3 km (β = 15.72, 95%CI = 1.96; 29.49); cluster 20 and women living at ≤3 km (β = 16.95, 95%CI = 2.90; 31.00); cluster 48 and women residing at ≤3 km (β = 15.86, 95%CI = 3.95; 27.77); and cluster 52 and women living at ≤2.5 km (β = 11.09, 95%CI = 0.12; 22.05). These clusters include the following industrial activities: surface treatment of metals/plastic, surface treatment using organic solvents, production/processing of metals, recycling of animal waste, hazardous waste, urban waste-water treatment plants, inorganic chemical industry, cement and lime, galvanization, and food/beverage sector. CONCLUSIONS Our results suggest that women living in the proximity to an increasing number of industrial sources and those near certain types of industrial clusters have higher MD.
Collapse
Affiliation(s)
- Tamara Jiménez
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Alejandro Domínguez-Castillo
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain.
| | - María Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Adela Castelló
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Nerea Fernández de Larrea-Baz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - David Lora-Pablos
- Scientific Support Unit, Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain; Spanish Clinical Research Network (SCReN), Madrid, Spain; Faculty of Statistical Studies, Universidad Complutense de Madrid (UCM), Madrid, Spain.
| | - Dolores Salas-Trejo
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain; Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Rafael Llobet
- Institute of Computer Technology, Universitat Politècnica de València, Valencia, Spain.
| | - Inmaculada Martínez
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain; Center for Public Health Research CSISP, FISABIO, Valencia, Spain.
| | - Marina Nieves Pino
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Mercedes Martínez-Cortés
- Servicio de Prevención y Promoción de la Salud, Madrid Salud, Ayuntamiento de Madrid, Madrid, Spain.
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Virgina Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| | - Javier García-Pérez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health (Instituto de Salud Carlos III), Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain.
| |
Collapse
|
8
|
Depypere H. Treatment of women with BRCA mutation. Climacteric 2023; 26:235-239. [PMID: 37011662 DOI: 10.1080/13697137.2023.2189583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
The cumulative risk for breast and ovarian cancer is high in BRCA1 or BRCA2 mutation carriers. The lifetime risk of breast cancer by the age of 80 years is respectively up to 72% and 69% in BRCA1 and BRCA2 mutation carriers. The risk of ovarian cancer is higher (44%) in BRCA1 than in BRCA2 (17%) mutation carriers. Breast and ovarian cancers tend to arise earlier in BRCA1 mutation carriers. Breast cancers in BRCA1 mutation carriers are more frequently (up to 70%) triple negative while the majority (up to 80%) of breast cancers in BRCA2 mutation carriers are hormone sensitive. Many issues remain to be resolved. In daily practice we are often confronted with patients having BRCA mutations classified as variants of unknown significance, who do have breast cancer personally or have a strong family history of breast cancer. On the other hand, 30-40% of mutation carriers will not develop breast cancer. Moreover, it is very difficult to predict the age at which cancer will arise. In a multidisciplinary setting we need to offer BRCA and other mutation carriers a wide range of information, advice and support.
Collapse
Affiliation(s)
- H Depypere
- Menopause and Breast Clinic, University Hospital and Coupure Menopause Center, Gent, Belgium
| |
Collapse
|
9
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
10
|
Pan S, Guo Y, Yu W, Hong F, Qiao X, Zhang J, Xu P, Zhai Y. Environmental chemical TCPOBOP disrupts milk lipid homeostasis during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114463. [PMID: 38321682 DOI: 10.1016/j.ecoenv.2022.114463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 02/08/2024]
Abstract
Humans are exposed to different kinds of environmental contaminants or drugs throughout their lifetimes. The widespread presence of these compounds has raised concerns about the consequent adverse effects on lactating women. The constitutive androstane receptor (CAR, Nr1i3) is known as a xenobiotic sensor for environmental pollution or drugs. In this study, the model environmental chemical 1, 4-bis [2-(3, 5-dichloropyridyloxy)] benzene, TCPOBOP (TC), which is a highly specific agonist of CAR, was used to investigate the effects of exogenous exposure on lactation function and offspring health in mice. The results revealed that TC exposure decreased the proliferation of mammary epithelial cells during pregnancy. This deficiency further compromised lobular-alveolar structures, resulting in alveolar cell apoptosis, as well as premature stoppage of the lactation cycle and aberrant lactation. Furthermore, TC exposure significantly altered the size and number of milk lipid droplets, suggesting that TC exposure inhibits milk lipid synthesis. Additionally, TC exposure interfered with the milk lipid metabolism network, resulting in the inability of TC-exposed mice to efficiently secrete nutrients and feed their offspring. These findings demonstrated that restricted synthesis and secretion of milk lipids would indirectly block mammary gland form and function, which explained the possible reasons for lactation failure and retarded offspring growth.
Collapse
Affiliation(s)
- Shijia Pan
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yuan Guo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Wen Yu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Fan Hong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xiaoxiao Qiao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jia Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | - Pengfei Xu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yonggong Zhai
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
11
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Kay JE, Cardona B, Rudel RA, Vandenberg LN, Soto AM, Christiansen S, Birnbaum LS, Fenton SE. Chemical Effects on Breast Development, Function, and Cancer Risk: Existing Knowledge and New Opportunities. Curr Environ Health Rep 2022; 9:535-562. [PMID: 35984634 PMCID: PMC9729163 DOI: 10.1007/s40572-022-00376-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Population studies show worrisome trends towards earlier breast development, difficulty in breastfeeding, and increasing rates of breast cancer in young women. Multiple epidemiological studies have linked these outcomes with chemical exposures, and experimental studies have shown that many of these chemicals generate similar effects in rodents, often by disrupting hormonal regulation. These endocrine-disrupting chemicals (EDCs) can alter the progression of mammary gland (MG) development, impair the ability to nourish offspring via lactation, increase mammary tissue density, and increase the propensity to develop cancer. However, current toxicological approaches to measuring the effects of chemical exposures on the MG are often inadequate to detect these effects, impairing our ability to identify exposures harmful to the breast and limiting opportunities for prevention. This paper describes key adverse outcomes for the MG, including impaired lactation, altered pubertal development, altered morphology (such as increased mammographic density), and cancer. It also summarizes evidence from humans and rodent models for exposures associated with these effects. We also review current toxicological practices for evaluating MG effects, highlight limitations of current methods, summarize debates related to how effects are interpreted in risk assessment, and make recommendations to strengthen assessment approaches. Increasing the rigor of MG assessment would improve our ability to identify chemicals of concern, regulate those chemicals based on their effects, and prevent exposures and associated adverse health effects.
Collapse
Affiliation(s)
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
13
|
Cheng TS, Ong KK, Biro FM. Trends Toward Earlier Puberty Timing in Girls and Its Likely Mechanisms. J Pediatr Adolesc Gynecol 2022; 35:527-531. [PMID: 35537618 DOI: 10.1016/j.jpag.2022.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
This is the first of two installments examining early puberty in girls. The first paper will discuss secular trends in onset of puberty and the possible mechanisms to explain these developments. The potential etiologies examined will include the role of endocrine-disrupting chemicals and obesogens, the impact of body mass index and obesity, genetic and biologic pathways, and the influence of lifestyle behaviors. The second paper of the two-part series will examine the potential health impacts of early puberty on young and adult women and offer suggestions for clinical management and public health prevention.
Collapse
Affiliation(s)
- Tuck Seng Cheng
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Box 116, Cambridge CB20QQ UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Paediatrics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Frank M Biro
- Division of Adolescent and Transition Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
| |
Collapse
|
14
|
Antony S, Antony S, Rebello S, George S, Biju DT, R R, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Bioremediation of Endocrine Disrupting Chemicals- Advancements and Challenges. ENVIRONMENTAL RESEARCH 2022; 213:113509. [PMID: 35660566 DOI: 10.1016/j.envres.2022.113509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Endocrine Disrupting Chemicals (EDCs), major group of recalcitrant compounds, poses a serious threat to the health and future of millions of human beings, and other flora and fauna for years to come. A close analysis of various xenobiotics undermines the fact that EDC is structurally diverse chemical compounds generated as a part of anthropogenic advancements as well as part of their degradation. Regardless of such structural diversity, EDC is common in their ultimate drastic effect of impeding the proper functioning of the endocrinal system, basic physiologic systems, resulting in deregulated growth, malformations, and cancerous outcomes in animals as well as humans. The current review outlines an overview of various EDCs, their toxic effects on the ecosystem and its inhabitants. Conventional remediation methods such as physico-chemical methods and enzymatic approaches have been put into action as some form of mitigation measures. However, the last decade has seen the hunt for newer technologies and methodologies at an accelerated pace. Genetically engineered microbial degradation, gene editing strategies, metabolic and protein engineering, and in-silico predictive approaches - modern day's additions to our armamentarium in combating the EDCs are addressed. These additions have greater acceptance socially with lesser dissonance owing to reduced toxic by-products, lower health trepidations, better degradation, and ultimately the prevention of bioaccumulation. The positive impact of such new approaches on controlling the menace of EDCs has been outlaid. This review will shed light on sources of EDCs, their impact, significance, and the different remediation and bioremediation approaches, with a special emphasis on the recent trends and perspectives in using sustainable approaches for bioremediation of EDCs. Strict regulations to prevent the release of estrogenic chemicals to the ecosystem, adoption of combinatorial methods to remove EDC and prevalent use of bioremediation techniques should be followed in all future endeavors to combat EDC pollution. Moreover, the proper development, growth and functioning of future living forms relies on their non-exposure to EDCs, thus remediation of such chemicals present even in nano-concentrations should be addressed gravely.
Collapse
Affiliation(s)
- Sherly Antony
- Department of Microbiology, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, 689 101, Kerala, India
| | - Sham Antony
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Sharrel Rebello
- School of Food Science & Technology, Mahatma Gandhi University, Kottayam, India
| | - Sandhra George
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Devika T Biju
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thriuvalla, 689 101, Kerala, India
| | - Reshmy R
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum, 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505, Kerala, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
15
|
Matouskova K, Szabo GK, Daum J, Fenton SE, Christiansen S, Soto AM, Kay JE, Cardona B, Vandenberg LN. Best practices to quantify the impact of reproductive toxicants on development, function, and diseases of the rodent mammary gland. Reprod Toxicol 2022; 112:51-67. [PMID: 35764275 PMCID: PMC9491517 DOI: 10.1016/j.reprotox.2022.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
Abstract
Work from numerous fields of study suggests that exposures to hormonally active chemicals during sensitive windows of development can alter mammary gland development, function, and disease risk. Stronger links between many environmental pollutants and disruptions to breast health continue to be documented in human populations, and there remain concerns that the methods utilized to identify, characterize, and prioritize these chemicals for risk assessment and risk management purposes are insufficient. There are also concerns that effects on the mammary gland have been largely ignored by regulatory agencies. Here, we provide technical guidance that is intended to enhance collection and evaluation of the mammary gland in mice and rats. We review several features of studies that should be controlled to properly evaluate the mammary gland, and then describe methods to appropriately collect the mammary gland from rodents. Furthermore, we discuss methods for preparing whole mounted mammary glands and numerous approaches that are available for the analysis of these samples. Finally, we conclude with several examples where analysis of the mammary gland revealed effects of environmental toxicants at low doses. Our work argues that the rodent mammary gland should be considered in chemical safety, hazard and risk assessments. It also suggests that improved measures of mammary gland outcomes, such as those we present in this review, should be included in the standardized methods evaluated by regulatory agencies such as the test guidelines used for identifying reproductive and developmental toxicants.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Gillian K Szabo
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jessica Daum
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzanne E Fenton
- Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs, Lyngby DK 2800, Denmark
| | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
16
|
Hamilton AM, Olsson LT, Midkiff BR, Morozova E, Su Y, Haslam SZ, Vandenberg LN, Schneider SS, Santucci-Pereira J, Jerry DJ, Troester MA, Schwartz RC. Toward a digital analysis of environmental impacts on rodent mammary gland density during critical developmental windows. Reprod Toxicol 2022; 111:184-193. [PMID: 35690277 PMCID: PMC9670255 DOI: 10.1016/j.reprotox.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/21/2022]
Abstract
While mammographic breast density is associated with breast cancer risk in humans, there is no comparable surrogate risk measure in mouse and rat mammary glands following various environmental exposures. In the current study, mammary glands from mice and rats subjected to reproductive factors and exposures to environmental chemicals that have been shown to influence mammary gland development and/or susceptibility to mammary tumors were evaluated for histologic density by manual and automated digital methods. Digital histological density detected changes due to hormonal stimuli/reproductive factors (parity), dietary fat, and exposure to environmental chemicals, such as benzophenone-3 and a combination of perfluorooctanoic acid and zeranol. Thus, digital analysis of mammary gland density offers a high throughput method that can provide a highly reproducible means of comparing a measure of histological density across independent experiments, experimental systems, and laboratories. This methodology holds promise for the detection of environmental impacts on mammary gland structure in mice and rats that may be comparable to human breast density, thus potentially allowing comparisons between rodent models and human breast cancer studies.
Collapse
Affiliation(s)
- Alina M Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elena Morozova
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Yanrong Su
- The Irma H. Russo MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Sandra Z Haslam
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA, USA; Department of Surgery, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Julia Santucci-Pereira
- The Irma H. Russo MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - D Joseph Jerry
- Pioneer Valley Life Sciences Institute, Springfield, MA, USA; Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard C Schwartz
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
17
|
The Importance of Addressing Early-Life Environmental Exposures in Cancer Epidemiology. CURR EPIDEMIOL REP 2022; 9:49-65. [DOI: 10.1007/s40471-022-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Bisphenol A replacement chemicals, BPF and BPS, induce protumorigenic changes in human mammary gland organoid morphology and proteome. Proc Natl Acad Sci U S A 2022; 119:e2115308119. [PMID: 35263230 PMCID: PMC8931256 DOI: 10.1073/pnas.2115308119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SignificanceBisphenol A (BPA), found in many plastic products, has weak estrogenic effects that can be harmful to human health. Thus, structurally related replacements-bisphenol S (BPS) and bisphenol F (BPF)-are coming into wider use with very few data about their biological activities. Here, we compared the effects of BPA, BPS, and BPF on human mammary organoids established from normal breast tissue. BPS disrupted organoid architecture and induced supernumerary branching. At a proteomic level, the bisphenols altered the abundance of common targets and those that were unique to each compound. The latter included proteins linked to tumor-promoting processes. These data highlighted the importance of testing the human health effects of replacements that are structurally related to chemicals of concern.
Collapse
|
19
|
Beckman S, Silver E, Weinberg JL, Hurley S, Frederick M, Chan J, Reynolds P, Harrison R. Development of a Data Visualization Tool for Occupational Exposure to Chemicals of Concern for Breast Cancer Among California Working Women, 2010-2014. New Solut 2022; 31:400-412. [PMID: 34325565 DOI: 10.1177/10482911211032971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We identified the occupations that employ California women and a list of chemicals of concern for breast cancer. We evaluated the likelihood of on-the-job exposure to the categories of chemicals by occupation among formally and informally employed women. We selected 145 occupations representing more than 6.6 million women (85% of California working women), along with an additional sixteen occupations for informal workers only. We organized 1012 chemicals (including mammary gland carcinogens, developmental toxicants, and endocrine-disrupting chemicals) into twenty-five categories. More than 80 percent of occupations investigated had possible or probable exposure to at least one category of chemicals. This is the first categorization of occupational exposure to chemicals of concern for breast cancer among California working women. Our investigation revealed significant data gaps, which could be improved by policy changes resulting in enhanced collection of data on occupation and chemical exposure.
Collapse
Affiliation(s)
| | | | | | | | - Matt Frederick
- California Department of Public Health, Richmond, CA, USA
| | | | | | | |
Collapse
|
20
|
Su Y, Santucci-Pereira J, Dang NM, Kanefsky J, Rahulkannan V, Hillegass M, Joshi S, Gurdogan H, Chen Z, Bessonneau V, Rudel R, Ser-Dolansky J, Schneider SS, Russo J. Effects of Pubertal Exposure to Butyl Benzyl Phthalate, Perfluorooctanoic Acid, and Zeranol on Mammary Gland Development and Tumorigenesis in Rats. Int J Mol Sci 2022; 23:ijms23031398. [PMID: 35163327 PMCID: PMC8835802 DOI: 10.3390/ijms23031398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs)—including butyl benzyl phthalate (BBP), perfluorooctanoic acid (PFOA), and zeranol (α-ZAL, referred to as ZAL hereafter)—can interfere with the endocrine system and produce adverse effects. It remains unclear whether pubertal exposure to low doses of BBP, PFOA, and ZAL has an impact on breast development and tumorigenesis. We exposed female Sprague Dawley rats to BBP, PFOA, or ZAL through gavage for 21 days, starting on day 21, and analyzed their endocrine organs, serum hormones, mammary glands, and transcriptomic profiles of the mammary glands at days 50 and 100. We also conducted a tumorigenesis study for rats treated with PFOA and ZAL using a 7,12-dimethylbenz[a]anthracene (DMBA) model. Our results demonstrated that pubertal exposure to BBP, PFOA, and ZAL affected endocrine organs and serum hormones, and induced phenotypic and transcriptomic changes. The exposure to PFOA + ZAL induced the most phenotypic and transcriptomic changes in the mammary gland. PFOA + ZAL downregulated the expression of genes related to development at day 50, whereas it upregulated genes associated with tumorigenesis at day 100. PFOA + ZAL exposure also decreased rat mammary tumor latency, reduced the overall survival of rats after DMBA challenge, and affected the histopathology of mammary tumors. Therefore, our study suggests that exposure to low doses of EDCs during the pubertal period could induce changes in the endocrine system and mammary gland development in rats. The inhibition of mammary gland development by PFOA + ZAL might increase the risk of developing mammary tumors through activation of signaling pathways associated with tumorigenesis.
Collapse
Affiliation(s)
- Yanrong Su
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
- Correspondence:
| | - Julia Santucci-Pereira
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Nhi M. Dang
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Joice Kanefsky
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Vishnuprabha Rahulkannan
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Meardey Hillegass
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Shalina Joshi
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Hafsa Gurdogan
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Zhen Chen
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| | - Vincent Bessonneau
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA 02460, USA; (V.B.); (R.R.)
| | - Ruthann Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA 02460, USA; (V.B.); (R.R.)
| | - Jennifer Ser-Dolansky
- Pioneer Valley Life Sciences Institute, UMASS Chan Medical School-Baystate, Springfield, MA 01199, USA; (J.S.-D.); (S.S.S.)
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, UMASS Chan Medical School-Baystate, Springfield, MA 01199, USA; (J.S.-D.); (S.S.S.)
| | - Jose Russo
- The Irma H Russo, MD-Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple Health, 333 Cottman Avenue, Philadelphia, PA 19111, USA; (J.S.-P.); (N.M.D.); (J.K.); (V.R.); (M.H.); (S.J.); (H.G.); (Z.C.); (J.R.)
| |
Collapse
|
21
|
Kehm RD, Walter EJ, Oskar S, White ML, Tehranifar P, Herbstman JB, Perera F, Lilge L, Miller RL, Terry MB. Exposure to polycyclic aromatic hydrocarbons during pregnancy and breast tissue composition in adolescent daughters and their mothers: a prospective cohort study. Breast Cancer Res 2022; 24:47. [PMID: 35821060 PMCID: PMC9277813 DOI: 10.1186/s13058-022-01546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAH), which are found in air pollution, have carcinogenic and endocrine disrupting properties that might increase breast cancer risk. PAH exposure might be particularly detrimental during pregnancy, as this is a time when the breast tissue of both the mother and daughter is undergoing structural and functional changes. In this study, we tested the hypothesis that ambient PAH exposure during pregnancy is associated with breast tissue composition, measured one to two decades later, in adolescent daughters and their mothers. METHODS We conducted a prospective analysis using data from a New York City cohort of non-Hispanic Black and Hispanic mother-daughter dyads (recruited 1998-2006). During the third trimester of pregnancy, women wore backpacks containing a continuously operating air sampling pump for two consecutive days that measured ambient exposure to eight carcinogenic higher molecular weight nonvolatile PAH compounds (Σ8 PAH) and pyrene. When daughters (n = 186) and mothers (n = 175) reached ages 11-20 and 29-55 years, respectively, optical spectroscopy (OS) was used to evaluate measures of breast tissue composition (BTC) that positively (water content, collagen content, optical index) and negatively (lipid content) correlate with mammographic breast density, a recognized risk factor for breast cancer. Multivariable linear regression was used to evaluate associations between ambient PAH exposure and BTC, overall and by exposure to household tobacco smoke during pregnancy (yes/no). Models were adjusted for race/ethnicity, age, and percent body fat at OS. RESULTS No overall associations were found between ambient PAH exposure (Σ8 PAH or pyrene) and BTC, but statistically significant additive interactions between Σ8 PAH and household tobacco smoke exposure were identified for water content and optical index in both daughters and mothers (interaction p values < 0.05). Σ8 PAH exposure was associated with higher water content (βdaughters = 0.42, 95% CI = 0.15-0.68; βmothers = 0.32, 95% CI = 0.05-0.61) and higher optical index (βdaughters = 0.38, 95% CI = 0.12-0.64; βmothers = 0.38, 95% CI = 0.12-0.65) in those exposed to household tobacco smoke during pregnancy; no associations were found in non-smoking households (interaction p values < 0.05). CONCLUSIONS Exposure to ambient Σ8 PAH and tobacco smoke during pregnancy might interact synergistically to impact BTC in mothers and daughters. If replicated in other cohorts, these findings might have important implications for breast cancer risk across generations.
Collapse
Affiliation(s)
- Rebecca D. Kehm
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA
| | - E. Jane Walter
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3 Canada
| | - Sabine Oskar
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA
| | - Melissa L. White
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA
| | - Parisa Tehranifar
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| | - Julie B. Herbstman
- grid.21729.3f0000000419368729Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032 USA
| | - Frederica Perera
- grid.21729.3f0000000419368729Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032 USA
| | - Lothar Lilge
- grid.231844.80000 0004 0474 0428Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, ON M5G 0A3 Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, 101 College St, Toronto, ON M5G 0A3 Canada
| | - Rachel L. Miller
- grid.59734.3c0000 0001 0670 2351Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029 USA
| | - Mary Beth Terry
- grid.21729.3f0000000419368729Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, Room 1605, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
22
|
Varsha M, Senthil Kumar P, Senthil Rathi B. A review on recent trends in the removal of emerging contaminants from aquatic environment using low-cost adsorbents. CHEMOSPHERE 2022; 287:132270. [PMID: 34560497 DOI: 10.1016/j.chemosphere.2021.132270] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 05/11/2023]
Abstract
Emerging contaminants (ECs), a class of contaminants with low concentrations but significant harm, have received a lot of attention in recent times. ECs comprises of various chemicals that enter the environment every day. In today's modern lifestyle, we use many chemical-based products. These persist in wastewater and ultimately enter the water bodies, causing serious problems to the human and aquatic ecosystem. This is because the conventional wastewater treatment methods are inefficient in identifying and removing such contaminants. Aiming for a long-term, effective solution to this issue, Adsorption was proposed. Although several adsorbents are already present in the market, which have proved beneficial in removing such ECs, not all are affordable. This article reviews replacing costly adsorbents with agriculture-based biomass that are abundant, inexpensive, and biodegradable and possess excellent adsorption capacity. The objectives of this article is to look at adsorption as a viable treatment option for emerging pollutants, as well as sophisticated and cost-effective emerging contaminants treatment options.
Collapse
Affiliation(s)
- M Varsha
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - P Senthil Kumar
- Deprtament of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Senthil Rathi
- Deprtament of Chemical Engineering, St. Joseph' College of Engineering, Chennai, 603110, India
| |
Collapse
|
23
|
Goldberg M, D'Aloisio AA, O'Brien KM, Zhao S, Sandler DP. Early-life exposures and age at thelarche in the Sister Study cohort. Breast Cancer Res 2021; 23:111. [PMID: 34895281 PMCID: PMC8666031 DOI: 10.1186/s13058-021-01490-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Early age at breast development (thelarche) has been associated with increased breast cancer risk. Average age at thelarche has declined over time, but there are few established risk factors for early thelarche. We examined associations between pre- and postnatal exposures and age at thelarche in a US cohort of women born between 1928 and 1974. METHODS Breast cancer-free women ages 35-74 years who had a sister diagnosed with breast cancer were enrolled in the Sister Study from 2003 to 2009 (N = 50,884). At enrollment, participants reported information on early-life exposures and age at thelarche, which we categorized as early (≤ 10 years), average (11-13 years), and late (≥ 14 years). For each exposure, we estimated odds ratios (ORs) and 95% confidence intervals (CIs) for early and late thelarche using polytomous logistic regression, adjusted for birth cohort, race/ethnicity and family income level in childhood. RESULTS Early thelarche was associated with multiple prenatal exposures: gestational hypertensive disorder (OR = 1.25, 95% CI 1.09-1.43), diethylstilbestrol use (OR = 1.23, 95% CI 1.04-1.45), smoking during pregnancy (OR = 1.20, 95% CI 1.13-1.27), young maternal age (OR 1.30, 95% CI 1.16-1.47 for < 20 vs. 25-29 years), and being firstborn (OR = 1.25, 95% CI 1.17-1.33). Birthweight < 2500 g and soy formula use in infancy were positively associated with both early and late thelarche. CONCLUSIONS Associations between pre- and postnatal exposures and age at thelarche suggest that the early-life environment influences breast development and therefore may also affect breast cancer risk by altering the timing of pubertal breast development.
Collapse
Affiliation(s)
- Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| | | | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
24
|
Wang C, Weng Y, Tu W, Jin C, Jin Y. Maternal exposure to sodium ρ-perfluorous nonenoxybenzene sulfonate during pregnancy and lactation disrupts intestinal barrier and may cause obstacles to the nutrient transport and metabolism in F0 and F1 generations of mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148775. [PMID: 34323766 DOI: 10.1016/j.scitotenv.2021.148775] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Sodium ρ-perfluorous nonenoxybenzene sulfonate (OBS), a novel kind of perfluoroalkyl and polyfluoroalkyl compound, has been widely detected in the environment. The toxicity of OBS to living organisms has become a public concern. A growing body of research showed that maternal exposure to environmental pollutants caused intestinal and metabolic diseases that could be conserved across offspring. Here, female C57BL/6 mice were treated OBS at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L) and 5.0 mg/L (OBS-H) during the gestation and lactation periods. The results demonstrated that OBS treatment not only induced significant changes in the mucus secretion and ionic transport, but also disrupted the expression of antimicrobial peptides (AMPs) in the intestine of F0 and F1 generations. Additionally, OBS exposure altered bile acids metabolism and affected the transcriptional levels of critical genes involved in bile acids synthesis, signaling transfer, transportation and apical uptake. Together, all these results indicated that OBS exposure was perceived as a major stress by the intestinal epithelium that strongly affected the intestinal barrier function (including mucus, CFTR, AMPs, inflammation), and ultimately led to imbalance in the metabolism of bile acids (BAs). Moreover, we found that maternal OBS exposure had a more obvious toxicity effect on the male offspring in this experiment. Taken together, maternal OBS exposure during pregnancy and lactation had the intestinal and metabolism toxic effects on the dams and offspring, indicating that effects of maternal exposure on the toxicity of offspring could not be ignored.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China.
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
25
|
Wang C, Jin C, Tu W, Jin Y. Maternal exposure of mice to sodium p-perfluorous nonenoxybenzene sulfonate causes endocrine disruption in both dams and offspring. Endocr J 2021; 68:1165-1177. [PMID: 33980773 DOI: 10.1507/endocrj.ej20-0781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The toxicity of certain novel perfluoroalkyl substances (PFCs) has attracted increasing attention. However, the toxic effects of sodium p-perfluorous nonenoxybenzene sulfonate (OBS) on the endocrine system have not been elucidated. In this study, OBS was added to the drinking water during the pregnancy and lactation of the healthy female mice at dietary levels of 0.0 mg/L (CON), 0.5 mg/L (OBS-L), and 5.0 mg/L (OBS-H). OBS exposure during the pregnancy and lactation resulted in the presence of OBS residues in the placenta and fetus. We also analyzed physiological and biochemical parameters and gene expression levels in mice of the F0 and F1 generations after maternal OBS exposure. The total serum cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly increased in female mice of the F0 generation. The androgen levels in the serum and the ovarian mRNA levels of androgen receptor (AR) also tended to increase after maternal OBS exposure in the F0 generation mice. Moreover, maternal OBS exposure altered the mRNA expression of endocrine-related genes in male mice of F1 generation. Notably, the serum TC and LDL-C levels were significantly increased in 8-weeks-old male mice of the F1 generation, and the serum high-density lipoprotein cholesterol (HDL-C) levels were decreased in 24-week-old male mice of the F1 generation. These results indicated that maternal OBS exposure can interfere with endocrine homeostasis in the F0 and F1 generations. Therefore, exposure to OBS during pregnancy and lactation has the potential toxic effects on the dams and male offspring, which cannot be overlooked.
Collapse
Affiliation(s)
- Caiyun Wang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
26
|
Kaimal A, Al Mansi MH, Dagher JB, Pope C, Varghese MG, Rudi TB, Almond AE, Cagle LA, Beyene HK, Bradford WT, Whisnant BB, Bougouma BDK, Rifai KJ, Chuang YJ, Campbell EJ, Mandal A, MohanKumar PS, MohanKumar SMJ. Prenatal exposure to bisphenols affects pregnancy outcomes and offspring development in rats. CHEMOSPHERE 2021; 276:130118. [PMID: 33714148 DOI: 10.1016/j.chemosphere.2021.130118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to evaluate the effects of gestational exposure to low doses of bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) on pregnancy outcomes and offspring development. Pregnant Sprague-Dawley rats were orally dosed with vehicle, 5 μg/kg body weight (BW)/day of BPA, BPS and BPF, or 1 μg/kg BW/day of BPF on gestational days 6-21. Pregnancy and gestational outcomes, including number of abortions and stillbirths, were monitored. Male and female offspring were subjected to morphometry at birth, followed by pre- and post-weaning body weights, post-weaning food and water intakes, and adult organ weights. Ovarian follicular counts were also obtained from adult female offspring. We observed spontaneous abortions in over 80% of dams exposed to 5 μg/kg of BPF. BPA exposure increased Graafian follicles in female offspring, while BPS and BPF exposure decreased the number of corpora lutea, suggesting reduced ovulation rates. Moreover, BPA exposure increased male kidney and prostate gland weights, BPF decreased epididymal adipose tissue weights, and BPS had modest effects on male abdominal adipose tissue weights. Prenatal BPS exposure reduced anogenital distance (AGD) in male offspring, suggesting possible feminization, whereas both BPS and BPA induced oxidative stress in the testes. These results indicate that prenatal exposure to BPF affects pregnancy outcomes, BPS alters male AGD, and all three bisphenols alter certain organ weights in male offspring and ovarian function in female offspring. Altogether, it appears that prenatal exposure to BPA or its analogues can induce reproductive toxicity even at low doses.
Collapse
Affiliation(s)
- Amrita Kaimal
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA
| | - Maryam H Al Mansi
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Josephine Bou Dagher
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA
| | - Catherine Pope
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Marissa G Varghese
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Thomas B Rudi
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Ansley E Almond
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Loren A Cagle
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Hermela K Beyene
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - William T Bradford
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Benjamin B Whisnant
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Baobsom D K Bougouma
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Karim J Rifai
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Yen-Jun Chuang
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Elyssa J Campbell
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Abhyuday Mandal
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Puliyur S MohanKumar
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA; Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA
| | - Sheba M J MohanKumar
- Biomedical and Health Sciences Institute, Neuroscience Division, University of Georgia, Athens GA, USA; Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, USA.
| |
Collapse
|
27
|
Ruiz TFR, Taboga SR, Leonel ECR. Molecular mechanisms of mammary gland remodeling: A review of the homeostatic versus bisphenol a disrupted microenvironment. Reprod Toxicol 2021; 105:1-16. [PMID: 34343637 DOI: 10.1016/j.reprotox.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Mammary gland (MG) undergoes critical points of structural changes throughout a woman's life. During the perinatal and pubertal stages, MG develops through growth and differentiation to establish a pre-mature feature. If pregnancy and lactation occur, the epithelial compartment branches and differentiates to create a specialized structure for milk secretion and nurturing of the newborn. However, the ultimate MG modification consists of a regression process aiming to reestablish the smaller and less energy demanding structure until another production cycle happens. The unraveling of these fascinating physiologic cycles has helped the scientific community elucidate aspects of molecular regulation of proliferative and apoptotic events and remodeling of the stromal compartment. However, greater understanding of the hormonal pathways involved in MG developmental stages led to concern that endocrine disruptors such as bisphenol A (BPA), may influence these specific development/involution stages, called "windows of susceptibility". Since it is used in the manufacture of polycarbonate plastics and epoxy resins, BPA is a ubiquitous chemical present in human everyday life, exerting an estrogenic effect. Thus, descriptions of its deleterious effects on the MG, especially in terms of serum hormone concentrations, hormonal receptor expression, molecular pathways, and epigenetic alterations, have been widely published. Therefore, allied to a didactic description of the main physiological mechanisms involved in different critical points of MG development, the current review provides a summary of key mechanisms by which the endocrine disruptor BPA impacts MG homeostasis at different windows of susceptibility, causing short- and long-term effects.
Collapse
Affiliation(s)
- Thalles Fernando Rocha Ruiz
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Sebastião Roberto Taboga
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil.
| | - Ellen Cristina Rivas Leonel
- São Paulo State University (Unesp), Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São José Do Rio Preto, Brazil; Federal University of Goiás (UFG), Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Goiânia, Brazil.
| |
Collapse
|
28
|
Vandenberg LN. Endocrine disrupting chemicals and the mammary gland. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:237-277. [PMID: 34452688 DOI: 10.1016/bs.apha.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of the mammary gland requires coordination of hormone signaling pathways including those mediated by estrogen, progesterone, androgen and prolactin receptors. These hormones play important roles at several distinct stages of life including embryonic/fetal development, puberty, pregnancy, lactation, and old age. This also makes the gland sensitive to perturbations from environmental agents including endocrine disrupting chemicals (EDCs). Although there is evidence from human populations of associations between EDCs and disruptions to breast development and lactation, these studies are often complicated by the timing of exposure assessments and the latency to develop breast diseases (e.g., years to decades). Rodents have been instrumental in providing insights-not only to the basic biology and endocrinology of the mammary gland, but to the effects of EDCs on this tissue at different stages of development. Studies, mostly but not exclusively, of estrogenic EDCs have shown that the mammary gland is a sensitive tissue, that exposures during perinatal development can produce abnormal mammary structures (e.g., alveolar buds, typically seen in pregnant females) in adulthood; that exposures during pregnancy can alter milk production; and that EDC exposures can enhance the response of the mammary tissue to hormones and chemical carcinogens. Other studies of persistent organic pollutants have shown that EDC exposures during critical windows of development can delay development of the gland, with lifelong consequences for the individual. Collectively, this work continues to support the conclusion that EDCs can harm the mammary gland, with effects that depend on the period of exposure and the period of evaluation.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, United States.
| |
Collapse
|
29
|
Johanson SM, Ropstad E, Østby GC, Aleksandersen M, Zamaratskaia G, Boge GS, Halsne R, Trangerud C, Lyche JL, Berntsen HF, Zimmer KE, Verhaegen S. Perinatal exposure to a human relevant mixture of persistent organic pollutants: Effects on mammary gland development, ovarian folliculogenesis and liver in CD-1 mice. PLoS One 2021; 16:e0252954. [PMID: 34111182 PMCID: PMC8191980 DOI: 10.1371/journal.pone.0252954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
The ability of persistent organic pollutants (POPs) with endocrine disrupting properties to interfere with the developing reproductive system is of increasing concern. POPs are transferred from dams to offspring and the high sensitivity of neonates to endocrine disturbances may be caused by underdeveloped systems of metabolism and excretion. The present study aimed to characterize the effect of in utero and lactational exposure to a human relevant mixture of POPs on the female mammary gland, ovarian folliculogenesis and liver function in CD-1 offspring mice. Dams were exposed to the mixture through the diet at Control, Low or High doses (representing 0x, 5000x and 100 000x human estimated daily intake levels, respectively) from weaning and throughout mating, gestation, and lactation. Perinatally exposed female offspring exhibited altered mammary gland development and a suppressed ovarian follicle maturation. Increased hepatic cytochrome P450 enzymatic activities indirectly indicated activation of nuclear receptors and potential generation of reactive products. Hepatocellular hypertrophy was observed from weaning until 30 weeks of age and could potentially lead to hepatotoxicity. Further studies should investigate the effects of human relevant mixtures of POPs on several hormones combined with female reproductive ability and liver function.
Collapse
Affiliation(s)
- Silje Modahl Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gudrun Seeberg Boge
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ruth Halsne
- Division of Laboratory Medicine, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | - Cathrine Trangerud
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
- National Institute of Occupational Health, Oslo, Norway
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
30
|
Colditz GA, Toriola AT. Refining the Focus on Early Life and Adolescent Pathways to Prevent Breast Cancer. J Natl Cancer Inst 2021; 113:658-659. [PMID: 33136152 DOI: 10.1093/jnci/djaa173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Graham A Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Adetunji T Toriola
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,Alvin J. Siteman Cancer Center, Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
31
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
32
|
James-Todd T, Connolly L, Preston EV, Quinn MR, Plotan M, Xie Y, Gandi B, Mahalingaiah S. Hormonal activity in commonly used Black hair care products: evaluating hormone disruption as a plausible contribution to health disparities. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:476-486. [PMID: 33958708 PMCID: PMC8812815 DOI: 10.1038/s41370-021-00335-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Certain types of hair products are more commonly used by Black women. Studies show hair products contain several endocrine-disrupting chemicals that are associated with adverse health outcomes. As chemical mixtures of endocrine disruptors, hair products may be hormonally active, but this remains unclear. OBJECTIVE To assess the hormonal activity of commonly used Black hair products. METHODS We identified six commonly used hair products (used by >10% of the population) from the Greater New York Hair Products Study. We used reporter gene assays (RGAs) incorporating natural steroid receptors to evaluate estrogenic, androgenic, progestogenic, and glucocorticoid hormonal bioactivity employing an extraction method using bond elution prior to RGA assessment at dilutions from 50 to 500. RESULTS All products displayed hormonal activity, varying in the amount and effect. Three samples showed estrogen agonist properties at levels from 12.5 to 20 ng/g estradiol equivalent concentrations All but one sample showed androgen antagonist properties at levels from 20 to 25 ng/g androgen equivalent concentrations. Four samples showed antagonistic and agonistic properties to progesterone and glucocorticoid. SIGNIFICANCE Hair products commonly used by Black women showed hormonal activity. Given their frequent use, exposure to hormonally active products could have implications for health outcomes and contribute to reproductive and metabolic health disparities.
Collapse
Affiliation(s)
- Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Women's Health, Department of Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marlee R Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Monika Plotan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Yuling Xie
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Bharathi Gandi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
33
|
Kam RL, Bernhardt SM, Ingman WV, Amir LH. Modern, exogenous exposures associated with altered mammary gland development: A systematic review. Early Hum Dev 2021; 156:105342. [PMID: 33711581 DOI: 10.1016/j.earlhumdev.2021.105342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many women report low milk supply as the reason for premature breastfeeding cessation. Altered mammary gland development may impact a woman's lactation ability. OBJECTIVE This review identifies modern exogenous exposures which alter mammary gland development during embryonic life, puberty and pregnancy. METHODS A systematic review was undertaken whereby Medline, CINAHL and Embase articles published from January 1, 2005 to November 20, 2020 were searched using the keywords puberty or embry* or fetal or foetal or foetus or fetus or pregnan* or gestation* AND "mammary gland development" or "breast development" or "mammary development" or "mammary gland function" or "mammary function" or "insufficient glandular tissue" or "mammary hypoplasia" or "breast hypoplasia" or "mammary gland hypoplasia" or "tubular breast*" or "tuberous breast*" or "glandular tissue" or "breast composition" or "mammary composition" or "mammary gland composition". After initial screening of 1207 records, 60 full texts were assessed for eligibility; 6 were excluded due to lack of information about exposure or outcome, leaving 54 studies. RESULTS The review included results from 52 animal (rats and mice, monkeys, rabbits, sheep, goats pigs and cows) and 2 human studies. Various endocrine disrupting chemicals and an obesogenic diet were found to be associated with altered mammary gland morphology during key development stages. CONCLUSIONS To improve lactation outcomes, future studies need to focus on lactation as the endpoint and be conducted in a standardised manner to allow for a more significant contribution to the literature that allows for better comparison across studies.
Collapse
Affiliation(s)
- Renee L Kam
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia.
| | - Sarah M Bernhardt
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Adelaide, Australia; Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Lisa H Amir
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, Victoria, Australia; Breastfeeding Service, Royal Women's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
34
|
Kehm RD, Oskar S, Tehranifar P, Zeinomar N, Rundle AG, Herbstman JB, Perera F, Miller RL, Terry MB. Associations of prenatal exposure to polycyclic aromatic hydrocarbons with pubertal timing and body composition in adolescent girls: Implications for breast cancer risk. ENVIRONMENTAL RESEARCH 2021; 196:110369. [PMID: 33131678 PMCID: PMC8552520 DOI: 10.1016/j.envres.2020.110369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND While animal data support an association between prenatal exposure to endocrine disrupting chemicals (EDCs) and altered mammary gland development and tumorigenesis, epidemiologic studies have only considered a few classes of EDCs in association with pubertal growth and development in girls. Polycyclic aromatic hydrocarbons (PAH) are a class of EDCs that have not been rigorously evaluated in terms of prenatal exposure and pubertal growth and development in girls. OBJECTIVE In a New York City birth cohort of Black and Hispanic girls (n = 196; recruited 1998-2006), we examined associations of prenatal PAH exposure with self-reported age at growth spurt onset, breast development onset and menarche, and clinical measures of adolescent body composition including body mass index, waist-to-hip ratio, and body fat measured at ages 11-20 years. METHODS We measured prenatal exposure to PAH using personal air monitoring data collected from backpacks worn by mothers during the third trimester of pregnancy (data available for all 196 girls) and biomarkers of benzo[α]pyrene-DNA adducts in umbilical cord blood (data available for 106 girls). We examined associations of prenatal PAH with the timing of pubertal milestones and adolescent body composition (11-20 years) using multivariable linear regression models adjusted for race/ethnicity, household public assistance status at birth, and age at outcome assessment. We also fit models further adjusted for potential mediators, including birthweight and childhood body size (BMI-for-age z-score measured at 6-8 years). RESULTS Girls in the highest versus lowest tertile of ambient exposure to PAH, based on a summary measure of eight carcinogenic higher-molecular weight non-volatile PAH compounds (Σ8 PAH), had a 0.90 year delay in growth spurt onset (95% confidence interval (CI) = 0.25, 1.55; n = 196), a 0.35 year delay in breast development onset (95% CI = -0.26, 0.95; n = 193), and a 0.59 year delay in menarche (95% CI = 0.06, 1.11; n = 191) in models adjusted for race/ethnicity and household public assistance at birth. The statistically significant associations for age at growth spurt onset and menarche were not impacted by adjustment for birthweight or childhood body size. No differences in BMI-for-age z-score, waist-to-hip ratio, or percent body fat were found between girls in the highest versus lowest tertile of ambient Σ8 PAH. Results were similar when we evaluated benzo[α]pyrene-DNA adduct levels. DISCUSSION Our results suggest that prenatal exposure to PAH might delay pubertal milestones in girls, but findings need to be replicated in other cohorts using prospectively collected data on pubertal outcomes.
Collapse
Affiliation(s)
- Rebecca D Kehm
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sabine Oskar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Parisa Tehranifar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Nur Zeinomar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
35
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
36
|
The Association of Bisphenol A and Phthalates with Risk of Breast Cancer: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052375. [PMID: 33804363 PMCID: PMC7967730 DOI: 10.3390/ijerph18052375] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Background: Breast cancer is the most common cancer and the second leading cause of cancer-related death amongst American women. Endocrine-disrupting chemicals (EDCs), especially bisphenol A (BPA) and phthalates, have adverse effects on human health. However, the association of BPA and phthalates with breast cancer remains conflicting. This study aims to investigate the association of BPA and phthalates with breast cancer. Methods: Correlative studies were identified by systematically searching three electronic databases, namely, PubMed, Web of Sciences, and Embase, up to November 2020. All data were analyzed using Stata 15.0. Results: A total of nine studies, consisting of 7820 breast cancer cases and controls, were included. The urinary phthalate metabolite mono-benzyl phthalate (MBzP) and mono-2-isobutyl phthalate (MiBP) were negatively associated with breast cancer (OR = 0.73, 95% CI: 0.60–0.90; OR = 0.75, 95% CI: 0.58–0.98, respectively). However, the overall ORs for BPA, mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(3-carboxypropyl) phthalate (MCPP), and mono-butyl phthalate (MBP) were 0.85 (95% CI: 0.69–1.05), 0.96 (95% CI: 0.62–1.48), 1.12 (95% CI: 0.88–1.42), 1.13 (95% CI: 0.74–1.73), 1.01 (95% CI: 0.74–1.40), 0.74 (95% CI: 0.48–1.14), and 0.80 (95% CI: 0.55–1.15), respectively, suggesting no significant association. The sensitivity analysis indicated that the results were relatively stable. Conclusion: Phthalate metabolites MBzP and MiBP were passively associated with breast cancer, whereas no associations were found between BPA, MEP, MEHHP, MEHP, MEOHP, MCPP, and MBP and breast cancer. More high-quality case-control studies or persuasive cohort studies are urgently needed to draw the best conclusions.
Collapse
|
37
|
Pubertal Growth, IGF-1, and Windows of Susceptibility: Puberty and Future Breast Cancer Risk. J Adolesc Health 2021; 68:517-522. [PMID: 32888770 PMCID: PMC7902462 DOI: 10.1016/j.jadohealth.2020.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Risk markers for breast cancer include earlier onset of menarche (age at menarche [AAM]) and peak height velocity (PHV). Insulin-like growth factor-1 (IGF-1) is associated with pubertal milestones, as well as cancer risk. This study examined the relationships between pubertal milestones associated with breast cancer risk and hormone changes in puberty. METHODS This is a longitudinal study of pubertal maturation in 183 girls, recruited at ages 6-7, followed up between 2004 and 2018. Measures included age at onset of puberty, and adult height attained; PHV; AAM; adult height, and serum IGF-1, and estrone-to-androstenedione (E:A) ratio. RESULTS PHV was greatest in early, and least in late maturing girls; length of the pubertal growth spurt was longest in early, and shortest in late maturing girls. Earlier AAM was related to greater PHV. IGF-1 concentrations tracked significantly during puberty; higher IGF-1 was related to earlier age of PHV, earlier AAM, greater PHV, and taller adult height. Greater E:A ratio was associated with earlier AAM. CONCLUSIONS Factors driving the association of earlier menarche and pubertal growth with breast cancer risk may be explained through a unifying concept relating higher IGF-1 concentrations, greater lifelong estrogen exposure, and longer pubertal growth period, with an expanded pubertal window of susceptibility.
Collapse
|
38
|
Boyles AL, Beverly BE, Fenton SE, Jackson CL, Jukic AMZ, Sutherland VL, Baird DD, Collman GW, Dixon D, Ferguson KK, Hall JE, Martin EM, Schug TT, White AJ, Chandler KJ. Environmental Factors Involved in Maternal Morbidity and Mortality. J Womens Health (Larchmt) 2021; 30:245-252. [PMID: 33211615 PMCID: PMC7891208 DOI: 10.1089/jwh.2020.8855] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nongenetic, environmental factors contribute to maternal morbidity and mortality through chemical exposures via air, water, soil, food, and consumer products. Pregnancy represents a particularly sensitive window of susceptibility during which physiological changes to every major organ system increase sensitivity to chemicals that can impact a woman's long-term health. Nonchemical stressors, such as low socioeconomic status, may exacerbate the effects of chemical exposures on maternal health. Racial/ethnic minorities are exposed disproportionately to both chemicals and nonchemical stressors, which likely contribute to the observed health disparities for maternal morbidities and mortality. Epidemiological studies linking exposures to adverse maternal health outcomes underscore the importance of environmental health impacts, and mechanistic studies in model systems reveal how chemicals perturb biological pathways and processes. Environmental stressors are associated with a variety of immediate maternal health impacts, including hypertensive disorders of pregnancy, fibroids, and infertility, as well as long-term maternal health impacts, such as higher risk of breast cancer and metabolic disorders. Identifying and reducing a pregnant woman's environmental exposures is not only beneficial to her offspring but also important to preserve her short- and long-term health.
Collapse
Affiliation(s)
- Abee L. Boyles
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Brandiese E. Beverly
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Suzanne E. Fenton
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Chandra L. Jackson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
- Intramural Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Anne Marie Z. Jukic
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Vicki L. Sutherland
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Donna D. Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Gwen W. Collman
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Darlene Dixon
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Janet E. Hall
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Elizabeth M. Martin
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| | - Thaddeus T. Schug
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| | - Kelly J. Chandler
- Office of Policy, Planning, and Evaluation, National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Durham, North Carolina, USA
| |
Collapse
|
39
|
Gouesse RJ, Dianati E, McDermott A, Wade MG, Hales B, Robaire B, Plante I. In Utero and Lactational Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants Induces a Premature Development of the Mammary Glands. Toxicol Sci 2021; 179:206-219. [PMID: 33252648 DOI: 10.1093/toxsci/kfaa176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In utero and prepubertal development of the mammary glands occurs minimally in a hormone independent manner until puberty where maturation of the hypothalamic-pituitary-gonadal axis drives an extensive remodeling. Nevertheless, because the immature glands contain functional hormone receptors, they are especially vulnerable to the effects of endocrine disruptors, such as brominated flame retardants (BFRs). BFRs are widespread chemicals added to household objects to reduce their flammability, and to which humans are ubiquitously exposed. We previously reported that in utero and lactational exposure to BFRs resulted in an impaired mammary gland development in peripubertal animals. Here, we assessed whether BFR-induced disruption of mammary gland development could manifest earlier in life. Dams were exposed prior to mating until pups' weaning to a BFR mixture (0, 0.06, 20, or 60 mg/kg/day) formulated according to levels found in house dust. The mammary glands of female offspring were collected at weaning. Histo-morphological analyses showed that exposure to 0.06 mg/kg/day accelerates global epithelial development as demonstrated by a significant increase in total epithelial surface area, associated with a tendency to increase of the ductal area and thickness, and of lumen area. Significant increases of the Ki67 cell proliferation index and of the early apoptotic marker cleaved caspase-9 were also observed, as well as an upward trend in the number of thyroid hormone receptor α1 positive cells. These molecular, histologic, and morphometric changes are suggestive of accelerated pubertal development. Thus, our results suggest that exposure to an environmentally relevant mixture of BFRs induces precocious development of the mammary gland.
Collapse
Affiliation(s)
| | - Elham Dianati
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Alec McDermott
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| | - Michael G Wade
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, Ontario K1A 0K9, Canada
| | - Barbara Hales
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Faculty of Medicine, Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Faculty of Medicine, Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
40
|
Go RE, Kim CW, Lee SM, Lee HK, Choi KC. Fenhexamid induces cancer growth and survival via estrogen receptor-dependent and PI3K-dependent pathways in breast cancer models. Food Chem Toxicol 2021; 149:112000. [PMID: 33484789 DOI: 10.1016/j.fct.2021.112000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Fenhexamid (Fen), a fungicide used to treat gray mold of fruits and vegetables, is reported to function as an endocrine disrupting chemical via the estrogen receptors (ER), despite low-toxicity of the pesticide. In this study, we elucidated that the disrupting effects of Fen are exerted via the ER and phosphatidylinositol 3-kinase (PI3K) pathways in breast cancer models. The WST assay, live cell monitoring, cell cycle analysis, colony formation assay, apoptotic analysis by JC-1 dyeing, and Western blot analysis were applied in ER positive MCF-7 and ER negative MDA-MB-231 breast cancer cells, after exposure to 17β-estradiol (E2), Fen, ICI 182,780 (ICI; an ER antagonist) and/or Pictilisib (Pic; a PI3K inhibitor). Exposure to E2 and Fen induced the cell growth and survival ability of MCF-7 cells by increasing the S-phase cells and regulating the cell cycle-related proteins (Cyclin D1 and E1, p21 and p27). In addition, E2 and Fen treatment resulted in elevated levels of the survival-related proteins (Survivin and PCNA), and inhibited apoptosis by increasing the mitochondrial membrane potential and regulating the apoptosis-related proteins (BAX, BCL-2, and Caspase-9). These changes were reversed to the same level as the control group when exposed to their respective inhibitors, thereby indicating that the changes are exerted via the ER and PI3K pathways. In particular, co-treatment with these inhibitors induced greater inhibition than single treatment. Conversely, no alterations were observed in the ER-negative MDA-MB-231 breast cancer cells. Taken together, these results indicate that Fen promotes the growth of breast cancer cells via the ER and/or PI3K pathways, similar to the E2 mechanism. Although a relatively safe pesticide, Fen possibly exerts its influence as an endocrine disrupting chemical in ER-positive breast cancer cells via the ER and PI3K pathways.
Collapse
Affiliation(s)
- Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sung-Moo Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
41
|
Liu Q. Effects of Environmental Endocrine-Disrupting Chemicals on Female Reproductive Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:205-229. [PMID: 33523436 DOI: 10.1007/978-981-33-4187-6_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Environmental endocrine-disrupting chemicals (EDCs) are xenobiotic compounds that are frequently contacted in daily life. With the species and quantity of substances created and utilized by human beings significantly surpassing the self-purification capacity of nature, a large number of hazardous substances are enriched in the human body through the respiratory tract, digestive tract, and skin. Some of these compounds cause many problems endangering female reproductive health by simulating/antagonizing endogenous hormones or affecting the synthesis, metabolism, and bioavailability of endogenous hormones, including reproductive disorders, fetal birth defects, fetal developmental abnormalities, endocrine and metabolic disorders, and even gynecological malignancies. Therefore, the study of the relationship between environmental EDCs and female reproductive diseases and related mechanisms is of considerable significance to women, children health care, and improve the quality of the population.
Collapse
Affiliation(s)
- Qicai Liu
- Center for Reproductive Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
42
|
Gearhart-Serna LM, Davis JB, Jolly MK, Jayasundara N, Sauer SJ, Di Giulio RT, Devi GR. A polycyclic aromatic hydrocarbon-enriched environmental chemical mixture enhances AhR, antiapoptotic signaling and a proliferative phenotype in breast cancer cells. Carcinogenesis 2020; 41:1648-1659. [PMID: 32747956 PMCID: PMC7791619 DOI: 10.1093/carcin/bgaa047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
Emerging evidence suggests the role of environmental chemicals, in particular endocrine-disrupting chemicals (EDCs), in progression of breast cancer and treatment resistance, which can impact survival outcomes. However, most research tends to focus on tumor etiology and the effect of single chemicals, offering little insight into the effects of realistic complex mixture exposures on tumor progression. Herein, we investigated the effect of a polycyclic aromatic hydrocarbon (PAH)-enriched EDC mixture in a panel of normal and breast cancer cells and in a tumor organoid model. Cells or organoids in culture were treated with EDC mixture at doses estimated from US adult intake of the top four PAH compounds within the mixture from the National Health and Nutrition Examination Survey database. We demonstrate that low-dose PAH mixture (6, 30 and 300 nM) increased aryl hydrocarbon receptor (AhR) expression and CYP activity in estrogen receptor (ER) positive but not normal mammary or ER-negative breast cancer cells, and that upregulated AhR signaling corresponded with increased cell proliferation and expression of antiapoptotic and antioxidant proteins XIAP and SOD1. We employed a mathematical model to validate PAH-mediated increases in AhR and XIAP expression in the MCF-7 ER-positive cell line. Furthermore, the PAH mixture caused significant growth increases in ER-negative breast cancer cell derived 3D tumor organoids, providing further evidence for the role of a natural-derived PAH mixture in enhancing a tumor proliferative phenotype. Together, our integrated cell signaling, computational and phenotype analysis reveals the underlying mechanisms of EDC mixtures in breast cancer progression and survival.
Collapse
Affiliation(s)
- Larisa M Gearhart-Serna
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
- Department of Pathology, Durham, NC, USA
- Nicholas School of the Environment, Durham, NC, USA
| | - John B Davis
- Department of Biology, Trinity School of Arts and Sciences, Duke University, Durham, NC, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Durham, NC, USA
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Scott J Sauer
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
| | | | - Gayathri R Devi
- Department of Surgery, Division of Surgical Sciences, Durham, NC, USA
- Department of Pathology, Durham, NC, USA
- Women’s Cancer Program, Duke Cancer Institute, Duke University, Durham, NC, USA
| |
Collapse
|
43
|
Criswell R, Crawford KA, Bucinca H, Romano ME. Endocrine-disrupting chemicals and breastfeeding duration: a review. Curr Opin Endocrinol Diabetes Obes 2020; 27:388-395. [PMID: 33027070 PMCID: PMC7968861 DOI: 10.1097/med.0000000000000577] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe epidemiologic and toxicological literature investigating how endocrine-disrupting chemicals (EDCs) affect mammary gland development and function, thereby impacting lactation duration. RECENT FINDINGS Perfluoroalkyl and polyfluoroalkyl substances appear to reduce breastfeeding duration through impaired mammary gland development, lactogenesis, and suppressed endocrine signaling. Halogenated aromatic hydrocarbons have differing associations with lactation duration, likely because of the variety of signaling pathways that they affect, pointing to the importance of complex mixtures in epidemiologic studies. Although epidemiologic literature suggests that pesticides and fungicides decrease or have no effect on lactation duration, toxicology literature suggests enhanced mammary gland development through estrogenic and/or antiandrogenic pathways. Toxicological studies suggest that phthalates may affect mammary gland development via estrogenic pathways but no association with lactation duration has been observed. Bisphenol A was associated with decreased duration of breastfeeding, likely through direct and indirect action on estrogenic pathways. SUMMARY EDCs play a role in mammary gland development, function, and lactogenesis, which can affect breastfeeding duration. Further research should explore direct mechanisms of EDCs on lactation, the significance of toxicant mixtures, and transgenerational effects of EDCs on lactation.
Collapse
Affiliation(s)
| | - Kathryn A. Crawford
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
- Environmental Studies Program, Middlebury College, Middlebury, VT
| | - Hana Bucinca
- Research and Quality Improvement Program, Action for Mothers and Children, Prishtina, Kosovo
- Department of Pharmacy, Rezonanca College of Medical Sciences, Prishtina, Kosovo
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
| |
Collapse
|
44
|
Cardona B, Rudel RA. US EPA's regulatory pesticide evaluations need clearer guidelines for considering mammary gland tumors and other mammary gland effects. Mol Cell Endocrinol 2020; 518:110927. [PMID: 32645345 PMCID: PMC9183204 DOI: 10.1016/j.mce.2020.110927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer risk from pesticides may be missed if effects on mammary gland are not assessed in toxicology studies required for registration. Using US EPA's registration documents, we identified pesticides that cause mammary tumors or alter development, and evaluated how those findings were considered in risk assessment. Of 28 pesticides that produced mammary tumors, EPA's risk assessment acknowledges those tumors for nine and dismisses the remaining cases. For five pesticides that alter mammary gland development, the implications for lactation and cancer risk are not assessed. Many of the mammary-active pesticides activate pathways related to endocrine disruption: altering steroid synthesis in H295R cells, activating nuclear receptors, or affecting xenobiotic metabolizing enzymes. Clearer guidelines based on breast cancer biology would strengthen assessment of mammary gland effects, including sensitive histology and hormone measures. Potential cancer risks from several common pesticides should be re-evaluated, including: malathion, triclopyr, atrazine, propylene oxide, and 3-iodo-2-propynyl butylcarbamate (IPBC).
Collapse
|
45
|
Vandenberg LN, Kolla S, LaPlante CD, Jerry DJ. The Mouse Mammary Gland: a Tool to Inform Adolescents About Environmental Causes of Breast Cancer. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2020; 35:1094-1100. [PMID: 31227995 DOI: 10.1007/s13187-019-01563-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adolescence is a vulnerable period of breast development, and environmental chemical exposures that occur during this period can increase the risk of breast cancer in adulthood. Discussing breast health with adolescent girls can be difficult for several reasons. In this project, we worked to not only inform adolescent researchers about environmental risks for breast cancer but to also involve them in research studies. We taught adolescents about the stages of mammary gland development using samples collected from mice, with a specific focus on pre-pubertal and pubertal stages of development. Our analysis shows that adolescent researchers, with relatively modest training, can collect reliable and reproducible data on aspects of mammary gland biology that are known to be disrupted by environmental chemicals, with coefficients of variation < 2.5% for basic mammary gland parameters and 5-7% for more complex measures. Finally, we provided these adolescents with information about environmental risk factors for breast cancer that they could share with their peers and community and action items to potentially modify their individual risk. We hope that researchers working in this field will engage adolescent researchers in projects to evaluate chemicals that influence breast cancer risk. Summer research programs that inform young adolescents about breast cancer risk factors not only benefit these novice researchers individually but also benefit their communities when they are encouraged to talk about the value of basic science studies, discuss vulnerable periods of mammary gland development, and share what they have learned about cancer and the environment.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA.
| | - SriDurgaDevi Kolla
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA
| | - Charlotte D LaPlante
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA, 01003, USA
| | - D Joseph Jerry
- Department of Veterinary and Animal Sciences, University of Massachusetts - Amherst, Amherst, MA, USA
| |
Collapse
|
46
|
Vandenberg LN, Najmi A, Mogus JP. Agrochemicals with estrogenic endocrine disrupting properties: Lessons Learned? Mol Cell Endocrinol 2020; 518:110860. [PMID: 32407980 PMCID: PMC9448509 DOI: 10.1016/j.mce.2020.110860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Many agrochemicals have endocrine disrupting properties. A subset of these chemicals is characterized as "estrogenic". In this review, we describe several distinct ways that chemicals used in crop production can affect estrogen signaling. Using three agrochemicals as examples (DDT, endosulfan, and atrazine), we illustrate how screening tests such as the US EPA's EDSP Tier 1 assays can be used as a first-pass approach to evaluate agrochemicals for endocrine activity. We then apply the "Key Characteristics" approach to illustrate how chemicals like DDT can be evaluated, together with the World Health Organization's definition of an endocrine disruptor, to identify data gaps. We conclude by describing important issues that must be addressed in the evaluation and regulation of hormonally active agrochemicals including mixture effects, efforts to reduce vertebrate animal use, chemical prioritization, and improvements in hazard, exposure, and risk assessments.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA.
| | - Aimal Najmi
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| |
Collapse
|
47
|
Altamirano GA, Gomez AL, Schierano-Marotti G, Muñoz-de-Toro M, Rodriguez HA, Kass L. Bisphenol A and benzophenone-3 exposure alters milk protein expression and its transcriptional regulation during functional differentiation of the mammary gland in vitro. ENVIRONMENTAL RESEARCH 2020; 191:110185. [PMID: 32946892 DOI: 10.1016/j.envres.2020.110185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The plastic monomer and plasticizer bisphenol A (BPA), and the UV-filter benzophenone-3 (BP3) have been shown to have estrogenic activities that could alter mammary gland development. Our aim was to analyze whether BPA or BP3 direct exposure affects the functional differentiation of the mammary gland using an in vitro model. Mammary organoids were obtained and isolated from 8 week-old virgin female C57BL/6 mice and were differentiated on Matrigel with medium containing lactogenic hormones and exposed to: a) vehicle (0.01% ethanol); b) 1 × 10-9 M or 1 × 10-6 M BPA; or c) 1 × 10-12 M, 1 × 10-9 M or 1 × 10-6 M BP3 for 72 h. The mRNA and protein expression of estrogen receptor alpha (ESR1) and progesterone receptor (PR) were assessed. In addition, mRNA levels of PR-B isoform, glucocorticoid receptor (GR), prolactin receptor (PRLR) and Stat5a, and protein expression of pStat5a/b were evaluated at 72 h. The mRNA and protein expression of milk proteins and their DNA methylation status were also analyzed. Although mRNA level of PRLR and GR was similar between treatments, mRNA expression of ESR1, total PR, PR-B and Stat5a was increased in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. Total PR expression was also increased with 1 × 10-6 M BPA. Nuclear ESR1 and PR expression was observed in all treated organoids; whereas nuclear pStat5a/b alveolar cells was observed only in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. The beta-casein mRNA level was increased in both BPA concentrations and 1 × 10-12 M BP3, which was associated with hypomethylation of its promoter. The beta-casein protein expression was only increased with 1 × 10-9 M BPA or 1 × 10-12 M BP3. In contrast, BPA exposure decreased alpha-lactalbumin mRNA expression and increased DNA methylation level in different methylation-sensitive sites of the gene. Also, 1 × 10-9 M BPA decreased alpha-lactalbumin protein expression. Our results demonstrate that BPA or BP3 exposure alters milk protein synthesis and its transcriptional regulation during mammary gland differentiation in vitro.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Horacio A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
48
|
Goldberg M, D'Aloisio AA, O'Brien KM, Zhao S, Sandler DP. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res 2020; 22:112. [PMID: 33109223 PMCID: PMC7590599 DOI: 10.1186/s13058-020-01326-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background Earlier age at menarche is an established risk factor for breast cancer. While age at menarche has been fairly stable over the past half-century, age at breast development (thelarche) has continued to decrease. Recently, earlier age at thelarche and a longer time between thelarche and menarche (pubertal tempo) were shown to be associated with increased breast cancer risk. Our objective was to examine how breast cancer risk was associated with pubertal timing and tempo in a prospective US cohort. Methods Women ages 35–74 years without a history of breast cancer, but who had a sister previously diagnosed with breast cancer, were enrolled in the Sister Study from 2003 to 2009 (N = 50,884). At enrollment, participants reported their ages at thelarche and menarche. Pubertal tempo was age at menarche minus age at thelarche. We estimated adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for each pubertal milestone and risk of breast cancer (invasive or ductal carcinoma in situ) using Cox proportional hazards regression. We examined whether associations between age at thelarche and breast cancer risk were modified by birth cohort, race/ethnicity, weight at age 10, and extent of breast cancer family history, as characterized by a Bayesian score based on first-degree family structure. Results During follow-up (mean = 9.3 years), 3295 eligible women were diagnosed with breast cancer. Early ages at thelarche (HR = 1.23, 95% CI 1.03–1.46 for < 10 vs. 12–13 years) and menarche (HR = 1.10, 95% CI 1.01–1.20 for < 12 vs. 12–13 years) were positively associated with breast cancer risk. Pubertal tempo was not associated with breast cancer risk (HR = 0.99, 95% CI 0.97–1.02 per 1-year longer tempo). When considering early thelarche (< 10 years) and early menarche (< 12 years) jointly, women with both had a 30% greater risk of breast cancer compared with women with neither risk factor (95% CI 1.07–1.57). The association between age at thelarche and breast cancer risk did not significantly vary by birth cohort, race/ethnicity, childhood weight, or Bayesian family history score. Conclusions Earlier ages at thelarche and menarche may enhance susceptibility to breast carcinogenesis. Age at thelarche is an important risk factor to consider given secular trends towards earlier development.
Collapse
Affiliation(s)
- Mandy Goldberg
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA
| | | | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA
| | - Shanshan Zhao
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
49
|
Guo J, Miao W, Wu C, Zhang J, Qi X, Yu H, Chang X, Zhang Y, Zhou Z. Umbilical cord serum PBDE concentrations and child adiposity measures at 7 years. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111009. [PMID: 32684521 DOI: 10.1016/j.ecoenv.2020.111009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) exist extensively in the environment. Toxicological studies suggested PBDEs may interfere with adipogenic pathways. However, few human evidence addressed PBDE exposures in utero related to childhood adiposity. OBJECTIVE We assessed associations between PBDEs concentrations in cord serum and childhood adiposity measures at 7 years. METHODS Among 318 mother-child pairs from Sheyang Mini Birth Cohort Study (SMBCS) in China, nine PBDE congener concentrations were quantified in umbilical cord serum using gas chromatography-negative chemical ionization mass spectrometry (GC-NCI-MS). Anthropometric indicators of children aged 7 years were measured, including weight, height and waist circumference. Age and sex-specific body mass index (BMI) z scores were calculated based on World Health Organization (WHO)'s child growth standards. Multivariate linear and logistic regression models adjusted for putative confounders were performed to examine associations between PBDE congeners and adiposity parameters. RESULTS BDE-209 was the most abundant congener of PBDEs with a median value of 19.5 ng/g lipid. The geometric mean values of nine PBDE congeners ranged from below limit of detection (LOD) to 18.1 ng/g lipid, and the detection rates were 46.5%~96.5%. Cord serum BDE-153 and BDE-154 concentrations were associated with lower childhood BMI z score (regression coefficient, β=-0.15, 95% confidence interval: -0.29, -0.02; p=0.02; β=-0.23, 95%CI: -0.43, -0.03; p=0.03, respectively) and lower waist circumference (β=-0.75 cm, 95%CI: -1.43, -0.06; p=0.03; β=-1.22 cm, 95%CI: -2.23, -0.21; p=0.02, respectively), after controlling for potential confounders. Moreover, prenatal BDE-154 exposure was related to a decreased obesity risk of children aged 7 years (odds ratio, OR=0.46, 95%CI: 0.22, 0.94; p=0.03). These effects were only observed among boys in sex-straitified analyses. CONCLUSIONS Cord serum BDE-153 and BDE-154 concentrations were related to reduced adiposity measures at 7 years of age. Further evidence regarding the impacts of prenatal PBDE exposures on childhood development is warranted.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Wenbin Miao
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Jiming Zhang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Haixing Yu
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
50
|
Dumitrascu MC, Mares C, Petca RC, Sandru F, Popescu RI, Mehedintu C, Petca A. Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett 2020; 20:282. [PMID: 33014160 DOI: 10.3892/ol.2020.12145] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds ubiquitously found in everyday life of the modern world. EDCs enter the human body where they act similarly to endogenous hormones, altering the functions of the endocrine system and causing adverse effects on human health. Bisphenol A (BPA), the principal representative of this class, is a carbon-based synthetic plastic, and a key element in manufacturing cans, reusable water bottles and medical equipment. BPA mimics the actions of estrogen on multiple levels by activating estrogen receptors α and β. BPA regulates various processes, such as cell proliferation, migration and apoptosis, leading to neoplastic changes. Considering genetic mechanisms, BPA exerts its functions via multiple oncogenic signaling pathways, including the STAT3, PI3K/AKT and MAPK pathways. Furthermore, BPA is associated with various modifications of the reproductive system in both males and females. These alterations include benign lesions, such as endometrial hyperplasia, the development of ovarian cysts, an increase in the ductal density of mammary gland cells and other preneoplastic lesions. These benign lesions may continue to develop to breast or ovarian cancer; the effects of BPA depend on various molecular and epigenetic mechanisms that dictate whether the endocrine or reproductive system is impacted, wherein preexisting benign lesions can become cancerous. The present review supports the need for continuous research on BPA, considering its widespread use and most available data suggesting a carcinogenic effect of BPA on the female reproductive system. Although most studies on BPA have been conducted in vitro with human cells or in vivo with animal models, it can be argued that more studies should be conducted in vivo with humans to further promote understanding of the impact of BPA.
Collapse
Affiliation(s)
- Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Cristian Mares
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania.,Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatology, Elias Emergency University Hospital, 011461 Bucharest, Romania.,Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Razvan-Ionut Popescu
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Claudia Mehedintu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Malaxa Clinical Hospital, 022441 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|