1
|
Dai R, Xu W, Zhu X, Sun R, Cheng L, Cui L, Qiu X, Wang Y, Sun Y. Acupuncture improves neuroendocrine defects in a preclinical rat model of reproductive aging. Life Sci 2024; 357:123102. [PMID: 39366551 DOI: 10.1016/j.lfs.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
AIMS Clinical data supports electroacupuncture (EA) as an effective treatment for female reproductive disorders especially gonadotropin abnormalities. This study aims to detect the mechanism of EA that improves the neuroendocrine defects particularly the luteinizing hormone (LH) surge failure in early reproductive aging females. MATERIALS AND METHODS Middle-aged ovariectomized rats primed with hormone were treated by EA at acupoints CV4 and SP6 and undergone LH assay. Morphological experiments detected the activation of Kiss1 cells in the anteroventral periventricular nucleus (AVPV). Using targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) and RNA-sequencing, we determined the concentrations of neurotransmitter metabolites and transcriptomics in AVPV. KEY FINDINGS EA significantly increased c-Fos and c-Fos-positive Kiss1 cells in the middle-aged AVPV as well as the total and peak LH release. Targeted LC-MS/MS and RNA-sequencing of AVPV identified differential neurotransmitters in the middle-aged females including Acetylcholine chloride, 5-Hydroxyindole-3-aceticacid, Kynurenine, Histamine, L-Histidine and L-Glycine, while EA decreased the concentration of Acetylcholine chloride. Totally 1255 differentially expressed genes modulated by EA were strongly implicated in neurotransmitter transport and KEGG pathways involved neuroactive ligand-receptor interaction, glutamatergic and gamma-aminobutyric acid-mediated synapse. Specifically, the mRNAs associated with the LH surge such as hormone receptor Pgr, adrenoceptor Adra1a, neurotransmitter transporters Slc17a6 and Slc32a1, glutamate decarboxylase Gad2 and Kiss1 were markedly altered by EA. SIGNIFICANCE These findings showed that the age-related reduction of LH surge occurred via differential neurotransmitter metabolisms and altered transcriptions in AVPV, which proposed EA-based therapy for improving responsiveness of the hypothalamus to hormone in women with advanced age.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Wen Xu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xiaojuan Zhu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Lin Cheng
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Liyuan Cui
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xuemin Qiu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Sun
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China.
| |
Collapse
|
2
|
Constantin S, Quignon C, Pizano K, Shostak DM, Wray S. Vasoactive intestinal peptide excites GnRH neurons via KCa3.1, a potential player in the slow afterhyperpolarization current. Front Cell Neurosci 2024; 18:1354095. [PMID: 38633445 PMCID: PMC11021707 DOI: 10.3389/fncel.2024.1354095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
Vasoactive intestinal peptide (VIP) is an important component of the suprachiasmatic nucleus (SCN) which relays circadian information to neuronal populations, including GnRH neurons. Human and animal studies have shown an impact of disrupted daily rhythms (chronic shift work, temporal food restriction, clock gene disruption) on both male and female reproduction and fertility. To date, how VIP modulates GnRH neurons remains unknown. Calcium imaging and electrophysiology on primary GnRH neurons in explants and adult mouse brain slice, respectively, were used to address this question. We found VIP excites GnRH neurons via the VIP receptor, VPAC2. The downstream signaling pathway uses both Gs protein/adenylyl cyclase/protein kinase A (PKA) and phospholipase C/phosphatidylinositol 4,5-bisphosphate (PIP2) depletion. Furthermore, we identified a UCL2077-sensitive target, likely contributing to the slow afterhyperpolarization current (IAHP), as the PKA and PIP2 depletion target, and the KCa3.1 channel as a specific target. Thus, VIP/VPAC2 provides an example of Gs protein-coupled receptor-triggered excitation in GnRH neurons, modulating GnRH neurons likely via the slow IAHP. The possible identification of KCa3.1 in the GnRH neuron slow IAHP may provide a new therapeutical target for fertility treatments.
Collapse
Affiliation(s)
| | | | | | | | - Susan Wray
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Szukiewicz D. Current Insights in Prolactin Signaling and Ovulatory Function. Int J Mol Sci 2024; 25:1976. [PMID: 38396659 PMCID: PMC10889014 DOI: 10.3390/ijms25041976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
4
|
Goto T, Hagihara M, Miyamichi K. Dynamics of pulsatile activities of arcuate kisspeptin neurons in aging female mice. eLife 2023; 12:82533. [PMID: 37223988 DOI: 10.7554/elife.82533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Reproductive senescence is broadly observed across mammalian females, including humans, eventually leading to a loss of fertility. The pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is essential for gonad function, is primarily controlled by kisspeptin neurons in the hypothalamic arcuate nucleus (ARCkiss), the pulse generator of GnRH. The pulsatility of GnRH release, as assessed by the amount of circulating gonadotropin, is markedly reduced in aged animals, suggesting that the malfunctions of ARCkiss may be responsible for reproductive aging and menopause-related disorders. However, the activity dynamics of ARCkiss during the natural transition to reproductive senescence remain unclear. Herein, we introduce chronic in vivo Ca2+ imaging of ARCkiss in female mice by fiber photometry to monitor the synchronous episodes of ARCkiss (SEskiss), a known hallmark of GnRH pulse generator activity, from the fully reproductive to acyclic phase over 1 year. During the reproductive phase, we find that not only the frequency, but also the intensities and waveforms of individual SEskiss, vary depending on the stage of the estrus cycle. During the transition to reproductive senescence, the integrity of SEskiss patterns, including the frequency and waveforms, remains mostly unchanged, whereas the intensities tend to decline. These data illuminate the temporal dynamics of ARCkiss activities in aging female mice. More generally, our findings demonstrate the utility of fiber-photometry-based chronic imaging of neuroendocrine regulators in the brain to characterize aging-associated malfunction.
Collapse
Affiliation(s)
- Teppei Goto
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mitsue Hagihara
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kazunari Miyamichi
- Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
5
|
Kukino A, Walbeek TJ, Sun LJ, Watt AT, Park JH, Kauffman AS, Butler MP. Mistimed restricted feeding disrupts circadian rhythms of male mating behavior and female preovulatory LH surges in mice. Horm Behav 2022; 145:105242. [PMID: 36054940 PMCID: PMC9728533 DOI: 10.1016/j.yhbeh.2022.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
In rodents, eating at atypical circadian times, such as during the biological rest phase when feeding is normally minimal, reduces fertility. Prior findings suggest this fertility impairment is due, at least in part, to reduced mating success. However, the physiological and behavioral mechanisms underlying this reproductive suppression are not known. In the present study, we tested the hypothesis that mistimed feeding-induced infertility is due to a disruption in the normal circadian timing of mating behavior and/or the generation of pre-ovulatory luteinizing hormone (LH) surges (estrogen positive feedback). In the first experiment, male+female mouse pairs, acclimated to be food restricted to either the light (mistimed feeding) or dark (control feeding) phase, were scored for mounting frequency and ejaculations over 96 h. Male mounting behavior and ejaculations were distributed much more widely across the day in light-fed mice than in dark-fed controls and fewer light-fed males ejaculated. In the second experiment, the timing of the LH surge, a well characterized circadian event driven by estradiol (E2) and the SCN, was analyzed from serial blood samples taken from ovariectomized and E2-primed female mice that were light-, dark-, or ad-lib-fed. LH concentrations peaked 2 h after lights-off in both dark-fed and ad-lib control females, as expected, but not in light-fed females. Instead, the normally clustered LH surges were distributed widely with high inter-mouse variability in the light-fed group. These data indicate that mistimed feeding disrupts the temporal control of the neural processes underlying both ovulation and mating behavior, contributing to infertility.
Collapse
Affiliation(s)
- Ayaka Kukino
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States of America
| | - Thijs J Walbeek
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States of America
| | - Lori J Sun
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States of America
| | - Alexander T Watt
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States of America
| | - Jin Ho Park
- Department of Psychology, University of Massachusetts, Boston, MA, United States of America
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Matthew P Butler
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States of America; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America.
| |
Collapse
|
6
|
Angelopoulou E, Kalsbeek A, Simonneaux V. Age-dependent change of RFRP-3 neuron numbers and innervation in female mice. Neuropeptides 2022; 92:102224. [PMID: 34998113 DOI: 10.1016/j.npep.2021.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
In female mammals, reproductive senescence is a complex process involving progressive ovarian dysfunction, associated with altered central control of the hypothalamic-pituitary-gonadal axis and desynchronization of the circadian system. The objective of this study was to investigate age-dependent changes in the daily regulation of Arg-Phe amide-related peptide-3 (RFRP-3), a hypothalamic peptide involved in reproduction, in female C57BL/6 J mice of different age groups (4, 13, and 19 months old) sampled at their diestrus stage. We found an age-dependent decrease in the total number of RFRP-3 neurons and in the relative number of activated (i.e. c-Fos-positive) RFRP-3 neurons. RFRP-3 neuronal activation exhibited a daily variation in young and middle-aged mice, which was abolished in 19-month-old mice. We also found a daily variation in the number of RFRP-3 neurons receiving close vasopressin (AVP)- and vasoactive intestinal peptide (VIP)-ergic fiber appositions in mice aged 4 and 13 months, but not in 19-month-old mice. However, we found no daily or age-dependent changes in the AVP and VIP fiber density in the dorsomedial hypothalamus. Plasma LH levels were similar in mice aged 4 and 13 months, but were markedly increased in 19-month-old mice. The present findings indicate that the number of RFRP-3 positive neurons is downregulated during old age and that the daily changes in their innervation by the circadian peptides AVP and VIP are abolished. This age-associated reduced (rhythmic) activity of the inhibitory RFRP-3 system could be implicated in the elevated LH secretion observed during reproductive senescence.
Collapse
Affiliation(s)
- Eleni Angelopoulou
- Institut des Neurosciences Cellulaire et Intégratives (UPR CNRS3212), Université de Strasbourg, 8, allée du Général Rouvillois, 67000 Strasbourg, France; Netherlands Institute for Neuroscience (NIN), Amsterdam, the Netherlands; Laboratory of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Amsterdam, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Laboratory of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaire et Intégratives (UPR CNRS3212), Université de Strasbourg, 8, allée du Général Rouvillois, 67000 Strasbourg, France.
| |
Collapse
|
7
|
Mills EG, Yang L, Abbara A, Dhillo WS, Comninos AN. Current Perspectives on Kisspeptins Role in Behaviour. Front Endocrinol (Lausanne) 2022; 13:928143. [PMID: 35757400 PMCID: PMC9225141 DOI: 10.3389/fendo.2022.928143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide kisspeptin is now well-established as the master regulator of the mammalian reproductive axis. Beyond the hypothalamus, kisspeptin and its cognate receptor are also extensively distributed in extra-hypothalamic brain regions. An expanding pool of animal and human data demonstrates that kisspeptin sits within an extensive neuroanatomical and functional framework through which it can integrate a range of internal and external cues with appropriate neuroendocrine and behavioural responses. In keeping with this, recent studies reveal wide-reaching effects of kisspeptin on key behaviours such as olfactory-mediated partner preference, sexual motivation, copulatory behaviour, bonding, mood, and emotions. In this review, we provide a comprehensive update on the current animal and human literature highlighting the far-reaching behaviour and mood-altering roles of kisspeptin. A comprehensive understanding of this important area in kisspeptin biology is key to the escalating development of kisspeptin-based therapies for common reproductive and related psychological and psychosexual disorders.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| |
Collapse
|
8
|
Angelopoulou E, Kalsbeek A, Simonneaux V. WITHDRAWN: Age-dependent modulation of RFRP-3 neurons in female mice. Neuropeptides 2021; 88:102146. [PMID: 33940493 DOI: 10.1016/j.npep.2021.102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been withdrawn at the request of the editor and publisher. The publisher regrets that an error occurred which led to the premature publication of this paper. This error bears no reflection on the article or its authors. The publisher apologizes to the authors and the readers for this unfortunate error.
Collapse
Affiliation(s)
- Eleni Angelopoulou
- Insitut des Neurosciences Cellulaire et Intégratives (UPR CNRS3212), Université de Strasbourg, 8, Allée du Général Rouvillois, 67000, Strasbourg, France; Netherlands Institute for Neuroscience (NIN), Amsterdam, the Netherlands; Laboratory of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Netherlands Institute for Neuroscience (NIN), Amsterdam, the Netherlands; Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Laboratory of Endocrinology, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, the Netherlands
| | - Valérie Simonneaux
- Insitut des Neurosciences Cellulaire et Intégratives (UPR CNRS3212), Université de Strasbourg, 8, Allée du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
9
|
Comninos AN, Yang L, O’Callaghan J, Mills EG, Wall MB, Demetriou L, Wing VC, Thurston L, Owen BM, Abbara A, Rabiner EA, Dhillo WS. Kisspeptin modulates gamma-aminobutyric acid levels in the human brain. Psychoneuroendocrinology 2021; 129:105244. [PMID: 33975151 PMCID: PMC8243259 DOI: 10.1016/j.psyneuen.2021.105244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a key inhibitory neurotransmitter that has been implicated in the aetiology of common mood and behavioural disorders. By employing proton magnetic resonance spectroscopy in man, we demonstrate that administration of the reproductive neuropeptide, kisspeptin, robustly decreases GABA levels in the limbic system of the human brain; specifically the anterior cingulate cortex (ACC). This finding defines a novel kisspeptin-activated GABA pathway in man, and provides important mechanistic insights into the mood and behaviour-altering effects of kisspeptin seen in rodents and humans. In addition, this work has therapeutic implications as it identifies GABA-signalling as a potential target for the escalating development of kisspeptin-based therapies for common reproductive disorders of body and mind.
Collapse
Affiliation(s)
- Alexander N. Comninos
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Lisa Yang
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK
| | | | - Edouard G. Mills
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK
| | | | - Lysia Demetriou
- Invicro, London, UK,Nuffield Department of Women’s and Reproductive Health, University of Oxford, UK
| | - Victoria C. Wing
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK
| | - Layla Thurston
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK
| | - Bryn M. Owen
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK
| | - Ali Abbara
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK
| | | | - Waljit S. Dhillo
- Division of Diabetes, Endocrinology & Metabolism, Imperial College London, UK,Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK,Correspondence to: Division of Diabetes, Endocrinology & Metabolism, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
10
|
Santollo J, Collett JA, Edwards AA. The anti-dipsogenic and anti-natriorexigenic effects of estradiol, but not the anti-pressor effect, are lost in aged female rats. Physiol Rep 2021; 9:e14948. [PMID: 34288542 PMCID: PMC8290476 DOI: 10.14814/phy2.14948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Estradiol (E2) inhibits fluid intake in several species, which may help to defend fluid homeostasis by preventing excessive extracellular fluid volume. Although this phenomenon is well established using the rat model, it has only been studied directly in young adults. Because aging influences the neuronal sensitivity to E2 and the fluid intake effects of E2 are mediated in the brain, we tested the hypothesis that aging influences the fluid intake effects of E2 in female rats. To do so, we examined water and NaCl intake in addition to the pressor effect after central angiotensin II treatment in young (3-4 months), middle-aged (10-12 months), and old (16-18 months) ovariectomized rats treated with estradiol benzoate (EB). As expected, EB treatment reduced water and NaCl intake in young rats. EB treatment, however, did not reduce water intake in old rats, nor did it reduce NaCl intake in middle-aged or old rats. The ability of EB to reduce blood pressure was, in contrast, observed in all three age groups. Next, we also measured the gene expression of estrogen receptors (ERs) and the angiotensin type 1 receptor (AT1R) in the areas of the brain that control fluid balance. ERβ, G protein estrogen receptor (GPER), and AT1R were reduced in the paraventricular nucleus of the hypothalamus in middle-aged and old rats, compared to young rats. These results suggest the estrogenic control of fluid intake is modified by age. Older animals lost the fluid intake effects of E2, which correlated with decreased ER and AT1R expression in the hypothalamus.
Collapse
Affiliation(s)
| | - Jason A. Collett
- Department of BiologyUniversity of KentuckyLexingtonKYUSA
- Department of Anatomy, Cell Biology and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | | |
Collapse
|
11
|
Ohara T, Nakamura TJ, Nakamura W, Tokuda IT. Modeling circadian regulation of ovulation timing: age-related disruption of estrous cyclicity. Sci Rep 2020; 10:16767. [PMID: 33028871 PMCID: PMC7541497 DOI: 10.1038/s41598-020-73669-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 11/21/2022] Open
Abstract
The circadian clocks within the hypothalamic–pituitary–gonadal axis control estrous cycles in female rodents. The suprachiasmatic nucleus (SCN), where the central clock is located, generates daily signals to trigger surge release of luteinizing hormone (LH), which in turn induces ovulation. It has been observed in aged rodents that output from the SCN such as neuronal firing activity is declined, and estrous cycles become irregular and finally stop. Circadian clock mutants display accelerated reproductive aging, suggesting the complicated interplay between the circadian system and the endocrine system. To investigate such circadian regulation of estrous cycles, we construct a mathematical model that describes dynamics of key hormones such as LH and of circadian clocks in the SCN and in the ovary, and simulate estrous cycles for various parameter values. Our simulation results demonstrate that reduction of the amplitude of the SCN signal, which is a symptom of aging, makes estrous cycles irregular. We also show that variation in the phase of the SCN signal and changes in the period of ovarian circadian clocks exacerbates the aging effect on estrous cyclicity. Our study suggests that misalignment between the SCN and ovarian circadian oscillations is one of the primary causes of the irregular estrous cycles.
Collapse
Affiliation(s)
- Takayuki Ohara
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany.
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Tokyo, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Isao T Tokuda
- Department of Mechanical Engineering, Ritsumeikan University, Kyoto, Japan.
| |
Collapse
|
12
|
Di Giorgio NP, Bizzozzero-Hiriart M, Libertun C, Lux-Lantos V. Unraveling the connection between GABA and kisspeptin in the control of reproduction. Reproduction 2020; 157:R225-R233. [PMID: 30844750 DOI: 10.1530/rep-18-0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Neuroendocrine control of reproduction involves the interplay of various factors that become active at some point along development. GnRH is the main neurohormone controlling reproduction and among the most important inputs modulating GnRH synthesis/secretion are GABA and kisspeptins. These interactions of GABA and kisspeptin in the control of GnRH secretion can take place by the presence of the receptors of both factors on the GnRH neuron or alternatively by the actions of GABA on kisspeptin neurons and/or the actions of kisspeptin on GABA neurons. Kisspeptin acts on the Kiss1R, a seven transmembrane domain, Gαq/11-coupled receptor that activates phospholipase C, although some Gαq/11-independent pathways in mediating part of the effects of Kiss1R activation have also been proposed. GABA acts through two kinds of receptors, ionotropic GABAA/C receptors involving a chloride channel and associated with fast inhibitory/stimulatory conductance and metabotropic GABAB receptors (GABABR) that are Gi/0 protein linked inducing late slow hyperpolarization. In this review, we aim to summarize the different ways in which these two actors, kisspeptin and GABA, interact to modulate GnRH secretion across the reproductive lifespan.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Victoria Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Bahougne T, Angelopoulou E, Jeandidier N, Simonneaux V. Individual evaluation of luteinizing hormone in aged C57BL/6 J female mice. GeroScience 2019; 42:323-331. [PMID: 31641925 DOI: 10.1007/s11357-019-00104-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
In female mammals, reproductive senescence is a complex process involving progressive ovarian dysfunction associated with an altered central control of the hypothalamic-pituitary axis. The objective of this study was to compare the longitudinal change in preovulatory luteinizing hormone (LH) secretion as well as estrous cycle in individual C57BL/6 J female mice at 3, 6, 9 and 12 months. Amplitude and timing of LH secretion at the surge were similar from 3 to 9 months but were altered in 12-month old mice with a significant decrease of more than 50% of peak LH value and a 2 h delay in the occurrence of the LH surge as compared to younger mice. The analysis of two to three successive LH surges at 3, 6, 9 and 12 months showed low and similar intra-individual variability at all ages. The estrous cycle length and intra/inter variability were stable over the age. This study shows that female mice in regular environmental conditions display stable LH surge timing and amplitude up to 9 months, but at 12 months, the LH surge is delayed with a reduced amplitude, however without overt modification in the estrous cycles. Analysis of individual preovulatory LH secretion and estrous cycle indicates that mice can be followed up to 9 months to investigate the detrimental effects of various parameters on mouse reproductive activity.
Collapse
Affiliation(s)
- Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and Université de Strasbourg, Strasbourg, France. .,Service d'Endocrinologie et Diabète, Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, 67000, Strasbourg, France.
| | - Eleni Angelopoulou
- Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and Université de Strasbourg, Strasbourg, France
| | - Nathalie Jeandidier
- Service d'Endocrinologie et Diabète, Hôpitaux Universitaires de Strasbourg, 1 place de l'hôpital, 67000, Strasbourg, France
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, (UPR CNRS 3212) and Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Aggarwal S, Tang C, Sing K, Kim HW, Millar RP, Tello JA. Medial Amygdala Kiss1 Neurons Mediate Female Pheromone Stimulation of Luteinizing Hormone in Male Mice. Neuroendocrinology 2019; 108:172-189. [PMID: 30537700 PMCID: PMC6518874 DOI: 10.1159/000496106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS The medial amygdala (MeA) responds to olfactory stimuli and alters reproductive physiology. However, the neuronal circuit that relays signals from the MeA to the reproductive axis remains poorly defined. This study aimed to test whether MeA kisspeptin (MeAKiss) neurons in male mice are sensitive to sexually relevant olfactory stimuli and transmit signals to alter reproductive physiology. We also investigated whether MeAKiss neurons have the capacity to elaborate glutamate and GABA neurotransmitters and potentially contribute to reproductive axis regulation. METHODS Using female urine as a pheromone stimulus, MeAKiss neuronal activity was analysed and serum luteinizing hormone (LH) was measured in male mice. Next, using a chemogenetic approach, MeAKiss neurons were bi-directionally modulated to measure the effect on serum LH and evaluate the activation of the preoptic area. Lastly, using in situ hybridization, we identified the proportion of MeAKiss neurons that express markers for GABAergic (Vgat) and glutamatergic (Vglut2) neurotransmission. RESULTS Male mice exposed to female urine showed a two-fold increase in the number of c-Fos-positive MeAKiss neurons concomitant with raised LH. Chemogenetic activation of MeAKiss neurons significantly increased LH in the absence of urine exposure, whereas inhibition of MeAKiss neurons did not alter LH. In situ hybridization revealed that MeAKiss neurons are a mixed neuronal population in which 71% express Vgat mRNA, 29% express Vglut2 mRNA, and 6% express both. CONCLUSIONS Our results uncover, for the first time, that MeAKiss neurons process sexually relevant olfactory signals to influence reproductive hormone levels in male mice, likely through a complex interplay of neuropeptide and neurotransmitter signalling.
Collapse
Affiliation(s)
- Sanya Aggarwal
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Celion Tang
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Kristen Sing
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Hyun Wook Kim
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Physiology and Department of Immunology, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Javier A Tello
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom,
| |
Collapse
|
15
|
Saedi S, Khoradmehr A, Mohammad Reza JS, Tamadon A. The role of neuropeptides and neurotransmitters on kisspeptin/kiss1r-signaling in female reproduction. J Chem Neuroanat 2018; 92:71-82. [PMID: 30008384 DOI: 10.1016/j.jchemneu.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023]
Abstract
Reproductive function is regulated by the hypothalamic-pituitary-gonads (HPG) axis. Hypothalamic neurons synthesizing kisspeptin play a fundamental role in the central regulation of the timing of puberty onset and reproduction in mammals. Kisspeptin is a regulator of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH). In female rodent, the kisspeptin (encoded by kiss1 gene), neurokinin B (Tac3) and dynorphin neurons form the basis for the "KNDy neurons" in the arcuate nucleus and play a fundamental role in the regulation of GnRH/LH release. Furthermore, various factors including neurotransmitters and neuropeptides may cooperate with kisspeptin signaling to modulate GnRH function. Many neuropeptides including proopiomelanocortin, neuropeptide Y, agouti-related protein, and other neuropeptides, as well as neurotransmitters, dopamine, norepinephrine and γ-aminobutyric acid are suggested to control feeding and HPG axis, the underlying mechanisms are not well known. Nonetheless, to date, information about the neurochemical factors of kisspeptin neurons remains incomplete in rodent. This review is intended to provide an overview of KNDy neurons; major neuropeptides and neurotransmitters interfere in kisspeptin signaling to modulate GnRH function for regulation of puberty onset and reproduction, with a focus on the female rodent.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
16
|
Chaudhari N, Dawalbhakta M, Nampoothiri L. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile. Reprod Biol Endocrinol 2018; 16:37. [PMID: 29642911 PMCID: PMC5896071 DOI: 10.1186/s12958-018-0354-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND GnRH is the master molecule of reproduction that is influenced by several intrinsic and extrinsic factors such as neurotransmitters and neuropeptides. Any alteration in these regulatory loops may result in reproductive-endocrine dysfunction such as the polycystic ovarian syndrome (PCOS). Although low dopaminergic tone has been associated with PCOS, the role of neurotransmitters in PCOS remains unknown. The present study was therefore aimed at understanding the status of GnRH regulatory neurotransmitters to decipher the neuroendocrine pathology in PCOS. METHODS PCOS was induced in rats by oral administration of letrozole (aromatase inhibitor). Following PCOS validation, animals were assessed for gonadotropin levels and their mRNA expression. Neurotrasnmitter status was evaluated by estimating their levels, their metabolism and their receptor expression in hypothalamus, pituitary, hippocampus and frontal cortex of PCOS rat model. RESULTS We demonstrate that GnRH and LH inhibitory neurotransmitters - serotonin, dopamine, GABA and acetylcholine - are reduced while glutamate, a major stimulator of GnRH and LH release, is increased in the PCOS condition. Concomitant changes were observed for neurotransmitter metabolising enzymes and their receptors as well. CONCLUSION Our results reveal that increased GnRH and LH pulsatility in PCOS condition likely result from the cumulative effect of altered GnRH stimulatory and inhibitory neurotransmitters in hypothalamic-pituitary centre. This, we hypothesise, is responsible for the depression and anxiety-like mood disorders commonly seen in PCOS women.
Collapse
Affiliation(s)
- Nirja Chaudhari
- 0000 0001 2154 7601grid.411494.dReproductive-Neuro-Endocrinology Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Mitali Dawalbhakta
- 0000 0001 2154 7601grid.411494.dReproductive-Neuro-Endocrinology Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| | - Laxmipriya Nampoothiri
- 0000 0001 2154 7601grid.411494.dReproductive-Neuro-Endocrinology Lab, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat India
| |
Collapse
|
17
|
Kanasaki H, Tumurbaatar T, Oride A, Hara T, Okada H, Kyo S. Gamma-aminobutyric acid A receptor agonist, muscimol, increases KiSS-1 gene expression in hypothalamic cell models. Reprod Med Biol 2017; 16:386-391. [PMID: 29259493 PMCID: PMC5715903 DOI: 10.1002/rmb2.12061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/20/2017] [Indexed: 01/03/2023] Open
Abstract
Purpose Accumulating evidence indicates that hypothalamic kisspeptin plays a pivotal role in the regulation of the hypothalamic-pituitary-gonadal (HPG) axis. In this study, the direct action of the gamma-aminobutyric acid (GABA)A receptor agonist on kisspeptin-expressing neuronal cells was examined. Methods A hypothalamic cell model of rat hypothalamic cell line R8 (rHypoE8) cells and primary cultures of neuronal cells from fetal rat brains were stimulated with a potent and selective GABAA receptor agonist, muscimol, to determine the expression of the KiSS-1 gene. Results Stimulation of the rHypoE8 cells with muscimol significantly increased the level of KiSS-1 messenger (m)RNA expression. The ability of muscimol to increase the level of KiSS-1 mRNA also was observed in the primary cultures of the neuronal cells from the fetal rat brains. The muscimol-induced increase in KiSS-1 mRNA expression was completely inhibited in the presence of the GABAA receptor antagonist. Although muscimol increased the expression of KiSS-1, the natural compound, GABA, failed to induce the expression of KiSS-1 in the rHypoE8 cells. Muscimol did not modulate gonadotropin-releasing hormone expression in either the rHypoE8 cells or the primary cultures of the fetal rat brains. Conclusions This study's observations suggest that the activation of the GABAA receptor modulates the HPG axis by increasing kisspeptin expression in the hypothalamic neurons.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | | | - Aki Oride
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology Shimane University School of Medicine Izumo Japan
| |
Collapse
|
18
|
Adekunbi DA, Li XF, Li S, Adegoke OA, Iranloye BO, Morakinyo AO, Lightman SL, Taylor PD, Poston L, O’Byrne KT. Role of amygdala kisspeptin in pubertal timing in female rats. PLoS One 2017; 12:e0183596. [PMID: 28846730 PMCID: PMC5573137 DOI: 10.1371/journal.pone.0183596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/07/2017] [Indexed: 01/27/2023] Open
Abstract
To investigate the mechanism by which maternal obesity disrupts reproductive function in offspring, we examined Kiss1 expression in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei, and posterodorsal medial amygdala (MePD) of pre-pubertal and young adult offspring. Sprague-Dawley rats were fed either a standard or energy-dense diet for six weeks prior to mating and throughout pregnancy and lactation. Male and female offspring were weaned onto normal diet on postnatal day (pnd) 21. Brains were collected on pnd 30 or 100 for qRT-PCR to determine Kiss1 mRNA levels. Maternal obesity increased Kiss1 mRNA expression in the MePD of pre-pubertal male and female offspring, whereas Kiss1 expression was not affected in the ARC or AVPV at this age. Maternal obesity reduced Kiss1 expression in all three brain regions of 3 month old female offspring, but only in MePD of males. The role of MePD kisspeptin on puberty, estrous cyclicity and preovulatory LH surges was assessed directly in a separate group of post-weanling and young adult female rats exposed to a normal diet throughout their life course. Bilateral intra-MePD cannulae connected to osmotic mini-pumps for delivery of kisspeptin receptor antagonist (Peptide 234 for 14 days) were chronically implanted on pnd 21 or 100. Antagonism of MePD kisspeptin delayed puberty onset, disrupted estrous cyclicity and reduced the incidence of LH surges. These data show that the MePD plays a key role in pubertal timing and ovulation and that maternal obesity may act via amygdala kisspeptin signaling to influence reproductive function in the offspring.
Collapse
Affiliation(s)
- Daniel A. Adekunbi
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Xiao Feng Li
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Shengyun Li
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Olufeyi A. Adegoke
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Bolanle O. Iranloye
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Ayodele O. Morakinyo
- Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Stafford L. Lightman
- Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Paul D. Taylor
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Lucilla Poston
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kevin T. O’Byrne
- Division of Women’s Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Zeydabadi Nejad S, Ramezani Tehrani F, Zadeh-Vakili A. The Role of Kisspeptin in Female Reproduction. Int J Endocrinol Metab 2017; 15:e44337. [PMID: 29201072 PMCID: PMC5702467 DOI: 10.5812/ijem.44337] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023] Open
Abstract
CONTEXT Kisspeptin (KISS1), a recently discovered neuropeptide that acts upstream of gonadotropin-releasing hormone (GnRH) neurons, is critical for maturation and function of the reproductive axis. This review aimed at providing comprehensive and up-to-date information on Kisspeptin and its role in female reproduction. EVIDENCE ACQUISITION A literature review was performed using PubMed for all English language articles published between 1999 and 2016. RESULTS The kisspeptin system (KISS1/G protein-coupled receptor-54,GPR54) has recently been addressed as an essential gatekeeper of puberty onset and gonadotropin secretion. Compelling evidence has documented that hypothalamic Kisspeptin mediates steroid feedback and metabolic cues at different developmental stages throughout lifespan. Furthermore, in pre/postnatally androgenized animal models, which exhibit many of the characteristics of Polycystic Ovarian Syndrome (PCOS), the hypothalamic expression of KISS1 and GnRH is abnormal, which might lead to multiple tissue abnormalities observed in this disorder. CONCLUSIONS Kisspeptin, a principal activator of GnRH neurons and the target of endocrine and metabolic cues, is a prerequisite for the onset of puberty and maintenance of normal reproductive function, as abnormal KISS1/GPR54 system has been reported in both animal models and patients with certain forms of infertility, e.g. Idiopathic Hypogonadotropic hypogonadism (IHH) and PCOS. The information suggests that kisspeptin or its receptor represents a potential therapeutic target in the treatment of patients with fertility disorders.
Collapse
Affiliation(s)
- Sareh Zeydabadi Nejad
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Azita Zadeh-Vakili, PhD, Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-2122432513, Fax: +98-2122402463, E-mail:
| |
Collapse
|
20
|
Cruz G, Fernandois D, Paredes AH. Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation. Reproduction 2017; 153:R59-R68. [DOI: 10.1530/rep-16-0117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/21/2016] [Accepted: 10/31/2016] [Indexed: 01/13/2023]
Abstract
Successful reproduction is the result of a myriad interactions in which the ovary and the ovarian follicular reserve play a fundamental role. At present, women who delay maternity until after 30 years of age have a decreased fertility rate due to various causes, including damaged follicles and a reduction in the reserve pool of follicles. Therefore, the period just prior to menopause, also known as the subfertile period, is important. The possibility of modulating the follicular pool and the health of follicles during this period to improve fertility is worth exploring. We have developed an animal model to study the ovarian ageing process during this subfertile period to understand the mechanisms responsible for reproductive senescence. In the rat model, we have shown that the sympathetic nervous system participates in regulating the follicular development during ovarian ageing. This article reviews the existing evidence on the presence and functional role of sympathetic nerve activity in regulating the follicular development during ovarian ageing, with a focus on the subfertile period.Free Spanish abstract: A Spanish translation of this abstract is freely available athttp://www.reproduction-online.org/content/153/2/R59/suppl/DC1.
Collapse
|
21
|
Ovarian kisspeptin expression is related to age and to monocyte chemoattractant protein-1. J Assist Reprod Genet 2016; 33:535-43. [PMID: 26879207 DOI: 10.1007/s10815-016-0672-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The objective of this study was to test the hypothesis that ovarian kisspeptin (kiss1) and its receptor (kiss1r) expression are affected by age, obesity, and the age- and obesity-related chemokine monocyte chemoattractant protein-1 (MCP-1). METHODS Ovaries from reproductive-aged and older C57BL/6J mice fed normal chow (NC) or high-fat (HF) diet, ovaries from age-matched young MCP-1 knockout and young control mice on NC, and finally, cumulus and mural granulosa cells (GCs) from women who underwent in vitro fertilization (IVF) were collected. Kiss1, kiss1r, anti-Mullerian hormone (AMH), and AMH receptor (AMHR-II) messenger RNA (mRNA) expression levels were quantified using real-time polymerase chain reaction (RT-PCR). RESULTS In mouse ovaries, kiss1 and kiss1r mRNA levels were significantly higher in old compared to reproductive-aged mice, and diet-induced obesity did not alter kiss1 or kiss1r mRNA levels. Compared to young control mice, young MCP-1 knockout mice had significantly lower ovarian kiss1 mRNA but significantly higher AMH and AMHR-II mRNA levels. In human cumulus GCs, kiss1r mRNA levels were positively correlated with age but not with BMI. There was no expression of kiss1 mRNA in either cumulus or mural GCs. CONCLUSION These data suggest a possible age-related physiologic role for the kisspeptinergic system in ovarian physiology. Additionally, the inflammatory MCP-1 may be associated with kiss1 and AMH genes, which are important in ovulation and folliculogenesis, respectively.
Collapse
|
22
|
Geraghty AC, Muroy SE, Kriegsfeld LJ, Bentley GE, Kaufer D. The Role of RFamide-Related Peptide-3 in Age-Related Reproductive Decline in Female Rats. Front Endocrinol (Lausanne) 2016; 7:71. [PMID: 27445974 PMCID: PMC4914494 DOI: 10.3389/fendo.2016.00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/08/2016] [Indexed: 12/02/2022] Open
Abstract
Reproductive senescence, the point in time when females cease to show estrous cyclicity, is associated with endocrine changes in the hypothalamus, pituitary, and gonads. However, the mechanisms triggering this transition are not well understood. To gain a better understanding of the top-down control of the transition from reproductive competence to a state of reproductive senescence, we investigated middle-aged female rats exhibiting varying degrees of reproductive decline, including individuals with normal cycles, irregular cycles, and complete cessation of cycles. We identified hormonal changes in the brain that manifest before ovarian cycles exhibit any deterioration. We found that females exhibit an increase in RFamide-related peptide-3 (RFRP3) mRNA expression in the hypothalamus in middle age prior to changes in estrous cycle length. This increase is transient and followed by subsequent decreases in kisspeptin (KiSS1) and gonadotropin-releasing hormone (GnRH) mRNA expression. Expression of RFRP3 and its receptor also increased locally in the ovaries with advancing age. While it is well known that aging is associated with decreased GnRH release and downstream disruption of the hypothalamic-pituitary-gonadal (HPG) axis, herein, we provide evidence that reproductive senescence is likely triggered by alterations in a network of regulatory neuropeptides upstream of the GnRH system.
Collapse
Affiliation(s)
- Anna C. Geraghty
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Sandra E. Muroy
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - George E. Bentley
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Daniela Kaufer
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Program in Child and Brain Development Toronto, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
- *Correspondence: Daniela Kaufer,
| |
Collapse
|
23
|
Ichimura R, Takahashi M, Morikawa T, Inoue K, Kuwata K, Usuda K, Yokosuka M, Watanabe G, Yoshida M. The Critical Hormone-Sensitive Window for the Development of Delayed Effects Extends to 10 Days after Birth in Female Rats Postnatally Exposed to 17alpha-Ethynylestradiol1. Biol Reprod 2015; 93:32. [DOI: 10.1095/biolreprod.115.129650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/25/2015] [Indexed: 11/01/2022] Open
|
24
|
Merkley CM, Coolen LM, Goodman RL, Lehman MN. Evidence for Changes in Numbers of Synaptic Inputs onto KNDy and GnRH Neurones during the Preovulatory LH Surge in the Ewe. J Neuroendocrinol 2015; 27:624-35. [PMID: 25976424 PMCID: PMC4809364 DOI: 10.1111/jne.12293] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/19/2015] [Accepted: 05/10/2015] [Indexed: 11/28/2022]
Abstract
Kisspeptin neurones located in the arcuate nucleus (ARC) and preoptic area (POA) are critical mediators of gonadal steroid feedback onto gonadotrophin-releasing hormone (GnRH) neurones. ARC kisspeptin cells that co-localise neurokinin B (NKB) and dynorphin (Dyn), are collectively referred to as KNDy (Kisspeptin/NKB/Dyn) neurones, and have been shown in mice to also co-express the vesicular glutamate transporter, vGlut2, an established glutamatergic marker. The ARC in rodents has long been known as a site of hormone-induced neuroplasticity, and changes in synaptic inputs to ARC neurones in rodents occur over the oestrous cycle. Based on this evidence, the the present study aimed to examine possible changes across the ovine oestrous cycle in synaptic inputs onto kisspeptin cells in the ARC (KNDy) and POA, and inputs onto GnRH neurones. Gonadal-intact breeding season ewes were perfused using 4% paraformaldehyde during either the luteal or follicular phase of the oestrous cycle, with the latter group killed at the time of the luteinising hormone (LH) surge. Hypothalamic sections were processed for triple-label immunodetection of kisspeptin/vGlut2/synaptophysin or kisspeptin/vGlut2/GnRH. The total numbers of synaptophysin- and vGlut2-positive inputs to ARC KNDy neurones were significantly increased at the time of the LH surge compared to the luteal phase; because these did not contain kisspeptin, they do not arise from KNDy neurones. By contrast to the ARC, the total number of synaptophysin-positive inputs onto POA kisspeptin neurones did not differ between luteal phase and surge animals. The total number of kisspeptin and vGlut2 inputs onto GnRH neurones in the mediobasal hypothalamus (MBH) was also increased during the LH surge, and could be attributed to an increase in the number of KNDy (double-labelled kisspeptin + vGlut2) inputs. Taken together, these results provide novel evidence of synaptic plasticity at the level of inputs onto KNDy and GnRH neurones during the ovine oestrous cycle. Such changes may contribute to the generation of the preovulatory GnRH/LH surge.
Collapse
Affiliation(s)
- Christina M. Merkley
- Neuroscience Graduate Program, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Lique M. Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Robert L. Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Michael N. Lehman
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
25
|
Comninos AN, Anastasovska J, Sahuri-Arisoylu M, Li X, Li S, Hu M, Jayasena CN, Ghatei MA, Bloom SR, Matthews PM, O'Byrne KT, Bell JD, Dhillo WS. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct 2015; 221:2035-47. [PMID: 25758403 PMCID: PMC4853463 DOI: 10.1007/s00429-015-1024-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Kisspeptin (encoded by KISS1) is a crucial activator of reproductive function. The role of kisspeptin has been studied extensively within the hypothalamus but little is known about its significance in other areas of the brain. KISS1 and its cognate receptor are expressed in the amygdala, a key limbic brain structure with inhibitory projections to hypothalamic centers involved in gonadotropin secretion. We therefore hypothesized that kisspeptin has effects on neuronal activation and reproductive pathways beyond the hypothalamus and particularly within the amygdala. To test this, we mapped brain neuronal activity (using manganese-enhanced MRI) associated with peripheral kisspeptin administration in rodents. We also investigated functional relevance by measuring the gonadotropin response to direct intra-medial amygdala (MeA) administration of kisspeptin and kisspeptin antagonist. Peripheral kisspeptin administration resulted in a marked decrease in signal intensity in the amygdala compared to vehicle alone. This was associated with an increase in luteinizing hormone (LH) secretion. In addition, intra-MeA administration of kisspeptin resulted in increased LH secretion, while blocking endogenous kisspeptin signaling within the amygdala by administering intra-MeA kisspeptin antagonist decreased both LH secretion and LH pulse frequency. We provide evidence for the first time that neuronal activity within the amygdala is decreased by peripheral kisspeptin administration and that kisspeptin signaling within the amygdala contributes to the modulation of gonadotropin release and pulsatility. Our data suggest that kisspeptin is a 'master regulator' of reproductive physiology, integrating limbic circuits with the regulation of gonadotropin-releasing hormone neurons and reproductive hormone secretion.
Collapse
Affiliation(s)
- Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Jelena Anastasovska
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Meliz Sahuri-Arisoylu
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Xiaofeng Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shengyun Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Minghan Hu
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Mohammad A Ghatei
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Stephen R Bloom
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Paul M Matthews
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Kevin T O'Byrne
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
26
|
Ribeiro AB, Leite CM, Kalil B, Franci CR, Anselmo-Franci JA, Szawka RE. Kisspeptin regulates tuberoinfundibular dopaminergic neurones and prolactin secretion in an oestradiol-dependent manner in male and female rats. J Neuroendocrinol 2015; 27:88-99. [PMID: 25453900 DOI: 10.1111/jne.12242] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/20/2014] [Accepted: 11/26/2014] [Indexed: 12/11/2022]
Abstract
Prolactin (PRL) secretion is inhibited by hypothalamic dopamine. Kisspeptin controls luteinising hormone (LH) secretion and is also involved in PRL regulation. We further investigated the effect of kisspeptin-10 (Kp-10) on the activity of tuberoinfundibular dopaminergic (TIDA) neurones and the role of oestradiol (E2 ) in this mechanism. Female and male rats were injected with i.c.v. Kp-10 and evaluated for PRL release and the activity of dopamine terminals in the median eminence (ME) and neurointermediate lobe of the pituitary (NIL). Kp-10 at the doses of 0.6 and 3 nmol increased plasma PRL and decreased 4-dihydroxyphenylacetic acid (DOPAC) levels in the ME and NIL of ovariectomised (OVX), E2 -treated rats but had no effect in OVX. In gonad-intact males, 3 nmol Kp-10 increased PRL secretion and decreased DOPAC levels in the ME but not in the NIL. Castrated males treated with either testosterone or E2 also displayed increased PRL secretion and reduced ME DOPAC in response to Kp-10, whereas castrated rats receiving oil or dihydrotestosterone were unresponsive. By contrast, the LH response to Kp-10 was not E2 -dependent in either females or males. Additionally, immunohistochemical double-labelling demonstrated that TIDA neurones of male rats contain oestrogen receptor (ER)-α, with a higher proportion of neurones expressing ERα than in dioestrous females. The dopaminergic neurones of periventricular hypothalamic nucleus displayed much lower ERα expression. Thus, TIDA neurones express ERα in male and female rats, and kisspeptin increases PRL secretion through inhibition of TIDA neurones in an E2 -dependent manner in both sexes. These findings provide new evidence about the role of kisspeptin in the regulation of dopamine and PRL.
Collapse
Affiliation(s)
- A B Ribeiro
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Prior attenuation of KiSS1/GPR54 signaling in the anteroventral periventricular nucleus is a trigger for the delayed effect induced by neonatal exposure to 17alpha-ethynylestradiol in female rats. Reprod Toxicol 2015; 51:145-56. [PMID: 25615539 DOI: 10.1016/j.reprotox.2015.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/25/2014] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
Neonatal exposure to 17alpha-ethynylestradiol (EE) causes delayed effect, a late-occurring irreversible damage to reproductive functions characterized by the early onset of age-matched abnormal estrous cycling. To clarify the involvement of a hypothalamic key cycling regulator KiSS1/GPR54 in the delayed effect, we investigated artificially induced LH surges and KiSS1 mRNA expression in the anteroventral periventricular nucleus (AVPV) of cycling young adult rats neonatally exposed to EE, and compared these parameters to those in about 5 months old middle-aged rats. KiSS1 mRNA expression, the number of KiSS1-positive cells and KiSS1/ERα co-expressing cells in the AVPV decreased in both EE-exposed and middle-aged rats. The peak area and levels of LH surge dose-dependently decreased in EE-exposed rats, and reduction was more evident in middle-aged rats. These results indicate that the prior attenuation of KiSS1 and consequent depression of LH surges plays a key role in the onset of abnormal estrous cycling in the delayed effect.
Collapse
|
28
|
Simonneaux V, Bahougne T. A Multi-Oscillatory Circadian System Times Female Reproduction. Front Endocrinol (Lausanne) 2015; 6:157. [PMID: 26539161 PMCID: PMC4611855 DOI: 10.3389/fendo.2015.00157] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023] Open
Abstract
Rhythms in female reproduction are critical to insure that timing of ovulation coincides with oocyte maturation and optimal sexual arousal. This fine tuning of female reproduction involves both the estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei (SCN) as an indicator of the time of the day. Herein, we are providing an overview of the state of knowledge regarding the differential inhibitory and stimulatory effects of estradiol at different stages of the reproductive axis, and the mechanisms through which the two main neurotransmitters of the SCN, arginine vasopressin, and vasoactive intestinal peptide, convey daily time cues to the reproductive axis. In addition, we will report the most recent findings on the putative functions of peripheral clocks located throughout the reproductive axis [kisspeptin (Kp) neurons, gonadotropin-releasing hormone neurons, gonadotropic cells, the ovary, and the uterus]. This review will point to the critical position of the Kp neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock. Finally, given the critical role of the light/dark cycle in the synchronization of female reproduction, we will discuss the impact of circadian disruptions observed during shift-work conditions on female reproductive performance and fertility in both animal model and humans.
Collapse
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), Strasbourg, France
- *Correspondence: Valérie Simonneaux, Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), 5 rue Blaise Pascal, Strasbourg 67084, France,
| | - Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), Strasbourg, France
- Service d’Endocrinologie et Diabète, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Kermath BA, Riha PD, Woller MJ, Wolfe A, Gore AC. Hypothalamic molecular changes underlying natural reproductive senescence in the female rat. Endocrinology 2014; 155:3597-609. [PMID: 24914937 PMCID: PMC4138577 DOI: 10.1210/en.2014-1017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The role of the hypothalamus in female reproductive senescence is unclear. Here we identified novel molecular neuroendocrine changes during the natural progression from regular reproductive cycles to acyclicity in middle-aged female rats, comparable with the perimenopausal progression in women. Expression of 48 neuroendocrine genes was quantified within three hypothalamic regions: the anteroventral periventricular nucleus, the site of steroid positive feedback onto GnRH neurons; the arcuate nucleus (ARC), the site of negative feedback and pulsatile GnRH release; and the median eminence (ME), the site of GnRH secretion. Surprisingly, the majority of changes occurred in the ARC and ME, with few effects in anteroventral periventricular nucleus. The overall pattern was increased mRNA levels with chronological age and decreases with reproductive cycle status in middle-aged rats. Affected genes included transcription factors (Stat5b, Arnt, Ahr), sex steroid hormone receptors (Esr1, Esr2, Pgr, Ar), steroidogenic enzymes (Sts, Hsd17b8), growth factors (Igf1, Tgfa), and neuropeptides (Kiss1, Tac2, Gnrh1). Bionetwork analysis revealed region-specific correlations between genes and hormones. Immunohistochemical analyses of kisspeptin and estrogen receptor-α in the ARC demonstrated age-related decreases in kisspeptin cell numbers as well as kisspeptin-estrogen receptor-α dual-labeled cells. Taken together, these results identify unexpectedly strong roles for the ME and ARC during reproductive decline and highlight fundamental differences between middle-aged rats with regular cycles and all other groups. Our data provide evidence of decreased excitatory stimulation and altered hormone feedback with aging and suggest novel neuroendocrine pathways that warrant future study. Furthermore, these changes may impact other neuroendocrine systems that undergo functional declines with age.
Collapse
Affiliation(s)
- Bailey A Kermath
- Institute for Neuroscience (B.A.K., A.C.G.), Division of Pharmacology and Toxicology (P.D.R., A.C.G.), and Institute for Cell and Molecular Biology (A.C.G.), The University of Texas at Austin, Austin, Texas 78712; Department of Biology (M.J.W.), University of Wisconsin-Whitewater, Whitewater, Wisconsin 53190; and Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore Maryland 21287
| | | | | | | | | |
Collapse
|
30
|
Kauffman AS, Sun Y, Kim J, Khan AR, Shu J, Neal-Perry G. Vasoactive intestinal peptide modulation of the steroid-induced LH surge involves kisspeptin signaling in young but not in middle-aged female rats. Endocrinology 2014; 155:2222-32. [PMID: 24654782 PMCID: PMC4020928 DOI: 10.1210/en.2013-1793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Age-related LH surge dysfunction in middle-aged rats is characterized, in part, by reduced responsiveness to estradiol (E2)-positive feedback and reduced hypothalamic kisspeptin neurotransmission. Vasoactive intestinal peptide (VIP) neurons in the suprachiasmatic nucleus project to hypothalamic regions that house kisspeptin neurons. Additionally, middle-age females express less VIP mRNA in the suprachiasmatic nucleus on the day of the LH surge and intracerebroventricular (icv) VIP infusion restores LH surges. We tested the hypothesis that icv infusion of VIP modulates the LH surge through effects on the kisspeptin and RFamide-related peptide-3 (RFRP-3; an estradiol-regulated inhibitor of GnRH neurons) neurotransmitter systems. Brains were collected for in situ hybridization analyses from ovariectomized and ovarian hormone-primed young and middle-aged females infused with VIP or saline. The percentage of GnRH and Kiss1 cells coexpressing cfos and total Kiss1 mRNA were reduced in saline-infused middle-aged compared with young females. In young females, VIP reduced the percentage of GnRH and Kiss1 cells coexpressing cfos, suggesting that increased VIP signaling in young females adversely affected the function of Kiss1 and GnRH neurons. In middle-aged females, VIP increased the percentage of GnRH but not Kiss1 neurons coexpressing cfos, suggesting VIP affects LH release in middle-aged females through kisspeptin-independent effects on GnRH neurons. Neither reproductive age nor VIP affected Rfrp cell number, Rfrp mRNA levels per cell, or coexpression of cfos in Rfrp cells. These data suggest that VIP differentially affects activation of GnRH and kisspeptin neurons of female rats in an age-dependent manner.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of Reproductive Medicine (A.S.K., J.K., A.R.K.), University of California, San Diego, La Jolla, California; Department of Obstetrics/Gynecology and Women's Health (Y.S., J.S., G.N.-P., Albert Einstein College of Medicine, Bronx, New York; and Dominick P. Purpura Department of Neuroscience (G.N.-P.), Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | | | |
Collapse
|
31
|
Neal-Perry G, Yao D, Shu J, Sun Y, Etgen AM. Insulin-like growth factor-I regulates LH release by modulation of kisspeptin and NMDA-mediated neurotransmission in young and middle-aged female rats. Endocrinology 2014; 155:1827-37. [PMID: 24617524 PMCID: PMC3990844 DOI: 10.1210/en.2013-1682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. Estradiol priming significantly increased Kiss1r, Nr1, and Nr2b receptor transcript and protein abundance in young but not middle-aged female hypothalamus. JB-1 attenuated kisspeptin and NMDA-induced LH release, numbers of GnRH/c-Fos and c-Fos cells, and Kiss1r, Nr1, and Nr2b transcript and protein abundance in young females to levels observed in middle-aged females. IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling.
Collapse
MESH Headings
- Aging
- Animals
- Female
- Gene Expression Regulation, Developmental/drug effects
- Hypothalamo-Hypophyseal System/growth & development
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus/cytology
- Hypothalamus/drug effects
- Hypothalamus/growth & development
- Hypothalamus/metabolism
- Infusions, Intraventricular
- Insulin-Like Growth Factor I/administration & dosage
- Insulin-Like Growth Factor I/analogs & derivatives
- Insulin-Like Growth Factor I/antagonists & inhibitors
- Insulin-Like Growth Factor I/metabolism
- Kisspeptins/metabolism
- Luteinizing Hormone/metabolism
- N-Methylaspartate/metabolism
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuroendocrine Cells/cytology
- Neuroendocrine Cells/drug effects
- Neuroendocrine Cells/metabolism
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Kisspeptin-1
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Signal Transduction/drug effects
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Genevieve Neal-Perry
- Department of Obstetrics and Gynecology (G.N.-P., J.S., Y.S., A.M.E.) and the Dominick P. Purpura Department of Neuroscience (G.N.-P., A.M.E.), Albert Einstein College of Medicine, Bronx, New York 10461; and Internal Medicine of Tongji Hospital (D.Y.), Huazhong University of Science and Technology, Wuhan 430030, R.P. China
| | | | | | | | | |
Collapse
|
32
|
Di Giorgio NP, Semaan SJ, Kim J, López PV, Bettler B, Libertun C, Lux-Lantos VA, Kauffman AS. Impaired GABAB receptor signaling dramatically up-regulates Kiss1 expression selectively in nonhypothalamic brain regions of adult but not prepubertal mice. Endocrinology 2014; 155:1033-44. [PMID: 24424047 PMCID: PMC3929734 DOI: 10.1210/en.2013-1573] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin, encoded by Kiss1, stimulates reproduction and is synthesized in the hypothalamic anteroventral periventricular and arcuate nuclei. Kiss1 is also expressed at lower levels in the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST), but the regulation and function of Kiss1 there is poorly understood. γ-Aminobutyric acid (GABA) also regulates reproduction, and female GABAB1 receptor knockout (KO) mice have compromised fertility. However, the interaction between GABAB receptors and Kiss1 neurons is unknown. Here, using double-label in situ hybridization, we first demonstrated that a majority of hypothalamic Kiss1 neurons coexpress GABAB1 subunit, a finding also confirmed for most MeA Kiss1 neurons. Yet, despite known reproductive impairments in GABAB1KO mice, Kiss1 expression in the anteroventral periventricular and arcuate nuclei, assessed by both in situ hybridization and real-time PCR, was identical between adult wild-type and GABAB1KO mice. Surprisingly, however, Kiss1 levels in the BNST and MeA, as well as the lateral septum (a region normally lacking Kiss1 expression), were dramatically increased in both GABAB1KO males and females. The increased Kiss1 levels in extrahypothalamic regions were not caused by elevated sex steroids (which can increase Kiss1 expression), because circulating estradiol and testosterone were equivalent between genotypes. Interestingly, increased Kiss1 expression was not detected in the MeA or BNST in prepubertal KO mice of either sex, indicating that the enhancements in extrahypothalamic Kiss1 levels initiate during/after puberty. These findings suggest that GABAB signaling may normally directly or indirectly inhibit Kiss1 expression, particularly in the BNST and MeA, and highlight the importance of studying kisspeptin populations outside the hypothalamus.
Collapse
Affiliation(s)
- Noelia P Di Giorgio
- Institute of Biology and Experimental Medicine-CONICET (N.P.D.G., P.V.L., C.L., V.A.L-L.), Buenos Aires, Argentina; Department of Reproductive Medicine (S.J.S., J.K., A.S.K.), University of California San Diego, La Jolla, California; Department of Biomedicine (B.B.), University of Basel, Basel, Switzerland; and Department of Physiology (C.L.), University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ishii MN, Matsumoto K, Matsui H, Seki N, Matsumoto H, Ishikawa K, Chatani F, Watanabe G, Taya K. Reduced responsiveness of kisspeptin neurons to estrogenic positive feedback associated with age-related disappearance of LH surge in middle-age female rats. Gen Comp Endocrinol 2013; 193:121-9. [PMID: 23851104 DOI: 10.1016/j.ygcen.2013.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/07/2013] [Accepted: 06/15/2013] [Indexed: 11/22/2022]
Abstract
Age-related disappearance of the LH surge is one of major biomarkers of reproductive aging in female rats. Kisspeptin neurons in the hypothalamic anteroventral periventricular nucleus (AVPV) are proposed as the critical regulator of the preovulatory LH surge in response to estrogenic positive feedback. Here we investigated the possible involvement of the AVPV kisspeptin neurons in the disappearance of the LH surge in middle-age rats. Middle-age rats exhibiting persistent estrus (M-PE) did not show an LH surge although neither Kiss1 mRNA nor peptide in the AVPV was differentially expressed when compared to young rats exhibiting normal estrous cycles (YN). M-PE released LH in response to exogenous kisspeptin in a similar dose-dependent manner as YN, suggesting that their GnRH neurons still maintained responsiveness to kisspeptin. To investigate the estrogenic positive feedback effect on kisspeptin neurons in the AVPV, rats were ovariectomized and supplemented with estradiol (OVX+E2). We performed in situ hybridization and immunohistochemistry for Kiss1 mRNA and cFos, respectively, and found that M-PE exhibited a significantly lower percentage of Kiss1 mRNA positive neurons with cFos immunoreactivity, although the total number of kisspeptin neurons was not different from that in cyclic rats. Furthermore, OVX+E2 M-PE did not show the surge-like LH release under high estradiol administration while YN did. Thus our current study suggests that the reduced responsiveness of the AVPV kisspeptin neurons to estrogenic positive feedback presumably results in the decrease in kisspeptin secretion from neurons and eventually causes the age-related disappearance of the LH surge in middle age female rats.
Collapse
Affiliation(s)
- Misawa Niki Ishii
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa 251-8555, Japan; Department of Basic Veterinary Science, United Graduated School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wahab F, Atika B, Shahab M. Kisspeptin as a link between metabolism and reproduction: evidences from rodent and primate studies. Metabolism 2013; 62:898-910. [PMID: 23414722 DOI: 10.1016/j.metabol.2013.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
Changes in metabolic status gate reproductive activity by still incompletely deciphered mechanisms. Many neuropeptides have been shown to be involved in restraining hypothalamic gonadotropin releasing hormone (GnRH) release under conditions of negative energy balance. Broadly, on the basis of their effect on feeding, these can be grouped as orexigenic and anorexigenic neuropeptides. Reciprocally correlated, in response to changes in systemic concentrations of metabolic hormones, the secretion of orexigenic neuropeptides increases while that of anorexigenic neuropeptides decreases during conditions of food restriction. Recently, kisspeptin signaling in hypothalamus has appeared as a pivotal regulator of the GnRH pulse generator. Kisspeptin apparently does not affect feeding, but in light of accumulating data, it has emerged as one of the major conduits in relaying body metabolic status information to GnRH neurons. The present review examines such data obtained from rodent and primate models, which suggest kisspeptin-Kiss1r signaling as a possible pathway providing a link between metabolism and reproduction.
Collapse
Affiliation(s)
- Fazal Wahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | | | | |
Collapse
|
35
|
Rodríguez SS, Schwerdt JI, Barbeito CG, Flamini MA, Han Y, Bohn MC, Goya RG. Hypothalamic IGF-I gene therapy prolongs estrous cyclicity and protects ovarian structure in middle-aged female rats. Endocrinology 2013; 154:2166-73. [PMID: 23584855 PMCID: PMC3740492 DOI: 10.1210/en.2013-1069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is substantial evidence that age-related ovarian failure in rats is preceded by abnormal responsiveness of the neuroendocrine axis to estrogen positive feedback. Because IGF-I seems to act as a permissive factor for proper GnRH neuronal response to estrogen positive feedback and considering that the hypothalamic content of IGF-I declines in middle-aged (M-A) rats, we assessed the effectiveness of long-term IGF-I gene therapy in the mediobasal hypothalamus (MBH) of M-A female rats to extend regular cyclicity and preserve ovarian structure. We used 3 groups of M-A rats: 1 group of intact animals and 2 groups injected, at 36.2 weeks of age, in the MBH with either a bicistronic recombinant adeno-associated virus (rAAV) harboring the genes for IGF-I and the red fluorescent protein DsRed2, or a control rAAV expressing only DsRed2. Daily vaginal smears were taken throughout the study, which ended at 49.5 weeks of age. We measured serum levels of reproductive hormones and assessed ovarian histology at the end of the study. Although most of the rats injected with the IGF-I rAAV had, on the average, well-preserved estrous cyclicity as well as a generally normal ovarian histology, the intact and control rAAV groups showed a high percentage of acyclic rats at the end of the study and ovaries with numerous enlarged cysts and scarce corpora lutea. Serum LH was higher and hyperprolactinemia lower in the treated animals. These results suggest that overexpression of IGF-I in the MBH prolongs normal ovarian function in M-A female rats.
Collapse
Affiliation(s)
- Silvia S Rodríguez
- Instituto de Investigaciones Bioquímicas de La Plata, University of La Plata, 1900 La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
36
|
Stress regulation of kisspeptin in the modulation of reproductive function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:431-54. [PMID: 23550018 DOI: 10.1007/978-1-4614-6199-9_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stressful stimuli abound in modern society and have shaped evolution through altering reproductive development, behavior, and physiology. The recent identification of kisspeptin as an important component of the hypothalamic regulatory circuits involved in reproductive homeostasis sparked a great deal of research interest that subsequently implicated kisspeptin signaling in the relay of metabolic, environmental, and physiological cues to the hypothalamo-pituitary-gonadal axis. However, although it is widely recognized that exposure to stress profoundly impacts on reproductive function, the roles of kisspeptin within the complex mechanisms underlying stress regulation of reproduction remain poorly understood. We and others have recently demonstrated that a variety of experimental stress paradigms downregulate the expression of kisspeptin ligand and receptor within the reproductive brain. Coincidently, these stressors also inhibit gonadotropin secretion and delay pubertal onset-processes that rely on kisspeptin signaling. However, a modest literature is inconsistent with an exclusively suppressive influence of stress on the reproductive axis and suggests that complicated neural interactions and signaling mechanisms translate the stress response into reproductive perturbations. The purpose of this chapter is to review the evidence for a novel role of kisspeptin signaling in the modulation of reproductive function by stress and to broaden the understanding of this timely phenomenon.
Collapse
|
37
|
Kriegsfeld LJ. Circadian regulation of kisspeptin in female reproductive functioning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:385-410. [PMID: 23550016 DOI: 10.1007/978-1-4614-6199-9_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Female reproductive functioning requires the precise temporal -organization of numerous neuroendocrine events by a master circadian brain clock located in the suprachiasmatic nucleus. Across species, including humans, disruptions to circadian timing result in pronounced deficits in ovulation and fecundity. The present chapter provides an overview of the circadian control of female reproduction, underscoring the significance of kisspeptin as a key locus of integration for circadian and steroidal signaling necessary for the initiation of ovulation.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
38
|
García-Galiano D, Pineda R, Roa J, Ruiz-Pino F, Sánchez-Garrido MA, Castellano JM, Aguilar E, Navarro VM, Pinilla L, Tena-Sempere M. Differential modulation of gonadotropin responses to kisspeptin by aminoacidergic, peptidergic, and nitric oxide neurotransmission. Am J Physiol Endocrinol Metab 2012; 303:E1252-63. [PMID: 23011064 DOI: 10.1152/ajpendo.00250.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Kisspeptins (Kp), products of the Kiss1 gene, have emerged as essential elements in the control of GnRH neurons and gonadotropic secretion. However, despite considerable progress in the field, to date limited attention has been paid to elucidate the potential interactions of Kp with other neurotransmitters known to centrally regulate the gonadotropic axis. We characterize herein the impact of manipulations of key aminoacidergic (glutamate and GABA), peptidergic (NKB, Dyn, and MCH), and gaseous [nitric oxide (NO)] neurotransmission on gonadotropin responses to Kp-10 in male rats. Blockade of ionotropic glutamate receptors (of the NMDA and non-NMDA type) variably decreased LH responses to Kp-10, whereas activation of both ionotropic and metabotropic receptors, which enhanced LH and FSH release per se, failed to further increase gonadotropin responses to Kp-10. In fact, coactivation of metabotropic receptors attenuated LH and FSH responses to Kp-10. Selective activation of GABA(A) receptors decreased Kp-induced gonadotropin secretion, whereas their blockade elicited robust LH and FSH bursts and protracted responses to Kp-10 when combined with GABA(B) receptor inhibition. Blockade of Dyn signaling (at κ-opioid receptors) enhanced LH responses to Kp-10, whereas activation of Dyn and NKB signaling modestly reduced Kp-induced LH and FSH release. Finally, MCH decreased basal LH secretion and modestly reduced FSH responses to Kp-10, whereas LH responses to Kp-10 were protracted after inhibition of NO synthesis. In summary, we present herein evidence for the putative roles of glutamate, GABA, Dyn, NKB, MCH, and NO in modulating gonadotropic responses to Kp in male rats. Our pharmacological data will help to characterize the central interactions and putative hierarchy of key neuroendocrine pathways involved in the control of the gonadotropic axis.
Collapse
Affiliation(s)
- David García-Galiano
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Grachev P, Li XF, Lin YS, Hu MH, Elsamani L, Paterson SJ, Millar RP, Lightman SL, O’Byrne KT. GPR54-dependent stimulation of luteinizing hormone secretion by neurokinin B in prepubertal rats. PLoS One 2012; 7:e44344. [PMID: 23028524 PMCID: PMC3460954 DOI: 10.1371/journal.pone.0044344] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 08/01/2012] [Indexed: 11/18/2022] Open
Abstract
Kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn) are coexpressed within KNDy neurons that project from the hypothalamic arcuate nucleus (ARC) to GnRH neurons and numerous other hypothalamic targets. Each of the KNDy neuropeptides has been implicated in regulating pulsatile GnRH/LH secretion. In isolation, kisspeptin is generally known to stimulate, and Dyn to inhibit LH secretion. However, the NKB analog, senktide, has variously been reported to inhibit, stimulate or have no effect on LH secretion. In prepubertal mice, rats and monkeys, senktide stimulates LH secretion. Furthermore, in the monkey this effect is dependent on kisspeptin signaling through its receptor, GPR54. The present study tested the hypotheses that the stimulatory effects of NKB on LH secretion in intact rats are mediated by kisspeptin/GPR54 signaling and are independent of a Dyn tone. To test this, ovarian-intact prepubertal rats were subjected to frequent automated blood sampling before and after intracerebroventricular injections of KNDy neuropeptide analogs. Senktide robustly induced single LH pulses, while neither the GPR54 antagonist, Kp-234, nor the Dyn agonist and antagonist (U50488 and nor-BNI, respectively) had an effect on basal LH levels. However, Kp-234 potently blocked the senktide-induced LH pulses. Modulation of the Dyn tone by U50488 or nor-BNI did not affect the senktide-induced LH pulses. These data demonstrate that the stimulatory effect of NKB on LH secretion in intact female rats is dependent upon kisspeptin/GPR54 signaling, but not on Dyn signaling.
Collapse
Affiliation(s)
- Pasha Grachev
- Division of Women’s Health, School of Medicine, King’s College London, London, United Kingdom
| | - Xiao Feng Li
- Division of Women’s Health, School of Medicine, King’s College London, London, United Kingdom
| | - Yuan Shao Lin
- Division of Women’s Health, School of Medicine, King’s College London, London, United Kingdom
| | - Ming Han Hu
- Division of Women’s Health, School of Medicine, King’s College London, London, United Kingdom
| | - Leena Elsamani
- Division of Women’s Health, School of Medicine, King’s College London, London, United Kingdom
| | - Stewart J. Paterson
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, King’s College London, London, United Kingdom
| | - Robert P. Millar
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
- University of Cape Town/Medical Research Council Research Group for Receptor Biology, Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Kevin T. O’Byrne
- Division of Women’s Health, School of Medicine, King’s College London, London, United Kingdom
- * E-mail: kevin.o’
| |
Collapse
|
40
|
Kuo J, Micevych P. Neurosteroids, trigger of the LH surge. J Steroid Biochem Mol Biol 2012; 131:57-65. [PMID: 22326732 PMCID: PMC3474707 DOI: 10.1016/j.jsbmb.2012.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 01/19/2012] [Accepted: 01/22/2012] [Indexed: 12/28/2022]
Abstract
Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.
Collapse
Affiliation(s)
- John Kuo
- Department of Neurobiology, Laboratory of Neuroendocrinology of the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Paul Micevych
- Department of Neurobiology, Laboratory of Neuroendocrinology of the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
- Corresponding author at: Department of Neurobiology, David Geffen School of Medicine at UCLA, 10833 LeConte Avenue, 73-078 CHS, Los Angeles, CA 90095-1763, United States. Tel.: +1 310 206 8265; fax: +1 310 825 2224. (P. Micevych)
| |
Collapse
|
41
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Santollo J, Yao D, Neal-Perry G, Etgen AM. Middle-aged female rats retain sensitivity to the anorexigenic effect of exogenous estradiol. Behav Brain Res 2012; 232:159-64. [PMID: 22522024 DOI: 10.1016/j.bbr.2012.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 02/05/2023]
Abstract
It is well established that estradiol (E2) decreases food intake and body weight in young female rats. However, it is not clear if female rats retain responsiveness to the anorexigenic effect of E2 during middle age. Because middle-aged females exhibit reduced responsiveness to E2, manifesting as a delayed and attenuated luteinizing hormone surge, it is plausible that middle-aged rats are less responsive to the anorexigenic effect of E2. To test this we monitored food intake in ovariohysterectomized young and middle-aged rats following E2 treatment. E2 decreased food intake and body weight to a similar degree in both young and middle-aged rats. Next, we investigated whether genes that mediate the estrogenic inhibition of food intake are similarly responsive to E2 by measuring gene expression of the anorexigenic genes corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), the long form of the leptin receptor (Lepr) and serotonin 2C receptors (5HT2CR) and the orexigenic genes agouti-related peptide (AgRP), neuropeptide Y (NPY), prepromelanin-concentrating hormone (pMCH) and orexin in the hypothalamus of young and middle-aged OVX rats treated with E2. As expected, E2 increased expression of all anorexigenic genes while decreasing expression of all orexigenic genes in young rats. Although CRH, 5HT2CR, Lepr, AgRP, NPY and orexin were also sensitive to E2 treatment in middle-aged rats, POMC and pMCH expression were not influenced by E2 in middle-aged rats. These data demonstrate that young and middle-aged rats are similarly sensitive to the anorexigenic effect of E2 and that most, but not all feeding-related genes retain sensitivity to E2.
Collapse
Affiliation(s)
- Jessica Santollo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
43
|
Kermath BA, Gore AC. Neuroendocrine control of the transition to reproductive senescence: lessons learned from the female rodent model. Neuroendocrinology 2012; 96:1-12. [PMID: 22354218 PMCID: PMC3574559 DOI: 10.1159/000335994] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/06/2011] [Indexed: 01/19/2023]
Abstract
The natural transition to reproductive senescence is an important physiological process that occurs with aging, resulting in menopause in women and diminished or lost fertility in most mammalian species. This review focuses on how rodent models have informed our knowledge of age-related changes in gonadotropin-releasing hormone (GnRH) neurosecretory function and the subsequent loss of reproductive capacity. Studies in rats and mice have shown molecular, morphological and functional changes in GnRH cells. Furthermore, during reproductive aging altered sex steroid feedback to the hypothalamus contributes to a decrease of stimulatory signaling and increase in inhibitory tone onto GnRH neurons. At the site of the GnRH terminals where the peptide is released into the portal vasculature, the cytoarchitecture of the median eminence becomes disorganized with aging, and mechanisms of glial-GnRH neuronal communication may be disrupted. These changes can result in the dysregulation of GnRH secretion with reproductive decline. Interestingly, reproductive aging effects on the GnRH circuitry are observed in middle age even prior to any obvious physiological changes in cyclicity. We speculate that the hypothalamus may play a critical role in this mid-life transition. Because there are substantial species differences in these aging processes, we also compare and contrast rodent aging to that in primates. Work discussed herein shows that in order to understand neuroendocrine mechanisms of reproductive senescence, further research needs to be conducted in ovarian-intact models.
Collapse
Affiliation(s)
- Bailey A. Kermath
- Institute for Neurosciences; The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrea C. Gore
- Institute for Neurosciences; The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Pharmacology & Toxicology; The University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular & Molecular Biology; The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
44
|
Sun Y, Shu J, Kyei K, Neal-Perry GS. Intracerebroventricular infusion of vasoactive intestinal Peptide rescues the luteinizing hormone surge in middle-aged female rats. Front Endocrinol (Lausanne) 2012; 3:24. [PMID: 22654857 PMCID: PMC3356100 DOI: 10.3389/fendo.2012.00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/31/2012] [Indexed: 12/02/2022] Open
Abstract
Reproductive aging is characterized by delayed and attenuated luteinizing hormone (LH) surges apparent in middle-aged rats. The suprachiasmatic nucleus (SCN) contains the circadian clock that is responsible for the timing of diverse neuroendocrine rhythms. Electrophysiological studies suggest vasoactive intestinal peptide (VIP) originating from the SCN excites gonadotropin-releasing hormone (GnRH) neurons and affects daily patterns of GnRH-LH release. Age-related LH surge dysfunction correlates with reduced VIP mRNA expression in the SCN and fewer GnRH neurons with VIP contacts expressing c-fos, a marker of neuronal activation, on the day of the LH surge. To determine if age-related LH surge dysfunction reflects reduced VIP availability or altered VIP responsiveness under estradiol positive feedback conditions, we assessed the effect of intracerebroventricular (icv) VIP infusion on c-fos expression in GnRH neurons and on LH release in ovariohysterectomized, hormone-primed young and middle-aged rats. Icv infusion of VIP between 1300 and 1600 h significantly advanced the time of peak LH release, increased total and peak LH release, and increased the number of GnRH neurons expressing c-fos on the day of the LH surge in middle-aged rats. Surprisingly, icv infusion of VIP in young females significantly reduced the number of GnRH neurons expressing c-fos and delayed and reduced the LH surge. These observations suggest that a critical balance of VIP signaling is required to activate GnRH neurons for an appropriately timed and robust LH surge in young and middle-aged females. Age-related LH surge changes may, in part, result from decreased availability and reduced VIP-mediated neurotransmission under estradiol positive feedback conditions.
Collapse
Affiliation(s)
- Yan Sun
- Department of Obstetrics/Gynecology and Women’s Health, Albert Einstein College of MedicineBronx, NY, USA
| | - Jun Shu
- Department of Obstetrics/Gynecology and Women’s Health, Albert Einstein College of MedicineBronx, NY, USA
| | - Kwame Kyei
- Department of Obstetrics/Gynecology and Women’s Health, Albert Einstein College of MedicineBronx, NY, USA
| | - Genevieve S. Neal-Perry
- Department of Obstetrics/Gynecology and Women’s Health, Albert Einstein College of MedicineBronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of MedicineBronx, NY, USA
- *Correspondence: Genevieve S. Neal-Perry, Department of Obstetrics/Gynecology and Women’s Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, U1211, Bronx, NY 10461, USA. e-mail:
| |
Collapse
|
45
|
García-Galiano D, Pinilla L, Tena-Sempere M. Sex steroids and the control of the Kiss1 system: developmental roles and major regulatory actions. J Neuroendocrinol 2012; 24:22-33. [PMID: 21951227 DOI: 10.1111/j.1365-2826.2011.02230.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kisspeptins, encoded by the Kiss1 gene, and their canonical receptor, GPR54 (also termed Kiss1R), are unanimously recognised as essential regulators of puberty onset and gonadotrophin secretion. These key reproductive functions stem from the capacity of kisspeptins to stimulate gonadotrophin-releasing hormone (GnRH) secretion in the hypothalamus, where discrete populations of Kiss1 neurones have been identified. In rodents, two major groups of hypothalamic Kiss1 neurones exist: one present in the arcuate nucleus (ARC) and the other located in the anteroventral periventricular area (AVPV/RP3V). In recent years, numerous signals have been identified as putative modulators of the hypothalamic Kiss1 system. Among them, the prominent role of sex steroids as being important regulators of Kiss1 neurones has been documented in different species and developmental stages, such as early brain sex differentiation, puberty, adulthood and senescence. These regulatory actions are (mainly) conducted via oestrogen receptor (ER)α, which is expressed in almost all Kiss1 neurones, and likely involve both classical and nonclassical pathways. The regulatory effects of sex steroids are nucleus-specific. Thus, sex steroids inhibit the expression of Kiss1/kisspeptin at the ARC, as a mechanism to conduct their negative-feedback actions on gonadotrophin secretion. By contrast, oestrogens enhance Kiss1 expression at the AVPV/RP3V in rodents, suggesting the involvement of this population in the positive-feedback actions of oestradiol to generate the preovulatory surge of gonadotrophins. In addition, sex steroids have been shown to act post-transcriptionally, modulating GnRH/gonadotrophin responsiveness to kisspeptin. Finally, sex steroids also regulate the expression of co-transmitters of Kiss1 neurones, such as neurokinin B, whose mRNA content in the ARC fluctuates in parallel to that of Kiss1 in response to changes in the circulating levels of sex steroids, therefore suggesting the contribution of this neuropeptide in the feedback control of gonadotrophin secretion. In sum, compelling experimental evidence obtained in different mammalian (and non-mammalian) species, including primates, demonstrates that sex steroids are essential regulators of hypothalamic Kiss1 neurones, which in turn operate as conduits for their effects on GnRH neurones. The physiological relevance of such regulatory phenomena is thoroughly discussed.
Collapse
Affiliation(s)
- D García-Galiano
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | |
Collapse
|
46
|
García-Galiano D, van Ingen Schenau D, Leon S, Krajnc-Franken MAM, Manfredi-Lozano M, Romero-Ruiz A, Navarro VM, Gaytan F, van Noort PI, Pinilla L, Blomenröhr M, Tena-Sempere M. Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice. Endocrinology 2012; 153:316-28. [PMID: 22067321 DOI: 10.1210/en.2011-1260] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kisspeptins (Kp), products of the Kiss1 gene that act via Gpr54 to potently stimulate GnRH secretion, operate as mediators of other regulatory signals of the gonadotropic axis. Mouse models of Gpr54 and/or Kiss1 inactivation have been used to address the contribution of Kp in the central control of gonadotropin secretion; yet, phenotypic and hormonal differences have been detected among the transgenic lines available. We report here a series of neuroendocrine analyses in male mice of a novel Gpr54 knockout (KO) model, generated by heterozygous crossing of a loxP-Gpr54/Protamine-Cre double mutant line. Gpr54-null males showed severe hypogonadotropic hypogonadism but retained robust responsiveness to GnRH. Gonadotropic responses to the agonist of ionotropic glutamate receptors, N-methyl-d-aspartate, were attenuated, but persisted, in Gpr54-null mice. In contrast, LH secretion after activation of metabotropic glutamate receptors was totally preserved in the absence of Gpr54 signaling. Detectable, albeit reduced, LH responses were also observed in Gpr54 KO mice after intracerebroventricular administration of galanin-like peptide or RF9, putative antagonist of neuropeptide FF receptors for the mammalian ortholog of gonadotropin-inhibiting hormone. In contrast, the stimulatory effect of senktide, agonist of neurokinin B (NKB; cotransmitter of Kiss1 neurons), was totally abrogated in Gpr54 KO males. Lack of Kp signaling also eliminated feedback LH responses to testosterone withdrawal. However, residual but sustained increases of FSH were detected in gonadectomized Gpr54 KO males, in which testosterone replacement failed to fully suppress circulating FSH levels. In sum, our study provides novel evidence for the relative importance of Kp-dependent vs. -independent actions of several key regulators of GnRH secretion, such as glutamate, galanin-like peptide, and testosterone. In addition, our data document for the first time the indispensable role of Kp signaling in mediating the stimulatory effects of NKB on LH secretion, thus supporting the hypothesis that NKB actions on GnRH neurons are indirectly mediated via its ability to regulate Kiss1 neuronal output.
Collapse
Affiliation(s)
- David García-Galiano
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sun Y, Todd BJ, Thornton K, Etgen AM, Neal-Perry G. Differential effects of hypothalamic IGF-I on gonadotropin releasing hormone neuronal activation during steroid-induced LH surges in young and middle-aged female rats. Endocrinology 2011; 152:4276-87. [PMID: 21914776 PMCID: PMC3199007 DOI: 10.1210/en.2011-1051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interactions between brain IGF-I receptors and estrogen receptors regulate female reproductive physiology and behavior. The present study investigated potential mechanisms by which IGF-I receptors in the neuroendocrine hypothalamus regulate GnRH neuronal activation and LH release in young and middle-aged female rats under estradiol (E2) positive feedback conditions. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-I receptors, into the third ventricle of ovariectomized female rats primed with E2 and progesterone or vehicle. In young females, blockade of IGF-I receptors attenuated the steroid hormone-induced LH surge, reduced the percent of GnRH neurons expressing c-fos on the day of the LH surge, and decreased the total number of neurons expressing c-fos in the preoptic area. Middle-aged females had fewer GnRH neurons expressing c-fos during the LH surge than young females, and the LH surge amplitude was attenuated. Infusion of an IGF-I dose previously shown to increase LH surge amplitude did not increase the percent of GnRH neurons expressing c-fos in middle-aged females. Brain IGF-I receptor blockade did not modify E2 induction of progestin receptor-immunoreactive neurons in the preoptic area, arcuate, or ventromedial hypothalamus of young rats. These findings indicate that brain IGF-I receptors are required for E2 activation of GnRH neurons in young rats and for robust GnRH release from axon terminals in middle-aged females. IGF-I likely exerts its effects by actions on E2-sensitive neurons that are upstream of GnRH neurons and terminals.
Collapse
Affiliation(s)
- Yan Sun
- Department of Obstetrics/Gynecology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann 1211, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
48
|
Gore AC, Walker DM, Zama AM, Armenti AE, Uzumcu M. Early life exposure to endocrine-disrupting chemicals causes lifelong molecular reprogramming of the hypothalamus and premature reproductive aging. Mol Endocrinol 2011; 25:2157-68. [PMID: 22016562 DOI: 10.1210/me.2011-1210] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors re-programs expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16-17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence.
Collapse
Affiliation(s)
- Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | |
Collapse
|
49
|
Navarro VM, Tena-Sempere M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 2011; 8:40-53. [PMID: 21912400 DOI: 10.1038/nrendo.2011.147] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurohormonal control of reproduction involves a hierarchical network of central and peripheral signals in the hypothalamic-pituitary-gonadal (HPG) axis. Development and function of this neuroendocrine system is the result of a lifelong delicate balance between endogenous regulators and environmental cues, including nutritional and metabolic factors. Kisspeptins are the peptide products of KISS1, which operate via the G-protein-coupled receptor GPR54 (also known as Kiss1R). These peptides have emerged as essential upstream regulators of neurons secreting gonadotropin-releasing hormone (GnRH), the major hypothalamic node for the stimulatory control of the HPG axis. They are potent elicitors of gonadotropin secretion in various species and physiological settings. Moreover, Kiss1 neurons in the hypothalamus participate in crucial features of reproductive maturation and function, such as brain-level sex differentiation, puberty onset and the neuroendocrine regulation of gonadotropin secretion and ovulation. Cotransmitters of Kiss1 neurons, such as neurokinin B, with roles in controlling the HPG axis have been identified by genetic, neuroanatomical and physiological studies. In addition, a putative role has been proposed for Kiss1 neurons in transmitting metabolic information to GnRH neurons, although the precise mechanisms are as yet unclear. In this Review, we present the major reproductive features of kisspeptins, especially their interplay with neurokinin B and potential roles in the metabolic control of puberty and fertility, and suggest new avenues for research.
Collapse
Affiliation(s)
- Victor M Navarro
- Department of Cell Biology, Physiology and Immunology and CIBERobn, Faculty of Medicine, University of Córdoba, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | | |
Collapse
|
50
|
Meza-Herrera CA, Torres-Moreno M, López-Medrano JI, González-Bulnes A, Veliz FG, Mellado M, Wurzinger M, Soto-Sanchez MJ, Calderón-Leyva MG. Glutamate supply positively affects serum release of triiodothyronine and insulin across time without increases of glucose during the onset of puberty in female goats. Anim Reprod Sci 2011; 125:74-80. [PMID: 21530114 DOI: 10.1016/j.anireprosci.2011.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/17/2011] [Accepted: 03/28/2011] [Indexed: 11/17/2022]
Abstract
The current study evaluated the effect of glutamate supply on the onset of puberty and possible links to changes in serum concentrations of insulin [INS], glucose [GLU] and triiodothyronine [T(3)]. The study was conducted from June to November in prepuberal female goats (n=18; 3 mo. old, 7/8 Saanen-Alpine, 1/8 Criollo, 26° north) randomly assigned to two experimental groups: (i) excitatory amino acids group (group AA, n=10; 16.52±1.04 kg LW, 3.4±0.12 body condition score [BCS], receiving an intravenous infusion of 7 mg kg(-1) live weight [LW] of l-glutamate, twice a week, and (ii) control group (group CC, n=8; 16.1±1.04 kg LW, 3.1±0.12 BCS) receiving saline. Blood samples were obtained twice a week, for assessing progesterone [P(4)], as well as in a monthly basis to evaluate INS and T(3) by RIA. Mean final LW and BCS were 23.2±0.72 kg, 3.53±0.10 units, without differences between groups. The AA group depicted an earlier onset of puberty (6.9±0.3 compared to 7.5±0.4 mo.; P<0.05) and an increased ovarian activity (70±0.28% compared to 25±0.26%; P<0.05). Neither serum INS concentrations nor serum glucose concentrations differed between treatments (1.2±0.06 ng mL(-1) and 89.6±1.8 mg 100 mL(-1); P>0.05, respectively). Serum T(3) concentrations, however, were greater in AA goats (1.55±0.03 compared to 1.39±0.04 ng mL(-1)). In addition, a treatment x time interaction occurred (P<0.05) across the experimental period for both T(3) and INS, with increases by the last third of the experimental period, time at which the onset of puberty occurred in both experimental groups. No differences (P>0.05) for glucose concentrations across time occurred between treatments. Results indicate that, in prepuberal goats, glutamate acts as a cue for sexual maturation in a glucose-independent pathway, while both T(3) and INS seem to act as metabolic modulators for the establishment of puberty in goats. Actions of INS and T(3) are mediated directly on hypothalamic centers regulating the pulsatile release of GnRH or indirectly by peripheral cues reflecting INS-T(3) actions on somatic development remains to be determined.
Collapse
Affiliation(s)
- C A Meza-Herrera
- Universidad Autónoma Chapingo - Unidad Regional Universitaria de Zonas Áridas. A.P. No. 8, Bermejillo, Durango 35230, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|