1
|
Lee DW, Lim YH, Choi YJ, Kim S, Shin CH, Lee YA, Kim BN, Kim JI, Hong YC. Prenatal and early-life air pollutant exposure and epigenetic aging acceleration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116823. [PMID: 39096687 DOI: 10.1016/j.ecoenv.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND This study investigated the association of prenatal and early childhood exposure to air pollution with epigenetic age acceleration (EAA) at six years of age using the Environment and Development of Children Cohort (EDC Cohort) MATERIALS & METHODS: Air pollution, including particulate matter [< 2.5 µm (PM2.5) and < 10 µm (PM10) in an aerodynamic diameter], nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and sulfur dioxide (SO2) were estimated based on the residential address for two periods: 1) during the whole pregnancy, and 2) for one year before the follow-up in children at six years of age. The methylation levels in whole blood at six years of age were measured, and the methylation clocks, including Horvath's clock, Horvath's skin and blood clock, PedBE, and Wu's clock, were estimated. Multivariate linear regression models were constructed to analyze the association between EAA and air pollutants. RESULTS A total of 76 children in EDC cohort were enrolled in this study. During the whole pregnancy, interquartile range (IQR) increases in exposure to PM2.5 (4.56 μg/m3) and CO (0.156 ppm) were associated with 0.406 years and 0.799 years of EAA (Horvath's clock), respectively. An IQR increase in PM2.5 (4.76 μg/m3) for one year before the child was six years of age was associated with 0.509 years of EAA (Horvath's clock) and 0.289 years of EAA (Wu's clock). PM10 (4.30 μg/m3) and O3 (0.003 ppm) exposure in the period were also associated with EAA in Horvath's clock (0.280 years) and EAA in Horvath's skin and blood clock (0.163 years), respectively. CONCLUSION We found that prenatal and childhood exposure to ambient air pollutants is associated with EAA among children. The results suggest that air pollution could induce excess biological aging even in prenatal and early life.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inha University, Incheon, the Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, the Republic of Korea
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, the Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, the Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, the Republic of Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, the Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
2
|
Wongtrakool C, Ma J, Jarrell ZR, Liu KH, Orr M, Tran V, Gauthier TW, Marsit CJ, Jones DP, Go YM, Hu X. Pyrimidine Biosynthesis in Branching Morphogenesis Defects Induced by Prenatal Heavy Metal Exposure. Am J Respir Cell Mol Biol 2024; 71:372-375. [PMID: 39212486 PMCID: PMC11376240 DOI: 10.1165/rcmb.2024-0123le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Cherry Wongtrakool
- Emory University Atlanta, Georgia
- Atlanta Veterans Affairs Healthcare System Decatur, Georgia
| | - Jing Ma
- Emory University Atlanta, Georgia
- Atlanta Veterans Affairs Healthcare System Decatur, Georgia
| | | | | | | | | | - Theresa W Gauthier
- Emory University Atlanta, Georgia
- Children's Healthcare of Atlanta Atlanta, Georgia
| | | | | | | | - Xin Hu
- Emory University Atlanta, Georgia
| |
Collapse
|
3
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung KF, Clot B, D'Amato G, Damialis A, Del Giacco S, Dominguez-Ortega J, Galàn C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Tummon F, Traidl-Hoffmann C, Walusiak-Skorupa J, Jutel M, Akdis CA. EAACI guidelines on environmental science for allergy and asthma: The impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy 2024; 79:1656-1686. [PMID: 38563695 DOI: 10.1111/all.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit San Giovanni di Dio Hospital, Florence, Italy
| | - Kian Fan Chung
- National Hearth & Lung Institute, Imperial College London, London, UK
| | - Bernard Clot
- Federal office of meteorology and climatology MeteoSwiss, Payerne, Switzerland
| | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez-Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galàn
- Inter-University Institute for Earth System Research (IISTA), International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies, Department of Environmental Health, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Fiona Tummon
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
4
|
Borgatta M, Breider F. Inhalation of Microplastics-A Toxicological Complexity. TOXICS 2024; 12:358. [PMID: 38787137 PMCID: PMC11125820 DOI: 10.3390/toxics12050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Humans are chronically exposed to airborne microplastics (MPs) by inhalation. Various types of polymer particles have been detected in lung samples, which could pose a threat to human health. Inhalation toxicological studies are crucial for assessing the effects of airborne MPs and for exposure-reduction measures. This communication paper addresses important health concerns related to MPs, taking into consideration three levels of complexity, i.e., the particles themselves, the additives present in the plastics, and the exogenous substances adsorbed onto them. This approach aims to obtain a comprehensive toxicological profile of deposited MPs in the lungs, encompassing local and systemic effects. The physicochemical characteristics of MPs may play a pivotal role in lung toxicity. Although evidence suggests toxic effects of MPs in animal and cell models, no established causal link with pulmonary or systemic diseases in humans has been established. The transfer of MPs and associated chemicals from the lungs into the bloodstream and/or pulmonary circulation remains to be confirmed in humans. Understanding the toxicity of MPs requires a multidisciplinary investigation using a One Health approach.
Collapse
Affiliation(s)
- Myriam Borgatta
- Center for Primary Care and Public Health (Unisanté-Lausanne), University of Lausanne, 1015 Lausanne, Switzerland
| | - Florian Breider
- Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| |
Collapse
|
5
|
Abellan A, Warembourg C, Mensink-Bout SM, Ambros A, de Castro M, Fossati S, Guxens M, Jaddoe VW, Nieuwenhuijsen MJ, Vrijheid M, Santos S, Casas M, Duijts L. Urban environment during pregnancy and lung function, wheezing, and asthma in school-age children. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123345. [PMID: 38219897 DOI: 10.1016/j.envpol.2024.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The urban environment during pregnancy may influence child's respiratory health, but scarce evidence exists on systematic evaluation of multiple urban exposures (e.g., air pollution, natural spaces, noise, built environment) on children's lung function, wheezing, and asthma development. We aimed to examine the association of the urban environment during pregnancy with lung function, preschool wheezing, and school-age asthma. We included 5624 mother-child pairs participating in a population-based prospective birth cohort. We estimated 30 urban environmental exposures including air pollution, road traffic noise, traffic, green spaces, blue spaces, and built environment during pregnancy. At 10 years of age, lung function was measured by spirometry. Information on preschool wheezing and physician-diagnosed school-age asthma was obtained from multiple questionnaires. We described single-exposure associations with respiratory outcomes using an exposome-wide association study. We also identified patterns of urban exposures with hierarchical clustering on principal components analysis and examined their associations with respiratory outcomes using multivariate regression models. Single-exposure analyses showed associations of higher particulate matter (PM) with lower mid-expiratory flow (FEF25-75%) (e.g., for PM < 2.5 μm of diameter [PM2.5] z-score = -0.06 [-0.09, -0.03]) and higher forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) (e.g., for PM2.5 FEV1 0.05 [0.02, 0.08]) after correction for multiple-hypothesis testing. Cluster analysis described three patterns of urban exposures during pregnancy and showed that the cluster characterised by higher levels of air pollution, noise, walkability, street connectivity, and lower levels of natural spaces were associated with lower FEF25-75% (-0.08 [-0.17, 0.00]), and higher odds of preschool wheezing (1.21 [1.03, 1.43]). This study shows that the characteristics of the urban environment during pregnancy are of relevance to the offspring's respiratory health during childhood.
Collapse
Affiliation(s)
- Alicia Abellan
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Albert Ambros
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Liesbeth Duijts
- Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Neonatology, Department of Neonatal and Pediatric Intensive Care, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Boissiere-O'Neill T, Lee WR, Blake TL, Sly PD, Vilcins D. Exposure to endocrine-disrupting plasticisers and lung function in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 243:117751. [PMID: 38061586 DOI: 10.1016/j.envres.2023.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 02/06/2024]
Abstract
Exposure to endocrine-disrupting plasticisers (EDPs), such as phthalates and bisphenols, has been associated with reduced lung function in children and adolescents. However, the existing literature yields conflicting results. This systematic review and meta-analysis aimed to assess the epidemiologic evidence investigating the association between EDP exposure and lung function in children and adolescents. A comprehensive search of five databases identified 25 relevant studies. We employed a random-effects meta-analysis on spirometry measures. The effect size of interest was the change in lung function in standard deviation (SD) units resulting from a two-fold increase in exposure levels. We found that certain phthalates marginally reduced lung function in children. Forced expiratory volume in 1 s (FEV1) was reduced by a two-fold increase in mono-benzyl phthalate (MBzP) (β = -0.025 SD, 95%CI: 0.042, -0.008), mono-ethyl-oxo-hexyl phthalate (MEOHP) (β = -0.035 SD, 95%CI: 0.057, -0.014) and mono-carboxy-nonyl phthalate (MCNP) (β = -0.024 SD, 95%CI: 0.05, -0.003). Forced vital capacity (FVC) was decreased by a two-fold increase in MBzP (β = -0.022 SD, 95%CI: 0.036, -0.008) and MEOHP (β = -0.035 SD, 95%CI: 0.057, -0.014) levels. A two-fold increase in MCNP levels was associated with lower FEV1/FVC (β = -0.023 SD, 95%CI: 0.045, -0.001). Furthermore, a two-fold increase in MEOHP levels reduced forced mid-expiratory flow (FEF25-75) (β = -0.030 SD, 95%CI: 0.055, -0.005) and peak expiratory flow (PEF) (β = -0.056 SD, 95%CI: 0.098, -0.014). Notably, associations were more pronounced in males. Given the potential for reverse causation bias, the association between childhood exposure to EDPs and lung function remains uncertain. Overall, our meta-analysis showed small reductions in lung function with higher phthalate exposure. However, future studies are warranted in younger age groups.
Collapse
Affiliation(s)
- Thomas Boissiere-O'Neill
- Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, Australia; Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Wen R Lee
- Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, Australia
| | - Tamara L Blake
- Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, Australia
| | - Dwan Vilcins
- Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, Australia
| |
Collapse
|
7
|
Nguyen HD. Effects of mixed heavy metals on obstructive lung function: findings from epidemiological and toxicogenomic data. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8663-8683. [PMID: 37700191 DOI: 10.1007/s10653-023-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
The molecular mechanisms and associations of mixed heavy metals (lead, mercury, and cadmium) on obstructive lung function (OLF) in males and females remain unknown. Here, we evaluated the interaction between the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) ratio and three common heavy metals in males and females (n = 6221). Molecular processes involved in OLF development caused by mixed heavy metals were also identified to corroborate the earlier findings. In both males and females, as well as across the entire population, we found that serum cadmium levels were inversely related to the FEV1/FVC ratio. Interactions between serum cadmium and lead, as well as cadmium and mercury, were observed in relation to the FEV1/FVC ratio. Additionally, we observed negative correlations between the FEV1/FVC ratio and mixed serum cadmium, lead, and mercury in both men and women as well as in the overall population. Seven genes were identified as contributing to the etiology of OLF and targeted by combined heavy metals in silico analysis (CYP1A1, CRP, CXCL8, HMOX1, IL6, NOS2, and TNF). The primary relationships between these genes were co-expression interactions. The significant transcription factors and miRNAs associated with OLF and a combination of the examined heavy metals were identified as NFKB2, hsa-miR-155-5p, and hsa-miR-203a-3p. The main biological processes involved in the emergence of OLF induced by mixed heavy metals were listed as inflammatory and oxidative stress pathways, lung fibrosis, chronic obstructive pulmonary disease, as well as cytokine activity, monooxygenase activity, oxidoreductase activity, and interleukin-8 production. Threshold estimations and miRNA sponge patterns for heavy metal exposure levels associated with OLF were evaluated for both males and females. This study found that cadmium plays the most important role in the mixture of cadmium, lead, and mercury in the pathogenesis of OLF. Future studies are required to verify our findings and uncover the molecular mechanisms of long-term exposure to a variety of heavy metals, especially cadmium, in other populations, including children, adolescents, and the elderly.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
8
|
Zeng S, Luo G, Lynch DA, Bowler RP, Arjomandi M. Lung volumes differentiate the predominance of emphysema versus airway disease phenotype in early COPD: an observational study of the COPDGene cohort. ERJ Open Res 2023; 9:00289-2023. [PMID: 37727675 PMCID: PMC10505951 DOI: 10.1183/23120541.00289-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 09/21/2023] Open
Abstract
Rationale Lung volumes identify the "susceptible smokers" who progress to develop spirometric COPD. However, among susceptible smokers, development of spirometric COPD seems to be heterogeneous, suggesting the presence of different pathological mechanisms during early establishment of spirometric COPD. The objective of the present study was to determine the differential patterns of radiographic pathologies among susceptible smokers. Methods We categorised smokers with preserved spirometry (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 0) in the Genetic Epidemiology of COPD (COPDGene) cohort based on tertiles (low, intermediate and high) of lung volumes (either total lung capacity (TLC), functional residual capacity FRC or FRC/TLC) at baseline visit. We then examined the differential patterns of change in spirometry and the associated prevalence of computed tomography measured pathologies of emphysema and airway disease with those categories of lung volumes. Results The pattern of spirometric change differed when participants were categorised by TLC versus FRC/TLC: those in the high TLC tertile showed stable forced expiratory volume in 1 s (FEV1), but enlarging forced vital capacity (FVC), while those in the high FRC/TLC tertile showed decline in both FEV1 and FVC. When participants from the high TLC and high FRC/TLC tertiles were partitioned into mutually exclusive groups, compared to those with high TLC, those with high FRC/TLC had lesser emphysema, but greater air trapping, more self-reported respiratory symptoms and exacerbation episodes and higher likelihood of progressing to more severe spirometric disease (GOLD stages 2-4 versus GOLD stage 1). Conclusions Lung volumes identify distinct physiological and radiographic phenotypes in early disease among susceptible smokers and predict the rate of spirometric disease progression and the severity of symptoms in early COPD.
Collapse
Affiliation(s)
- Siyang Zeng
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
- Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Gang Luo
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | | | | | - Mehrdad Arjomandi
- Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Karramass T, Sol C, Kannan K, Trasande L, Jaddoe V, Duijts L. Bisphenol and phthalate exposure during pregnancy and the development of childhood lung function and asthma. The generation R study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121853. [PMID: 37247769 DOI: 10.1016/j.envpol.2023.121853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Fetal exposure to bisphenols and phthalates may lead to alterations in the respiratory and immune system development in children, and to adverse respiratory health. AIMTO STUDY: the associations of fetal bisphenols and phthalates exposure with lung function and asthma at age 13 years. STUDY DESIGN and Methods This study among 1020 children was embedded in a population-based prospective cohort study. We measured maternal urine bisphenol and phthalate concentrations in first, second and third trimester of pregnancy, and lung function by spirometry and asthma by questionnaires at age 13 years. Multivariable linear and logistic regression models were applied. RESULTS Maternal urine bisphenol and phthalate concentrations averaged during pregnancy were not associated with childhood lung function or asthma. Associations of maternal urine bisphenol and phthalate concentrations in specific trimesters with respiratory outcomes showed that one interquartile range increase in the natural log transformed maternal urine mono-isobutyl phthalate concentration in second trimester was associated with a higher FEV1/FVC, but not with asthma, accounting for confounders and multiple-testing correction. Although there were associations of higher second trimester bisphenol S with a lower FVC and FEV1 in boys and girls, and of higher first trimester bisphenol S with a decreased risk of asthma in boys and an increased risk of asthma in girls, these results did not remain significant after correction for multiple testing. Results were not modified by maternal history of asthma or atopy. CONCLUSIONS Maternal urine bisphenol and phthalate concentrations averaged or in specific trimesters during pregnancy were not strongly associated with childhood lung function and asthma at age 13 years. BPS, as a BPA substitute, tended to be associated with impaired lung function and altered risk of asthma, partly sex-dependent, but its strength was limited by a relatively low detection rate and should be queried in contemporary cohorts.
Collapse
Affiliation(s)
- Tarik Karramass
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chalana Sol
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Department of Health, Wadsworth Center, New York State, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States
| | - Leonardo Trasande
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, New York, United States; Department of Pediatrics, New York, University School of Medicine, United States; Department of Environmental Medicine, New York University School of Medicine, United States; Department of Population Health, New York University School of Medicine, United States; New York Wagner School of Public Service, United States; New York University Global Institute of Public Health, New York, United States
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Coiffier O, Lyon-Caen S, Boudier A, Quentin J, Gioria Y, Pin I, Bayat S, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Philippat C, Siroux V. Prenatal exposure to synthetic phenols and phthalates and child respiratory health from 2 to 36 months of life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121794. [PMID: 37178953 DOI: 10.1016/j.envpol.2023.121794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Exposure to phthalates and synthetic phenols is ubiquitous. Some of them are suspected to impact child respiratory health, although evidence still remains insufficient. This study investigated the associations between prenatal exposure to phthalates and phenols, individually and as a mixture, and child respiratory health assessed by objective lung function measures since 2 months of age. Among 479 mother-child pairs from the SEPAGES cohort, 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites were measured in 2 pools including each 21 urine samples collected at the 2nd and 3rd pregnancy trimesters. Lung function was measured at 2 months using tidal breathing flow-volume loops and nitrogen multiple-breath washout, and at 3 years using oscillometry. Asthma, wheezing, bronchitis and bronchiolitis were assessed by repeated questionnaires. A cluster-based analysis was applied to identify exposure patterns to phenols and phthalates. Adjusted associations between clusters as well as each individual exposure biomarker and child respiratory health were estimated by regression models. We identified four prenatal exposure patterns: 1) low concentrations of all biomarkers (reference, n = 106), 2) low phenols-moderate phthalates (n = 162), 3) high concentrations of all biomarkers except bisphenol S (n = 109), 4) high parabens-moderate other phenols-low phthalates (n = 102). At 2 months, cluster 2 infants had lower functional residual capacity and tidal volume and higher ratio of time to peak tidal expiratory flow to expiratory time (tPTEF/tE) and cluster 3 had lower lung clearance index and higher tPTEF/tE. Clusters were not associated with respiratory health at 3 years but in the single-pollutant models, parabens were associated with increased area of the reactance curve, bronchitis (methyl, ethyl parabens) and bronchiolitis (propyl paraben). Our results suggested that prenatal exposure to mixtures of phthalates reduced lung volume in early life. Single exposure analyses suggested associations of parabens with impaired lung function and increased risk of respiratory diseases.
Collapse
Affiliation(s)
- Ophélie Coiffier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Joane Quentin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Yoann Gioria
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Isabelle Pin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France; Pediatric Department, Grenoble University Hospital, 38700, La Tronche, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | | | | | | | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France.
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), 38000, Grenoble, France
| |
Collapse
|
11
|
Hua L, Ju L, Xu H, Li C, Sun S, Zhang Q, Cao J, Ding R. Outdoor air pollution exposure and the risk of asthma and wheezing in the offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14165-14189. [PMID: 36149565 DOI: 10.1007/s11356-022-23094-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
According to the "fetal origin of disease" hypothesis, air pollution exposure in pregnancy may play an important role in stimulating the early programming of asthma and allergies. However, previous studies reported inconsistent findings. The aim of this meta-analysis was to provide higher grade evidence and quantitatively analyze the link between prenatal exposure to outdoor air pollutants and childhood asthma and wheezing. Databases (Web of Science and PubMed) were extensively searched for articles published from the start of the database to September 15, 2021. Either random-effect model or fixed-effect model was used to estimate the disease-specific relative risks (RR) with the corresponding 95% confidence intervals (CIs) to estimate the association. Newcastle-Ottawa Quality Score (NOS) was used to assess the quality of studies. This study finally included 13 cohort studies, and the findings showed that NO2 and SO2 exposure during entire pregnancy was significantly associated with wheezing (RR = 1.032, 95% CI: 1.000, 1.066) and asthma (RR = 1.114, 95% CI: 1.066, 1.164), respectively. Further analyses showed that PM2.5 were positively associated with asthma in the second (RR = 1.194, 95% CI: 1.143, 1.247) and third trimester (RR = 1.050, 95% CI: 1.007, 1.094), while NO2 (RR = 1.060, 95% CI: 1.021, 1.101) and SO2 (RR = 1.067, 95% CI: 1.013, 1.123) were shown positively associated with asthma only in the second trimester. The relationship between wheezing and outdoor air pollutants was not significant in any of the pregnancy subgroups. This study suggests that prenatal exposure of outdoor air pollution may increase the asthma and wheezing risk in the offspring and that the second trimester may be a sensitive period for air pollution exposure. But the interpretation of the causal association is hampered by limited number of studies on dose response.
Collapse
Affiliation(s)
- Lei Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hanbing Xu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Dapas M, Thompson EE, Wentworth-Sheilds W, Clay S, Visness CM, Calatroni A, Sordillo JE, Gold DR, Wood RA, Makhija M, Khurana Hershey GK, Sherenian MG, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Altman MC, Busse WW, Becker PM, Nicolae D, O’Connor GT, Gern JE, Jackson DJ, Ober C. Multi-omic association study identifies DNA methylation-mediated genotype and smoking exposure effects on lung function in children living in urban settings. PLoS Genet 2023; 19:e1010594. [PMID: 36638096 PMCID: PMC9879483 DOI: 10.1371/journal.pgen.1010594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/26/2023] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; βz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; β = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.
Collapse
Affiliation(s)
- Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | - Emma E. Thompson
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | - Selene Clay
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| | | | | | - Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University Medical Center, Baltimore, Maryland, United States of America
| | - Melanie Makhija
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children’s Hospital, Chicago, Illinois, United States of America
| | - Gurjit K. Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Michael G. Sherenian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rebecca S. Gruchalla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle A. Gill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew H. Liu
- Department of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haejin Kim
- Department of Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Leonard B. Bacharier
- Monroe Carell Jr. Children’s Hospital at Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Deepa Rastogi
- Children’s National Health System, Washington, District of Columbia, United States of America
| | - Matthew C. Altman
- Department of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - William W. Busse
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Patrice M. Becker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Dan Nicolae
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - George T. O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - James E. Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Daniel J. Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago Illinois, United States of America
| |
Collapse
|
13
|
Mohany KM, El-Asheer OM, Raheem YFA, sayed AAE, El-Baz MAEHH. Neonatal heavy metals levels are associated with the severity of neonatal respiratory distress syndrome: a case–control study. BMC Pediatr 2022; 22:635. [PMID: 36333705 PMCID: PMC9635146 DOI: 10.1186/s12887-022-03685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background This case–control study aimed to compare lead (Pb), cadmium (Cd), and arsenic (As) levels in neonates with respiratory distress syndrome (NRDS) with those levels in normal neonates and tested their associations with the severity of NRDS indicated by the levels of serum surfactant protein D (SP-D) and cord blood cardiac troponin I (CTnI), and high-sensitive C-reactive protein (hs-CRP). Methods The study included two groups: G1 (60 healthy neonates) and G2 (100 cases with NRDS). Cord blood Pb, erythrocytic Cd (E-Cd), neonatal scalp hair As (N-As), maternal urinary Cd (U-Cd), and arsenic (U-As) were measured by a Thermo Scientific iCAP 6200, while CTnI, hs-CRP, and SP-D by their corresponding ELISA kits. Results The levels of cord blood Pb, E-Cd, N-As, U-Cd, U-As, SP-D, CTnI, and hs-CRP were significantly higher in G2 than G1 (p = 0.019, 0.040, 0.003, 0.010, 0.011, < 0.001, 0.004, < 0.001, respectively). While the birth weight, and APGAR score at 1, 5 and 10 min were significantly lower in G2 than G1 (p = 0.002, < 0.001, < 0.001, < 0.001, respectively). The levels of the studied heavy metals correlated positively with the levels of SP-D, CTnI, and hs-CRP. Conclusion Heavy metals toxicity may be accused to be one of the causes of NRDS especially if other apparent causes are not there. Measuring and follow-up of heavy metal levels should be considered during pregnancy.
Collapse
Affiliation(s)
- Khalid M. Mohany
- grid.252487.e0000 0000 8632 679XDepartment of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt ,grid.252487.e0000 0000 8632 679XDepartment of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut city, 00201146007069 Egypt
| | - Osama Mahmoud El-Asheer
- grid.252487.e0000 0000 8632 679XDepartment of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Yaser F. Abdel Raheem
- grid.252487.e0000 0000 8632 679XDepartment of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abd-Elrasoul sayed
- grid.252487.e0000 0000 8632 679XClinical Pharmacist at Assiut University Children Hospital, Assiut, Egypt
| | - Mona Abd El-Hamid Hassan El-Baz
- grid.252487.e0000 0000 8632 679XDepartment of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
14
|
Zhao Y, Sun Y, Zhu C, Zhang Y, Hou J, Zhang Q, Ataei Y. Phthalate Metabolites in Urine of Chinese Children and Their Association with Asthma and Allergic Symptoms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14083. [PMID: 36360961 PMCID: PMC9654528 DOI: 10.3390/ijerph192114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are ubiquitous 'modern' chemical compounds with potential negative impacts on children's health. A nested case-control study was designed to investigate associations of phthalate exposure with children's asthma and allergic symptoms. We collected 243 first morning urine samples from 4-8-year-old children in Tianjin, China. Eight metabolites (i.e., mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP) and mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-carboxylpentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP)) of five phthalates were analyzed using HPLC-MS. MiBP, MnBP and MECPP were the dominant phthalate metabolites in urine of children in Tianjin with median concentrations of 31.6 μg/L, 26.24 μg/L and 46.12 μg/L, respectively. We found significantly positive associations of diagnosed asthma with MnBP (adjusted odds ratios (AOR): 1.96; 95% confidence intervals (CIs): 1.07-3.61), MEHHP (AOR: 2.00; 95% CI: 1.08-3.71) and MEOHP (AOR: 2.09; 95% CI: 1.06-4.10). Our study indicates that phthalate exposure in childhood, especially to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP), may be a risk factor for children's asthma.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Changqi Zhu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghao Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yeganeh Ataei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Signes-Pastor AJ, Díaz-Coto S, Martinez-Camblor P, Carey M, Soler-Blasco R, García-Villarino M, Fernández-Somoano A, Julvez J, Carrasco P, Lertxundi A, Santa Marina L, Casas M, Meharg AA, Karagas MR, Vioque-Lopez J. Arsenic exposure and respiratory outcomes during childhood in the INMA study. PLoS One 2022; 17:e0274215. [PMID: 36083997 PMCID: PMC9462567 DOI: 10.1371/journal.pone.0274215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ingested inorganic arsenic (iAs) is a human carcinogen that is also linked to other adverse health effects, such as respiratory outcomes. Yet, among populations consuming low-arsenic drinking water, the impact of iAs exposure on childhood respiratory health is still uncertain. For a Spanish child study cohort (INfancia y Medio Ambiente—INMA), low-arsenic drinking water is usually available and ingestion of iAs from food is considered the major source of exposure. Here, we explored the association between iAs exposure and children’s respiratory outcomes assessed at 4 and 7 years of age (n = 400). The summation of 4-year-old children’s urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) was used as a biomarker of iAs exposure (∑As) (median of 4.92 μg/L). Children’s occurrence of asthma, eczema, sneeze, wheeze, and medication for asthma and wheeze at each assessment time point (i.e., 4- and 7-year) was assessed with maternal interviewer-led questionnaires. Crude and adjusted Poisson regression models using Generalized Estimating Equation (GEE) were performed to account for the association between natural logarithm transformed (ln) urinary ∑As in μg/L at 4 years and repeated assessments of respiratory symptoms at 4 and 7 years of age. The covariates included in the models were child sex, maternal smoking status, maternal level of education, sub-cohort, and children’s consumption of vegetables, fruits, and fish/seafood. The GEE—splines function using Poisson regression showed an increased trend of the overall expected counts of respiratory symptoms with high urinary ∑As. The adjusted expected counts (95% confidence intervals) at ln-transformed urinary ∑As 1.57 (average concentration) and 4.00 (99th percentile concentration) were 0.63 (0.36, 1.10) and 1.33 (0.61, 2.89), respectively. These exploratory findings suggest that even relatively low-iAs exposure levels, relevant to the Spanish and other populations, may relate to an increased number of respiratory symptoms during childhood.
Collapse
Affiliation(s)
- Antonio J. Signes-Pastor
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
- * E-mail:
| | - Susana Díaz-Coto
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Pablo Martinez-Camblor
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Manus Carey
- Institute for Global Food Security, School of Biological Sciences Building, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Raquel Soler-Blasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Miguel García-Villarino
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)–Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Ana Fernández-Somoano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unit of Molecular Cancer Epidemiology, University Institute of Oncology of the Principality of Asturias (IUOPA)–Department of Medicine, University of Oviedo, Oviedo, Asturias, Spain
- Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Jordi Julvez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Paula Carrasco
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
- Department of Medicine, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aitana Lertxundi
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, UPV/EHU, Leioa, Basque Country, Spain
- Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
| | - Loreto Santa Marina
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Health Research Instititue, Biodonostia, Donostia-San Sebastian, Spain
- Department of Health of the Basque Government, Public Health Division of Gipuzkoa, Donostia-San Sebastián, Spain
| | - Maribel Casas
- ISGlobal- Instituto de Salud Global de Barcelona-Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrew A. Meharg
- Institute for Global Food Security, School of Biological Sciences Building, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Margaret R. Karagas
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Jesús Vioque-Lopez
- Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
16
|
D’Evelyn SM, Jung J, Alvarado E, Baumgartner J, Caligiuri P, Hagmann RK, Henderson SB, Hessburg PF, Hopkins S, Kasner EJ, Krawchuk MA, Krenz JE, Lydersen JM, Marlier ME, Masuda YJ, Metlen K, Mittelstaedt G, Prichard SJ, Schollaert CL, Smith EB, Stevens JT, Tessum CW, Reeb-Whitaker C, Wilkins JL, Wolff NH, Wood LM, Haugo RD, Spector JT. Wildfire, Smoke Exposure, Human Health, and Environmental Justice Need to be Integrated into Forest Restoration and Management. Curr Environ Health Rep 2022; 9:366-385. [PMID: 35524066 PMCID: PMC9076366 DOI: 10.1007/s40572-022-00355-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. RECENT FINDINGS Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outline the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice.
Collapse
Affiliation(s)
- Savannah M. D’Evelyn
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Jihoon Jung
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Ernesto Alvarado
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
| | - Jill Baumgartner
- Dept of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Canada
| | | | - R. Keala Hagmann
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- Applegate Forestry, LLC, Corvallis, USA
| | | | - Paul F. Hessburg
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- USDA Forest Service, Pacific Northwest Research Station, Wenatchee, WA USA
| | - Sean Hopkins
- Washington State Department of Ecology, Lacey, USA
| | - Edward J. Kasner
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Meg A. Krawchuk
- Dept. of Forest Ecosystems and Society, Oregon State University, Corvallis, USA
| | - Jennifer E. Krenz
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | - Jamie M. Lydersen
- California Department of Forestry and Fire Protection, Sacramento, USA
| | - Miriam E. Marlier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, USA
| | | | | | | | - Susan J. Prichard
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
| | - Claire L. Schollaert
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | | | - Jens T. Stevens
- Department of Biology, University of New Mexico, Albuquerque, NM USA
| | - Christopher W. Tessum
- Dept. of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Champaign, USA
| | - Carolyn Reeb-Whitaker
- Safety & Health Assessment & Research for Prevention Program, Washington State Department of Labor and Industries, Tumwater, USA
| | - Joseph L. Wilkins
- School of Environmental and Forest Sciences, University of Washington, Seattle, USA
- Interdisciplinary Studies Department, Howard University, Washington, DC USA
| | | | - Leah M. Wood
- Evan’s School of Public Policy and Governance and The Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| | | | - June T. Spector
- Dept. of Environmental & Occupational Health Sciences, University of Washington, 3980 15th Ave NE, Seattle, WA 98105 USA
| |
Collapse
|
17
|
Hu P, Zhang Y, Vinturache A, Tian Y, Hu Y, Gao Y, Ding G. Prenatal pyrethroid exposure and lung function among school-aged children. Int J Hyg Environ Health 2022; 245:114027. [PMID: 36067539 DOI: 10.1016/j.ijheh.2022.114027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Previous epidemiological evidence mainly focused on the adverse effects of prenatal exposure to pyrethroid insecticides (PYRs) on respiratory health during childhood. It remains unclear whether the PYR exposures can also impact on children's lung function. OBJECTIVES To explore the potential effects of prenatal PYR exposures on lung function in a population of Chinese children. METHODS This study included 233 mother-child dyads from the Laizhou Wan Birth Cohort (LWBC), Shandong province, northern China, between September 2010 and December 2013. Three metabolites of PYRs [3-phenoxybenzoic acid (3-PBA), and cis- and trans-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-DCCA and trans-DCCA)] were measured using gas chromatography-mass spectrometry (GC-MS) in maternal urine samples collected at recruitment. Lung function was assessed with spirometry in children aged 6-8 years. Multivariable linear regression and generalized linear models (GLMs) assessed the associations of prenatal PYR exposures with lung function in children. RESULTS Among the PYR metabolites, 3-PBA (81.5%) were most frequently detected, followed by trans-DCCA (55.4%) and cis-DCCA (21.9%). The 3-PBA concentration was associated with a 1% decrease in FEV1/FVC in the highest quartiles of exposure compared to the lowest quartile, with a potential dose response association (p-trend = 0.085). Our findings provide a suggestive effect modification by sex, with girls being more susceptible than the boys (p-trend = 0.011). However, there were no associations between the trans-DCCA concentration and lung function parameters. CONCLUSION Prenatal 3-PBA concentrations were associated with a modest decrease in FEV1/FVC among school-aged children, and the association was slightly more pronounced for the girls than for the boys.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, University of Alberta, Alberta, Canada; Department of Neuroscience, University of Lethbridge, Alberta, Canada.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Hu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Zhou Q, Kang SL, Lin X, Zhang XY. Impact of air pollutants on hospital visits for pediatric asthma in Fuzhou city, southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58664-58674. [PMID: 35366721 DOI: 10.1007/s11356-022-19928-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Rapid social development in China has resulted in severe air pollution and adverse impacts on people's health. Although studies have been conducted on the relationship between exposure to air pollutants and asthma exacerbation, most studies were performed in relatively heavily polluted areas, while little is known about the effect of air pollutants in less polluted areas. We assessed the effects of air pollutants on the risk of asthma-related outpatient and emergency visits of infants and children aged from 0 to 13 years during 2018 to 2020 in Fuzhou city, southeast China. Data of six air pollutants: sulfur dioxide (SO2), nitrogen dioxides (NO2), carbon monoxide (CO), daily maximum 8-h average ozone (O3-8 h), particulate matter with an aerodynamic diameter ≤ 10 μm (PM10), and particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5), were obtained from the Environmental Protection Administration of Fuzhou. Data of temperature, humidity, and wind speed were provided by the Meteorological Bureau of Fuzhou. Results revealed that on lag day 6, NO2, SO2, and CO were positively associated with the number of outpatient and emergency visits. Among the pollutants, SO2 had the highest effects on both outpatient visits (RR = 1.672, 95%CI 1.545, 1.809) and emergency visits (RR = 1.495, 95%CI 1.241, 1.800), and its effect on outpatient visits was stronger in children aged 0-4 years than in those aged 5-13 years (RR = 2.331 vs. 1.439). In conclusion, SO2 contributes substantially to the adverse effects of air pollutants on pediatric respiratory health in Fuzhou. Younger children were more affected by air pollution than their older counterparts.
Collapse
Affiliation(s)
- Quan Zhou
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China
| | - Shu-Ling Kang
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China
| | - Xin Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China.
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China.
| | - Xiao-Yang Zhang
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350004, Fujian, China.
- Fuzhou Center for Disease Control and Prevention affiliated to Fujian Medical University, Fuzhou, China.
| |
Collapse
|
19
|
Abellan A, Mensink-Bout SM, Garcia-Esteban R, Beneito A, Chatzi L, Duarte-Salles T, Fernandez MF, Garcia-Aymerich J, Granum B, Iñiguez C, Jaddoe VWV, Kannan K, Lertxundi A, Lopez-Espinosa MJ, Philippat C, Sakhi AK, Santos S, Siroux V, Sunyer J, Trasande L, Vafeiadi M, Vela-Soria F, Yang TC, Zabaleta C, Vrijheid M, Duijts L, Casas M. In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: a prospective meta-analysis of 8 European birth cohorts. ENVIRONMENT INTERNATIONAL 2022; 162:107178. [PMID: 35314078 DOI: 10.1016/j.envint.2022.107178] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND In utero exposure to bisphenols, widely used in consumer products, may alter lung development and increase the risk of respiratory morbidity in the offspring. However, evidence is scarce and mostly focused on bisphenol A (BPA) only. OBJECTIVE To examine the associations of in utero exposure to BPA, bisphenol F (BPF), and bisphenol S (BPS) with asthma, wheeze, and lung function in school-age children, and whether these associations differ by sex. METHODS We included 3,007 mother-child pairs from eight European birth cohorts. Bisphenol concentrations were determined in maternal urine samples collected during pregnancy (1999-2010). Between 7 and 11 years of age, current asthma and wheeze were assessed from questionnaires and lung function by spirometry. Wheezing patterns were constructed from questionnaires from early to mid-childhood. We performed adjusted random-effects meta-analysis on individual participant data. RESULTS Exposure to BPA was prevalent with 90% of maternal samples containing concentrations above detection limits. BPF and BPS were found in 27% and 49% of samples. In utero exposure to BPA was associated with higher odds of current asthma (OR = 1.13, 95% CI = 1.01, 1.27) and wheeze (OR = 1.14, 95% CI = 1.01, 1.30) (p-interaction sex = 0.01) among girls, but not with wheezing patterns nor lung function neither in overall nor among boys. We observed inconsistent associations of BPF and BPS with the respiratory outcomes assessed in overall and sex-stratified analyses. CONCLUSION This study suggests that in utero BPA exposure may be associated with higher odds of asthma and wheeze among school-age girls.
Collapse
Affiliation(s)
- Alicia Abellan
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sara M Mensink-Bout
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Raquel Garcia-Esteban
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Mariana F Fernandez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Centro de Investigación Biomédica, University of Granada, Granada, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Berit Granum
- Norwegian Institute of Public Health, Oslo, Norway
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Department of Statistics and Operational Research. Universitat de València. València, Spain
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kurunthachalam Kannan
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Preventive medicine and public health department, University of Basque Country (UPV/EHU), Leioa, Spain; Biodonostia Health research institute, Donostia-San Sebastian, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | | | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Valérie Siroux
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Leonardo Trasande
- Departments of Pediatrics and Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | | | | | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | | | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Respiratory Medicine and Allergology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Division of Neonatology, Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
20
|
Stapleton A, Casas M, García J, García R, Sunyer J, Guerra S, Abellan A, Lavi I, Dobaño C, Vidal M, Gascon M. Associations between pre- and postnatal exposure to air pollution and lung health in children and assessment of CC16 as a potential mediator. ENVIRONMENTAL RESEARCH 2022; 204:111900. [PMID: 34419474 DOI: 10.1016/j.envres.2021.111900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early life exposure to air pollution can affect lung health. Previous studies have not assessed the implications of both pre- and postnatal exposure to air pollutants on lung function at repeated ages during childhood. In addition, there is the need to identify potential mediators of such effect. OBJECTIVES To longitudinally assess the association between pre- and postnatal air pollution exposure and lung function during childhood. We also aimed to explore the role of Club cell secretory protein (CC16) as a potential mediator in this association. METHODOLOGY We included 487 mother-child pairs from the INMA (INfancia y Medio Ambiente) Sabadell birth cohort, recruited between 2004 and 2006. Air pollution exposure was estimated for pregnancy, pre-school age, and school-age using temporally adjusted land use regression (LUR) modelling. Lung function was measured at ages 4, 7, 9 and 11 by spirometry. At age 4, serum CC16 levels were determined in 287 children. Multivariable linear regression models and linear mixed modelling were applied, while considering potential confounders. RESULTS Prenatal exposure to Particulate Matter (PM)10 and PMcoarse had the most consistent associations with reduced lung function in cross-sectional models. Associations with postnatal exposure were less consistent. Increasing CC16 levels at 4 years were associated with an increase in FEF25-75 (β = 120.4 mL, 95% CI: 6.30, 234.5) from 4 to 11 years of age. No statistically significant associations were found between pre- or postnatal air pollution and CC16 at age 4. CONCLUSION Increasing levels of air pollution exposure, particularly prenatal PM10 and PMcoarse exposure, were associated with a reduction in lung function. We were not able to confirm our hypothesis on the mediation role of CC16 in this association, however our results encourage further exploration of this possibility in future studies.
Collapse
Affiliation(s)
- Anna Stapleton
- Maastricht University, Faculty of Health, Medicine and Life Sciences, the Netherlands
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Judith García
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Raquel García
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Stefano Guerra
- ISGlobal, Barcelona, Spain; Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Alicia Abellan
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Spanish Consortium for research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
21
|
Wang C, Huertas DS, Rowe JW, Finkelstein R, Carstensen LL, Jackson RB. Rethinking the urban physical environment for century-long lives: from age-friendly to longevity-ready cities. NATURE AGING 2021; 1:1088-1095. [PMID: 35937461 PMCID: PMC9355489 DOI: 10.1038/s43587-021-00140-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
In response to increasing life expectancies and urbanization, initiatives for age-friendly cities seek to facilitate active and healthy aging by strengthening supports and services for older people. While laudable, these efforts typically neglect early-life exposures that influence long-term well-being. With a focus on the urban physical environment, we argue that longevity-ready cities can accomplish more than initiatives focused solely on old age. We review features of cities that cumulatively influence healthy aging and longevity, discuss the need for proactive interventions in a changing climate, and highlight inequities in the ambient physical environment, especially those encountered at early ages, that powerfully contribute to disparities in later life stages. Compared with strategies aimed largely at accommodating older populations, longevity-ready cities would aim to reduce the sources of disadvantages across the life course and simultaneously improve the well-being of older people.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Stanford Center on Longevity, Stanford, CA, USA
| | - Diego Sierra Huertas
- Stanford Center on Longevity, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - John W. Rowe
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ruth Finkelstein
- Brookdale Center for Healthy Aging, Hunter College, The City University of New York, New York, NY, USA
| | - Laura L. Carstensen
- Stanford Center on Longevity, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Robert B. Jackson
- Department of Earth System Science, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Signes-Pastor AJ, Martinez-Camblor P, Baker E, Madan J, Guill MF, Karagas MR. Prenatal exposure to arsenic and lung function in children from the New Hampshire Birth Cohort Study. ENVIRONMENT INTERNATIONAL 2021; 155:106673. [PMID: 34091160 PMCID: PMC8353991 DOI: 10.1016/j.envint.2021.106673] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 05/03/2023]
Abstract
Prenatal arsenic exposure is associated with an increased risk of lung cancer along with multiple non-carcinogenic outcomes, including respiratory diseases in arsenic-contaminated areas. Limited epidemiologic data exist on whether in utero arsenic exposure influences lung development and subsequent respiratory health. We investigated the association between gestational arsenic exposure and childhood lung function in the New Hampshire Birth Cohort Study. Urinary arsenic speciation including inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine was measured in maternal urine samples collected during pregnancy and spirometry was performed in offspring at a median age of 7.4 years. Forced vital capacity (FVC), forced expiratory volume in the first second of exhalation (FEV1), and forced expiratory flow between 25% and 75% of FVC (FEF25-75) standardized z-scores were assessed in linear models as dependent variables with the log2-transformed summation of urinary arsenic species (ΣAs = iAs + MMA + DMA) corrected for specific gravity as an independent variable and with adjustment for maternal smoking status, children's age, sex and height. Among the 358 children in the study, a doubling of ΣAs was associated with a -0.08 (ß) decrease in FVC z-scores (95% confidence interval (CI) from -0.14 to -0.01) and -0.10 (ß) (95% CI from -0.18 to -0.02) decrease in FEV1 z-scores. The inverse association appeared stronger among those mothers with lower secondary methylation index (urinary DMA/MMA), especially among girls. No association was observed for FEF25-75 z-scores. Our results suggest that gestation arsenic exposure at levels relevant to the general US population during the vulnerable period of lung formation may adversely affect lung function in childhood.
Collapse
Affiliation(s)
- Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Pablo Martinez-Camblor
- Biomedical Data Science Department, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Emily Baker
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Juliette Madan
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States; Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Margaret F Guill
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States.
| |
Collapse
|
23
|
Yang T, He T, Huang J, Li G. Impact of birth season on the years of life lost from respiratory diseases in the elderly related to ambient PM 2.5 exposure in Ningbo, China. Environ Health Prev Med 2021; 26:74. [PMID: 34273955 PMCID: PMC8286574 DOI: 10.1186/s12199-021-00994-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Ambient fine particle (PM2.5) pollution is an important public health problem in China. Short-term ambient PM2.5 exposure is associated with increased mortality of respiratory diseases. However, few evidence was available on the effect of exposure to ambient PM2.5 on the years of life lost (YLL) from respiratory diseases in the elderly. Furthermore, birth season which is frequently applied as a proxy for environmental exposure in early life may influence the health outcome in the later life. Nevertheless, the modification effect of birth season on the relationship of PM2.5 exposure and respiratory health need to be explored. Methods A time-stratified case-crossover design was used to analyze YLL from respiratory diseases in the elderly related to ambient PM2.5 exposure between 2013 and 2016 in Ningbo, China. The modification effect of birth season was explored by subgroup comparisons between different birth seasons. Results Each 10 μg/m3 increase in daily ambient PM2.5 was associated with an increment of 1.61 (95% CI 0.12, 3.10) years in YLL from respiratory diseases in the elderly population. Individuals who were born in winter had significantly higher YLL from respiratory diseases associated with ambient PM2.5 exposure than those who were born in other seasons. Conclusions Birth season which reflects the early-life PM2.5 exposure level that may influence the lung development has a potential effect on the disease burden of respiratory diseases related to ambient PM2.5 exposure in later life. The results would provide theoretical basis to protect vulnerable population defined by birth season when exploring the adverse effects of ambient PM2.5 in the respiratory health. Supplementary Information The online version contains supplementary material available at 10.1186/s12199-021-00994-6.
Collapse
Affiliation(s)
- Teng Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Tianfeng He
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Beijing, 100191, China.,Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
24
|
Abstract
Ambient air pollution is produced by sources including vehicular traffic, coal-fired power plants, hydraulic fracturing, agricultural production, and forest fires. It consists of primary pollutants generated by combustion and secondary pollutants formed in the atmosphere from precursor gases. Air pollution causes and exacerbates climate change, and climate change worsens health effects of air pollution. Infants and children are uniquely sensitive to air pollution, because their organs are developing and they have higher air per body weight intake. Health effects linked to air pollution include not only exacerbations of respiratory diseases but also reduced lung function development and increased asthma incidence. Additional outcomes of concern include preterm birth, low birth weight, neurodevelopmental disorders, IQ loss, pediatric cancers, and increased risks for adult chronic diseases. These effects are mediated by oxidative stress, chronic inflammation, endocrine disruption, and genetic and epigenetic mechanisms across the life span. Natural experiments demonstrate that with initiatives such as increased use of public transportation, both air quality and community health improve. Similarly, the Clean Air Act has improved air quality, although exposure inequities persist. Other effective strategies for reducing air pollution include ending reliance on coal, oil, and gas; regulating industrial emissions; reducing exposure with attention to proximity of residences, schools, and child care facilities to traffic; and a greater awareness of the Air Quality Index. This policy reviews both short- and long-term health consequences of ambient air pollution, especially in relation to developmental exposures. It examines individual, community, and legislative strategies to mitigate air pollution.
Collapse
Affiliation(s)
- Heather L Brumberg
- Division of Neonatology, Maria Fareri Children's Hospital, Westchester Medical Center and Departments of Pediatrics and Public Health, New York Medical College, Valhalla, New York; and
| | | | | |
Collapse
|
25
|
Tham KW, Parshetti GK, Anand P, Cheong DKW, Sekhar C. Performance characteristics of a fan filter unit (FFU) in mitigating particulate matter levels in a naturally ventilated classroom during haze conditions. INDOOR AIR 2021; 31:795-806. [PMID: 33215777 DOI: 10.1111/ina.12771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The performance of a low-cost fan filter unit (FFU) in mitigating hazardous particulate matter (PM) levels in a naturally ventilated school classroom is presented. The FFU can be considered as a simplified mechanical ventilation and air-conditioning system without heating and cooling functions. The FFU improves indoor air quality through introduction of cleaned outdoor air to flush out internally generated heat and moisture and reducing infiltration by maintaining indoor pressurization. Indoor particle number concentrations were reduced between 85% and 95%. The particle removal performance (PRFFFU ) of the FFU is determined and incorporated into the augmented façade penetration factor (Paug ). A case-specific recursive dynamic mass balance model is used to characterize the infiltration factor (FINF ), deposition rate (K), and the penetration efficiency (Paug ) from continuously monitored indoor and outdoor mass concentration levels. Computed "Paug " (0.07, 0.09, and 0.13) and "FINF " (0.06, 0.08, and 0.11), respectively, for PM10, PM2.5, and PM1 suggest that exposure to PM was significantly reduced indoors. The effectiveness of the FFU for reduced "FINF " and "Paug " may be attributed to its superior filtration, dilution, and exfiltration mechanisms. In comparison with alternative PM mitigation solutions, the FFU is effective, affordable, and sustainable.
Collapse
Affiliation(s)
- Kwok Wai Tham
- Department of Building, Centre for Integrated Building Energy and Sustainability in the Tropics (CiBEST), School of Design and Environment, National University of Singapore, Singapore City, Singapore
| | - Ganesh Kashinath Parshetti
- Department of Building, Centre for Integrated Building Energy and Sustainability in the Tropics (CiBEST), School of Design and Environment, National University of Singapore, Singapore City, Singapore
| | - Prashant Anand
- Department of Building, Centre for Integrated Building Energy and Sustainability in the Tropics (CiBEST), School of Design and Environment, National University of Singapore, Singapore City, Singapore
| | - David Kok Wai Cheong
- Department of Building, Centre for Integrated Building Energy and Sustainability in the Tropics (CiBEST), School of Design and Environment, National University of Singapore, Singapore City, Singapore
| | - Chandra Sekhar
- Department of Building, Centre for Integrated Building Energy and Sustainability in the Tropics (CiBEST), School of Design and Environment, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
26
|
Yang M, Li LY, Qin XD, Ye XY, Yu S, Bao Q, Sun L, Wang ZB, Bloom MS, Jalava P, Hu LW, Yu HY, Zeng XW, Yang BY, Dong GH, Li CW. Perfluorooctanesulfonate and perfluorooctanoate exacerbate airway inflammation in asthmatic mice and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142365. [PMID: 33601665 DOI: 10.1016/j.scitotenv.2020.142365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 05/14/2023]
Abstract
Emerging evidence suggests associations between Perfluoroalkyl substances (PFASs) exposure and asthma, but the findings are inconsistent. The current study sought to investigate whether perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) could contribute to asthma exacerbation and to clarify the underlying biological mechanisms. The objectives are a) to determine whether PFOS or PFOA could aggravate the mouse asthma and pulmonary inflammation b) to investigate whether PFOS and PFOA regulate the balance of Th1/Th2 through the JAK-STAT signaling pathway and aggravated asthma. Ovalbumin (OVA) induced asthmatic mice were exposed to PFOS or PFOA by gavage. PFOS and PFOA serum level and toxicity in organs were assessed; and the impacts on respiratory symptoms, lung tissue pathology, T helper cell (Th2) response, and STAT6 pathway activity were also evaluated. In vitro Jurkat cells were used to study the mechanisms of PFOS and PFOA mediated Th1 and Th2 responses. Both PFOS and PFOA exacerbated lung tissue inflammation (greater number of eosinophils and mucus hyperproduction), upregulated Th2 cytokine production (IL-4 and IL-13), and promoted Th2 cells and STAT6 activation. Furthermore, PFOS and PFOA enhanced the Th2 response in Jurkat cells via STAT6 activation; and the effect of PFOS exposure on GATA-3, IL-4 and IFN-γ was blocked after the expression of STAT6 was suppressed in Jurkat cells, however, the effects of PFOA exposure were only partially blocked. PFOS and PFOA aggravated inflammation among OVA-induced asthmatic mice, by promoting the Th2 response in lymphocytes and disturbing the balance of Th1/Th2 through the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Mo Yang
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Yue Li
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Di Qin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yan Ye
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Bao
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Sun
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology & Biostatistics, University at Albany School of Public Health, Albany, USA
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Chun-Wei Li
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
27
|
Wu M, Wang S, Weng Q, Chen H, Shen J, Li Z, Wu Y, Zhao Y, Li M, Wu Y, Yang S, Zhang Q, Shen H. Prenatal and postnatal exposure to Bisphenol A and Asthma: a systemic review and meta-analysis. J Thorac Dis 2021; 13:1684-1696. [PMID: 33841959 PMCID: PMC8024800 DOI: 10.21037/jtd-20-1550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Bisphenol A (BPA) is a plasticizer with high production and ubiquitous usage in polycarbonate plastics and epoxy resins. The association between prenatal or postnatal exposure to BPA and childhood wheeze/asthma has not been well established. Our study aimed to provide further justification for the current studies. Methods Studies were searched from PubMed, Web of Science, Scopus and Embase from inception until Sep 15, 2020. Meta-analysis was performed to calculate pooled adjusted odds ratios (aOR). The methodological quality of included studies was assessed by using the Newcastle Ottawa Scale (NOS). Results Of 2,814 screened articles, 9 studies with 3,885 participants were included in the final analysis. When all studies were pooled, postnatal exposure to BPA was associated with a higher risk of childhood asthma (aOR =1.43; 95% CI: 1.28–1.59) or childhood wheeze (aOR =1.38; 95% CI: 1.18–1.62). Prenatal exposure to BPA had a small but significant increased risk of childhood asthma (aOR =1.17; 95% CI: 1.01–1.34). An increased risk of childhood wheeze was related to prenatal exposure to BPA at 16 weeks’ gestation (aOR =1.29; 95% CI: 1.07–1.55), but not at 26 weeks’ gestation (aOR =1.07; 95% CI: 0.88–1.29) nor at random-time gestation (aOR =1.02; 95% CI: 0.89–1.16). Conclusions Prenatal and postnatal exposure to BPA was related to an increased risk of childhood asthma. However, only postnatal and early gestational exposure (at 16 weeks) to BPA could induce the risk of childhood wheeze, but not late gestational exposure (at 26 weeks).
Collapse
Affiliation(s)
- Mindan Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Department of Respiration, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Shuyi Wang
- School of Public Health, Sun Yet-sen University, Guangzhou, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haixia Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxin Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyi Yang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qichuan Zhang
- Department of Respiration, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory for Respiratory Diseases, Guangzhou, China
| |
Collapse
|
28
|
Holm SM, Miller MD, Balmes JR. Health effects of wildfire smoke in children and public health tools: a narrative review. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:1-20. [PMID: 32952154 PMCID: PMC7502220 DOI: 10.1038/s41370-020-00267-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 05/20/2023]
Abstract
Wildfire smoke is an increasing environmental health threat to which children are particularly vulnerable, for both physiologic and behavioral reasons. To address the need for improved public health messaging this review summarizes current knowledge and knowledge gaps in the health effects of wildfire smoke in children, as well as tools for public health response aimed at children, including consideration of low-cost sensor data, respirators, and exposures in school environments. There is an established literature of health effects in children from components of ambient air pollution, which are also present in wildfire smoke, and an emerging literature on the effects of wildfire smoke, particularly for respiratory outcomes. Low-cost particulate sensors demonstrate the spatial variability of pollution, including wildfire smoke, where children live and play. Surgical masks and respirators can provide limited protection for children during wildfire events, with expected decreases of roughly 20% and 80% for surgical masks and N95 respirators, respectively. Schools should improve filtration to reduce exposure of our nation's children to smoke during wildfire events. The evidence base described may help clinical and public health authorities provide accurate information to families to improve their decision making.
Collapse
Affiliation(s)
- Stephanie M Holm
- Western States Pediatric Environmental Health Specialty Unit, University of California San Francisco, San Francisco, CA, USA.
- Division of Occupational and Environmental Medicine, University of California San Francisco, San Francisco, CA, USA.
- Division of Epidemiology, School of Public Health, University of California Berkeley, Berkeley, CA, USA.
- Children's Environmental Health Center, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| | - Mark D Miller
- Western States Pediatric Environmental Health Specialty Unit, University of California San Francisco, San Francisco, CA, USA
- Division of Occupational and Environmental Medicine, University of California San Francisco, San Francisco, CA, USA
- Children's Environmental Health Center, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - John R Balmes
- Western States Pediatric Environmental Health Specialty Unit, University of California San Francisco, San Francisco, CA, USA
- Division of Occupational and Environmental Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
29
|
Zeng Z, Ma W, Zhao R, Dong X. Airway exposure to perfluorooctanoate exacerbates airway hyperresponsiveness and downregulates glucocorticoid receptor expression in asthmatic mice. Transl Pediatr 2021; 10:323-332. [PMID: 33708518 PMCID: PMC7944165 DOI: 10.21037/tp-20-246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multiple environmental risk factors play a vital role in the pathogenesis of asthma, which contribute to the phenotypic expression of asthma. Perfluorooctanoate (PFOA) is the most common and abundant perfluorocarbon (PFC) in humans, and it has been detected in water and the atmosphere worldwide. Glucocorticoid receptor (GR) is considered to exert a protective effect on asthma and is associated with the sensitivity to glucocorticoids. Dermal or oral exposure to PFOA has been shown to contribute various effects on airway inflammation in individuals with ovalbumin (OVA)-induced asthma. Notably, airway exposure has a critical contribution to the pathogenesis of asthma. However, the effect of airway exposure to PFOA on airway hyperresponsiveness (AHR) in patients with asthma is not currently understood. METHODS BALB/c mice were administered OVA to induce asthma. PFOA was then administered intratracheally to OVA-induced mice for seven days. Then we assessed the effect of airway exposure to PFOA on AHR and the regulation of the GR expression in asthmatic mice. RESULTS The results showed aggravated AHR and T helper type 2 (Th2) airway inflammation in asthmatic mice. Furthermore, these mice show a substantial decrease in the expression of the GR mRNA and protein. CONCLUSIONS These data strongly suggest that acute airway exposure to PFOA leads to Th2-related AHR and decreases GR expression, which may increase the difficulty in the treatment of asthma.
Collapse
Affiliation(s)
- Zeyu Zeng
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weihui Ma
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ran Zhao
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Gutiérrez-Delgado RI, Barraza-Villarreal A, Escamilla-Núñez MC, Hernández-Cadena L, Cortez-Lugo M, Sly P, Romieu I. Prenatal exposure to VOCs and NOx and lung function in preschoolers. Pediatr Pulmonol 2020; 55:2142-2149. [PMID: 32510180 PMCID: PMC7485223 DOI: 10.1002/ppul.24889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND Several studies have shown that exposure to air pollutants affects lung growth and development and can result in poor respiratory health in early life. METHODS We included a subsample of 772 Mexican preschoolers whose mothers participated in a Prenatal Omega-3 fatty acid Supplements, GRowth, And Development birth cohort study with the aim to evaluate the impact of prenatal exposure to volatile organic compounds and nitrogen oxides on lung function measured by oscillation tests. The preschoolers were followed until 5 years of age. Anthropometric measurements and forced oscillation tests were performed at 36, 48, and 60 months of age. Information on sociodemographic and health characteristics was obtained during follow up. Prenatal exposure to volatile organic compounds and nitrogen oxides was evaluated using a land use regression models and the association between them was tested using a lineal regression and longitudinal linear mixed effect models adjusting for potential confounders. RESULTS Overall, the mean (standard deviation) of the measurements of respiratory system resistance and respiratory system reactance at 6, 8, and 10 Hz during the follow-up period was 11.3 (2.4), 11.1 (2.4), 10.3 (2.2) and -5.2 (1.6), -4.8 (1.7), and -4.6 hPa s L-1 (1.6), respectively. We found a significantly positive association between respiratory resistance (βRrs6 = 0.011; 95%CI: 0.001, 0.023) (P < .05) and prenatal exposure to nitrogen dioxide and a marginally negatively association between respiratory reactance (βXrs6 = -11.40 95%CI: -25.26, 1.17 and βXrs8 = -11.91 95%CI: -26.51, 1.43) (P = .07) and prenatal exposure to xylene. CONCLUSION Prenatal exposure to air pollutants was significantly associated with the alteration of lung function measured by oscillation tests in these preschool children.
Collapse
Affiliation(s)
- Rosa I Gutiérrez-Delgado
- Departamento de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | | - María C Escamilla-Núñez
- Departamento de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Leticia Hernández-Cadena
- Departamento de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Marlene Cortez-Lugo
- Departamento de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Peter Sly
- Department of Children's Health and Environment, The University of Queensland, Brisbane, Queensland, Australia.,WHO Collaborating Centre for Research on Children's Environmental Health, Perth, Australia
| | - Isabelle Romieu
- Departamento de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| |
Collapse
|
31
|
Quirós-Alcalá L, Hansel NN, McCormack M, Calafat AM, Ye X, Peng RD, Matsui EC. Exposure to bisphenols and asthma morbidity among low-income urban children with asthma. J Allergy Clin Immunol 2020; 147:577-586.e7. [PMID: 32736870 DOI: 10.1016/j.jaci.2020.05.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Bisphenol A (BPA) has been linked with pediatric asthma development and allergic airway inflammation in animal models. Whether exposure to BPA or its structural analogs bisphenol S (BPS) and bisphenol F (BPF) is associated with asthma morbidity remains unknown. OBJECTIVE We examined associations between bisphenols and morbidity due to pediatric asthma. METHODS We quantified concentrations of BPA, BPS, and BPF in 660 urine samples from 148 predominantly low-income, African American children (aged 5-17 years) with established asthma. We used biobanked biospecimens and data on symptoms, health care utilization, and pulmonary function and inflammation that were collected every 3 months over the course of a year. We used generalized estimating equations to examine associations between concentrations or detection of urinary bisphenols and morbidity outcomes and assessed heterogeneity of associations by sex. RESULTS We observed consistent positive associations between BPA exposure and measures of asthma morbidity. For example, we observed increased odds of general symptom days (adjusted odds ratio [aOR] = 1.40 [95% C = 1.02-1.92]), maximal symptom days (aOR = 1.36 [95% CI = 1.00-1.83]), and emergency department visits (aOR = 2.12 [95% CI =1.28-3.51]) per 10-fold increase in BPA concentration. We also observed evidence of sexually dimorphic effects; BPA concentrations were associated with increased odds of symptom days and health care utilization only among boys. Findings regarding BPS and BPF did not consistently point to associations with asthma symptoms or health care utilization. CONCLUSION We found evidence to suggest that BPA exposure in a predominantly low-income, minority pediatric cohort is associated with asthma morbidity and that associations may differ by sex. Our findings support additional studies, given the high pediatric asthma burden and widespread exposure to BPA in the United States.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md; Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Md.
| | - Nadia N Hansel
- School of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Antonia M Calafat
- National Center for Environmental Health, US Centers for Disease Control and Prevention, Atlanta, Ga
| | - Xiaoyun Ye
- National Center for Environmental Health, US Centers for Disease Control and Prevention, Atlanta, Ga
| | - Roger D Peng
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Elizabeth C Matsui
- School of Medicine, Johns Hopkins University, Baltimore, Md; Dell Medical School, University of Texas, Austin, Tex
| |
Collapse
|
32
|
Hu LW, Yu S, Marks T, Zhang YT, Lodge CC, Dharmage SC, Gurram N, Bloom MS, Lin S, Zeeshan M, Yu HY, Zhou Y, Liu RQ, Yang BY, Zeng XW, Hu Q, Dong GH. The time window of pet ownership exposure modifies the relationship of Environmental Tobacco Smoke with lung function: A large population-based cohort study. ENVIRONMENTAL RESEARCH 2020; 183:109197. [PMID: 32058142 DOI: 10.1016/j.envres.2020.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
There is a large body of evidence linking Environmental Tobacco Smoke (ETS) exposure with impaired lung function. However, it is not known whether exposure to pets modifies this relationship. To investigate if pet ownership changes the association between ETS exposure and lung function, a population-based sample of 7326 children, 7-14 years old, were randomly recruited from 24 districts in northeast China. Lung function including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and maximal mid-expiratory flow (MMEF) was measured by spirometry, while pet ownership time periods and ETS exposure were collected by questionnaire. Two-level regression analysis was done, with covariates controlled for. The results showed pet exposure in certain early lifetime windows modified the associations of ETS exposure on decreased lung function in children. Among children exposed to current ETS, those exposed to pets in utero had greater reductions in lung function (for instance: OR for reduced FVC (<85% predicted) = 10.86; 95% CI: 3.80-30.97) than those not exposed to pets in utero (OR = 2.32; 95% CI: 1.76-3.05) (pinteraction = 0.005). While, children exposed to current pet ownership reduced the lung function impairment induced by ETS exposure during the first 2 years of life and/or ETS exposure during pregnancy, especially for FVC impairment. For instance, OR (95%CI) for reduced FVC (<85% predicted) was 0.81 (0.56, 1.18) and 1.42 (1.15, 1.74), respectively, for children with or without current pet ownership exposed to ETS during the first 2 years of life (pinteraction = 0.010). Furthermore, pet type or number of pets did not significantly modify associations between ETS exposure and lung function. In conclusion, the timing of pet ownership modified associations between ETS exposure and lung function, pet ownership in utero and during the first 2 years of life significantly worsened the adverse impacts of passive smoking on lung function.
Collapse
Affiliation(s)
- Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tia Marks
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Departments of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Caroline C Lodge
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, 3052, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, 3052, Australia
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Departments of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Departments of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA; Departments of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Shao Lin
- Departments of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, 12144, USA; Departments of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiang Hu
- Department of Pediatric Surgery, Weifang People's Hospital, Weifang, 261041, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
33
|
Jøhnk C, Høst A, Husby S, Schoeters G, Timmermann CAG, Kyhl HB, Beck IH, Andersson AM, Frederiksen H, Jensen TK. Maternal phthalate exposure and asthma, rhinitis and eczema in 552 children aged 5 years; a prospective cohort study. Environ Health 2020; 19:32. [PMID: 32169083 PMCID: PMC7069194 DOI: 10.1186/s12940-020-00586-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal phthalate exposure has been suggested to alter immune responses and increase the risk of asthma, eczema and rhinitis. However, few studies have examined the effects in prospective cohorts and only one examined rhinitis. We therefore studied associations between maternal urinary concentrations of phthalate metabolites and asthma, eczema and rhinitis in offspring aged 5 years. METHODS From 552 pregnant women in the Odense Child Cohort, we quantified urinary concentrations of 12 phthalate metabolites in third trimester. We assessed asthma, rhinitis and eczema in their offspring at age 5 years with a questionnaire based on the International Study of Asthma and Allergies in Childhood (ISAAC), and conducted logistic regression adjusting for relevant confounders. RESULTS 7.4% of the children had asthma, 11.7% eczema and 9.2% rhinitis. Phthalate exposure was low compared to previous cohorts. No significant associations between prenatal phthalate exposure and asthma were found. Odds ratios (ORs) of child rhinitis with a doubling in ΣDiNPm and di-2-ethylhexyl phthalate metabolite (ΣDEHPm) concentrations were, respectively, 1.15 (95% confidence interval (CI) 0.97,1.36) and 1.21 (CI 0.93,1.58). The OR of eczema when doubling ΣDiNPm was 1.24 (CI 1.00,1.55), whereas the OR of using medicine against eczema when doubling a di-ethyl phthalate (DEP) metabolite was 0.81 (CI 0.68,0.96). CONCLUSION The lack of association between maternal phthalate exposure and asthma in the offspring may be due to low exposure and difficulties in determining asthma in 5-year-olds. The higher odds of rhinitis may raise public concern but further research in larger cohorts of older children is warranted.
Collapse
Affiliation(s)
- Camilla Jøhnk
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Arne Høst
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Greet Schoeters
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Clara Amalie Gade Timmermann
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| | - Iben Have Beck
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|
34
|
Xing X, Hu L, Guo Y, Bloom MS, Li S, Chen G, Yim SHL, Gurram N, Yang M, Xiao X, Xu S, Wei Q, Yu H, Yang B, Zeng X, Chen W, Hu Q, Dong G. Interactions between ambient air pollution and obesity on lung function in children: The Seven Northeastern Chinese Cities (SNEC) Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134397. [PMID: 31677469 DOI: 10.1016/j.scitotenv.2019.134397] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Children are vulnerable to air pollution-induced lung function deficits, and the prevalence of obesity has been increasing in children. To evaluate the joint effects of long-term PM1 (particulate matter with an aerodynamic diameter ≤ 1.0 μm) exposure and obesity on children's lung function, a cross-sectional sample of 6740 children (aged 7-14 years) was enrolled across seven northeastern Chinese cities from 2012 to 2013. Weight and lung function, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and maximal mid-expiratory flow (MMEF), were measured according to standardized protocols. Average PM1, PM2.5, PM10 and nitrogen dioxide (NO2) exposure levels were estimated using a spatiotemporal model, and sulphur dioxide (SO2) and ozone (O3) exposure were estimated using data from municipal air monitoring stations. Two-level logistic regression and general linear models were used to analyze the joint effects of body mass index (BMI) and air pollutants. The results showed that long-term air pollution exposure was associated with lung function impairment and there were significant interactions with BMI. Associations were stronger among obese and overweight than normal weight participants (the adjusted odds ratios (95% confidence intervals) for PM1 and lung function impairments in three increasing BMI categories were 1.50 (1.07-2.11) to 2.55 (1.59-4.07) for FVC < 85% predicted, 1.44 (1.03-2.01) to 2.51 (1.53-4.11) for FEV1 < 85% predicted, 1.34 (0.97-1.84) to 2.04 (1.24-3.35) for PEF < 75% predicted, and 1.34 (1.01-1.78) to 1.93 (1.26-2.95) for MMEF < 75% predicted). Consistent results were detected in linear regression models for PM1, PM2.5 and SO2 on FVC and FEV1 impairments (PInteraction < 0.05). These modification effects were stronger among females and older participants. These results can provide policy makers with more comprehensive information for to develop strategies for preventing air pollution induced children's lung function deficits among children.
Collapse
Affiliation(s)
- Xiumei Xing
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Mo Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xiao
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuli Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wei
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Boyi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiang Hu
- Department of Pediatric Surgery, Weifang People's Hospital, Weifang 261041, China.
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
35
|
What is the impact of outdoor pollution on children's asthma? Arch Pediatr 2019; 26:487-491. [PMID: 31685409 DOI: 10.1016/j.arcped.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/31/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
Outdoor pollution is a complex mix of more than 200 air contaminants. Among these pollutants, ozone, nitrogen dioxide and fine particles may generate bronchial inflammation and hyperreactivity. The hypothesis that pollution contributes to the development of asthma in children is based on epidemiological, clinical and experimental data. Many risk factors during the in utero and postnatal period have been identified in the aetiology of childhood asthma. During pregnancy, outdoor pollution was identified as a causal factor of respiratory disease in neonatal cohort studies. Several epidemiological studies also demonstrate that outdoor pollution is a trigger of asthma exacerbations. This review aims to highlight the current knowledge on outdoor pollution and asthma.
Collapse
|
36
|
Abellan A, Sunyer J, Garcia-Esteban R, Basterrechea M, Duarte-Salles T, Ferrero A, Garcia-Aymerich J, Gascon M, Grimalt JO, Lopez-Espinosa MJ, Zabaleta C, Vrijheid M, Casas M. Prenatal exposure to organochlorine compounds and lung function during childhood. ENVIRONMENT INTERNATIONAL 2019; 131:105049. [PMID: 31362153 DOI: 10.1016/j.envint.2019.105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Prenatal exposure to organochlorine compounds (OCs) can increase the risk of reported respiratory symptoms in children. It remains unclear whether these compounds can also impact on lung function. We assessed the association between prenatal exposure to OCs and lung function during childhood. METHODS We included 1308 mother-child pairs enrolled in a prospective cohort study. Prenatal concentrations of p,p'-dichlorodiphenyltrichloroethane [p,p'-DDT], p,p'-dichlorodiphenyldichloroethylene [p,p'-DDE], hexachlorobenzene [HCB], and seven polychlorinated biphenyls [PCBs] were measured in cord blood. Spirometry was performed in the offspring at ages 4 (n = 636) and 7 years (n = 1192). RESULTS More than 80% of samples presented quantifiable levels of p,p'-DDE, HCB, PCB-138, PCB-153, and PCB-180; p,p'-DDE was the compound with the highest median concentrations. At 4 years, prenatal p,p'-DDE exposure was associated with a decrease in forced expiratory volume in 1 s (FEV1) in all quartiles of exposure (e.g., third quartile [0.23-0.34 ng/mL]: β for FEV1 -53.61 mL, 95% CI -89.87, -17.35, vs. the lowest). Prenatal p,p'-DDE levels also decreased forced vital capacity (FVC) and FEV1/FVC, but associations did not reach statistical significance in most exposure quartiles. At 7 years, p,p'-DDE was associated with a decrease in FVC and FEV1 in only the second quartile of exposure (e.g. β for FEV1 -36.96 mL, 95% CI -66.22, -7.70, vs. the lowest). Prenatal exposure to HCB was associated with decreased FVC and FEV1, but in only the second quartile and at 7 years (e.g. [0.07-0.14 ng/mL]: β for FEV1 -25.79 mL, 95% CI -55.98, 4.39, vs. the lowest). PCBs were not consistently associated with lung function. CONCLUSION Prenatal exposure to p,p'-DDE may decrease lung function during childhood, especially FEV1 and at medium levels of exposure. Further and deeper knowledge on the impact of environmental chemicals during pregnancy on lung development is needed.
Collapse
Affiliation(s)
- Alicia Abellan
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Raquel Garcia-Esteban
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mikel Basterrechea
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, San Sebastian, Spain; Health Research Institute (BIODONOSTIA), San Sebastian, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Amparo Ferrero
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain
| | - Judith Garcia-Aymerich
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Maria-Jose Lopez-Espinosa
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Carlos Zabaleta
- Health Research Institute (BIODONOSTIA), San Sebastian, Spain; Paediatrics Service, Hospital Zumarraga, Gipuzkoa, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
37
|
Hwang YH, Kim SW. PM 2.5 and pediatric asthma. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019. [DOI: 10.4168/aard.2019.7.3.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoon Ha Hwang
- Department of Pediatrics, Busan St. Mary's Hospital, Busan, Korea
| | - Sung Won Kim
- Department of Pediatrics, Busan St. Mary's Hospital, Busan, Korea
| |
Collapse
|
38
|
Prenatal Household Air Pollution Alters Cord Blood Mononuclear Cell Mitochondrial DNA Copy Number: Sex-Specific Associations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 16:ijerph16010026. [PMID: 30583542 PMCID: PMC6338880 DOI: 10.3390/ijerph16010026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Background: Associations between prenatal household air pollution (HAP) exposure or cookstove intervention to reduce HAP and cord blood mononuclear cell (CBMC) mitochondrial deoxyribonucleic acid copy number (mtDNAcn), an oxidative stress biomarker, are unknown. Materials and Methods: Pregnant women were recruited and randomized to one of two cookstove interventions, including a clean-burning liquefied petroleum gas (LPG) stove, or control. Prenatal HAP exposure was determined by serial, personal carbon monoxide (CO) measurements. CBMC mtDNAcn was measured by quantitative polymerase chain reaction. Multivariable linear regression determined associations between prenatal CO and cookstove arm on mtDNAcn. Associations between mtDNAcn and birth outcomes and effect modification by infant sex were explored. Results: LPG users had the lowest CO exposures (p = 0.02 by ANOVA). In boys only, average prenatal CO was inversely associated with mtDNAcn (β = -14.84, SE = 6.41, p = 0.03, per 1ppm increase in CO). When examined by study arm, LPG cookstove had the opposite effect in all children (LPG β = 19.34, SE = 9.72, p = 0.049), but especially boys (β = 30.65, SE = 14.46, p = 0.04), as compared to Control. Increased mtDNAcn was associated with improved birth outcomes. Conclusions: Increased prenatal HAP exposure reduces CBMC mtDNAcn, suggesting cumulative prenatal oxidative stress injury. An LPG stove intervention may reverse this effect. Boys appear most susceptible.
Collapse
|
39
|
Shi W, Lin Z, Liao C, Zhang J, Liu W, Wang X, Cai J, Zou Z, Wang H, Norback D, Kan H, Huang C, Zhao Z. Urinary phthalate metabolites in relation to childhood asthmatic and allergic symptoms in Shanghai. ENVIRONMENT INTERNATIONAL 2018; 121:276-286. [PMID: 30223204 DOI: 10.1016/j.envint.2018.08.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Few studies can be found on phthalate exposure in relation to childhood asthma and allergic symptoms from Mainland China, where a persistent increase in prevalence of childhood asthma and allergic disease has been observed. OBJECTIVES This study aimed to assess the exposure levels to phthalates and its relationship with asthmatic and allergic symptoms among children in Shanghai, which has the highest prevalence of childhood asthma in Mainland China. METHODS A follow-up study (2013-2014) of 434 children aged 5-10 years was conducted, based on the China, Children, Homes, Health (CCHH) study (2011-2012) in Shanghai, China. Information on asthmatic and allergic symptoms (wheeze, rhinitis, and eczema) were collected using validated questionnaires. Ten phthalate metabolites in morning urine samples were analyzed by high-performance liquid chromatography with triple quadrupole tandem mass spectrometry (HPLC-MS/MS). Multivariable logistic regression was used to estimate the associations between symptoms and urinary phthalate metabolites controlling for demographics, family history of allergic diseases and other covariates. RESULTS Nine out of 10 phthalate metabolites were detected in all subjects (average detection rate of 93.2%). By multivariable logistic regression analyses, the 4th quartile of Mono‑n‑butyl phthalate (MnBP) (reference: 1st quartile) had adjusted prevalence odds ratios (aPORS) and 95% confidence intervals (95%CIs) of 2.27(1.06-4.88), 2.14(1.02-4.46) and 2.98(1.19-7.50) for wheeze, rhinitis and eczema, respectively, while those of Mono‑isobutyl phthalate (MiBP) were 2.23(1.08-4.62) and 2.96(1.02-8.60) for rhinitis and eczema, respectively. The highest quartile of mono‑2‑ethyl‑5‑hydroxyhexyl phthalate(MEHHP) and mono‑2‑ethyl‑5‑oxohexyl phthalate(MEOHP) had aPORS and 95%CIs of 3.10(1.10-8.74) and 2.63(1.02-6.80) for eczema, respectively. By summing up the 4 low molecular weight metabolites (∑4LMWP) and all 9 metabolites (∑9Total), the highest quartiles of ∑4LMWP and∑9Total were significantly associated with all symptoms. In most of the above associations, a significantly increasing trend from the 1st to the 4th quartile was observed. Subjects with 2 or 3 concomitant symptoms (reference: no symptoms) had significant positive associations with a higher level (the 4th quartile) of phthalate metabolites. CONCLUSIONS Low MW metabolites such as MnBP and MiBP, high MW DEHP and the total amount of phthalate metabolites might have adverse health effects on asthma and allergic symptoms in Chinese children.
Collapse
Affiliation(s)
- Wenming Shi
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhijing Lin
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Chenxi Liao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jialing Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueying Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiao Cai
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhijun Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan 316021, China
| | - Dan Norback
- Department of Medical Sciences, Uppsala University, Uppsala SE 751-85, Sweden
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Key Laboratory of Health Technology Assessment, National Health and Family Planning Commission of the People's Republic of China, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200032, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety of the Ministry of Education, Key Laboratory of Health Technology Assessment, National Health and Family Planning Commission of the People's Republic of China, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200032, China.
| |
Collapse
|
40
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
41
|
Quirós-Alcalá L, Hansel NN, McCormack MC, Matsui EC. Paraben exposures and asthma-related outcomes among children from the US general population. J Allergy Clin Immunol 2018; 143:948-956.e4. [PMID: 30194988 DOI: 10.1016/j.jaci.2018.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Parabens are synthetic preservatives present in many consumer products. Their antimicrobial and endocrine-disrupting properties have raised concerns that they might play a role in respiratory and allergic diseases; however, studies exploring these associations are scarce. OBJECTIVE We examined the cross-sectional association between parabens and asthma morbidity among 450 children with asthma and with asthma prevalence among 4023 children in the US general population participating in the National Health and Nutrition Examination Survey (2005-2014). METHODS We conducted multivariable logistic regression to examine associations between urinary paraben biomarker concentrations (butyl paraben, ethyl paraben, methyl paraben [MP], and propyl paraben [PP]) and asthma attacks and emergency department visits among children with asthma and with a current asthma diagnosis among all children. We also examined heterogeneity of associations by sex. RESULTS We observed an increased prevalence odds of reporting emergency department visits for every 10-fold increase in MP and PP concentrations among boys with asthma (adjusted prevalence odds ratio, 2.61 [95% CI, 1.40-4.85] and 2.18 [95% CI, 1.22-3.89, respectively; Pinteraction-MP = .002 and Pinteraction-PP = .003); associations remained after adjusting for other phenolic compounds previously linked to respiratory outcomes. No other dimorphic effects of exposure by sex were observed. Among children in the general population, no overall associations with current asthma were observed, although there was a positive trend with PP and a current asthma diagnosis. CONCLUSION We identified differential effects of exposure to select parabens by sex on asthma morbidity. Further studies are needed to replicate these findings and elucidate mechanisms by which parabens could affect respiratory health and elicit dimorphic effects by sex.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Md.
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Md; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Md; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| | - Elizabeth C Matsui
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Md; Johns Hopkins University Bloomberg School of Public Health, Baltimore, Md
| |
Collapse
|
42
|
Rafael-Vázquez L, García-Trejo S, Aztatzi-Aguilar O, Bazán-Perkins B, Quintanilla-Vega B. Exposure to diethylhexyl phthalate (DEHP) and monoethylhexyl phthalate (MEHP) promotes the loss of alveolar epithelial phenotype of A549 cells. Toxicol Lett 2018; 294:135-144. [DOI: 10.1016/j.toxlet.2018.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/13/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
43
|
Buckley JP, Quirós-Alcalá L, Teitelbaum SL, Calafat AM, Wolff MS, Engel SM. Associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic diseases among children aged 6 and 7 years. ENVIRONMENT INTERNATIONAL 2018; 115:79-88. [PMID: 29550712 PMCID: PMC5970077 DOI: 10.1016/j.envint.2018.03.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Prenatal environmental phenol and phthalate exposures may alter immune or inflammatory responses leading to respiratory and allergic disease. OBJECTIVES We estimated associations of prenatal environmental phenol and phthalate biomarkers with respiratory and allergic outcomes among children in the Mount Sinai Children's Environmental Health Study. METHODS We quantified urinary biomarkers of benzophenone-3, bisphenol A, paradichlorobenzene (as 2,5-dichlorophenol), triclosan, and 10 phthalate metabolites in third trimester maternal samples and assessed asthma, wheeze, and atopic skin conditions via parent questionnaires at ages 6 and 7 years (n = 164 children with 240 observations). We used logistic regression to estimate covariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) per standard deviation difference in natural log biomarker concentrations and examined effect measure modification by child's sex. RESULTS Associations of prenatal 2,5-dichlorophenol (all outcomes) and bisphenol A (asthma outcomes) were modified by child's sex, with increased odds of outcomes among boys but not girls. Among boys, ORs for asthma diagnosis per standard deviation difference in biomarker concentration were 3.00 (95% CI: 1.36, 6.59) for 2,5-dichlorophenol and 3.04 (95% CI: 1.38, 6.68) for bisphenol A. Wheeze in the past 12 months was inversely associated with low molecular weight phthalate metabolites among girls only (OR: 0.27, 95% CI: 0.13, 0.59) and with benzophenone-3 among all children (OR: 0.65, 95% CI: 0.44, 0.96). CONCLUSIONS Prenatal bisphenol A and paradichlorobenzene exposures were associated with pediatric respiratory outcomes among boys. Future studies may shed light on biological mechanisms and potential sexually-dimorphic effects of select phenols and phthalates on respiratory disease development.
Collapse
Affiliation(s)
- Jessie P Buckley
- Departments of Environmental Health & Engineering and Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
| | - Lesliam Quirós-Alcalá
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, USA; Pulmonary and Critical Care Division, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary S Wolff
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
44
|
Lee AG, Le Grand B, Hsu HHL, Chiu YHM, Brennan KJ, Bose S, Rosa MJ, Brunst KJ, Kloog I, Wilson A, Schwartz J, Morgan W, Coull BA, Wright RO, Baccarelli AA, Wright RJ. Prenatal fine particulate exposure associated with reduced childhood lung function and nasal epithelia GSTP1 hypermethylation: Sex-specific effects. Respir Res 2018; 19:76. [PMID: 29703190 PMCID: PMC5923186 DOI: 10.1186/s12931-018-0774-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Background In utero exposure to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) has been linked to child lung function. Overlapping evidence suggests that child sex and exposure timing may modify effects and associations may be mediated through glutathione S-transferase P1 (GSTP1) methylation. Methods We prospectively examined associations among prenatal PM2.5 exposure and child lung function and GSTP1 methylation in an urban pregnancy cohort study. We employed a validated satellite-based spatiotemporally resolved prediction model to estimate daily prenatal PM2.5 exposure over gestation. We used Baysian distributed lag interaction models (BDLIMs) to identify sensitive windows for prenatal PM2.5 exposure on child lung function and nasal epithelia GSTP1 methylation at age 7 years, and to examine effect modification by child sex. Results BDLIMs identified a sensitive window for prenatal PM2.5 exposure at 35–40 weeks gestation [cumulative effect estimate (CEE) = − 0.10, 95%CI = − 0.19 to − 0.01, per μg/m3 increase in PM2.5] and at 36–40 weeks (CEE = − 0.12, 95%CI = − 0.20 to − 0.01) on FEV1 and FVC, respectively, in boys. BDLIMs also identified a sensitive window of exposure at 37–40 weeks gestation between higher prenatal PM2.5 exposure and increased GSTP1 percent methylation. The association between higher GSTP1 percent methylation and decreased FEV1 was borderline significant in the sample as a whole (β = − 0.37, SE = 0.20, p = 0.06) and in boys in stratified analyses (β = − 0.56, SE = 0.29, p = 0.05). Conclusions Prenatal PM2.5 exposure in late pregnancy was associated with impaired early childhood lung function and hypermethylation of GSTPI in DNA isolated from nasal epithelial cells. There was a trend towards higher GSTP1 percent methylation being associated with reduced FEV1. All findings were most evident among boys.
Collapse
Affiliation(s)
- Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1236 Park Avenue, First Floor, New York, NY, 10029, USA.
| | - Blake Le Grand
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Sonali Bose
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1236 Park Avenue, First Floor, New York, NY, 10029, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly J Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wayne Morgan
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
45
|
A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases. ATMOSPHERE 2018. [DOI: 10.3390/atmos9040150] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Gutiérrez-Delgado RI, Barraza-Villarreal A, Escamilla-Núñez C, Hernández-Cadena L, Garcia-Feregrino R, Shackleton C, Ramakrishnan U, Sly PD, Romieu I. Effect of omega-3 fatty acids supplementation during pregnancy on lung function in preschoolers: a clinical trial. J Asthma 2018; 56:296-302. [PMID: 29617210 DOI: 10.1080/02770903.2018.1452934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RATIONALE Prenatal omega-3 fatty acids improve alveolarization, diminish inflammation, and improve pulmonary growth, but it is unclear whether these outcomes translate into improved postnatal lung function. OBJECTIVE We assessed the effect of prenatal supplementation with docosahexaenoic acid (DHA) on offspring lung function through 60 months of age. METHODS We included a cohort of 772 Mexican preschoolers whose mothers participated in a clinical trial (NCT00646360) of supplementation with DHA or a placebo from week 18-22 of gestation through delivery. MEASUREMENTS The children were followed after birth and anthropometric measurements and forced oscillation tests were performed at 36, 48, and 60 months of age. The effect of DHA was tested using a longitudinal mixed effect models. RESULTS Overall, mean (Standard Deviation) of the measurements of respiratory system resistance and respiratory system reactance at 6, 8, and 10 Hz during follow up period were 11.3 (2.4), 11.1 (2.4), 10.3 (2.2) and -5.2 (1.6), -4.8 (1.7), -4.6 (1.6), respectively. There were no significant differences in pulmonary function by treatment group. DHA did not affect the average lung function or the trajectories through 60 months. CONCLUSIONS Prenatal DHA supplementation did not influence pulmonary function in this cohort of Mexican preschoolers.
Collapse
Affiliation(s)
- R I Gutiérrez-Delgado
- a Instituto Nacional de Salud Pública (INSP) , Centro de Investigaciones en Salud Poblacional, Cuernavaca , Morelos , Mexico
| | - A Barraza-Villarreal
- a Instituto Nacional de Salud Pública (INSP) , Centro de Investigaciones en Salud Poblacional, Cuernavaca , Morelos , Mexico
| | - C Escamilla-Núñez
- a Instituto Nacional de Salud Pública (INSP) , Centro de Investigaciones en Salud Poblacional, Cuernavaca , Morelos , Mexico
| | - L Hernández-Cadena
- a Instituto Nacional de Salud Pública (INSP) , Centro de Investigaciones en Salud Poblacional, Cuernavaca , Morelos , Mexico
| | - R Garcia-Feregrino
- a Instituto Nacional de Salud Pública (INSP) , Centro de Investigaciones en Salud Poblacional, Cuernavaca , Morelos , Mexico
| | - C Shackleton
- b Department of Children's Health and Environment , the University of Queensland , Brisbane , QLD , Australia
| | - U Ramakrishnan
- c Nutrition and Health Sciences Program and Hubert Department of Global Health , Rollins School of Public Health, Emory University , Atlanta , GA , USA
| | - P D Sly
- b Department of Children's Health and Environment , the University of Queensland , Brisbane , QLD , Australia.,d World Healh Organization (WHO) , WHO Collaborating Centre for Children's Health and Environment , Brisbane , Australia
| | - I Romieu
- a Instituto Nacional de Salud Pública (INSP) , Centro de Investigaciones en Salud Poblacional, Cuernavaca , Morelos , Mexico
| |
Collapse
|
47
|
Hashmi MZ, Hasnain A, Syed JH, Tariq M, Su X, Mubarak H, Nasim W, Shen C. PCB118-Induced Cell Proliferation Mediated by Oxidative Stress and MAPK Signaling Pathway in HELF Cells. Dose Response 2018; 16:1559325817751525. [PMID: 29344011 PMCID: PMC5761904 DOI: 10.1177/1559325817751525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
The present study used human lung fibroblast (HELF) cells as a test model to evaluate the role of oxidative stress (OS) and extracellular signal-regulated kinases 1/2 (ERK1/2) protein in HELF cell proliferation exposed to PCB118. Results from 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide demonstrated that PCB118 at lower concentrations stimulated proliferation of HELF cell and abrogate proliferative effect at higher dose concentrations and in a time-dependent manner. Moreover, reactive oxygen species, malondialdehyde (MDA), and superoxide dismutase showed a significant increase at higher concentrations of PCB118 than the lower concentrations with the passage of time. Antioxidant enzymes such as glutathione peroxidase exhibited decreasing trends in dose- and time-dependent manner. Lipid peroxidation assay resulted in a significant increase in MDA level in PCB118-treated HELF cells compared with controls, suggesting that OS plays a key role in PCB118-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of PCB118 exposure than the lower concentrations. It was found that PCB118 showed expression of ERK1/2 protein after 4 hours, while after 48 hours, the protein expression was less, indicating PCB toxicity to MAPK protein of HELF cell. Oxidative stress, ERK1/2, and HELF cell proliferation exhibited correlation. The results will elaborate toxicological evaluation of PCB118 to HELF cells and will help to develop drug for PCB-induced diseases.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China.,Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Ahmad Hasnain
- Department of Geography, Bahauddin Zakariya University, Multan, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad Tariq
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Wucheng, People's Republic of China
| | - Hussani Mubarak
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Wajid Nasim
- Department of Environmental Sciences, COMSATS Institute of Information Technology (CIIT), Vehari, Pakistan
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
48
|
Ginsberg GL, Belleggia G. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust. ENVIRONMENT INTERNATIONAL 2017; 109:101-113. [PMID: 28890219 DOI: 10.1016/j.envint.2017.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment.
Collapse
Affiliation(s)
- Gary L Ginsberg
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA.
| | - Giuliana Belleggia
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA
| |
Collapse
|
49
|
Collaco JM, McGrath-Morrow SA. Electronic Cigarettes: Exposure and Use Among Pediatric Populations. J Aerosol Med Pulm Drug Deliv 2017; 31:71-77. [PMID: 29068754 DOI: 10.1089/jamp.2017.1418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As an emerging inhalational exposure, electronic cigarettes (e-cigarettes) have rapidly gained public awareness with increasing use among adolescents and adults, leading to increased primary use by adolescents and increased secondhand exposure to emissions in infants, children, and adolescents. Although the long-term health risks for primary use and secondhand emission exposure are unknown, limited data from animal studies suggest that there is the potential for long-term lung injury and altered neurocognitive development in children with exposure to nicotine-containing aerosols. In this pediatric-focused review, we discuss the history of e-cigarettes, the demographics of adolescent users, effects on health, and current legislative efforts to protect infants, children, and adolescents from exposure.
Collapse
Affiliation(s)
- Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | - Sharon A McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions , Baltimore, Maryland
| |
Collapse
|
50
|
Cox RS, Irwin P, Scannell L, Ungar M, Bennett TD. Children and youth's biopsychosocial wellbeing in the context of energy resource activities. ENVIRONMENTAL RESEARCH 2017; 158:499-507. [PMID: 28709032 DOI: 10.1016/j.envres.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Children and youth emerge as key populations that are impacted by energy resource activities, in part because of their developmental vulnerabilities, as well as the compounding effects of energy systems on their families, communities, and physical environments. While there is a larger literature focused on fossil fuel emissions and children, the impacts of many aspects of energy systems on children and youth remain under examined and scattered throughout the health, social science, and environmental science literatures. OBJECTIVES This systematic interdisciplinary review examines the biological, psychosocial, and economic impacts of energy systems identified through social science research - specifically focused on household and industrial extraction and emissions - on children and youth functioning. METHODS A critical interpretive search of interdisciplinary and international social sciences literature was conducted using an adaptive protocol focusing on the biopsychosocial and economic impacts of energy systems on children and youth. The initial results were complemented with a purposeful search to extend the breadth and depth of the final collection of articles. DISCUSSION Although relatively few studies have specifically focused on children and youth in this context, the majority of this research uncovers a range of negative health impacts that are directly and indirectly related to the development and ongoing operations of natural resource production, particularly oil and gas, coal, and nuclear energy. Psychosocial and cultural effects, however, remain largely unexamined and provide a rich avenue for further research. CONCLUSIONS This synthesis identifies an array of adverse biopsychosocial health outcomes on children and youth of energy resource extraction and emissions, and identifies gaps that will drive future research in this area.
Collapse
Affiliation(s)
- Robin S Cox
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada.
| | - Pamela Irwin
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada
| | - Leila Scannell
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada
| | - Michael Ungar
- Resilience Research Centre, Dalhousie University, Halifax, NS, Canada
| | - Trevor Dixon Bennett
- ResiliencebyDesign Research Lab, School of Humanitarian Studies, Royal Roads University, Victoria, BC, Canada
| |
Collapse
|