1
|
Karimi B, Samadi S. Long-term exposure to air pollution on cardio-respiratory, and lung cancer mortality: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:75-95. [PMID: 38887768 PMCID: PMC11180069 DOI: 10.1007/s40201-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/02/2024] [Indexed: 06/20/2024]
Abstract
Air pollution is a major cause of specific deaths worldwide. This review article aimed to investigate the results of cohort studies for air pollution connected with the all-cause, cardio-respiratory, and lung cancer mortality risk by performing a meta-analysis. Relevant cohort studies were searched in electronic databases (PubMed/Medline, Web of Science, and Scopus). We used a random effect model to estimate the pooled relative risks (RRs) and their 95% CIs (confidence intervals) of mortality. The risk of bias for each included study was also assessed by Office of Health Assessment and Translation (OHAT) checklists. We applied statistical tests for heterogeneity and sensitivity analyses. The registration code of this study in PROSPERO was CRD42023422945. A total of 88 cohort studies were eligible and included in the final analysis. The pooled relative risk (RR) per 10 μg/m3 increase of fine particulate matter (PM2.5) was 1.080 (95% CI 1.068-1.092) for all-cause mortality, 1.058 (95% CI 1.055-1.062) for cardiovascular mortality, 1.066 (95%CI 1.034-1.097) for respiratory mortality and 1.118 (95% CI 1.076-1.159) for lung cancer mortality. We observed positive increased associations between exposure to PM2.5, PM10, black carbon (BC), and nitrogen dioxide (NO2) with all-cause, cardiovascular and respiratory diseases, and lung cancer mortality, but the associations were not significant for nitrogen oxides (NOx), sulfur dioxide (SO2) and ozone (O3). The risk of mortality for males and the elderly was higher compared to females and younger age. The pooled effect estimates derived from cohort studies provide substantial evidence of adverse air pollution associations with all-cause, cardiovascular, respiratory, and lung cancer mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00900-6.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Samadi
- Department of Occupational Health and safety, School of Health, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Zhou RX, Liao HJ, Hu JJ, Xiong H, Cai XY, Ye DW. Global Burden of Lung Cancer Attributable to Household Fine Particulate Matter Pollution in 204 Countries and Territories, 1990 to 2019. J Thorac Oncol 2024; 19:883-897. [PMID: 38311022 DOI: 10.1016/j.jtho.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
INTRODUCTION Household particulate matter (PM) air pollution is substantially associated with lung cancer. Nevertheless, the global burden of lung cancer attributable to household PM2.5 is still uncertain. METHODS In this study, data from the Global Burden and Disease Study 2019 are used to thoroughly assess the burden of lung cancer associated with household PM2.5. RESULTS The number of deaths and disability-adjusted life-years (DALYs) attributable to household PM2.5 was found to be 0.08 million and 1.94 million, respectively in 2019. Nevertheless, the burden of lung cancer attributable to household PM2.5 decreased from 1990 to 2019. At the sociodemographic index (SDI) district level, the middle SDI region had the most number of lung cancer deaths and DALYs attributable to household PM2.5. Moreover, the burden of lung cancer was mainly distributed in low-SDI regions, such as Sub-Saharan Africa. Conversely, in high-SDI regions, the age-standardized mortality rate and age-standardized DALY rate of lung cancer attributable to household PM2.5 exhibit the most rapid declines. The burden of lung cancer attributable to household PM2.5 is heavier for men than for women. The sex difference is more obvious in the elderly. CONCLUSIONS The prevalence of lung cancer attributable to household PM2.5 has exhibited a declining trend from 1990 to 2019 owing to a concurrent decline in household PM2.5 exposure.
Collapse
Affiliation(s)
- Run-Xuan Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hong-Jin Liao
- The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jun-Jie Hu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Xiong
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiu-Yu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
3
|
Hu W, Yang J. Effect of ambient ozone pollution on disease burden globally: A systematic analysis for the global burden of disease study 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171739. [PMID: 38508259 DOI: 10.1016/j.scitotenv.2024.171739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Exposure to ambient ozone pollution causes health loss and even death, and both are the main risk factors for the disease burden worldwide. We comprehensively evaluated the ozone pollution-related disease burden. METHODS First, numbers and age-standardized rates of deaths and disability-adjusted life years (DALYs) were assessed globally and by sub-types in 2019. Furthermore, the temporal trend of the disease burden was explored by the linear regression model from 1990 to 2019. The cluster analysis was used to evaluate the changing pattern of related disease burden across Global Burden of Disease Study (GBD) regions. Finally, the age-period-cohort (APC) model and the Bayesian age-period-cohort (BAPC) model were used to predict the future disease burden in the next 25 years. RESULT Exposure to ozone pollution contributed to 365,222 deaths and 6,210,145 DALYs globally in 2019, which accounted for 0.65 % of deaths globally and 0.24 % of DALYs globally. The disease burden was consistently increasing with age. Males were high-risk populations and low-middle socio-demographic index (SDI) regions were high-risk areas. The disease burden of ozone pollution varied considerably across the GBD regions and the countries. In 2019, the number of deaths and DALYs cases increased by 76.11 % and 56.37 %, respectively compared to those in 1990. The predicted results showed that the number of deaths cases and DALYs cases for both genders would still increase from 2020 to 2044. CONCLUSION In conclusion, ambient ozone pollution has threatened public health globally. More proactive and effective strategic measures should be developed after considering global-specific circumstances.
Collapse
Affiliation(s)
- Wan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Junnan Yang
- School of Public Health, BengBu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| |
Collapse
|
4
|
Agyapong PD, Jack D, Kaali S, Colicino E, Mujtaba MN, Chillrud SN, Osei M, Gennings C, Agyei O, Kinney PL, Kwarteng A, Perzanowski M, Dwommoh Prah RK, Tawiah T, Asante KP, Lee AG. Household Air Pollution and Child Lung Function: The Ghana Randomized Air Pollution and Health Study. Am J Respir Crit Care Med 2024; 209:716-726. [PMID: 38016085 DOI: 10.1164/rccm.202303-0623oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023] Open
Abstract
Rationale: The impact of a household air pollution (HAP) stove intervention on child lung function has been poorly described. Objectives: To assess the effect of a HAP stove intervention for infants prenatally to age 1 on, and exposure-response associations with, lung function at child age 4. Methods: The Ghana Randomized Air Pollution and Health Study randomized pregnant women to liquefied petroleum gas (LPG), improved biomass, or open-fire (control) stove conditions through child age 1. We quantified HAP exposure by repeated maternal and child personal carbon monoxide (CO) exposure measurements. Children performed oscillometry, an effort-independent lung function measurement, at age 4. We examined associations between Ghana Randomized Air Pollution and Health Study stove assignment and prenatal and infant CO measurements and oscillometry using generalized linear regression models. We used reverse distributed lag models to examine time-varying associations between prenatal CO and oscillometry. Measurements and Main Results: The primary oscillometry measure was reactance at 5 Hz, X5, a measure of elastic and inertial lung properties. Secondary measures included total, large airway, and small airway resistance at 5 Hz, 20 Hz, and the difference in resistance at 5 Hz and 20 Hz (R5, R20, and R5-20, respectively); area of reactance (AX); and resonant frequency. Of the 683 children who attended the lung function visit, 567 (83%) performed acceptable oscillometry. A total of 221, 106, and 240 children were from the LPG, improved biomass, and control arms, respectively. Compared with control, the improved biomass stove condition was associated with lower reactance at 5 Hz (X5 z-score: β = -0.25; 95% confidence interval [CI] = -0.39, -0.11), higher large airway resistance (R20 z-score: β = 0.34; 95% CI = 0.23, 0.44), and higher AX (AX z-score: β = 0.16; 95% CI = 0.06, 0.26), which is suggestive of overall worse lung function. The LPG stove condition was associated with higher X5 (X5 score: β = 0.16; 95% CI = 0.01, 0.31) and lower small airway resistance (R5-20 z-score: β = -0.15; 95% CI = -0.30, 0.0), which is suggestive of better small airway function. Higher average prenatal CO exposure was associated with higher R5 and R20, and distributed lag models identified sensitive windows of exposure between CO and X5, R5, R20, and R5-20. Conclusions: These data support the importance of prenatal HAP exposure on child lung function. Clinical trial registered with www.clinicaltrials.gov (NCT01335490).
Collapse
Affiliation(s)
- Prince Darko Agyapong
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | | | - Mohammed Nuhu Mujtaba
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, New York; and
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health
- Institute for Exposomic Research, and
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Adolphine Kwarteng
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Matthew Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Rebecca Kyerewaa Dwommoh Prah
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Theresa Tawiah
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development, Division Ghana Health Service, Bono East Region Kintampo North, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Daouda M, Kaali S, Spring E, Mujtaba MN, Jack D, Dwommoh Prah RK, Colicino E, Tawiah T, Gennings C, Osei M, Janevic T, Chillrud SN, Agyei O, Gould CF, Lee AG, Asante KP. Prenatal Household Air Pollution Exposure and Childhood Blood Pressure in Rural Ghana. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37006. [PMID: 38506828 PMCID: PMC10953816 DOI: 10.1289/ehp13225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The association between prenatal household air pollution (HAP) exposure and childhood blood pressure (BP) is unknown. OBJECTIVE Within the Ghana Randomized Air Pollution and Health Study (GRAPHS) we examined time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure with BP at 4 years of age and, separately, whether a stove intervention delivered prenatally and continued through the first year of life could improve BP at 4 years of age. METHODS GRAPHS was a cluster-randomized cookstove intervention trial wherein n = 1,414 pregnant women were randomized to one of two stove interventions: a) a liquefied petroleum gas (LPG) stove or improved biomass stove, or b) control (open fire cooking). Maternal HAP exposure over pregnancy and child HAP exposure over the first year of life was quantified by repeated carbon monoxide (CO) measurements; a subset of women (n = 368 ) also performed one prenatal and one postnatal personal fine particulate matter (PM 2.5 ) measurement. Systolic and diastolic BP (SBP and DBP) were measured in n = 667 4-y-old children along with their PM 2.5 exposure (n = 692 ). We examined the effect of the intervention on resting BP z -scores. We also employed reverse distributed lag models to examine time-varying associations between a) maternal prenatal and b) first-year-of-life HAP exposure and resting BP z -scores. Among those with PM 2.5 measures, we examined associations between PM 2.5 and resting BP z -scores. Sex-specific effects were considered. RESULTS Intention-to-treat analyses identified that DBP z -score at 4 years of age was lower among children born in the LPG arm (LPG β = - 0.20 ; 95% CI: - 0.36 , - 0.03 ) as compared with those in the control arm, and females were most susceptible to the intervention. Higher CO exposure in late gestation was associated with higher SBP and DBP z -score at 4 years of age, whereas higher late-first-year-of-life CO exposure was associated with higher DBP z -score. In the subset with PM 2.5 measurements, higher maternal postnatal PM 2.5 exposure was associated with higher SBP z -scores. DISCUSSION These findings suggest that prenatal and first-year-of-life HAP exposure are associated with child BP and support the need for reductions in exposure to HAP, with interventions such as cleaner cooking beginning in pregnancy. https://doi.org/10.1289/EHP13225.
Collapse
Affiliation(s)
- Misbath Daouda
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Emma Spring
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammed N. Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, New York, USA
| | - Rebecca Kyerewaa Dwommoh Prah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Theresa Tawiah
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Teresa Janevic
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven N. Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, New York, New York, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| | - Carlos F. Gould
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Alison G. Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo North Municipality, Ghana
| |
Collapse
|
6
|
Peng H, Wang M, Wang Y, Niu Z, Suo F, Liu J, Zhou T, Yao S. The association between indoor air pollution from solid fuels and cognitive impairment: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2023-0158. [PMID: 38413202 DOI: 10.1515/reveh-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to comprehensively and methodically evaluate the correlation between cognitive impairment and indoor air pollution from solid fuel used for cooking/heating. PubMed, Web of Science, EMBASE, and Cochrane Library databases were searched up to December January 2023. 13 studies from three countries with a total of 277,001 participants were enrolled. A negative correlation was discovered between solid fuel usage for cooking and total cognitive score (β=-0.73, 95 % CI: -0.90 to -0.55) and episodic memory score (β=-0.23, 95 % CI: -0.30 to -0.17). Household solid fuel usage for cooking was considerably associated with a raised risk of cognitive impairment (HR=1.31, 95 % CI: 1.09-1.57) and cognitive decline (HR=1.24, 95 % CI: 1.18-1.30). Compared to continuous solid fuel use for cooking, sustained use of clean fuel and switching from solid fuel to clean fuel were associated with a lower risk of cognitive decline (OR=0.55, 95 % CI: 0.42-0.73; OR=0.81, 95 % CI: 0.71-0.93). A negative association was found between solid fuel usage for heating and total cognitive score (β=-0.43, 95 % CI: -0.59 to -0.26) and episodic memory score (β=-0.22, 95 % CI: -0.34 to -0.10). Our research provided evidence that exposure to indoor air pollution from solid fuel is a potential cause of cognitive impairment and cognitive decline. Making the switch from solid fuels to cleaner fuels could be an important step in preventing cognitive impairment in the elderly.
Collapse
Affiliation(s)
- Hongye Peng
- 47839 Beijing University of Chinese Medicine , Beijing, China
| | - Miyuan Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Beijing, China
| | - Yichong Wang
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, P.R. China
| | - Zuohu Niu
- Department of Infections, 12517 Beijing Hospital of Traditional Chinese Medicine, Capital Medical University , Beijing, China
| | - Feiya Suo
- Department of Traditional Chinese Medicine, 532949 Dongguan People's Hospital , Guangzhou, China
| | - Jixiang Liu
- 47839 Beijing University of Chinese Medicine , Beijing, China
| | - Tianhui Zhou
- 47839 Beijing University of Chinese Medicine , Beijing, China
| | - Shukun Yao
- Department of Gastroenterology, 36635 China-Japan Friendship Hospital , Beijing, China
| |
Collapse
|
7
|
Sharma B, Mao J, Jia S, Sharma SK, Mandal TK, Bau S, Sarkar S. Size-distribution and driving factors of aerosol oxidative potential in rural kitchen microenvironments of northeastern India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123246. [PMID: 38158012 DOI: 10.1016/j.envpol.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
This study reports size-resolved dithiothreitol (DTT)-based oxidative potential (OP: total and water-soluble) in rural kitchens using liquefied petroleum gas (LPG), firewood (FW), and mixed biomass (MB) fuels in northeastern (NE) India. In comparison to LPG, volume-normalized total OP (OPtotal(v)DTT) was enhanced by a factor of ∼5 in biomass-using kitchens (74 ± 35 to 78 ± 42 nmol min-1 m-3); however, mass-normalized total OP (OPtotal(m)DTT) was similar between LPG and FW users and higher by a factor of 2 in MB-using kitchens. The water-insoluble OP (OPwi(v, m)DTT) fraction in OPtotal(v, m)DTT was greater than 50% across kitchens. Size distributions across kitchens and OPDTT categories ranged from unimodal to trimodal. OPws(v)DTT was driven by metals as well as organics across size fractions while OPwi(v)DTT was majorly constrained by metals with an increasing importance of organics in fine particles of biomass-using kitchens. Multiple linear regression analysis revealed that Cu and Ba explained 71% of the OPtotal(v)DTT variability in LPG-using kitchens, while water-soluble organic carbon (WSOC) and Ba were responsible for 44% variability in FW-using kitchens. Finally, the high internal dose of OPtotal(v)DTT (28-31 nmol min-1 m-3) in biomass-using kitchens established the severity of oxidative stress on the exposed population.
Collapse
Affiliation(s)
- Bijay Sharma
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| | - Jingying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China.
| | - Shiguo Jia
- School of Atmospheric Sciences, Sun Yat-sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou 510275, China.
| | - Sudhir K Sharma
- CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012, India.
| | - Tuhin K Mandal
- CSIR-National Physical Laboratory (CSIR-NPL), Dr. K.S. Krishnan Road, New Delhi 110012, India.
| | - Sebastien Bau
- Laboratory of Aerosol Metrology, Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, Vandoeuvre Cedex 54519, France.
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
8
|
Olsson H, Tamire M, Samuelsson E, Addissie A, Andersson R, Skovbjerg S, Athlin S. Household air pollution and pneumococcal density related to nasopharyngeal inflammation in mothers and children in Ethiopia: A cross-sectional study. PLoS One 2024; 19:e0297085. [PMID: 38271409 PMCID: PMC10810524 DOI: 10.1371/journal.pone.0297085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Three billion people in low- and middle-income countries are exposed to household air pollution as they use biomass fuel for cooking. We investigated the associations between solid fuel use and nasopharyngeal (NP) inflammation, as well as the associations between high pneumococcal density and NP inflammation, in mothers and children in rural and urban Ethiopia. MATERIALS AND METHODS Sixty pairs of mothers (median age, 30 years; range, 19-45 years) with a child (median age, 9 months; range, 1-24 months) were included from rural Butajira (n = 30) and urban Addis Ababa (n = 30) in Ethiopia. The cohort was randomly selected from a previous study of 545 mother/child pairs included 2016. Questionnaire-based data were collected which included fuel type used (solid: wood, charcoal, dung or crop waste; cleaner: electricity, liquefied petroleum gas). Nasopharyngeal (NP) samples were collected from all mothers and children and analyzed for the levels of 18 cytokines using a Luminex immunoassay. Pneumococcal DNA densities were measured by a real-time multiplex PCR and a high pneumococcal density was defined as a cyclic threshold (Ct) value ≤ 30. RESULTS Mothers from rural areas had higher median CXCL8 levels in NP secretions than those from urban areas (8000 versus 1900 pg/mL; p < 0.01), while rural children had slightly higher IL-10 levels than those from the urban area (26 vs 13 pg/mL; p = 0.04). No associations between fuel type and cytokine levels were found. However, a high pneumococcal density was associated with higher levels of cytokines in both mothers (CCL4, CXCL8, IL-1β, IL-6 and VEGF-A) and children (CCL4, CXCL8, IL-1β, IL-6 and IL-18). CONCLUSIONS No significant associations were found between solid fuel use and NP inflammation in Ethiopian mothers and children, but the inflammatory activity was higher in individuals living in the rural compared to the urban area. In addition, high cytokine levels were associated with high pneumococcal density in both mothers and children, indicating a significant impact of NP pathogens on inflammatory mediator levels in upper airways.
Collapse
Affiliation(s)
- Henrik Olsson
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden
| | - Mulugeta Tamire
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ebba Samuelsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Adamu Addissie
- Department of Preventive Medicine, School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Simon Athlin
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
9
|
Li L, Xia H, Chen Z, Duan M, Pei J. Spatiotemporal characteristics and driving mechanisms of household energy transition in rural China: Micro-evidence from 2005 to 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168554. [PMID: 37979871 DOI: 10.1016/j.scitotenv.2023.168554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Facilitating the household energy transition in rural China conducive to mitigate climate change, improve population health, and achieve 'carbon peaking and carbon neutrality' goals. However, there was no consensus in existing research on the regularity of rural household energy transition from a micro perspective. Based on data from 339 villages spanning 2005-2017, with the help of kernel density estimation(KDE), exploratory spatial data analysis (ESDA), and logistic regression, we evaluated the effectiveness of household energy transition and comprehensively analyzed the temporal and spatial characteristics of the energy transition process from geographic perspective, revealed the driving mechanisms behind household energy transition, with important findings. (i) In 2005-2015, 19.22 % and 13.08 % of rural households achieved fuel and heating transition, but there were evident regional differences and correlation effects in energy transition. (ii) The proportion of energy transitions increases, yet always a polarised lattice phenomenon, and the spatial adjacent spillover effect makes the energy transition present the spatial pattern of 'villages divided into clusters'. (iii) The drivers of different types household energy transition vary, income and topography continued to limit the energy transition of rural households. Therefore, designing differentiated policies and pathways by region is critical in the clean energy transition. In addition, local governments can increase incentives for clean energy utilization by setting reasonable subsidies for continuous clean energy transition.
Collapse
Affiliation(s)
- Lingyan Li
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Research Base for Co-construction and Sharing of Shaanxi Human Settlement Environment and Better Life in the New Era, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haoming Xia
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Research Base for Co-construction and Sharing of Shaanxi Human Settlement Environment and Better Life in the New Era, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhiyu Chen
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Research Base for Co-construction and Sharing of Shaanxi Human Settlement Environment and Better Life in the New Era, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mimi Duan
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Research Base for Co-construction and Sharing of Shaanxi Human Settlement Environment and Better Life in the New Era, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiajia Pei
- School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Research Base for Co-construction and Sharing of Shaanxi Human Settlement Environment and Better Life in the New Era, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Jabbarzadeh S, Jaacks LM, Lovvorn A, Chen Y, Wang J, Elon L, Nizam A, Aravindalochanan V, Ntivuguruzwa JDD, Willams KN, Ramirez A, Johnson MA, Pillarisetti A, Gurusamy T, Rosa G, Diaz-Artiga A, Romero JC, Balakrishnan K, Checkley W, Peel JL, Clasen TF, Waller LA. Data management plan and REDCap mobile data capture for a multi-country Household Air Pollution Intervention Network (HAPIN) trial. Digit Health 2024; 10:20552076241274217. [PMID: 39184019 PMCID: PMC11342436 DOI: 10.1177/20552076241274217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/25/2024] [Indexed: 08/27/2024] Open
Abstract
Background Household air pollution (HAP) is a leading environmental risk factor accounting for about 1.6 million premature deaths mainly in low- and middle-income countries (LMICs). However, no multicounty randomized controlled trials have assessed the effect of liquefied petroleum gas (LPG) stove intervention on HAP and maternal and child health outcomes. The Household Air Pollution Intervention Network (HAPIN) was the first to assess this by implementing a common protocol in four LMICs. Objective This manuscript describes the implementation of the HAPIN data management protocol via Research Electronic Data Capture (REDCap) used to collect over 50 million data points in more than 4000 variables from 80 case report forms (CRFs). Methods We recruited 800 pregnant women in each study country (Guatemala, India, Peru, and Rwanda) who used biomass fuels in their households. Households were randomly assigned to receive LPG stoves and 18 months of free LPG supply (intervention) or to continue using biomass fuels (control). Households were followed for 18 months and assessed for primary health outcomes: low birth weight, severe pneumonia, and stunting. The HAPIN Data Management Core (DMC) implemented identical REDCap projects for each study site using shared variable names and timelines in local languages. Field staff collected data offline using tablets on the REDCap Mobile Application. Results Utilizing the REDCap application allowed the HAPIN DMC to collect and store data securely, access data (near real-time), create reports, perform quality control, update questionnaires, and provide timely feedback to local data management teams. Additional REDCap functionalities (e.g. scheduling, data validation, and barcode scanning) supported the study. Conclusions While the HAPIN trial experienced some challenges, REDCap effectively met HAPIN study goals, including quality data collection and timely reporting and analysis on this important global health trial, and supported more than 40 peer-reviewed scientific publications to date.
Collapse
Affiliation(s)
- Shirin Jabbarzadeh
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lindsay M Jaacks
- Global Academy of Agriculture and Food Systems, University of Edinburgh, Edinburgh, UK
| | - Amy Lovvorn
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yunyun Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lisa Elon
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Azhar Nizam
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Vigneswari Aravindalochanan
- Department of Environmental Health Engineering, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | | | - Kendra N Willams
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Ramirez
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Ajay Pillarisetti
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Thangavel Gurusamy
- Department of Environmental Health Engineering, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | | | - Anaité Diaz-Artiga
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Juan C Romero
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Kalpana Balakrishnan
- Department of Environmental Health Engineering, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas F Clasen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lance A Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Giraldo-Montoya ÁM, Torres-Duque CA, Giraldo-Cadavid LF, Laucho-Contreras ME, González-Flórez A, Santos AM, Tuta-Quintero EA, Celli BR, González-García M. Sputum Biomarkers in Wood and Tobacco Smoke Etiotypes of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 19:1-10. [PMID: 38179428 PMCID: PMC10763680 DOI: 10.2147/copd.s439064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction There is a need to better understand the etiotypes of chronic obstructive pulmonary disease (COPD) beyond the tobacco-smoke (TS-COPD). Wood smoke COPD (WS-COPD) is characterized by greater airway compromise, milder emphysema, and slower rate of lung function decline than TS-COPD. However, it is unclear if these two etiotypes of COPD have differences in sputum biomarker concentrations. Objective was to compare sputum levels of selected sputum biomarkers between WS-COPD and TS-COPD, and healthy controls. Methods Eighty-eight women (69±12 years) were recruited and classified into: WS-COPD (n=31), TS-COPD (n=29) and controls (n=28). Using ELISA, we determined induced sputum levels of metalloproteinase 9 (MMP-9), chemokine ligand 5 (CCL5), interleukin-8 (IL-8), chemokine ligand 16 (CCL16/HCC-4) and vascular endothelial growth factor (VEGF-1). Differences were analyzed by Kruskal-Wallis and Mann-Whitney-U tests and correlation between airflow limitation and biomarkers by Spearman's test. Results At similar degree of airflow obstruction, anthropometrics and medications use, the level of sputum CCL5 was higher in TS-COPD than WS-COPD (p=0.03) without differences in MMP-9, IL-8, CCL16/HCC-4, and VEGF-1. Women with WS-COPD and TS-COPD showed significantly higher sputum levels of MMP-9, IL-8 and CCL5 compared with controls (p<0.001). FEV1% predicted correlated negatively with levels of MMP-9 (rho:-0.26; P=0.016), CCL5 (rho:-0.37; P=0.001), IL-8 (rho:-0.42; P<0.001) and VEGF (rho:-0.22; P=0.04). Conclusion While sputum concentrations of MMP-9, IL-8, and CCL5 were higher in COPD women compared with controls, women with TS-COPD had higher levels of CCL5 compared with those with WS-COPD. Whether this finding relates to differences in pathobiological pathways remains to be determined.
Collapse
Affiliation(s)
- Ángela María Giraldo-Montoya
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- School of Medicine, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Carlos A Torres-Duque
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- Biosciences Doctoral, Universidad de La Sabana, Chía, Colombia
| | - Luis F Giraldo-Cadavid
- Medical Department, Fundación Neumológica Colombiana, Bogotá, Colombia
- Epidemiology and Biostatistics Department, Universidad de La Sabana, Chía, Colombia
| | | | | | | | - Eduardo A Tuta-Quintero
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- Epidemiology and Biostatistics Department, Universidad de La Sabana, Chía, Colombia
| | | | - Mauricio González-García
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
12
|
Meng W, Kiesewetter G, Zhang S, Schöpp W, Rafaj P, Klimont Z, Tao S. Costs and Benefits of Household Fuel Policies and Alternative Strategies in the Jing-Jin-Ji Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21662-21672. [PMID: 38079372 DOI: 10.1021/acs.est.3c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Air pollution is still one of the most severe problems in northern China, especially in the Jing-Jin-Ji region around Beijing. In recent years, China has implemented many stringent policies to address the air quality issue, including promoting energy transition toward cleaner fuels in residential sectors. But until 2020, even in the Jing-Jin-Ji region, nearly half of the rural households still use solid fuels for heating. For residents who are not covered by the clean heating campaign, we analyze five potential mitigation strategies and evaluate their environmental effects as well as the associated health benefits and costs. We estimate that substitution with electricity or gas would reduce air pollution and premature mortality more strongly, while the relatively low investment costs of implementing clean coal or biomass pellet lead to a larger benefit-cost ratio, indicating higher cost efficiency. Hence, clean coal or biomass pellet could be transitional substitution options for the less developed or remote areas which cannot afford a total transition toward electricity or natural gas in the short term.
Collapse
Affiliation(s)
- Wenjun Meng
- Institute of Carbon Neutrality, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, P. R. China
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Shaohui Zhang
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
- School of Economics and Management, Beihang University, Beijing 100191, P. R. China
| | - Wolfgang Schöpp
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Peter Rafaj
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Zbigniew Klimont
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria
| | - Shu Tao
- Institute of Carbon Neutrality, College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System Science, Peking University, Beijing 100871, P. R. China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
13
|
Tariq S, Mariam A, Ul-Haq Z, Mehmood U. Assessment of variability in PM 2.5 and its impact on human health in a West African country. CHEMOSPHERE 2023; 344:140357. [PMID: 37802479 DOI: 10.1016/j.chemosphere.2023.140357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
PM2.5 has become a global challenge threatening human health, climate, and the environment. PM2.5 is ranked as the most common cause of premature mortality and morbidity. Therefore, the current study endeavors to probe the spatiodynamic characteristics of PM2.5 in the Republic of Niger and its impacts on human health from 1998 to 2019. Based on remotely sensed satellite datasets, the study found that the concentration of PM2.5 continued to rise in Niger from 68.85 μg/m3 in 1998 to 70.47 μg/m3 in 2019. During the study period, the annual average PM2.5 concentration is far above the WHO guidelines and the interim target-1 (35 μg/m3). The overall annual growth rate of PM2.5 concentration in Niger is 0.02 μg/m3/year. The health risk (HR) due to PM2.5 exposure is also escalated in Niger, particularly, in Southern Niger. The extent of the extremely high-risk areas corresponding to 1 × 104-9.4 × 105 μg.persons/m3 is increased from 0.9% (2000) to 2.8% (2019). Niamey, southern Dakoro, Mayahi, Tessaoua, Mirriah, Magaria, Matameye, Aguié, Madarounfa, Groumdji, Madaoua, Bouza, Keita, eastern Tahoua, eastern Illéla, Bkomnni, southern Dogon-Doutchi, Gaya, eastern Boboye, central Kollo, and western Tillabéry are experienced high HR due to long-term exposure to PM2.5. These findings indicate that PM2.5 causes a serious health risk across Niger. There is an immediate need to carry out its regional control. Therefore, policymakers and the Nigerien government should make conscious efforts to identify the priority target areas with radically innovative appropriate mitigation interventions.
Collapse
Affiliation(s)
- Salman Tariq
- Department of Space Science, University of the Punjab, Lahore, Pakistan; Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan.
| | - Ayesha Mariam
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
| | - Zia Ul-Haq
- Department of Space Science, University of the Punjab, Lahore, Pakistan; Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
| | - Usman Mehmood
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan; Department of Political Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
14
|
Gu Y, Xu H, Feng R, Zhang B, Gao M, Sun J, Shen Z, Qu L, Ho SSH, Cao J. Insight into personal exposure characteristics and health effects of PM 2.5 and PM 0.25-bound PAHs and their derivatives with different heating ways in the Fenwei Plain, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122699. [PMID: 37802290 DOI: 10.1016/j.envpol.2023.122699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Personal exposure (PE) to polycyclic aromatic hydrocarbons (PAHs) and their derivatives in particulate matter with two aerodynamic sizes of 2.5 and 0.25 μm (PM2.5 and PM0.25) from rural housewives was studied in the Fenwei Plain, China. A total of 15 households were divided into five different groups based on the type of solid fuel and heating device used, including biomass briquette-furnace (BBF), biomass-elevated Kang (BEK), outdoor lump coal-boiler (OLC), indoor briquette coal-stove (IBC), and electricity (ELE). The PE concentrations of the PAHs and biomarkers in urine collected from the participants were determined. The results showed that the PE concentrations of total quantified PAHs in the biomass group (i.e., BBF and BEK) were 2.2 and 2.0 times higher than those in the coal groups (i.e., OLC and IBC) in PM2.5 and PM0.25, respectively. The housewives who used biomass as fuel suffered from higher potential health impacts than the coal fuel users. The incremental lifetime cancer risk for the PAHs in PM2.5 in the BBF and BEK groups exceeded the international safety threshold. Furthermore, the PE concentrations of oxygenated PAH (o-PAHs) in PM2.5 and PM0.25 in the biomass groups and the nitrated PAHs (n-PAHs) in PM0.25 in the coal groups showed strong correlations with the biomarkers. The results of this study proved the associations between exposure to the different classes of PAHs and health hazards. The findings could also serve as a guideline in establishing efficient measures for using solid fuels for cooking and household warming in northern China.
Collapse
Affiliation(s)
- Yunxuan Gu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Rong Feng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Gao
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Shaanxi Provincial Academy of Environmental Science, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Linli Qu
- Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong SAR, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV89512, United States
| | - Junji Cao
- SKLLQG, Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
15
|
Zhao X, Ruan Z, Tian Y, Du W, Fan L. Estimating the joint effect of household solid fuel use and social isolation on depression among middle-aged and older adults in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166411. [PMID: 37611698 DOI: 10.1016/j.scitotenv.2023.166411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Household solid fuel use and social isolation are reported to increase the risk of depressive symptoms, but their joint effect has not yet been examined. This study aimed to explore the separate and joint effects of household solid fuel use and social isolation on depression. METHODS We used data from the latest four waves (2011-2018) of the China Health and Retirement Longitudinal Study (CHARLS). Depression was defined as a score of ≥12 using the Center for Epidemiologic Studies Depression Scale (CES-D 10). Cox proportional hazards models were applied to explore the separate and joint associations of household solid fuel use and social isolation with incident depression. RESULTS During the seven-year follow-up, 2793 (30.25 %) out of the 9232 participants were identified with depressive symptoms. Solid fuel use for household heating or cooking was significantly associated with more hazards of depressive symptoms after adjusting for potential confounders (cooking: HR = 1.280, 95 % CI = 1.175-1.394; heating: HR = 1.142, 95 % CI = 1.054-1.238). High social isolation at baseline was also a significant predictor of incident depressive symptoms (HR = 1.139, 95 % CI = 1.053-1.231). Participants exposed to both solid fuel use and high social isolation were found to have higher hazards of experiencing depressive symptoms than those exposed to none or only one of these two risk factors (heating: HR for 'solid fuel use + high social isolation'=1.308 versus HR for other groups = 1-1.185; cooking: HR for 'solid fuel use + high social isolation' = 1.430 versus HR for other groups = 1-1.255). CONCLUSION Household solid fuel use and social isolation were separately and jointly associated with higher risks of incident depression. Appropriate interventions to reduce solid fuel use and social isolation are recommended to improve the psychological health among middle-aged and older adults in China.
Collapse
Affiliation(s)
- Xinyu Zhao
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Zengliang Ruan
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Yong Tian
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Wei Du
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Lijun Fan
- School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Men Y, Li Y, Luo Z, Jiang K, Yi F, Liu X, Xing R, Cheng H, Shen G, Tao S. Interpreting Highly Variable Indoor PM 2.5 in Rural North China Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18183-18192. [PMID: 37150969 DOI: 10.1021/acs.est.3c02014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Household air pollution associated with solid fuel use is a long-standing public concern. The global population mainly using solid fuels for cooking remains large. Besides cooking, large amounts of coal and biomass fuels are burned for space heating during cold seasons in many regions. In this study, a wintertime multiple-region field campaign was carried out in north China to evaluate indoor PM2.5 variations. With hourly resolved data from ∼1600 households, key influencing factors of indoor PM2.5 were identified from a machine learning approach, and a random forest regression (RFR) model was further developed to quantitatively assess the impacts of household energy transition on indoor PM2.5. The indoor PM2.5 concentration averaged at 120 μg/m3 but ranged from 16 to ∼400 μg/m3. Indoor PM2.5 was ∼60% lower in families using clean heating approaches compared to those burning traditional coal or biomass fuels. The RFR model had a good performance (R2 = 0.85), and the interpretation was consistent with the field observation. A transition to clean coals or biomass pellets can reduce indoor PM2.5 by 20%, and further switching to clean modern energies would reduce it an additional 30%, suggesting many significant benefits in promoting clean transitions in household heating activities.
Collapse
Affiliation(s)
- Yatai Men
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaojie Li
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihan Luo
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ke Jiang
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fan Yi
- Beijing Key Lab Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Xinlei Liu
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ran Xing
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 45001, China
| | - Shu Tao
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Azanaw J, Melaku MS. Spatial variation and factors associated of solid fuel use in Ethiopia a multilevel and spatial analysis based on EDHS 2016. Sci Rep 2023; 13:20279. [PMID: 37985673 PMCID: PMC10662317 DOI: 10.1038/s41598-023-46897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Cooking and heating using solid fuels, such as dung, wood, agricultural residues, grass, straw, charcoal, and coal, is a main source of household air pollution. This indoor combustion encompasses a diversity of health detrimental pollutants, especially for people from low-income countries like Ethiopia since solid fuels are accessible easily at a lesser cost. Limited studies done showing factors affecting in choosing fuel type and no study, which revealed spatial heterogeneity of solid fuel used based on such nationally representative data. Therefore, this study, aimed at investigating spatial variation and determinants of solid fuel use in Ethiopia. This study was done using the data from the Ethiopian Demographic and Health Survey 2016, a national representative sample (16,650) households were included. Spatial and Multi-level logistic regression analysis was done by considering the DHS data hierarchal nature. Variables in the final model with a p-value < 0.05 were reported as significant predictors of using solid fuel. All analyses were done using ArcGIS V.10.7.1 and STATA V.14 software. The finding of this study revealed that 90.8% (95% CI (87.9%, 91.2%)) of households depend on solid fuel for cooking. Based on the final model ;Male household head (AOR 1.38, 95% CI (1.12-1.71)), age of household head (AOR 1.61, 95% CI (1.20, 2.17)), and 1.49 (OR 1.49, 95% CI (1.12, 1.99)) respectively for the age classes of < 30, and 30-40, education attainment no education (OR 3.14, 95% CI (1.13, 8.71)) and primary education (AOR 2.16, 95% CI (2.78, 5.96), wealth index Poorest (AOR 11.05, 95% CI (5.68, 15.78)), Poorer (OR 5.19, 95% CI (5.43, 13.19)), Middle (OR 3.08, 95% CI (2.44, 8.73)), and Richer (OR 1.30, 95IC (1.07, 13.49)) compared to richest, and not accessibility of electricity (AOR 31.21, 95% CI (35.41, 42.67)), were individual-level factors significantly associated with using solid fuel. Community-level factors like households found at large city (AOR 2.80, 95CI (1.65, 4.77)), small city (AOR 2.58, 95% CI (1.55, 4.32)) town (AOR 4.02, 95% CI (2.46, 6.55)), and countryside (AOR 14.40, 95% CI (6.23, 21.15)) compared households found in capital city, community level media exposure (AOR 6.00, 95% CI (4.61, 7.82)) were statistically predictors in using solid fuel for cooking. This finding revealed that a large proportion of households in Ethiopia heavily depend on biomass, especially wood, for cooking. There was a greater disparity on solid fuel use for cooking in Ethiopia. Implementing major policy interventions should be introduced to reduce solid fuel use for cooking and inequalities in accessing clean fuel in Ethiopia.
Collapse
Affiliation(s)
- Jember Azanaw
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Mequannent Sharew Melaku
- Department of Health Informatics, Institute of Public Health, College of Medicine & Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Jiao X, Xiong R, Luo Z, Li Y, Cheng H, Rashid A, Shen G, Tao S. Household energy stacking and structures in Pakistan - Results from a multiple-energy study in Azad Kashmir and Punjab. J Environ Sci (China) 2023; 133:152-160. [PMID: 37451784 DOI: 10.1016/j.jes.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 07/18/2023]
Abstract
Solid fuel use (SFU) is common in most developing countries and would release many hazardous air pollutants posing high risks on human health. The Global Burden of Disease (GBD) study highlighted risks associated with household SFU in Pakistan, however, high uncertainties prevail because of scanty data on SFU and unaccounted energy stacking. This study conducted a field campaign aiming at collecting first-hand data on household energy mix in Pakistan. The first survey was in Punjab and Azad Kashmir, and revealed that stacked energy use was pervasive, especially for cooking. The stacking was found to be much more obvious in SFU households (defined as those using SFU dominantly) compared to those non-SFU. There were significantly substantial differences between Azad Kashmir and Punjab because of distinct resources available and economic conditions. Woody materials comprised up to nearly 70% in Azad Kashmir, but in Punjab, gas was frequently used for cooking. Only investigating primary household energy would probably overestimate main energy types that being used for a longer time but underestimated other supplements, suggesting the preference of multiple-energy surveys in household energy studies.
Collapse
Affiliation(s)
- Xiaoqiao Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Rui Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihan Luo
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaojie Li
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Audil Rashid
- Faculty of Science, Botany Department, University of Gujrat, Gujrat 50700, Pakistan
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Pega F, Momen NC, Streicher KN, Leon-Roux M, Neupane S, Schubauer-Berigan MK, Schüz J, Baker M, Driscoll T, Guseva Canu I, Kiiver HM, Li J, Nwanaji-Enwerem JC, Turner MC, Viegas S, Villeneuve PJ. Global, regional and national burdens of non-melanoma skin cancer attributable to occupational exposure to solar ultraviolet radiation for 183 countries, 2000-2019: A systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. ENVIRONMENT INTERNATIONAL 2023; 181:108226. [PMID: 37945424 DOI: 10.1016/j.envint.2023.108226] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND A World Health Organization (WHO) and International Labour Organization (ILO) systematic review reported sufficient evidence for higher risk of non-melanoma skin cancer (NMSC) amongst people occupationally exposed to solar ultraviolet radiation (UVR). This article presents WHO/ILO Joint Estimates of global, regional, national and subnational occupational exposures to UVR for 195 countries/areas and the global, regional and national attributable burdens of NMSC for 183 countries, by sex and age group, for the years 2000, 2010 and 2019. METHODS We calculated population-attributable fractions (PAFs) from estimates of the population occupationally exposed to UVR and the risk ratio for NMSC from the WHO/ILO systematic review. Occupational exposure to UVR was modelled via proxy of occupation with outdoor work, using 166 million observations from 763 cross-sectional surveys for 96 countries/areas. Attributable NMSC burden was estimated by applying the PAFs to WHO's estimates of the total NMSC burden. Measures of inequality were calculated. RESULTS Globally in 2019, 1.6 billion workers (95 % uncertainty range [UR] 1.6-1.6) were occupationally exposed to UVR, or 28.4 % (UR 27.9-28.8) of the working-age population. The PAFs were 29.0 % (UR 24.7-35.0) for NMSC deaths and 30.4 % (UR 29.0-31.7) for disability-adjusted life years (DALYs). Attributable NMSC burdens were 18,960 deaths (UR 18,180-19,740) and 0.5 million DALYs (UR 0.4-0.5). Men and older age groups carried larger burden. Over 2000-2019, attributable deaths and DALYs almost doubled. CONCLUSIONS WHO and the ILO estimate that occupational exposure to UVR is common and causes substantial, inequitable and growing attributable burden of NMSC. Governments must protect outdoor workers from hazardous exposure to UVR and attributable NMSC burden and inequalities.
Collapse
Affiliation(s)
- Frank Pega
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland.
| | - Natalie C Momen
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Kai N Streicher
- Consultant to the World Health Organization, Geneva, Switzerland
| | - Maria Leon-Roux
- Consultant to the World Health Organization, Panama City, Panama
| | - Subas Neupane
- Consultant to the World Health Organization, Tampere, Finland
| | | | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Marissa Baker
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Tim Driscoll
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | - Jian Li
- Department of Environmental Health Sciences, Fielding School of Public Health, School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Jamaji C Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health and Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Susana Viegas
- Public Health Research Centre, NOVA National School of Public Health, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paul J Villeneuve
- School of Mathematics, Faculty of Science, Carleton University, Ottawa, Canada
| |
Collapse
|
20
|
Fan J. The burden of ischemic heart disease attributable to ambient and household particulate matter pollution, 1990-2019: a global analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114514-114524. [PMID: 37861827 DOI: 10.1007/s11356-023-30336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Elevated risk of ischemic heart disease (IHD) is associated with exposure to fine particulate matter. However, there is limited data on trends and comparisons in the global burden of IHD due to household air pollution from solid fuels (HAP) and ambient particulate matter pollution (APMP), particularly in regions of varying socio-economic levels. Based on the Global Burden of Disease Study 2019 (GBD 2019), we obtained age-standardized mortality rates (ASMR) and age-standardized disability-adjusted life years (ASDR) of IHD due to APMP and HAP from 1990 to 2019. Trends in the burden of IHD attributable to APMP and HAP during the period 1990 to 2019 were calculated by Joinpoint models. We estimated the relationship between ASMR with the socio-demographic indexes (SDI) and the health care accessibility and quality (HAQ) index by the Loess regression model. In 2019, the global burden of IHD ASMR attributed to APMP stabilized, but the most significant increases were observed in low-middle SDI regions. The global IHD ASMR attributed to APMP was 16.60 [95% Uncertainty Interval (UI), 13.61 to 19.44] per 100,000 population, with the highest APMP burden in middle SDI regions. From 1990 to 2019, the global ASMR for HAP-attributable IHD declined. The global ASMR of IHD attributable to HAP in 2019 was 6.30 (95% UI, 4.28 to 8.80) per 100,000 population, with the highest burden observed in the low SDI regions. From 1990 to 2019, the global burden of ASMR and ASDR of IHD attributable to APMP showed stabilization, whereas the HAP burden exhibited a decrease. There are a large burden of APMP particularly in middle SDI countries and a higher burden of HAP in low SDI countries. The burden of IHD due to APMP and HAP in men, the elderly, and populations in low, medium, and low SDI regions should be noticed.
Collapse
Affiliation(s)
- Jinsong Fan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
21
|
Chen P, Li Y, Zhang Y, Xue C, Hopke PK, Li X. Dynamic Changes of Composition of Particulate Matter Emissions during Residential Biomass Combustion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15193-15202. [PMID: 37747327 DOI: 10.1021/acs.est.3c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Residential biomass combustion in developing countries produces significant primary particulate matter (PM) emissions. Highly time-resolved aerosol mass spectrometry and aethalometer measurements were used to investigate the dynamic changes of emitted PM chemical composition from a typical improved stove burning with wood and crop straw in China. Combustion temperature and organic aerosol (OA) concentration increased quickly during the ignition stage. The flaming stage was characterized by high combustion temperature and high pollutant [including OA, black carbon (BC), inorganic salts, and polycyclic aromatic hydrocarbons (PAHs)] emissions, while the burnout stage is characterized by low combustion temperature and lower pollutant emissions. OA was the primary emitted species; emission factors of OA in the flaming stage were generally higher (24.5-792%) than those in the burnout stage. Mass spectral signatures of OA were obtained. The ratio of Cl-/OA for wood combustion (0.05 ± 0.01) is much lower than that from burning crop straw (0.32 ± 0.19). Hydrocarbon OA emissions dominated during the ignition and flaming stages. A high percentage of oxidized OA was emitted during the burnout stage. The relationship between PAHs and BC/OA emissions under different burning conditions was investigated, and PAHs may act as intermediate products in the conversion of OA to BC.
Collapse
Affiliation(s)
- Peng Chen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Youxuan Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Chunyu Xue
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York 13699, United States
| | - Xinghua Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
22
|
Amegah AK. New estimates of preterm birth: data gaps and quality issues linger. Lancet 2023; 402:1215-1217. [PMID: 37805200 DOI: 10.1016/s0140-6736(23)01359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 10/09/2023]
Affiliation(s)
- A Kofi Amegah
- Public Health Research Group, Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Central Region, Ghana.
| |
Collapse
|
23
|
Somboonsin P, Vardoulakis S, Canudas-Romo V. A comparative study of life-years lost attributable to air particulate matter in Asia-Pacific and European countries. CHEMOSPHERE 2023; 338:139420. [PMID: 37419148 DOI: 10.1016/j.chemosphere.2023.139420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Air particulate matter (PM) and its harmful effects on human health are of great concern globally due to all-cause and cause-specific mortality impacts across different population groups. While Europe has made significant progress in reducing particulate air pollution-related mortality through innovative technologies and policies, many countries in Asia-Pacific region still rely on high-polluting technologies and have yet to implement effective policies to address this issue, resulting in higher levels of mortality due to air pollution in the region. This study has three aims related to quantifying life-years lost (LYL) attributable to PM, and further separated into ambient PM and household air pollution (HAP): (1) to investigate LYL by causes of death; (2) to compare LYL between Asia-Pacific (APAC) and Europe; and (3) to assess LYL across different socio-demographic index (SDI) countries. The data used come from the Institute for Health Metrics and Evaluation (IHME) and Health Effects Institute (HEI). Our results show that average LYL due to PM in APAC was greater than in Europe, with some Pacific island countries particularly affected by the exposure to HAP. Three quarters of LYL came from premature deaths by ischemic heart disease and stroke, in both continents. There were significant differences between SDI groups for causes of death due to ambient PM and HAP. Our findings call for urgent improvement of clean air to reduce indoor and outdoor air pollution-related mortality in the APAC region.
Collapse
Affiliation(s)
- Pattheera Somboonsin
- School of Demography, The Australian National University, Canberra, 2601, Australia.
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, 2601, Australia
| | | |
Collapse
|
24
|
Zhang S, Hu H, Liu X, Liu Z, Mao Y, Li Z, Huang K, Chen M, Gao G, Hu C, Zhang X. The impact of household fuel usage on adverse pregnancy outcomes in rural Ma'anshan City, Anhui Province: a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100950-100958. [PMID: 37644269 DOI: 10.1007/s11356-023-29543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The combustion of cooking fuels generates detrimental gases significantly impacting human health, particularly for vulnerable populations like expectant mothers. Prenatal exposure of such hazardous emissions raises the probability of adverse pregnancy outcomes, including preterm birth (PTB) and low birth weight (LBW). Our research aims to explore the association between cooking fuel utilization and adverse birth outcomes in rural Ma'anshan, Anhui Province. A prospective cohort study was executed, employing the Maternal and Infant Health Assessment questionnaire to classify fuels into clean (natural gas, electricity) and polluting energy sources (coal, coal gas, firewood). Multivariate logistic regression models were conducted to evaluate the association between fuel consumption and postpartum maternal and infant outcomes. Among the 442 surveyed pregnant women, 38.2% (N=169) utilized polluting fuels. After adjusting for covariates such as age and BMI, the relative risks of preterm birth, low birth weight, and postpartum hemorrhage in the polluting fuel group compared to the clean fuel group were OR: 3.27, 95% CI: 1.34, 8.00; OR: 3.50, 95% CI: 1.12, 10.90; and OR: 3.18, 95% CI: 1.06, 9.46, respectively. These results indicate that the usage of polluting fuels during pregnancy may heighten the risk of adverse birth outcomes. Consequently, additional research is advised to mitigate the harmful emissions generated by cooking fuels and advocate for clean energy adoption, enhancing maternal and infant well-being.
Collapse
Affiliation(s)
- Sun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Huiyu Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xuejie Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zheye Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yicheng Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhenhua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Maolin Chen
- Department of Gynecology and Obstetrics, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Guopeng Gao
- Department of Child Health Care, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, 243000, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
25
|
Kc A, Halme S, Gurung R, Basnet O, Olsson E, Malmqvist E. Association between usage of household cooking fuel and congenital birth defects-18 months multi-centric cohort study in Nepal. Arch Public Health 2023; 81:144. [PMID: 37568204 PMCID: PMC10416396 DOI: 10.1186/s13690-023-01169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND - An estimated 240,000 newborns die worldwide within 28 days of birth every year due to congenital birth defect. Exposure to poor indoor environment contributes to poor health outcomes. In this research, we aim to evaluate the association between the usage of different type household cooking fuel and congenital birth defects in Nepal, as well as investigate whether air ventilation usage had a modifying effect on the possible association. METHODS - This is a secondary analysis of multi-centric prospective cohort study evaluating Quality Improvement Project in 12 public referral hospitals of Nepal from 2017 to 2018. The study sample was 66,713 women with a newborn, whose information was available in hospital records and exit interviews. The association between cooking fuel type usage and congenital birth defects was investigated with adjusted multivariable logistic regression. To investigate the air ventilation usage, a stratified multivariable logistic regression analysis was performed. RESULTS -In the study population (N = 66,713), 60.0% used polluting fuels for cooking and 89.6% did not have proper air ventilation. The prevalence rate of congenital birth defect was higher among the families who used polluting fuels for cooking than those who used cleaner fuels (5.5/1000 vs. 3.5/1000, p < 0.001). Families using polluting fuels had higher odds (aOR 1.49; 95% CI; 1.16, 1.91) of having a child with a congenital birth defect compared to mothers using cleaner fuels adjusted with all available co-variates. Families not using ventilation while cooking had even higher but statistically insignificant odds of having a child with congenital birth defects (aOR 1.34; 95% CI; 0.86, 2.07) adjusted with all other variates. CONCLUSION - The usage of polluted fuels for cooking has an increased odds of congenital birth defects with no significant association with ventilation. This study adds to the increasing knowledge on the adverse effect of polluting fuels for cooking and the need for action to reduce this exposure.
Collapse
Affiliation(s)
- Ashish Kc
- School of Public Health and Community Medicine, University of Gothenburg, Medicinargatan 18, Gothenburg, Sweden.
| | - Sanni Halme
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Rejina Gurung
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Research Division, Golden Community, Lalitpur, Nepal
| | - Omkar Basnet
- Research Division, Golden Community, Lalitpur, Nepal
| | - Erik Olsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
26
|
Mehta SS, Elizabeth Hodgson M, Lunn RM, Ashley CE, Arroyave WD, Sandler DP, White AJ. Indoor wood-burning from stoves and fireplaces and incident lung cancer among Sister Study participants. ENVIRONMENT INTERNATIONAL 2023; 178:108128. [PMID: 37542784 PMCID: PMC10530432 DOI: 10.1016/j.envint.2023.108128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND AND AIM Epidemiological studies conducted mostly in low- and middle-income countries have found a positive association between household combustion of wood and lung cancer. However, most studies have been retrospective, and few have been conducted in the United States where indoor wood-burning usage patterns differ. We examined the association of exposure to indoor wood smoke from fireplaces and stoves with incident lung cancer in a U.S.-wide cohort of women. METHODS We included 50,226 women without prior lung cancer participating in the U.S.-based prospective Sister Study. At enrollment (2003-2009), women reported frequency of use of wood-burning stoves and/or fireplaces in their longest-lived adult residence. Cox regression was used to estimate adjusted hazard ratios (HRadj) and 95 % confidence intervals (CI) for the association between indoor wood-burning fireplace/stove use and incident lung cancer. Lung cancer was self-reported and confirmed with medical records. RESULTS During an average 11.3 years of follow-up, 347 medically confirmed lung cancer cases accrued. Overall, 62.3 % of the study population reported the presence of an indoor wood-burning fireplace/stove at their longest-lived adult residence and 20.6 % reported annual usage of ≥30 days/year. Compared to those without a wood-burning fireplace/stove, women who used their wood-burning fireplace/stove ≥30 days/year had an elevated rate of lung cancer (HRadj = 1.68; 95 % CI = 1.27, 2.20). In never smokers, positive associations were seen for use 1-29 days/year (HRadj = 1.64; 95 % CI = 0.87, 3.10) and ≥30 days/year (HRadj = 1.99; 95 % CI = 1.02, 3.89). Associations were also elevated across all income groups, in Northeastern, Western or Midwestern U.S. regions, and among those who lived in urban or rural/small town settings. CONCLUSIONS Our prospective analysis of a cohort of U.S. women found that increasing frequency of wood-burning indoor fireplace/stove usage was associated with incident lung cancer, even among never smokers.
Collapse
Affiliation(s)
- Suril S Mehta
- Integrative Health Assessments Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| | - M Elizabeth Hodgson
- Integrated Laboratory Systems, LLC an Inotiv Company, Morrisville, NC, United States
| | - Ruth M Lunn
- Integrative Health Assessments Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Claire E Ashley
- Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Whitney D Arroyave
- Integrated Laboratory Systems, LLC an Inotiv Company, Morrisville, NC, United States
| | - Dale P Sandler
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Alexandra J White
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
27
|
Kaali S, Jack DW, Mujtaba MN, Chillrud SN, Ae-Ngibise KA, Kinney PL, Boamah Kaali E, Gennings C, Colicino E, Osei M, Wylie BJ, Agyei O, Quinn A, Asante KP, Lee AG. Identifying sensitive windows of prenatal household air pollution on birth weight and infant pneumonia risk to inform future interventions. ENVIRONMENT INTERNATIONAL 2023; 178:108062. [PMID: 37392730 PMCID: PMC10911234 DOI: 10.1016/j.envint.2023.108062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Prenatal household air pollution impairs birth weight and increases pneumonia risk however time-varying associations have not been elucidated and may have implications for the timing of public health interventions. METHODS The Ghana Randomized Air Pollution and Health Study (GRAPHS) enrolled 1,414 pregnant women from Kintampo, Ghana and measured personal carbon monoxide (CO) exposure four times over pregnancy. Birth weight was measured within 72-hours of birth. Fieldworkers performed weekly pneumonia surveillance and referred sick children to study physicians. The primary pneumonia outcome was one or more physician-diagnosed severe pneumonia episode in the first year of life. We employed reverse distributed lag models to examine time-varying associations between prenatal CO exposure and birth weight and infant pneumonia risk. RESULTS Analyses included n = 1,196 mother-infant pairs. In models adjusting for child sex; maternal age, body mass index (BMI), ethnicity and parity at enrollment; household wealth index; number of antenatal visits; and evidence of placental malaria, prenatal CO exposures from 15 to 20 weeks gestation were inversely associated with birth weight. Sex-stratified models identified a similar sensitive window in males and a window at 10-weeks gestation in females. In models adjusting for child sex, maternal age, BMI and ethnicity, household wealth index, gestational age at delivery and average postnatal child CO exposure, CO exposure during 34-39 weeks gestation were positively associated with severe pneumonia risk, especially in females. CONCLUSIONS Household air pollution exposures in mid- and late- gestation are associated with lower birth weight and higher pneumonia risk, respectively. These findings support the urgent need for deployment of clean fuel stove interventions beginning in early pregnancy.
Collapse
Affiliation(s)
- Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana.
| | - Darby W Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, 722 W 168(th) Street, New York, NY 10032, USA
| | - Mohammed N Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory at Columbia University, Palisades, NY, USA
| | - Kenneth A Ae-Ngibise
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Patrick L Kinney
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Ellen Boamah Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Blair J Wylie
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Ashlinn Quinn
- Berkeley Air Monitoring Group, Fort Collins, CO, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Bono East Region, Kintampo, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Dehghani S, Yousefi S, Oskoei V, Tazik M, Moradi MS, Shaabani M, Vali M. Ecological study on household air pollution exposure and prevalent chronic disease in the elderly. Sci Rep 2023; 13:11763. [PMID: 37474604 PMCID: PMC10359274 DOI: 10.1038/s41598-023-39059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Older people spend most of their time indoors. Limited evidence demonstrates that exposure to indoor air pollutants might be related to chronic complications. This study aimed to estimate the correlation between household air pollution (HAP)'s long-term exposure and the prevalence of elevated hypertension, diabetes mellitus (DM), obesity, and low-density lipoprotein (LDL) cholesterol. From the Global Burden disease dataset, we extracted HAP, hypertension, DM, body mass index, and LDL cholesterol data from Iran from 1990 to 2019 to males and females in people over 50 years. We present APC and AAPC and their confidence intervals using Joinpoint Software statistical software. R software examined the correlation between HAP and hypertension, DM2, Obesity, and high LDL cholesterol. Our finding showed a significant and positive correlation between HAP exposure and prevalence of high low-density lipoprotein cholesterol (p ≤ 0.001, r = 0.70), high systolic blood pressure (p ≤ 0.001, r = 0.63), and high body mass index (p ≤ 0.001, r = 0.57), and DM2 (p ≤ 0.001, r = 0.38). The analysis results also illustrated a positive correlation between indoor air pollution and smoking (p ≤ 0.001, r = 0.92). HAP exposure might be a risk factor for elevated blood pressure, DM, obesity, and LDL cholesterol and, consequently, more serious health problems. According to our results, smoking is one of the sources of HAP. However, ecological studies cannot fully support causal relationships, and this article deals only with Iran. Our findings should be corroborated in personal exposure and biomonitoring approach studies.
Collapse
Affiliation(s)
- Samaneh Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Yousefi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Moslem Tazik
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sanyar Moradi
- Department of Occupational Health and Safety Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Shaabani
- Education (and Training) Office of Hendijan, Hendijan, Khuzestan, Iran
| | - Mohebat Vali
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Rabby MII, Uddin MW, Sheikh MR, Bhuiyan HK, Mumu TA, Islam F, Sultana A. Thermal performance of gasifier cooking stoves: A systematic literature review. F1000Res 2023; 12:38. [PMID: 37484517 PMCID: PMC10357073 DOI: 10.12688/f1000research.126890.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
A systematic literature review was conducted to summarize the overall thermal performance of different gasified cooking stoves from the available literature. For this purpose, available studies from the last 14 years (2008 to 2022) were searched using different search strings. After screening, a total of 28 articles were selected for this literature review. Scopus, Google Scholar, and Web of Science databases were used as search strings by applying "Gasifier cooking stove" AND "producer gas cooking stove" AND "thermal performance" keywords. This review uncovers different gasified cooking stoves, cooking fuels, and fabrication materials besides overall thermal performances. The result shows that the overall thermal performance of different gasified cooking stoves was 5.88% to 91% depending on the design and burning fuels. The premixed producer gas burner with a swirl vane stove provided the highest overall thermal performance range, which was 84% to 91%, and the updraft gasified stove provided the lowest performance, which was 5.88% to 8.79%. The result also demonstrates that the wood pellets cooking fuel provided the highest thermal performance and corn straw briquette fuel provided the lowest for gasified cooking stoves. The overall thermal performance of wood pellets was 38.5% and corn straw briquette was 10.86%.
Collapse
Affiliation(s)
- Md Insiat Islam Rabby
- Department of Mechanical Engineering, Military Institute of Science and Technology, Mirpur, Dhaka, 1200, Bangladesh
| | - Md Wasi Uddin
- Department of Mechanical Engineering, Military Institute of Science and Technology, Mirpur, Dhaka, 1200, Bangladesh
| | | | - Humayun Kabir Bhuiyan
- Department of Mechanical Engineering, Military Institute of Science and Technology, Mirpur, Dhaka, 1200, Bangladesh
| | - Tazeen Afrin Mumu
- Department of Mechanical Engineering, Military Institute of Science and Technology, Mirpur, Dhaka, 1200, Bangladesh
| | - Fabliha Islam
- Department of Mechanical Engineering, Military Institute of Science and Technology, Mirpur, Dhaka, 1200, Bangladesh
| | - Afsana Sultana
- Department of Mechanical Engineering, Military Institute of Science and Technology, Mirpur, Dhaka, 1200, Bangladesh
| |
Collapse
|
30
|
Muteti-Fana S, Nkosana J, Naidoo RN. Kitchen Characteristics and Practices Associated with Increased PM 2.5 Concentration Levels in Zimbabwean Rural Households. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105811. [PMID: 37239536 DOI: 10.3390/ijerph20105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Household air pollution (HAP) from biomass fuels significantly contributes to cardio-respiratory morbidity and premature mortality globally. Particulate matter (PM), one of the pollutants generated, remains the most accurate indicator of household air pollution. Determining indoor air concentration levels and factors influencing these levels at the household level is of prime importance, as it objectively guides efforts to reduce household air pollution. This paper describes household factors associated with increased PM2.5 levels in Zimbabwean rural household kitchens. Our HAP and lung health in women study enrolled 790 women in rural and urban households in Zimbabwe between March 2018 and December 2019. Here, we report data from 148 rural households using solid fuel as the primary source of fuel for cooking and heating and where indoor air samples were collected. Data on kitchen characteristics and practices were collected cross-sectionally using an indoor walk-through survey and a modified interviewer-administered questionnaire. An Air metrics miniVol Sampler was utilized to collect PM2.5 samples from the 148 kitchens over a 24 h period. To identify the kitchen features and practices that would likely influence PM2.5 concentration levels, we applied a multiple linear regression model. The measured PM2.5 ranged from 1.35 μg/m3 to 1940 μg/m3 (IQR: 52.1-472). The PM2.5 concentration levels in traditional kitchens significantly varied from the townhouse type kitchens, with the median for each kitchen being 291.7 μg/m3 (IQR: 97.2-472.2) and 1.35 μg/m3 (IQR: 1.3-97.2), respectively. The use of wood mixed with other forms of biomass was found to have a statistically significant association (p < 0.001) with increased levels of PM2.5 concentration. In addition, cooking indoors was strongly associated with higher PM2.5 concentrations (p = 0.012). Presence of smoke deposits on walls and roofs of the kitchens was significantly associated with increased PM2.5 concentration levels (p = 0.044). The study found that kitchen type, energy type, cooking place, and smoke deposits were significant predictors of increased PM2.5 concentrations in the rural households. Concentrations of PM2.5 were high as compared to WHO recommended exposure limits for PM2.5. Our findings highlight the importance of addressing kitchen characteristics and practices associated with elevated PM2.5 concentrations in settings where resources are limited and switching to cleaner fuels may not be an immediate feasible option.
Collapse
Affiliation(s)
- Shamiso Muteti-Fana
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, Howard College Campus, University of KwaZulu Natal, Durban 4041, South Africa
- Unit of Family Medicine, Global and Public Health, Department of Primary Care Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, 3rd Floor, Parirenyatwa Hospital Grounds, Harare P.O. Box A178, Zimbabwe
| | - Jafta Nkosana
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, Howard College Campus, University of KwaZulu Natal, Durban 4041, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, Howard College Campus, University of KwaZulu Natal, Durban 4041, South Africa
| |
Collapse
|
31
|
Abbasi-Kangevari M, Malekpour MR, Masinaei M, Moghaddam SS, Ghamari SH, Abbasi-Kangevari Z, Rezaei N, Rezaei N, Mokdad AH, Naghavi M, Larijani B, Farzadfar F, Murray CJL. Effect of air pollution on disease burden, mortality, and life expectancy in North Africa and the Middle East: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Planet Health 2023; 7:e358-e369. [PMID: 37164512 DOI: 10.1016/s2542-5196(23)00053-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Air pollution is the sixth highest risk factor for attributable disability-adjusted life-years (DALYs) in North Africa and the Middle East, but the relative importance of different subtypes of air pollution and any potential differences in their health effects by population demographics or country-level socioeconomic factors have not been fully explored. The objective of this study was to investigate the effect of high ambient particulate matter less than 2·5 μm in size (PM) and ambient ozone air pollution on disease burden, mortality, and life expectancy in 21 countries in the North Africa and the Middle East super-region from 1990 to 2019 using the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates. METHODS The study data were derived from GBD 2019, examining data from 1999 to 2019 in North Africa and the Middle East. In this study, the types of air pollution investigated included PM pollution and ambient ozone pollution. PM pollution itself was categorised as household air pollution from solid fuels and ambient PM pollution. The burden attributable to each risk factor, directly or indirectly, was incorporated in the population attributable fraction to estimate the total attributable deaths and DALYs. The summary exposure value (SEV) as the relative risk-weighted prevalence of exposure was extracted to compare the distribution of excess risk times the exposure level in a population where everyone is at maximum risk and ranges from zero (no excess risk exists in a population) to 100 (highest risk). The effect of air pollution on life expectancy was estimated via a cause-deleted life table analysis. FINDINGS The age-standardised DALYs rate attributable to air pollution declined by 44·5%, from 4884·2 (95% uncertainty interval 4381·5-5555·4) to 2710·4 (2317·3-3125·6) per 100 000 from 1990 to 2019. Afghanistan (6992·3, 5627·7-8482·7), Yemen (4212·4, 3241·3-5418·1), and Egypt (4034·8, 3027·7-5138·6) had the highest age-standardised DALYs rates attributable to air pollution in 2019 per 100 000, whereas Türkiye (1329·2, 1033·7-1654·7), Jordan (1447·3, 1154·2-1758·5), and Iran (1603·0, 1404·7-1813·8) had the lowest rates. During the study period, the age-standardised SEV of air pollution (PM and ambient ozone in total) decreased by 10·9% (5·8-17·7%) in the super-region, whereas the SEV of ambient ozone pollution alone increased by 7·7% (0·7-14·3%). Among the components of PM pollution, the SEV of ambient PM pollution increased by 40·1% (25·2-63·7%); however, the SEV of household air pollution from solid fuels decreased by 70·6% (64·1-77·0%). Among the investigated types of air pollution, 98·9% of the DALYs from air pollution in the super-region were attributable to PM pollution. If air pollution had been lowered to the theoretical minimum risk exposure levels for 2019, then the average life expectancy would have been 1·6 years higher. INTERPRETATION The burden attributable to air pollution substantially decreased in the study period across the super-region as a whole. Most of the burden from air pollution is attributed to PM pollution, the exposure to which has substantially increased in the past three decades. Interventions and policies that reduce population exposure to PM pollution could potentially increase the average life expectancy in the super-region. This finding calls for concerted efforts from governments and public health authorities in the super-region to tackle air pollution as an important threat to population health. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Mohsen Abbasi-Kangevari
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Malekpour
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Masinaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Saeedi Moghaddam
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Kiel Institute for the World Economy, Kiel, Germany
| | - Seyyed-Hadi Ghamari
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Abbasi-Kangevari
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali H Mokdad
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Mohsen Naghavi
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Liu XX, Fan SJ, Luo YN, Hu LX, Li CC, Zhang YD, Li JX, Qiu HL, Dong GH, Yang BY. Global, regional, and national burden of preterm birth attributable to ambient and household PM 2.5 from 1990 to 2019: Worsening or improving? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161975. [PMID: 36740066 DOI: 10.1016/j.scitotenv.2023.161975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Maternal exposure to fine particular matter (PM2.5) during pregnancy, including ambient and household PM2.5, has been linked with increased risk of preterm birth (PTB). However, the global spatio-temporal distribution of PTB-related deaths and disability-adjusted life years (DALYs) attributable to PM2.5 is not well documented. We estimated the global, regional, and national patterns and trends of PTB burden attributable to both ambient and household PM2.5 from 1990 to 2019. METHODS Based on the Global Burden of Disease Study (GBD) 2019 database, we obtained the numbers of deaths and DALYs as well as age-standardized mortality rate (ASMR) and age-standardized DALY rate (ASDR) of PTB attributable to total, ambient, and household PM2.5 by socio-demographic index (SDI) and sex during 1990-2019. The average annual percentage changes (AAPCs) were calculated to assess the temporal trends of attributable burdens. RESULTS In 2019, 126,752 deaths and 11.3 million DALYs related to PTB worldwide (two-thirds in Western Sub-Saharan Africa and South Asia) could be caused by excess PM2.5 above the theoretical minimum-risk exposure level (TMREL), of which 39 % and 61 % were attributable to ambient PM2.5 and household PM2.5, respectively. From 1990 to 2019, the global ASMR due to ambient PM2.5 increased slightly by 7.08 % whereas that due to household PM2.5 decreased substantially by 58.81 %, although the latter still dominated the attributable PTB burden, especially in low and low-middle SDI regions. Similar results were also observed for ASDRs. In addition, PTB burden due to PM2.5 was higher in male infants and in lower SDI regions. CONCLUSIONS Globally in 2019, PM2.5 remains a great concern on the PTB burden, especially in Western Sub-Saharan Africa and South Asia. Between 1990 and 2019, age-standardized burden of PTB due to ambient PM2.5 increased globally, while that due to household PM2.5 decreased markedly but still dominated in low and low-middle SDI regions.
Collapse
Affiliation(s)
- Xiao-Xuan Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Jun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Ya-Na Luo
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Xin Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Cong-Cong Li
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi-Dan Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Xin Li
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Ling Qiu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
33
|
Williams KN, Kephart JL, Fandiño-Del-Rio M, Nicolaou L, Koehler K, Harvey SA, Checkley W. Sustained use of liquefied petroleum gas following one year of free fuel and behavioral support in Puno, Peru. ENERGY FOR SUSTAINABLE DEVELOPMENT : THE JOURNAL OF THE INTERNATIONAL ENERGY INITIATIVE 2023; 73:13-22. [PMID: 36798733 PMCID: PMC9928150 DOI: 10.1016/j.esd.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Existing efforts to promote cleaner fuels have not achieved exclusive use. We investigated whether receiving 12 months of free liquefied petroleum gas (LPG) and behavioral support could motivate continued purchase and use. Methods The Cardiopulmonary outcomes and Household Air Pollution (CHAP) trial enrolled 180 women. Half were randomly assigned to an intervention group, which included free LPG delivered in months 1-12 followed by a post-intervention period in which they no longer received free fuel (months 13-24). For the purposes of comparison, we also include months 1-12 of data from control participants. We tracked stove use with temperature monitors, surveys, and observations, and conducted in-depth interviews with 19 participants from the intervention group at the end of their post-intervention period. Results Participants from the intervention group used their LPG stove for 85.4 % of monitored days and 63.2 % of cooking minutes during the post-intervention months (13-24) when they were not receiving free fuel from the trial. They used a traditional stove (fogón) on 45.1 % of days post-intervention, which is significantly lower than fogón use by control participants during the intervention period (72.2 % of days). In months 13-24 post-intervention, participants from the intervention group purchased on average 12.3 kg and spent 34.1 soles (10.3 USD) per month on LPG. Continued LPG use was higher among participants who said they could afford two tanks of LPG per month, did not cook for animals, and removed their traditional stove. Women described that becoming accustomed to LPG, support and training from the project, consistent LPG supply, choice between LPG providers, and access to delivery services facilitated sustained LPG use. However, high cost was a major barrier to exclusive use. Conclusion A 12-month period of intensive LPG support achieved a high level of sustained LPG use post-intervention, but other strategies are needed to sustain exclusive use.
Collapse
Affiliation(s)
- Kendra N. Williams
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Josiah L. Kephart
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Magdalena Fandiño-Del-Rio
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Laura Nicolaou
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Steven A. Harvey
- Department of International Health, Social and Behavioral Interventions Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
34
|
Niu X, Liu X, Zhang B, Zhang Q, Xu H, Zhang H, Sun J, Ho KF, Chuang HC, Shen Z, Cao J. Health benefits from substituting raw biomass fuels for charcoal and briquette fuels: In vitro toxicity analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161332. [PMID: 36596416 DOI: 10.1016/j.scitotenv.2022.161332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
PM2.5 (particulate matters with diameter ≤ 2.5 μm) from biomass fuel combustion has been identified as a major cause of cardiopulmonary diseases. Briquette and charcoal are two representative processed fuels that exhibit different emission characteristics. This study compared three types of biomass fuels (maize straw, wheat straw, and wood branches) and their respective processed fuels in terms of their emission factors (EFs). The bioreactivity of human alveolar epithelial (A549) cells to exposure to various fuel-emitted PM2.5 was assessed. The EFs of lactic dehydrogenase (LDH) and interleukin-6 (IL-6) were calculated to compare actual cytotoxicity. The PM2.5 EFs of maize and wheat straw were higher than those of wood branches, and following the processes of briquetting and carbonization, the EFs of PM2.5 and chemical components were effectively reduced. Cell membrane damage and inflammatory responses were observed after A549 cell exposure to PM2.5 extracts. The expression of bioreactivity to briquettes and charcoals was lower than that to raw fuels. The EFs of LDH and IL-6 were also significantly reduced after briquetting and carbonization. This underscores the necessity of fuel treatment for reducing cytotoxicity. The crucial chemical components that contributed to cell oxidative and inflammatory responses were identified, including organic and elemental carbon, water-soluble ions (e.g., K+, Mg2+, and Ca2+), metals (e.g., Fe, Cr, and Ni), and high-molecular-weight PAHs. This study elucidated the similarities and differences of PM2.5 emissions and cytotoxicity of three types of biomass fuel and demonstrated the positive effects of fuel treatment on reducing adverse pulmonary effects.
Collapse
Affiliation(s)
- Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongai Zhang
- Department of Neonatology, Shanghai General Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
35
|
Kumar R, Verma V, Thakur M, Singh G, Bhargava B. A systematic review on mitigation of common indoor air pollutants using plant-based methods: a phytoremediation approach. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:1-27. [PMID: 37359395 PMCID: PMC10005924 DOI: 10.1007/s11869-023-01326-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/10/2023] [Indexed: 06/28/2023]
Abstract
Environmental pollution, especially indoor air pollution, has become a global issue and affects nearly all domains of life. Being both natural and anthropogenic substances, indoor air pollutants lead to the deterioration of the ecosystem and have a negative impact on human health. Cost-effective plant-based approaches can help to improve indoor air quality (IAQ), regulate temperature, and protect humans from potential health risks. Thus, in this review, we have highlighted the common indoor air pollutants and their mitigation through plant-based approaches. Potted plants, green walls, and their combination with bio-filtration are such emerging approaches that can efficiently purify the indoor air. Moreover, we have discussed the pathways or mechanisms of phytoremediation, which involve the aerial parts of the plants (phyllosphere), growth media, and roots along with their associated microorganisms (rhizosphere). In conclusion, plants and their associated microbial communities can be key solutions for reducing indoor air pollution. However, there is a dire need to explore advanced omics technologies to get in-depth knowledge of the molecular mechanisms associated with plant-based reduction of indoor air pollutants.
Collapse
Affiliation(s)
- Raghawendra Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Gurpreet Singh
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR)–Institute of Himalayan Bioresource Technology (IHBT), Post Box No 6, Palampur, 176 061 (HP) India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
36
|
Chowdhury S, Pillarisetti A, Oberholzer A, Jetter J, Mitchell J, Cappuccilli E, Aamaas B, Aunan K, Pozzer A, Alexander D. A global review of the state of the evidence of household air pollution's contribution to ambient fine particulate matter and their related health impacts. ENVIRONMENT INTERNATIONAL 2023; 173:107835. [PMID: 36857905 PMCID: PMC10378453 DOI: 10.1016/j.envint.2023.107835] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Direct exposure to household fine particulate air pollution (HAP) associated with inefficient combustion of fuels (wood, charcoal, coal, crop residues, kerosene, etc.) for cooking, space-heating, and lighting is estimated to result in 2.3 (1.6-3.1) million premature yearly deaths globally. HAP emitted indoors escapes outdoors and is a leading source of outdoor ambient fine particulate air pollution (AAP) in low- and middle-income countries, often being a larger contributor than well-recognized sources including road transport, industry, coal-fired power plants, brick kilns, and construction dust. We review published scientific studies that model the contribution of HAP to AAP at global and major sub-regional scales. We describe strengths and limitations of the current state of knowledge on HAP's contribution to AAP and the related impact on public health and provide recommendations to improve these estimates. We find that HAP is a dominant source of ambient fine particulate matter (PM2.5) globally - regardless of variations in model types, configurations, and emission inventories used - that contributes approximately 20 % of total global PM2.5 exposure. There are large regional variations: in South Asia, HAP contributes ∼ 30 % of ambient PM2.5, while in high-income North America the fraction is ∼ 7 %. The median estimate indicates that the household contribution to ambient air pollution results in a substantial premature mortality burden globally of about 0.77(0.54-1) million excess deaths, in addition to the 2.3 (1.6-3.1) million deaths from direct HAP exposure. Coordinated global action is required to avert this burden.
Collapse
Affiliation(s)
| | | | | | - James Jetter
- United States Environmental Protection Agency, Washington, D.C., USA
| | - John Mitchell
- United States Environmental Protection Agency, Washington, D.C., USA
| | - Eva Cappuccilli
- United States Environmental Protection Agency, Washington, D.C., USA
| | - Borgar Aamaas
- CICERO Center for International Climate Research, Oslo, Norway
| | - Kristin Aunan
- CICERO Center for International Climate Research, Oslo, Norway
| | | | | |
Collapse
|
37
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Gordon JND, Bilsback KR, Fiddler MN, Pokhrel RP, Fischer EV, Pierce JR, Bililign S. The Effects of Trash, Residential Biofuel, and Open Biomass Burning Emissions on Local and Transported PM 2.5 and Its Attributed Mortality in Africa. GEOHEALTH 2023; 7:e2022GH000673. [PMID: 36743737 PMCID: PMC9884662 DOI: 10.1029/2022gh000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Long-term exposure to ambient fine particulate matter (PM2.5) is the second leading risk factor of premature death in Sub-Saharan Africa. We use GEOS-Chem to quantify the effects of (a) trash burning, (b) residential solid-fuel burning, and (c) open biomass burning (BB) (i.e., landscape fires) on ambient PM2.5 and PM2.5-attributable mortality in Africa. Using a series of sensitivity simulations, we excluded each of the three combustion sources in each of five African regions. We estimate that in 2017 emissions from these three combustion sources within Africa increased global ambient PM2.5 by 2%, leading to 203,000 (95% confidence interval: 133,000-259,000) premature mortalities yr-1 globally and 167,000 premature mortalities yr-1 in Africa. BB contributes more ambient PM2.5-related premature mortalities per year (63%) than residential solid-fuel burning (29%) and trash burning (8%). Open BB in Central Africa leads to the largest number of PM2.5-attributed mortalities inside the region, while trash burning in North Africa and residential solid-fuel burning in West Africa contribute the most regional mortalities for each source. Overall, Africa has a unique ambient air pollution profile because natural sources, such as windblown dust and BB, contribute strongly to ambient PM2.5 levels and PM2.5-related mortality. Air pollution policies may need to focus on taking preventative measures to avoid exposure to ambient PM2.5 from these less-controllable sources.
Collapse
Affiliation(s)
- Janica N. D. Gordon
- Department of PhysicsNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
- Applied Sciences and Technology PhD programNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
| | - Kelsey R. Bilsback
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
- PSE Healthy EnergyOaklandCAUSA
| | - Marc N. Fiddler
- Department of ChemistryNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
| | - Rudra P. Pokhrel
- Department of PhysicsNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Solomon Bililign
- Department of PhysicsNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
- Applied Sciences and Technology PhD programNorth Carolina Agricultural and Technical State UniversityGreensboroNCUSA
| |
Collapse
|
39
|
Sornek K, Papis-Frączek K. Numerical and Experimental Analysis of a Prototypical Thermoelectric Generator Dedicated to Wood-Fired Heating Stove. MICROMACHINES 2023; 14:145. [PMID: 36677206 PMCID: PMC9862598 DOI: 10.3390/mi14010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The typical operating range of domestic heating devices includes only heat generation. However, the availability of combined heat and power generation in microscale devices is currently becoming a more and more interesting option. This paper shows the experimental and numerical analysis of the possibility of developing a micro-cogeneration system equipped with a wood-fired heating stove and a prototype of the thermoelectric generator equipped with low-price thermoelectric modules. In the first step, mathematical modeling made it possible to analyze different configurations of the hot side of the thermoelectric generator (computational fluid dynamics was used). Next, experiments have been conducted on the prototypical test rig. The maximum power obtained during the discussed combustion process was 15.9 We when the flue gas temperature was approximately 623 K. Assuming a case, when such value of generated power occurred during the whole main phase, the energy generated would be at a level of approximately 33.1 Whe, while the heat transferred to the water would be approximately 1 078.0 Whth. In addition to the technical aspects, the economic premises of the proposed solution were analyzed. As was shown, an installation of TEG to the existing stove is economically not viable: the Simply Payback Time will be approximately 28.9-66.1 years depending on the analyzed scenario. On the other hand, the SPBT would be significantly shorter, when the installation of the stove with an integrated thermoelectric generator was considered (approximately 5.4 years). However, it should be noted that the introduction of the power generating system to a heat source can provide fully or partially network-independent operation of the hot water and heating systems.
Collapse
|
40
|
Mechanisms of Lung Damage and Development of COPD Due to Household Biomass-Smoke Exposure: Inflammation, Oxidative Stress, MicroRNAs, and Gene Polymorphisms. Cells 2022; 12:cells12010067. [PMID: 36611860 PMCID: PMC9818405 DOI: 10.3390/cells12010067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic exposure to indoor biomass smoke from the combustion of solid organic fuels is a major cause of disease burden worldwide. Almost 3 billion people use solid fuels such as wood, charcoal, and crop residues for indoor cooking and heating, accounting for approximately 50% of all households and 90% of rural households globally. Biomass smoke contains many hazardous pollutants, resulting in household air pollution (HAP) exposure that often exceeds international standards. Long-term biomass-smoke exposure is associated with Chronic Obstructive Pulmonary Disease (COPD) in adults, a leading cause of morbidity and mortality worldwide, chronic bronchitis, and other lung conditions. Biomass smoke-associated COPD differs from the best-known cigarette smoke-induced COPD in several aspects, such as a slower decline in lung function, greater airway involvement, and less emphysema, which suggests a different phenotype and pathophysiology. Despite the high burden of biomass-associated COPD, the molecular, genetic, and epigenetic mechanisms underlying its pathogenesis are poorly understood. This review describes the pathogenic mechanisms potentially involved in lung damage, the development of COPD associated with wood-derived smoke exposure, and the influence of genetic and epigenetic factors on the development of this disease.
Collapse
|
41
|
Mutlu E, Cristy T, Stiffler B, Waidyanatha S, Chartier R, Jetter J, Krantz T, Shen G, Champion W, Miller B, Richey J, Burback B, Rider CV. Do Storage Conditions Affect Collected Cookstove Emission Samples? Implications for Field Studies. ANAL LETT 2022; 56:1911-1931. [PMID: 37200484 PMCID: PMC10054858 DOI: 10.1080/00032719.2022.2150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 05/20/2023]
Abstract
Cookstove emissions are a significant source of indoor air pollution in developing countries and rural communities world-wide. Considering that many research sites for evaluating cookstove emissions and interventions are remote and require potentially lengthy periods of particulate matter (PM) filter sample storage in sub-optimal conditions (e.g., lack of cold storage), an important question is whether samples collected in the field are stable over time. To investigate this, red oak was burned in a natural-draft stove, and fine PM (PM2.5) was collected on polytetrafluoroethylene filters. Filters were stored at either ambient temperature or more optimal conditions (-20°C or -80°C) for up to 3 months and extracted. The effects of storage temperature and length on stability were evaluated for measurements of extractable organic matter (EOM), PM2.5, and polycyclic aromatic compound (PAC) levels in the filter extracts. A parallel, controlled laboratory condition was also evaluated to further explore sources of variability. In general, PM2.5 and EOM in both simulated field and laboratory samples were similar regardless of the storage condition or duration. The extracts were also analyzed by gas chromatography to quantify 22 PACs and determine similarities and/or differences between the conditions. PAC levels were a more sensitive stability measure in differentiating between storage conditions. The findings suggest that measurements are relatively consistent across storage duration/temperatures for filter samples with relatively low EOM levels. This study aims to inform protocols and filter storage procedures for exposure and intervention research conducted in low- and middle-income countries where studies may be budget- and infrastructure-limited.
Collapse
Affiliation(s)
- Esra Mutlu
- Center for Computational Toxicology and Exposure, U.S. EPA, RTP, NC, USA
- Division of the Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Suramya Waidyanatha
- Division of the Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Jim Jetter
- Center for Environmental Measurement and Modelling, U.S. EPA, RTP, NC, USA
| | - Todd Krantz
- Center for Environmental Measurement and Modelling, U.S. EPA, RTP, NC, USA
| | - Guofeng Shen
- Center for Environmental Measurement and Modelling, U.S. EPA, RTP, NC, USA
| | - Wyatt Champion
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow at U.S. EPA, Office of Research and Development, Center for Environmental Measurement and Modelling, RTP, NC, USA
| | | | | | | | - Cynthia V. Rider
- Division of the Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
42
|
Wei S, Semple S. Exposure to fine particulate matter (PM 2.5) from non-tobacco sources in homes within high-income countries: a systematic review. AIR QUALITY, ATMOSPHERE, & HEALTH 2022; 16:553-566. [PMID: 36467893 PMCID: PMC9703437 DOI: 10.1007/s11869-022-01288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED The health impacts associated with exposure to elevated concentrations of fine particulate matter (PM2.5) are well recognised. There is a substantial number of studies characterising PM2.5 concentrations outdoors, as well as in homes within low- and middle-income countries. In high-income countries (HICs), there is a sizeable literature on indoor PM2.5 relating to smoking, but the evidence on exposure to PM2.5 generated from non-tobacco sources in homes is sparse. This is especially relevant as people living in HICs spend the majority of their time at home, and in the northern hemisphere households often have low air exchange rates for energy efficiency. This review identified 49 studies that described indoor PM2.5 concentrations generated from a variety of common household sources in real-life home settings in HICs. These included wood/solid fuel burning appliances, cooking, candles, incense, cleaning and humidifiers. The reported concentrations varied widely, both between sources and within groups of the same source. The burning of solid fuels was found to generate the highest indoor PM2.5 concentrations. On occasion, other sources were also reported to be responsible for high PM2.5 concentrations; however, this was only in a few select examples. This review also highlights the many inconsistencies in the ways data are collected and reported. The variable methods of measurement and reporting make comparison and interpretation of data difficult. There is a need for standardisation of methods and agreed contextual data to make household PM2.5 data more useful in epidemiological studies and aid comparison of the impact of different interventions and policies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11869-022-01288-8.
Collapse
Affiliation(s)
- Shuying Wei
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, FK9 4LA UK
| | - Sean Semple
- Institute for Social Marketing and Health, University of Stirling, Stirling, FK9 4LA UK
| |
Collapse
|
43
|
Millar DA, Kapwata T, Kunene Z, Mogotsi M, Wernecke B, Garland RM, Mathee A, Theron L, Levine DT, Ungar M, Batini C, John C, Wright CY. Respiratory health among adolescents living in the Highveld Air Pollution Priority Area in South Africa. BMC Public Health 2022; 22:2136. [PMID: 36411414 PMCID: PMC9677637 DOI: 10.1186/s12889-022-14497-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Air pollution is a global, public health emergency. The effect of living in areas with very poor air quality on adolescents' physical health is largely unknown. The aim of this study was to investigate the prevalence of adverse respiratory health outcomes among adolescents living in a known air pollution hotspot in South Africa. METHODS Ambient air quality data from 2005 to 2019 for the two areas, Secunda and eMbalenhle, in the Highveld Air Pollution Priority Area in Mpumalanga province, South Africa were gathered and compared against national ambient air pollution standards and the World Health Organization Air Quality Guidelines. In 2019, adolescents attending schools in the areas completed a self-administered questionnaire investigating individual demographics, socio-economic status, health, medical history, and fuel type used in homes. Respiratory health illnesses assessed were doctor-diagnosed hay fever, allergies, frequent cough, wheezing, bronchitis, pneumonia and asthma. The relationship between presence (at least one) or absence (none) of self-reported respiratory illness and risk factors, e.g., fuel use at home, was explored. Logistic regression was used to estimate the odds ratio and 95% confidence interval (CI) of risk factors associated with respiratory illness adjusted for body mass index (measured by field assistants), gender, education level of both parents / guardians and socio-economic status. RESULTS Particulate matter and ozone were the two pollutants most frequently exceeding national annual air quality standards in the study area. All 233 adolescent participants were between 13 and 17 years of age. Prevalence of self-reported respiratory symptoms among the participants ranged from 2% for 'ever' doctor-diagnosed bronchitis and pneumonia to 42% ever experiencing allergies; wheezing chest was the second most reported symptom (39%). Half (52%) of the adolescents who had respiratory illness were exposed to environmental tobacco smoke in the dwelling. There was a statistically significant difference between the presence or absence of self-reported respiratory illness based on the number of years lived in Secunda or eMbalenhle (p = 0.02). For a one-unit change in the number of years lived in an area, the odds of reporting a respiratory illness increased by a factor of 1.08 (p = 0.025, 95% CI = 1.01-1.16). This association was still statistically significant when the model was adjusted for confounders (p = 0.037). CONCLUSIONS Adolescents living in air polluted areas experience adverse health impacts Future research should interrogate long-term exposure and health outcomes among adolescents living in the air polluted environment.
Collapse
Affiliation(s)
- Danielle A Millar
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa.
| | - Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa.,Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Zamantimande Kunene
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Mirriam Mogotsi
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Bianca Wernecke
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa.,Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rebecca M Garland
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa.,Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.,Smart Places Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Linda Theron
- Department of Educational Psychology, University of Pretoria, Pretoria, South Africa
| | - Diane T Levine
- Leicester Institute for Advanced Studies, University of Leicester, Leicester, UK
| | - Michael Ungar
- School of Social Work, Dalhousie University, Halifax, Canada
| | - Chiara Batini
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, UK
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Caradee Y Wright
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa.,Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
| |
Collapse
|
44
|
Nagaradona T, Bassig BA, Hosgood D, Vermeulen RCH, Ning B, Seow WJ, Hu W, Portengen L, Wong J, Shu XO, Zheng W, Appel N, Gao YT, Cai QY, Yang G, Chen Y, Downward G, Li J, Yang K, McCullough L, Silverman D, Huang Y, Lan Q. Overall and cause-specific mortality rates among men and women with high exposure to indoor air pollution from the use of smoky and smokeless coal: a cohort study in Xuanwei, China. BMJ Open 2022; 12:e058714. [PMID: 36379646 PMCID: PMC9667990 DOI: 10.1136/bmjopen-2021-058714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Never-smoking women in Xuanwei (XW), China, have some of the highest lung cancer rates in the country. This has been attributed to the combustion of smoky coal used for indoor cooking and heating. The aim of this study was to evaluate the spectrum of cause-specific mortality in this unique population, including among those who use smokeless coal, considered 'cleaner' coal in XW, as this has not been well-characterised. DESIGN Cohort study. SETTING XW, a rural region of China where residents routinely burn coal for indoor cooking and heating. PARTICIPANTS Age-adjusted, cause-specific mortality rates between 1976 and 2011 were calculated and compared among lifetime smoky and smokeless coal users in a cohort of 42 420 men and women from XW. Mortality rates for XW women were compared with those for a cohort of predominately never-smoking women in Shanghai. RESULTS Mortality in smoky coal users was driven by cancer (41%), with lung cancer accounting for 88% of cancer deaths. In contrast, cardiovascular disease (CVD) accounted for 32% of deaths among smokeless coal users, with 7% of deaths from cancer. Total cancer mortality was four times higher among smoky coal users relative to smokeless coal users, particularly for lung cancer (standardised rate ratio (SRR)=17.6). Smokeless coal users had higher mortality rates of CVD (SRR=2.9) and pneumonia (SRR=2.5) compared with smoky coal users. These patterns were similar in men and women, even though XW women rarely smoked cigarettes. Women in XW, regardless of coal type used, had over a threefold higher rate of overall mortality, and most cause-specific outcomes were elevated compared with women in Shanghai. CONCLUSIONS Cause-specific mortality burden differs in XW based on the lifetime use of different coal types. These observations provide evidence that eliminating all coal use for indoor cooking and heating is an important next step in improving public health particularly in developing countries.
Collapse
Affiliation(s)
- Teja Nagaradona
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center for Disease Control and Prevention, Xuanwei, Yunnan, China
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Jason Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Xiao-Ou Shu
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Wei Zheng
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nathan Appel
- Information Management Services Inc, Rockville, Maryland, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Qiu-Yin Cai
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Gong Yang
- Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ying Chen
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - George Downward
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, Yunnan, China
| | - Kaiyun Yang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | | | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yunchao Huang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Liu Z, Feng Y, Peng Y, Cai J, Li C, Li Q, Zheng M, Chen Y. Emission Characteristics and Formation Mechanism of Carbonyl Compounds from Residential Solid Fuel Combustion Based on Real-World Measurements and Tube-Furnace Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15417-15426. [PMID: 36257779 DOI: 10.1021/acs.est.2c05418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study updated carbonyl compound (CC) emission factors (EFs) and composition for residential solid fuel combustion based on real-world measurements of 124 fuel/stove combinations in China and explored the CC formation mechanism using tube-furnace experiments with 19 fuels and low/high temperatures to explain the impact of fuel and stove on CC emission characteristics. The average EFCC values for straw, wood, and coal were 1.94 ± 1.57, 1.50 ± 0.88, and 0.40 ± 0.54 g/kg, respectively. Formaldehyde and acetaldehyde were the most abundant species, accounting for 40-60% of CCs, followed by acetone (∼20%), aromatic aldehydes (∼10%), and unsaturated aldehydes (∼5%). Different from formaldehyde and acetaldehyde, other species showed significant variation among fuel types. All these characteristics could be explained by the difference in the volatile content and chemical structure of fuel, such as aromatic in coal versus lignin in biomass. The improvement in stove technology reduced CC emissions by 30.4-69.7% (mainly formaldehyde and acetaldehyde) among fuels but increased the proportion of aromatic aldehydes by 24.3-89.4%. Various CC species showed different formation mechanisms related to fuel property and burning temperature. The volatile matter derived from thermal pyrolysis of fuel polymers determined CC composition, while higher temperature preferentially degraded formaldehyde and acetaldehyde but promoted the formation of acetone and aromatic aldehydes. This study not only revealed emission characteristic of CCs from RSFC but also contributed to the improvement of clean combustion technology.
Collapse
Affiliation(s)
- Zeyu Liu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yanli Feng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junjie Cai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunlei Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Mei Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
46
|
Household fuel use and its association with potential respiratory pathogens among healthy mothers and children in Ethiopia. PLoS One 2022; 17:e0277348. [DOI: 10.1371/journal.pone.0277348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Background
Over 90% of Ethiopians still rely on solid fuels for cooking food. The pollution from the burning process causes adverse respiratory outcomes including respiratory infections. This study aimed to assess the association of the pollution with nasopharyngeal occurrence of potential pathogens.
Methods
We conducted a comparative cross-sectional study in urban and rural settings in Ethiopia in 2016. Questionnaire-based data were collected from 168 mothers and 175 children aged below two years. Multiplex real-time PCR assays were performed on nasopharyngeal secretions for detection of bacteria and viruses and for the identification of pneumococcal serotypes/groups.
Results
High rates of bacteria and viruses in the nasopharynx were detected by PCR among both the children and the mothers. Among the detected viruses, enterovirus was more commonly detected among rural children than among children from urban areas. Streptococcus pneumoniae and Haemophilus influenzae were both more prevalent among children and mothers from rural areas compared with urban groups and among those using solid fuels compared with cleaner fuel users. Children from rural households using solid fuels and children whose mothers had educational status below high school had four times higher odds for detection of S. pneumoniae compared with those households using cleaner energy or those children having mothers with a higher educational status, respectively. One or more serotype/serogroup was identified in about 40% of the samples that were positive for pneumococci. Out of all identified serotypes/serogroups, 43% in the children and 45% in the mothers belonged to PCV13, indicating the larger majority of detected pneumococci being non-PCV13 serotypes.
Conclusion
This study presented a high carriage rate of S. pneumoniae and H. influenzae among both children and their mothers, especially in rural areas and among solid fuel users. Thus, interventions should target cleaner energy sources to the public and promote maternal education.
Collapse
|
47
|
Baeza_Romero MT, Dudzinska MR, Amouei Torkmahalleh M, Barros N, Coggins AM, Ruzgar DG, Kildsgaard I, Naseri M, Rong L, Saffell J, Scutaru AM, Staszowska A. A review of critical residential buildings parameters and activities when investigating indoor air quality and pollutants. INDOOR AIR 2022; 32:e13144. [PMID: 36437669 PMCID: PMC9828800 DOI: 10.1111/ina.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.
Collapse
Affiliation(s)
- María Teresa Baeza_Romero
- Universidad de Castilla‐La Mancha. Dpto. Química‐Física, Escuela de Ingeniería Industrial y AeroespacialToledoSpain
| | | | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public HealthUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Nelson Barros
- UFP Energy, Environment and Health Research Unit (FP‐ENAS)University Fernando PessoaPortoPortugal
| | - Ann Marie Coggins
- School of Natural Sciences & Ryan InstituteNational University of IrelandGalwayIreland
| | - Duygu Gazioglu Ruzgar
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Metallurgical and Materials Engineering DepartmentBursa Technical UniversityBursaTurkey
| | | | - Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Li Rong
- Department of Civil and Architectural EngineeringAarhus UniversityAarhus CDenmark
| | | | | | - Amelia Staszowska
- Faculty of Environmental EngineeringLublin University of TechnologyLublinPoland
| |
Collapse
|
48
|
Caleyachetty R, Lufumpa N, Kumar N, Mohammed NI, Bekele H, Kurmi O, Wells J, Manaseki-Holland S. Exposure to household air pollution from solid cookfuels and childhood stunting: a population-based, cross-sectional study of half a million children in low- and middle-income countries. Int Health 2022; 14:639-647. [PMID: 35024843 PMCID: PMC9623485 DOI: 10.1093/inthealth/ihab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Household air pollution from the incomplete combustion of solid cookfuels in low- and middle-income countries (LMICs) has been largely ignored as a potentially important correlate of stunting. Our objective was to examine the association between solid cookfuel use and stunting in children aged <5 y. METHODS We used data from 59 LMICs' population-based cross-sectional demographic and health surveys; 557 098 children aged <5 y were included in our analytical sample. Multilevel logistic regression was used to examine the association between exposure to solid cookfuel use and childhood stunting, adjusting for child sex, age, maternal education and number of children living in the household. We explored the association across key subgroups. RESULTS Solid cookfuel use was associated with child stunting (adjusted OR 1.58, 95% CI 1.55 to 1.61). Children living in households using solid cookfuels were more likely to be stunted if they lived in rural areas, the poorest households, had a mother who smoked tobacco or were from the Americas. CONCLUSIONS Focused strategies to reduce solid cookfuel exposure might contribute to reductions in childhood stunting in LMICs. Trial evidence to assess the effect of reducing solid cookfuel exposure on childhood stunting is urgently needed.
Collapse
Affiliation(s)
- Rishi Caleyachetty
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | - Nakawala Lufumpa
- Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Niraj Kumar
- University College London Medical School, University College London, London, WC1E 6DE, UK
| | - Nuredin Ibrahim Mohammed
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Atlantic Boulevard, Fajara, P.O. Box 273, Banjul, The Gambia
| | - Hana Bekele
- World Health Organization, Inter-Country Support Team, Zimbabwe WHO Country Office, Harare, Zimbabwe
| | - Om Kurmi
- Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
- Department of Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Jonathan Wells
- Childhood Nutrition Research Centre, Population Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | | |
Collapse
|
49
|
Yao M, Li L, Yang M, Wu Y, Cheng F. Household air pollution and childhood stunting in China: A prospective cohort study. Front Public Health 2022; 10:985786. [PMID: 36388319 PMCID: PMC9650942 DOI: 10.3389/fpubh.2022.985786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Background Exposure to air pollution, especially indoor air pollution, was associated with an increased risk of childhood stunting. However, few longitudinal studies have explored the long-term impacts of indoor air pollution from household solid fuel use on child growth. We aimed to investigate the association between household air pollution (HAP) from solid fuel use and childhood stunting in Chinese children. Method The longitudinal data from the Chinese Family Panel Study over 2010-2018 were included in this study with a total of 6,013 children aged 0-15 years enrolled at baseline. Exposure to HAP was measured as solid fuel use for cooking, while solid fuel was defined as coal and firewood/straw according to the questionnaire survey. Stunting was defined as-2SD below the height-for-age z-score (HAZ) of the reference children. Logistic regression and Cox proportional hazards models with time-varying exposures were employed to estimate the association between childhood stunting and HAP exposure. Results At baseline, children with exposure to HAP from combusting solid fuels had a relatively higher risk of stunting [OR (95%CI): 1.42 (1.24-1.63)]. Among children without stunning at baseline, those living in households with solid fuel use had a higher stunting risk over an 8-year follow-up [HR (95%CI): 2.05 (1.64-2.57)]. The risk of childhood stunting was increased for those with HAP exposure from firewood/straw combustion or with longer exposure duration [HR (95%CI): 2.21 (1.74-2.79) and 3.01 (2.23-4.08), respectively]. Meanwhile, this risk was significantly decreased among children from households switching from solid fuels to clean fuels [HR (95%CI): 0.53 (0.39-0.70)]. Solid fuel use was suggested to be a mediator of the relationship between poor socioeconomic factors (i.e., household income and parental education level) and childhood stunning, with a mediation effect ranging from 11.25 to 14.26%. Conclusions HAP exposure from solid fuel use was associated with childhood stunting. Poor parental education and low household income might be socioeconomic factors contributing to solid fuel use. Therefore, household energy policies to facilitate access to clean fuels are urgently needed, especially for low-income and low-educated households.
Collapse
Affiliation(s)
- Min Yao
- Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and Business University, Chongqing, China
| | - Lingou Li
- Department of Endocrinology, The First People's Hospital of Chong Qing Liang Jiang New Area, Chongqing, China
| | - Mei Yang
- Department of Endocrinology, The First People's Hospital of Chong Qing Liang Jiang New Area, Chongqing, China
| | - Yuanyuan Wu
- Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China,*Correspondence: Yuanyuan Wu
| | - Feifei Cheng
- Health Management Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China,Feifei Cheng
| |
Collapse
|
50
|
Zhang H, Xia Y, Su H, Chang Q, Zhao Y. Household solid fuel use and stroke incidence: Evidence from a national cohort study. Front Public Health 2022; 10:1018023. [PMID: 36339135 PMCID: PMC9634743 DOI: 10.3389/fpubh.2022.1018023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
Stroke is one of the leading causes of global mortality and disability. No specific study has focused on the association between household solid fuel use for different purposes and incident stroke. Therefore, we explored the associations between household solid fuel use purposes and switches and incident stroke based on a national prospective cohort study. There were 12,485 participants included in this study after exclusions. The incidence density of stroke was 8.29 for every 1,000 person-years. Household solid fuel use simultaneously for heating and cooking had the largest hazard effect on stroke occurrence [hazard ratio (HR), 1.35; 95% confidence interval (CI), 1.07, 1.70] with a significant linear trend (P < 0.01). Solid fuel use for cooking was significantly associated with increased risk of stroke occurrence (HR, 1.27; 95% CI, 1.06, 1.51). Persistent clean fuel use for both heating and cooking associated with a lower risk of stroke occurrence (HR, 0.79; 95% CI: 0.64, 0.99), and switching from solid fuel to clean-fuel use for cooking associated with a lower risk of stroke occurrence (HR, 0.89; 95% CI, 0.73, 1.09) compared with persistent solid fuel use. Effective measures to improve the household cooking environment may be necessary to prevent incident stroke.
Collapse
Affiliation(s)
- Hehua Zhang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han Su
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China,Department of Clinical Epidemiology, Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China,Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Yuhong Zhao
| |
Collapse
|