1
|
Pattanayak R, Ekkatine R, Petit CM, Yacoubian TA. 14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity and toxicity. Hum Mol Genet 2024:ddae142. [PMID: 39324210 DOI: 10.1093/hmg/ddae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.
Collapse
Affiliation(s)
- Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| | - Chad M Petit
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, 720 20th Street South, Kaul 452, Birmingham, AL 35294, United States
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States
| |
Collapse
|
2
|
Chi X, Yin S, Sun Y, Kou L, Zou W, Wang Y, Jin Z, Wang T, Xia Y. Astrocyte-neuron communication through the complement C3-C3aR pathway in Parkinson's disease. Brain Behav Immun 2024; 123:229-243. [PMID: 39288893 DOI: 10.1016/j.bbi.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice. Colocalization of complement C3 with astrocytes was also observed. Overexpression of complement C3 exacerbated motor dysfunction, dopaminergic neuron loss, and phosphorylated α-syn expression in mice injected with α-syn preformed fibrils (α-syn PFFs). Conversely, downregulation of complement C3 protected α-syn PFF-induced mice. Molecular investigations revealed that inhibition of Toll-like receptor 2 (TLR2) or NF-κB reduced complement C3 expression in primary astrocytes following α-syn PFF treatment. Astrocyte-neuron communication via the C3/C3aR pathway influenced α-syn PFF-induced neuronal apoptosis and α-syn pathology, potentially through modulation of GSK3β. These findings underscore the critical role of astrocyte-neuron communication via the C3/C3aR pathway in PD pathogenesis, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Thomas SD, Abdalla S, Eissa N, Akour A, Jha NK, Ojha S, Sadek B. Targeting Microglia in Neuroinflammation: H3 Receptor Antagonists as a Novel Therapeutic Approach for Alzheimer's Disease, Parkinson's Disease, and Autism Spectrum Disorder. Pharmaceuticals (Basel) 2024; 17:831. [PMID: 39065682 PMCID: PMC11279978 DOI: 10.3390/ph17070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Histamine performs dual roles as an immune regulator and a neurotransmitter in the mammalian brain. The histaminergic system plays a vital role in the regulation of wakefulness, cognition, neuroinflammation, and neurogenesis that are substantially disrupted in various neurodegenerative and neurodevelopmental disorders. Histamine H3 receptor (H3R) antagonists and inverse agonists potentiate the endogenous release of brain histamine and have been shown to enhance cognitive abilities in animal models of several brain disorders. Microglial activation and subsequent neuroinflammation are implicated in impacting embryonic and adult neurogenesis, contributing to the development of Alzheimer's disease (AD), Parkinson's disease (PD), and autism spectrum disorder (ASD). Acknowledging the importance of microglia in both neuroinflammation and neurodevelopment, as well as their regulation by histamine, offers an intriguing therapeutic target for these disorders. The inhibition of brain H3Rs has been found to facilitate a shift from a proinflammatory M1 state to an anti-inflammatory M2 state, leading to a reduction in the activity of microglial cells. Also, pharmacological studies have demonstrated that H3R antagonists showed positive effects by reducing the proinflammatory biomarkers, suggesting their potential role in simultaneously modulating crucial brain neurotransmissions and signaling cascades such as the PI3K/AKT/GSK-3β pathway. In this review, we highlight the potential therapeutic role of the H3R antagonists in addressing the pathology and cognitive decline in brain disorders, e.g., AD, PD, and ASD, with an inflammatory component.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Sabna Abdalla
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (S.D.T.); (S.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 1551, United Arab Emirates
| |
Collapse
|
5
|
Asahina R, Takahashi M, Takano H, Yao R, Abe M, Goshima Y, Ohshima T. The role of CRMP4 in LPS-induced neuroinflammation. Brain Res 2024:149094. [PMID: 38914219 DOI: 10.1016/j.brainres.2024.149094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Neuroinflammation has been gaining attention as one of the potential causes of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis in recent years. The suppression of excessive proinflammatory responses is expected to be a target for the treatment and prevention of neurodegenerative diseases. Collapsin response mediator protein 4 (CRMP4) is involved in cytoskeleton-associated axonal guidance in the developing brain. Recently, the involvement of CRMP4 in several pathological conditions, including inflammation induced by lipopolysaccharide (LPS), a widely used inflammatory molecule, has been reported. However, the role of CRMP4 in LPS-induced inflammation in vivo remains largely unknown. In this study, we generated microglia-specific CRMP4 knockout mice for the first time and examined the role of CRMP4 in an LPS-induced brain inflammation model. We found that microglia after LPS injection in substantia nigra was significantly reduced in Crmp4-/- mice compared to Crmp4+/+mice. The increased expression of IL-10 in striatum samples was downregulated in Crmp4-/- mice. A significant reduction in Iba1 expression was also observed in microglia-specific Crmp4 knockout mice compared with that in control mice. In contrast, the expression of IL-10 did not change in these mice, whereas arginase 1 (Arg1) expression was significantly suppressed. These results demonstrate the involvement of CRMP4 in LPS-induced inflammation in vivo, that CRMP4 suppresses microglial proliferation in a cell-autonomous manner.
Collapse
Affiliation(s)
- Ryo Asahina
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Miyuki Takahashi
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Hiroshi Takano
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Ryoji Yao
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Departent of Life Science and Medical Bioscience, Waseda University, Japan.
| |
Collapse
|
6
|
Eser P, Kocabicak E, Bekar A, Temel Y. The interplay between neuroinflammatory pathways and Parkinson's disease. Exp Neurol 2024; 372:114644. [PMID: 38061555 DOI: 10.1016/j.expneurol.2023.114644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder predominantly affecting elderly, is marked by the gradual degeneration of the nigrostriatal dopaminergic pathway, culminating in neuronal loss within the substantia nigra pars compacta (SNpc) and dopamine depletion. At the molecular level, neuronal loss in the SNpc has been attributed to factors including neuroinflammation, impaired protein homeostasis, as well as mitochondrial dysfunction and the resulting oxidative stress. This review focuses on the interplay between neuroinflammatory pathways and Parkinson's disease, drawing insights from current literature.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
7
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
8
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
9
|
Zailani H, Satyanarayanan SK, Liao WC, Hsu YT, Huang SY, Gałecki P, Su KP, Chang JPC. Roles of Omega-3 Polyunsaturated Fatty Acids in Managing Cognitive Impairment in Chronic Obstructive Pulmonary Disease: A Review. Nutrients 2023; 15:4363. [PMID: 37892438 PMCID: PMC10609799 DOI: 10.3390/nu15204363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) contributes significantly to the death of people worldwide, especially the elderly. An essential feature of COPD is pulmonary inflammation, which results from long-term exposure to noxious substances from cigarette smoking and other environmental pollutants. Pulmonary inflammatory mediators spill over to the blood, leading to systemic inflammation, which is believed to play a significant role in the onset of a host of comorbidities associated with COPD. A substantial comorbidity of concern in COPD patients that is often overlooked in COPD management is cognitive impairment. The exact pathophysiology of cognitive impairment in COPD patients remains a mystery; however, hypoxia, oxidative stress, systemic inflammation, and cerebral manifestations of these conditions are believed to play crucial roles. Furthermore, the use of medications to treat cognitive impairment symptomatology in COPD patients has been reported to be associated with life-threatening adverse effects, hence the need for alternative medications with reduced side effects. In this Review, we aim to discuss the impact of cognitive impairment in COPD management and the potential mechanisms associated with increased risk of cognitive impairment in COPD patients. The promising roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in improving cognitive deficits in COPD patients are also discussed. Interestingly, ω-3 PUFAs can potentially enhance the cognitive impairment symptomatology associated with COPD because they can modulate inflammatory processes, activate the antioxidant defence system, and promote amyloid-beta clearance from the brain. Thus, clinical studies are crucial to assess the efficacy of ω-3 PUFAs in managing cognitive impairment in COPD patients.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 109-2320-B-039-066, 110-2321-B-006-004, 111-2321-B-006-008, 110-2811-B-039-507, 110-2320-B-039-048-MY2, and 110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, and 111-28 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, CMU108-SR-106, CMU110-N-17, CMU110-SR-73 China Medical University, Taichung, Taiwan
- CRS-108-048, DMR-105-053, DMR-109-102, DMR-109-244, DMR-HHC-109-11, DMR-HHC-109-12, DMR-HHC-110-10, DMR-110-124, DMR-111-245 and DMR-HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria 810106, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Ting Hsu
- Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Centre, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Kuan-Pin Su
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 717, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Laboratory (MBI-Lab), Department of Psychiatry, China Medical University Hospital, Taichung 404327, Taiwan; (H.Z.); (S.K.S.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
10
|
Fernández-Espejo E. Microorganisms associated with increased risk of Parkinson's disease. Neurologia 2023; 38:495-503. [PMID: 35644845 DOI: 10.1016/j.nrleng.2020.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects more than 7 million people worldwide. Its aetiology is unknown, although the hypothesis of a genetic susceptibility to environmental agents is accepted. These environmental agents include fungi, bacteria, and viruses. Three microorganisms are directly associated with a significantly increased risk of developing Parkinson's disease: the fungal genus Malassezia, the bacterium Helicobacter pylori, and the hepatitis C virus. If the host is vulnerable due to genetic susceptibility or immune weakness, these microorganisms can access and infect the nervous system, causing chronic neuroinflammation with neurodegeneration. Other microorganisms show an epidemiological association with the disease, including the influenza type A, Japanese encephalitis type B, St Louis, and West Nile viruses. These viruses can affect the nervous system, causing encephalitis, which can result in parkinsonism. This article reviews the role of all these microorganisms in Parkinson's disease.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Laboratorio de Neurología Molecular, Universidad de Sevilla, Sevilla, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, Spain.
| |
Collapse
|
11
|
Tian Q, Sun X, Li C, Yang Y, Hou B, Xie A. CD33 polymorphisms and Parkinson's disease Parkinson's disease in northern Chinese Han population: A case-control study. Neurosci Lett 2023; 812:137400. [PMID: 37479176 DOI: 10.1016/j.neulet.2023.137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) represents the multisystem illness involving immunological and neuroinflammatory dysfunction. The present work focused on evaluating link of CD33 single nucleotide polymorphisms (SNPs) with PD vulnerability of the northern Chinese Han people, considering CD33's role as a critical immunoregulatory receptor in neuroinflammatory responses. METHODS The present case-control study included 475 PD cases together with 475 normal controls. A further division of PD patients into two categories was made: 74 patients with early-onset PD (EOPD; onset age ≤ 50 years) and 401 patients with late-onset PD (LOPD; onset age > 50 years). DNA extraction was conducted, followed by genotyping for 2SNPs of CD33 polymorphisms with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS Alleles (G vs. A, P = 0.028) and AA genotypes (P = 0.042) of rs12985029 were significantly different between the groups. Distinctions were observed between the two groups in the recessive, co-dominant, and additive models (nominal P = 0.030, nominal P = 0.045, and P = 0.032). AA genotype frequency among male PD was higher compared to corresponding male controls (P = 0.034), and in the male group allele A was a factor causing the disease (P = 0.026). The rs12985029 genotypes and allele frequency were different in EOPD compared with LOPD (P = 0.002, P = 0.002, respectively), and in LOPD group relative to healthy control group (P = 0.020 and P = 0.004, separately). Regarding the rs3826656 polymorphism, the frequency of GA genotype was higher in the control group than in the case group (nominal P = 0.036). Overdominance and co-dominant models were different between these groups (P = 0.026, nominal P = 0.030). Subgroup analysis revealed genotype frequency differences between rs3826656 LOPD group and control group (P = 0.018). Furthermore, relationship between rs3826656 and rs12985029 (D' = 0.162, r2 = 0.021) did not reach a complete level of linkage disequilibrium (LD) of northern Chinese Han people. CONCLUSION This study establishes an association between CD33 rs12985029 and rs3826656 polymorphisms and PD risk among the selected northern Chinese Han people. The GA genotype, rs3826656, may act as a protective factor against PD, while the A allele, rs12985029,could be genetic risk factor related to PD. Future research should include larger sample sizes and other human populations to further investigate how CD33 polymorphisms contribute to PD.
Collapse
Affiliation(s)
- Qing Tian
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaohui Sun
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqian Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Yang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Justich MB, Rojas OL, Fasano A. The Role of Helicobacter pylori and Small Intestinal Bacterial Overgrowth in Parkinson's Disease. Semin Neurol 2023; 43:553-561. [PMID: 37562451 DOI: 10.1055/s-0043-1771468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder whose etiology remains largely unexplained. Several studies have aimed to describe a causative effect in the interactions between the gastrointestinal tract and the brain, for both PD pathogenesis and disease course. However, the results have been controversial. Helicobacter pylori and small intestinal bacterial overgrowth (SIBO) are theorized to be agents capable of triggering chronic proinflammatory changes with a possible neurotoxic effect, as well as a cause of erratic L-dopa response in PD patients. This review evaluates the individual and possibly synergistic influence of H. pylori and SIBO on PD, to provide an opportunity to consider prospective therapeutic approaches.
Collapse
Affiliation(s)
- Maria Belen Justich
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Olga L Rojas
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Department of Parkinson's Disease and Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital - Gravedona ed Uniti, Como, Italy
| |
Collapse
|
13
|
Pattanayak R, Petit CM, Yacoubian TA. 14-3-3 phosphorylation inhibits 14-3-3θ's ability to regulate LRRK2 kinase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.27.542591. [PMID: 37398189 PMCID: PMC10312468 DOI: 10.1101/2023.05.27.542591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Molecular modeling showed that 14-3-3θ phosphorylation causes a partial rearrangement of its canonical binding pocket, thus affecting the interaction between 14-3-3θ and the C-terminus of LRRK2. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity.
Collapse
Affiliation(s)
- Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510A, Birmingham, AL 35294, USA
| | - Chad M. Petit
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, 720 20 Street South, Kaul 452, Birmingham, AL 35294, USA
| | - Talene A. Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510A, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Wang Q, Zheng J, Pettersson S, Reynolds R, Tan EK. The link between neuroinflammation and the neurovascular unit in synucleinopathies. SCIENCE ADVANCES 2023; 9:eabq1141. [PMID: 36791205 PMCID: PMC9931221 DOI: 10.1126/sciadv.abq1141] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glial cells, and neurons. As a fundamental functional module in the central nervous system, the NVU maintains homeostasis in the microenvironment and the integrity of the blood-brain barrier. Disruption of the NVU and interactions among its components are involved in the pathophysiology of synucleinopathies, which are characterized by the pathological accumulation of α-synuclein. Neuroinflammation contributes to the pathophysiology of synucleinopathies, including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. This review aims to summarize the neuroinflammatory response of glial cells and vascular cells in the NVU. We also review neuroinflammation in the context of the cross-talk between glial cells and vascular cells, between glial cells and pericytes, and between microglia and astroglia. Last, we discuss how α-synuclein affects neuroinflammation and how neuroinflammation influences the aggregation and spread of α-synuclein and analyze different properties of α-synuclein in synucleinopathies.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Karolinska Institutet, Department of Odontology, 171 77 Solna, Sweden
- Faculty of Medical Sciences, Sunway University, Subang Jaya, 47500 Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
15
|
Cahoon DS, Fisher DR, Lamon-Fava S, Wu D, Zheng T, Shukitt-Hale B. Blueberry treatment administered before and/or after lipopolysaccharide stimulation attenuates inflammation and oxidative stress in rat microglial cells. Nutr Neurosci 2023; 26:127-137. [PMID: 36692990 DOI: 10.1080/1028415x.2021.2020404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ABSTRACTMicroglia are key regulators of inflammation and oxidative stress (OS) in the CNS. Microglia activation can lead to chronic inflammation, OS, and neurodegeneration. Blueberries (BB) reduce inflammation and OS when administered to microglia before stressors such as lipopolysaccharide (LPS), but the therapeutic value of BBs administered after activation by stressors has not been examined. Therefore, this study investigated the differential effects of pre-, post-, and pre-/post-BB on inflammation and OS in LPS-activated microglia. Rat microglia were pretreated with BB (0.5 mg/mL) or control media (C) for 24 hours, incubated overnight with LPS (0 or 200 ng/mL), and post-treated with BB or C for 24 hours. Biomarkers of inflammation (e.g. nitrite [NO2-], tumor necrosis factor-ɑ [TNFɑ], inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX-2], phosphorylated IκB-α [pIκB-ɑ]) and OS (e.g. NADPH oxidase [NOX2]) were assessed. LPS increased NO2-, TNFɑ, COX-2, iNOS, pIκB-ɑ, and NOX2 compared to non-stressed conditions (P < 0.05), however BB before and/or after LPS significantly reduced these markers compared to no BB (P < 0.05). Pre-BB was more effective than post-BB at reducing LPS-induced NO2-, TNFɑ, and COX-2 (P < 0.05). Pre-BB was also more effective than pre-/post-BB at attenuating LPS-induced NO2- and TNFɑ (P < 0.05). All BB treatments were equally effective in reducing LPS-induced iNOS, pIκB-ɑ, and NOX2. Results suggest that BBs can target the downstream events of LPS-induced microglial activation and prevent stressor-induced neuroinflammation and OS. Furthermore, BBs may not need to be present prior to microglial activation for beneficial effects, suggesting that dietary interventions may be effective even after initiation of disease processes.Graphical Abstract. Cascade of inflammatory and OS-inducing events associated with self-propelling microglial activation by LPS and the effects of blueberry (0.5 mg/mL) administered before and/or after LPS on these processes (blue arrows). BB, blueberry; COX2, cyclooxygenase-2; IκB-ɑ, inhibitor kappa-B-ɑ; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; NF-κB, nuclear factor kappa-B; NO, nitric oxide; NOX2, NADPH oxidase; OS, oxidative stress; ROS, reactive oxygen species; TNFɑ, tumor necrosis factor-ɑ.
Collapse
Affiliation(s)
- Danielle S Cahoon
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Derek R Fisher
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Tong Zheng
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Barbara Shukitt-Hale
- USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
16
|
Mechanisms of Autoimmune Cell in DA Neuron Apoptosis of Parkinson's Disease: Recent Advancement. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7965433. [PMID: 36567855 PMCID: PMC9771667 DOI: 10.1155/2022/7965433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that manifests as motor and nonmotor symptoms due to the selective loss of midbrain DArgic (DA) neurons. More and more studies have shown that pathological reactions initiated by autoimmune cells play an essential role in the progression of PD. Autoimmune cells exist in the brain parenchyma, cerebrospinal fluid, and meninges; they are considered inducers of neuroinflammation and regulate the immune in the human brain in PD. For example, T cells can recognize α-synuclein presented by antigen-presenting cells to promote neuroinflammation. In addition, B cells will accelerate the apoptosis of DA neurons in the case of PD-related gene mutations. Activation of microglia and damage of DA neurons even form the self-degeneration cycle to deteriorate PD. Numerous autoimmune cells have been considered regulators of apoptosis, α-synuclein misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation of DA neurons in PD. The evidence is mounting that autoimmune cells promote DA neuron apoptosis. In this review, we discuss the current knowledge regarding the regulation and function of B cell, T cell, and microglia as well as NK cell in PD pathogenesis, focusing on DA neuron apoptosis to understand the disease better and propose potential target identification for the treatment in the early stages of PD. However, there are still some limitations in our work, for example, the specific mechanism of PD progression caused by autoimmune cells in mitochondrial dysfunction, ferroptosis, and autophagy has not been clarified in detail, which needs to be summarized in further work.
Collapse
|
17
|
De Chirico F, Poeta E, Babini G, Piccolino I, Monti B, Massenzio F. New models of Parkinson's like neuroinflammation in human microglia clone 3: Activation profiles induced by INF-γ plus high glucose and mitochondrial inhibitors. Front Cell Neurosci 2022; 16:1038721. [PMID: 36523814 PMCID: PMC9744797 DOI: 10.3389/fncel.2022.1038721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 09/17/2023] Open
Abstract
Microglia activation and neuroinflammation have been extensively studied in murine models of neurodegenerative diseases; however, to overcome the genetic differences between species, a human cell model of microglia able to recapitulate the activation profiles described in patients is needed. Here we developed human models of Parkinson's like neuroinflammation by using the human microglia clone 3 (HMC3) cells, whose activation profile in response to classic inflammatory stimuli has been controversial and reported only at mRNA levels so far. In fact, we showed the increased expression of the pro-inflammatory markers iNOS, Caspase 1, IL-1β, in response to IFN-γ plus high glucose, a non-specific disease stimulus that emphasized the dynamic polarization and heterogenicity of the microglial population. More specifically, we demonstrated the polarization of HMC3 cells through the upregulation of iNOS expression and nitrite production in response to the Parkinson's like stimuli, 6-hydroxidopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the latter depending on the NF-κB pathway. Furthermore, we identified inflammatory mediators that promote the pro-inflammatory activation of human microglia as function of different pathways that can simulate the phenotypic transition according to the stage of the pathology. In conclusion, we established and characterized different systems of HMC3 cells activation as in vitro models of Parkinson's like neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Cardoso FDS, Salehpour F, Coimbra NC, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front Neurosci 2022; 16:1006031. [PMID: 36203812 PMCID: PMC9531128 DOI: 10.3389/fnins.2022.1006031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuroinflammation is a response that involves different cell lineages of the central nervous system, such as neurons and glial cells. Among the non-pharmacological interventions for neuroinflammation, photobiomodulation (PBM) is gaining prominence because of its beneficial effects found in experimental brain research. We systematically reviewed the effects of PBM on laboratory animal models, specially to investigate potential benefits of PBM as an efficient anti-inflammatory therapy. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: photobiomodulation, low-level laser therapy, brain, neuroinflammation, inflammation, cytokine, and microglia. Data search was limited from 2009 to June 2022. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial systematic search identified 140 articles. Among them, 54 articles were removed for duplication and 59 articles by screening. Therefore, 27 studies met the inclusion criteria. Results The studies showed that PBM has anti-inflammatory properties in several conditions, such as traumatic brain injury, edema formation and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy, depression, and spinal cord injury. Conclusion Taken together, these results indicate that transcranial PBM therapy is a promising strategy to treat brain pathological conditions induced by neuroinflammation.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Farzad Salehpour
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Norberto Cysne Coimbra
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| |
Collapse
|
19
|
Inhibition of Monoacylglycerol Lipase by NSD1819 as an Effective Strategy for the Endocannabinoid System Modulation against Neuroinflammation-Related Disorders. Int J Mol Sci 2022; 23:ijms23158428. [PMID: 35955562 PMCID: PMC9369272 DOI: 10.3390/ijms23158428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory—a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent β-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.
Collapse
|
20
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
21
|
Massey N, Shrestha D, Bhat SM, Padhi P, Wang C, Karriker LA, Smith JD, Kanthasamy AG, Charavaryamath C. Mitoapocynin Attenuates Organic Dust Exposure-Induced Neuroinflammation and Sensory-Motor Deficits in a Mouse Model. Front Cell Neurosci 2022; 16:817046. [PMID: 35496912 PMCID: PMC9043522 DOI: 10.3389/fncel.2022.817046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Increased incidences of neuro-inflammatory diseases in the mid-western United States of America (USA) have been linked to exposure to agriculture contaminants. Organic dust (OD) is a major contaminant in the animal production industry and is central to the respiratory symptoms in the exposed individuals. However, the exposure effects on the brain remain largely unknown. OD exposure is known to induce a pro-inflammatory phenotype in microglial cells. Further, blocking cytoplasmic NOX-2 using mitoapocynin (MA) partially curtail the OD exposure effects. Therefore, using a mouse model, we tested a hypothesis that inhaled OD induces neuroinflammation and sensory-motor deficits. Mice were administered with either saline, fluorescent lipopolysaccharides (LPSs), or OD extract intranasally daily for 5 days a week for 5 weeks. The saline or OD extract-exposed mice received either a vehicle or MA (3 mg/kg) orally for 3 days/week for 5 weeks. We quantified inflammatory changes in the upper respiratory tract and brain, assessed sensory-motor changes using rotarod, open-field, and olfactory test, and quantified neurochemicals in the brain. Inhaled fluorescent LPS (FL-LPS) was detected in the nasal turbinates and olfactory bulbs. OD extract exposure induced atrophy of the olfactory epithelium with reduction in the number of nerve bundles in the nasopharyngeal meatus, loss of cilia in the upper respiratory epithelium with an increase in the number of goblet cells, and increase in the thickness of the nasal epithelium. Interestingly, OD exposure increased the expression of HMGB1, 3- nitrotyrosine (NT), IBA1, glial fibrillary acidic protein (GFAP), hyperphosphorylated Tau (p-Tau), and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL)-positive cells in the brain. Further, OD exposure decreased time to fall (rotarod), total distance traveled (open-field test), and olfactory ability (novel scent test). Oral MA partially rescued olfactory epithelial changes and gross congestion of the brain tissue. MA treatment also decreased the expression of HMGB1, 3-NT, IBA1, GFAP, and p-Tau, and significantly reversed exposure induced sensory-motor deficits. Neurochemical analysis provided an early indication of depressive behavior. Collectively, our results demonstrate that inhalation exposure to OD can cause sustained neuroinflammation and behavior deficits through lung-brain axis and that MA treatment can dampen the OD-induced inflammatory response at the level of lung and brain.
Collapse
Affiliation(s)
- Nyzil Massey
- Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Denusha Shrestha
- Biomedical Sciences, Iowa State University, Ames, IA, United States
| | | | - Piyush Padhi
- Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Chong Wang
- Veterinary Diagnostic and Production Animal Medicine (VDPAM), Iowa State University, Ames, IA, United States
- Statistics, Iowa State University, Ames, IA, United States
| | - Locke A. Karriker
- Veterinary Diagnostic and Production Animal Medicine (VDPAM), Iowa State University, Ames, IA, United States
| | - Jodi D. Smith
- Veterinary Pathology, Iowa State University, Ames, IA, United States
| | | | - Chandrashekhar Charavaryamath
- Biomedical Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Chandrashekhar Charavaryamath ; orcid.org/0000-0002-5217-1608
| |
Collapse
|
22
|
GABA A Receptor-Stabilizing Protein Ubqln1 Affects Hyperexcitability and Epileptogenesis after Traumatic Brain Injury and in a Model of In Vitro Epilepsy in Mice. Int J Mol Sci 2022; 23:ijms23073902. [PMID: 35409261 PMCID: PMC8999075 DOI: 10.3390/ijms23073902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic epilepsy (PTE) is a major public health concern and strongly contributes to human epilepsy cases worldwide. However, an effective treatment and prevention remains a matter of intense research. The present study provides new insights into the gamma aminobutyric acid A (GABAA)-stabilizing protein ubiquilin-1 (ubqln1) and its regulation in mouse models of traumatic brain injury (TBI) and in vitro epilepsy. We performed label-free quantification on isolated cortical GABAergic interneurons from GAD67-GFP mice that received unilateral TBI and discovered reduced expression of ubqln1 24 h post-TBI. To investigate the link between this regulation and the development of epileptiform activity, we further studied ubqln1 expression in hippocampal and cortical slices. Epileptiform events were evoked pharmacologically in acute brain slices by administration of picrotoxin (PTX, 50 μM) and kainic acid (KA, 500 nM) and recorded in the hippocampal CA1 subfield using Multi-electrode Arrays (MEA). Interestingly, quantitative Western blots revealed significant decreases in ubqln1 expression 1–7 h after seizure induction that could be restored by application of the non-selective monoamine oxidase inhibitor nialamide (NM, 10 μM). In picrotoxin-dependent dose–response relationships, NM administration alleviated the frequency and peak amplitude of seizure-like events (SLEs). These findings indicate a role of the monoamine transmitter systems and ubqln1 for cortical network activity during posttraumatic epileptogenesis.
Collapse
|
23
|
Severe Primary Open-Angle Glaucoma and Agricultural Profession: A Retrospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020926. [PMID: 35055748 PMCID: PMC8775777 DOI: 10.3390/ijerph19020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022]
Abstract
While exposure to pesticides is a known risk factor for neurodegenerative brain diseases, little is known about the influence of environment on glaucoma neuropathy. We aimed to determine whether farmers are at higher risk of developing severe primary open-angle glaucoma (POAG). This retrospective cohort study (tertiary referral center, Reims University Hospital, France) included patients diagnosed with POAG in the last two years. Univariate analysis and adjusted multivariate logistic regression were performed to evaluate the association between agricultural profession and all recorded data. Glaucoma severity (primary outcome) and the number of patients who underwent filtering surgery (secondary outcome) were analyzed. In total, 2065 records were screened, and 772 patients were included (66 in the farmer group and 706 in the nonfarmer group). The risk of severe glaucoma was higher in the farmer group (adjusted odds ratio (aOR) 1.87, p = 0.03). More patients underwent filtering surgery in the farmer group in univariate analysis (p = 0.02) but with no statistical significance after adjustment (p = 0.08). These results suggest pesticide exposure may be a factor accelerating the neurodegeneration in POAG, although a direct link between the agricultural profession and the disease requires further extended studies to be demonstrated.
Collapse
|
24
|
Cai M, Zhuang W, Lv E, Liu Z, Wang Y, Zhang W, Fu W. Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson's disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem Int 2022; 152:105221. [PMID: 34780806 DOI: 10.1016/j.neuint.2021.105221] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023]
Abstract
The study aims to investigate whether kaemperfol (KAE) inhibits microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects, along with the underlying mechanisms. The results showed KAE could ameliorate the behavioral deficits of Parkinson's disease (PD) rats, inhibit the activation of microglia and astrocytes, reduce the loss of TH-positive neurons, down-regulate levels of pyroptosis-related NOD-like receptor family pyrin domain containing 3 (NLRP3), GasderminD-N Term (GSDMD-NT), caspase1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), interleukin (IL)-1β, and IL-18, and decrease the levels of inflammatory molecules (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) and p38 mitogen-activated protein kinase/nuclear factor-kappaB (p38MAPK/NF-κB) signaling pathway molecules (p38MAPK, p-p38MAPK, NF-κB, and p-NF-κB) in the substantia nigra of PD rats. Further in vitro study indicated that KAE reversed the activation of BV2 cells and down-regulated the expressions of pyrolytic proteins, inflammatory mediators and key molecules in p38MAPK/NF-κB signaling pathway. Collectively, KAE inhibits the microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects on 6-hydroxydopamine (6-OHDA)-induced PD rats and lipopolysaccharide (LPS)-induced BV2 inflammatory cells through inhibiting p38MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Meiyun Cai
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenxin Zhuang
- Center for Experimental Medical Research, Weifang Medical University, Weifang, 261053, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Zhan Liu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenyi Zhang
- Department of Biotechnology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Wenyu Fu
- Department of Histology and Embryology, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
25
|
Kara SP, Altunan B, Unal A. Investigation of the peripheral inflammation (neutrophil-lymphocyte ratio) in two neurodegenerative diseases of the central nervous system. Neurol Sci 2022; 43:1799-1807. [PMID: 34331157 PMCID: PMC8324446 DOI: 10.1007/s10072-021-05507-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), and idiopathic Parkinson's disease (IPD) are the neurodegenerative diseases of the central nervous system (CNS). Cognitive impairment is on the forefront in AD. However, IPD is a movement disorder. Inflammation was suggested to have an effect in the pathophysiology of these two diseases. Neutrophil-lymphocyte ratio (NLR) was shown to be a possible marker showing the peripheral inflammation. We aimed to investigate the NLR of patiens with the diagnosis of AD, and IPD, and individuals with no neurodegenerative disease. MATERIALS AND METHODS A total of 100 patients with the diagnosis of IPD, and 94 with diagnosis of AD, and 61 healthy controls were included into the study. All the demographic, clinical, and laboratory data were retrospectively obtained from the hospital automated database system. RESULTS The NLR in the IPD group was found statistically significantly higher compared with the control group and the AD group (p < 0.001, p = 0.04, respectively). The age-adjusted values were statistically analyzed because of age difference. No statistically significant difference was detected between AD and control groups in terms of NLR (p = 0.6). The age-adjusted NLR value in the Parkinson's group was found significantly higher compared to the control group (p = 0.02) and Alzheimer's group (p = 0.03). DISCUSSION Chronic inflammation has an important role in the emergence and progression of the chronic neurodegenerative diseases of the CNS. Our results show that the inflammation in the peripheral blood in IPD was more significant compared with the inflammation in AD.
Collapse
Affiliation(s)
- Sonat Pınar Kara
- Faculty of Medicine, Department of Internal Medicine, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Bengü Altunan
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Aysun Unal
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
26
|
Cocoros NM, Svensson E, Szépligeti SK, Vestergaard SV, Szentkúti P, Thomsen RW, Borghammer P, Sørensen HT, Henderson VW. Long-term Risk of Parkinson Disease Following Influenza and Other Infections. JAMA Neurol 2021; 78:1461-1470. [PMID: 34694344 DOI: 10.1001/jamaneurol.2021.3895] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Influenza has been associated with the risk of developing Parkinson disease, but the association is controversial. Objective To examine whether prior influenza and other infections are associated with Parkinson disease more than 10 years after infection. Design, Setting, and Participants This case-control study used data from 1977 to 2016 from the Danish National Patient Registry. All individuals with Parkinson disease, excluding those with drug-induced parkinsonism, were included and matched to 5 population controls on sex, age, and date of Parkinson diagnosis. Data were analyzed from December 2019 to September 2021. Exposures Infections were ascertained between 1977 and 2016 and categorized by time from infection to Parkinson disease diagnosis. To increase specificity of influenza diagnoses, influenza exposure was restricted to months of peak influenza activity. Main Outcomes and Measures Parkinson disease diagnoses were identified between January 1, 2000, and December 31, 2016. Crude and adjusted odds ratios (ORs) and 95% CIs were calculated by conditional logistic regression overall and stratified by time between infection and Parkinson disease (5 years or less, more than 5 to 10 years, more than 10 years). Results Of 61 626 included individuals, 23 826 (38.7%) were female, and 53 202 (86.3%) were older than 60 years. A total of 10 271 individuals with Parkinson disease and 51 355 controls were identified. Influenza diagnosed at any time during a calendar year was associated with Parkinson disease more than 10 years later (OR, 1.73; 95% CI, 1.11-2.71). When influenza exposure was restricted to months of highest influenza activity, an elevated OR with a wider confidence interval was found (OR, 1.52; 95% CI, 0.80-2.89). There was no evidence of an association with any type of infection more than 10 years prior to Parkinson disease (OR, 1.04; 95% CI, 0.98-1.10). Several specific infections yielded increased odds of Parkinson disease within 5 years of infection, but results were null when exposure occurred more than 10 years prior. Conclusions and Relevance In this case-control study, influenza was associated with diagnoses of Parkinson disease more than 10 years after infection. These observational data suggest a link between influenza and Parkinson disease but do not demonstrate causality. While other infections were associated with Parkinson disease diagnoses soon after infection, null associations after more than 10 years suggest these shorter-term associations are not causal.
Collapse
Affiliation(s)
- Noelle M Cocoros
- Department of Population Medicine at Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Elisabeth Svensson
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,The Danish Clinical Quality Program, National Clinical Registries, Aarhus, Denmark
| | | | - Søren Viborg Vestergaard
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Péter Szentkúti
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Reimar W Thomsen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Clinical Excellence Research Center, Stanford University, Stanford, California
| | - Victor W Henderson
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Epidemiology and Population Health, Stanford University, Stanford, California.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
27
|
Russo M, Humes ST, Figueroa AM, Tagmount A, Zhang P, Loguinov A, Lednicky JA, Sabo-Attwood T, Vulpe CD, Liu B. Organochlorine Pesticide Dieldrin Suppresses Cellular Interferon-Related Antiviral Gene Expression. Toxicol Sci 2021; 182:260-274. [PMID: 34051100 DOI: 10.1093/toxsci/kfab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2. Interestingly, treatment of N27 cells with dieldrin markedly downregulated the expression of many of these genes. Dieldrin exterted a similar effect in inhibiting IFIT2 and MX1 gene expression in human SH-SY5Y neuronal cells induced by an RNA viral mimic, polyinosinic: polycytidylic acid (poly I:C) and IFIT2/3 gene expression in human pulmonary epithelial cells exposed to human influenza H1N1 virus. Mechanistically, dieldrin induced a rapid rise in levels of intracellular reactive oxygen species (iROS) and a decrease in intracellular glutathione (GSH) levels in SH-SY5Y cells. Treatment with N-acetylcysteine, an antioxidant and GSH biosynthesis precursor, effectively blocked both dieldrin-induced increases in iROS and its inhibition of poly I:C-induced upregulation of IFIT and MX gene expression, suggesting a role for intracellular oxidative status in dieldrin's modulation of antiviral gene expression. This study demonstrates that dieldrin modulates key genes of the cellular innate immune responses that are normally involved in the host's cellular defense against viral infections. Our findings have potential relevance to understanding the organismal effects of environmentally persistent organochlorine contaminants on the mammalian cellular immune system.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Sara T Humes
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Ariana M Figueroa
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Ping Zhang
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| | - Alex Loguinov
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, College of Public Health and Health Professions, Gainesville, Florida 32610, USA
| | - Chris D Vulpe
- Department of Physiological Sciences, University of Florida, College of Veterinary Medicine, Gainesville, Florida 32610, USA
| | - Bin Liu
- Department of Pharmacodynamics, University of Florida, College of Pharmacy, Gainesville, Florida 32610, USA
| |
Collapse
|
28
|
Russo M, Sobh A, Zhang P, Loguinov A, Tagmount A, Vulpe CD, Liu B. Functional Pathway Identification With CRISPR/Cas9 Genome-wide Gene Disruption in Human Dopaminergic Neuronal Cells Following Chronic Treatment With Dieldrin. Toxicol Sci 2021; 176:366-381. [PMID: 32421776 DOI: 10.1093/toxsci/kfaa071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organochlorine pesticides, once widely used, are extremely persistent and bio-accumulative in the environment. Epidemiological studies have implicated that environmental exposure to organochlorine pesticides including dieldrin is a risk factor for the development of Parkinson's disease. However, the pertinent mechanisms of action remain poorly understood. In this study, we carried out a genome-wide (Brunello library, 19 114 genes, 76 411 sgRNAs) CRISPR/Cas9 screen in human dopaminergic SH-SY5Y neuronal cells exposed to a chronic treatment (30 days) with dieldrin to identify cellular pathways that are functionally related to the chronic cellular toxicity. Our results indicate that dieldrin toxicity was enhanced by gene disruption of specific components of the ubiquitin proteasome system as well as, surprisingly, the protein degradation pathways previously implicated in inherited forms of Parkinson's disease, centered on Parkin. In addition, disruption of regulatory components of the mTOR pathway which integrates cellular responses to both intra- and extracellular signals and is a central regulator for cell metabolism, growth, proliferation, and survival, led to increased sensitivity to dieldrin-induced cellular toxicity. This study is one of the first to apply a genome-wide CRISPR/Cas9-based functional gene disruption screening approach in an adherent neuronal cell line to globally decipher cellular mechanisms that contribute to environmental toxicant-induced neurotoxicity and provides novel insight into the dopaminergic neurotoxicity associated with chronic exposure to dieldrin.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, College of Pharmacy
| | - Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Ping Zhang
- Department of Pharmacodynamics, College of Pharmacy
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Bin Liu
- Department of Pharmacodynamics, College of Pharmacy
| |
Collapse
|
29
|
Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4676. [PMID: 33925154 PMCID: PMC8125756 DOI: 10.3390/ijms22094676] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
With the world's population ageing, the incidence of Parkinson's disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.
Collapse
Affiliation(s)
- Katja Badanjak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Sonja Fixemer
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Luxembourg Centre for Neuropathology (LCNP), L-3555 Dudelange, Luxembourg
| | - Semra Smajić
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Department of Neuroscience, University California San Diego, La Jolla, CA 92093, USA
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
30
|
Fernández-Espejo E, Rodriguez de Fonseca F, Suárez J, Martín de Pablos Á. Cerebrospinal fluid lactoperoxidase level is enhanced in idiopathic Parkinson's disease, and correlates with levodopa equivalent daily dose. Brain Res 2021; 1761:147411. [PMID: 33676939 DOI: 10.1016/j.brainres.2021.147411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023]
Abstract
Lactoperoxidase (LPO) is proposed to play a role in the pathogenesis of Parkinson's disease (PD). This enzyme has been reported to be enhanced in the cerebrospinal fluid (CSF) in parkinsonian patients. The objective was to look at the relationship of LPO in the CSF and serum with clinical features of idiopathic PD. LPO concentration was analyzed through ELISA techniques. Correlation of CSF or serum LPO and MDS-UPDRS, dopaminergic medication, and other clinical parameters was examined. The findings revealed that LPO concentration in the CSF, not serum, was found to be elevated in patients with PD relative to controls (p < 0.001). CSF LPO concentration negatively correlated with MDS-UPDRS part-IV score (p < .0001), a rating scale that allows evaluating motor complications. CSF LPO level inversely correlated with the dose intensity of the dopaminergic medication regimen, as evaluated with levodopa equivalent dose or LED (mg/day; p < .0001). LED value positively correlated with MDS-UPDRS part-IV score (p < .0001). To sum up, the findings indicate that CSF LPO is found to be elevated in the CSF of PD patients, and this enzyme holds promise as potential biomarker for diagnosis of PD. Increasing the dose intensity of the dopaminergic medication regimen attenuates the elevation in LPO levels in the CSF, and it facilitates the development of motor complications in patients. The pathophysiological mechanisms that seem to be responsible for LPO increase would include dopamine deficiency, oxidative stress, and less likely, microbial infection.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08010 Barcelona, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain.
| | - Fernando Rodriguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario, Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain
| | - Ángel Martín de Pablos
- Departamento de Anestesiología, Servicio de Cirugía, Hospital Universitario Macarena, 41009 Sevilla, Spain
| |
Collapse
|
31
|
Navarro A, García M, Rodrigues AS, Garcia PV, Camarinho R, Segovia Y. Reactive astrogliosis in the dentate gyrus of mice exposed to active volcanic environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:213-226. [PMID: 33283687 DOI: 10.1080/15287394.2020.1850381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air pollution has been associated with neuroinflammatory processes and is considered a risk factor for the development of neurodegenerative diseases. Volcanic environments are considered a natural source of air pollution. However, the effects of natural source air pollution on the central nervous system (CNS) have not been reported, despite the fact that up to 10% of the world's population lives near a historically active volcano. In order to assess the response of the CNS to such exposure, our study was conducted in the island of Sao Miguel (Azores, Portugal) in two different areas: Furnas, which is volcanically active one, and compared to Rabo de Peixe, a reference site without manifestations of active volcanism using Mus musculus as a bioindicator species. To evaluate the state of the astroglial population in the dentate gyrus in both samples, the number of astrocytes was determined using immunofluorescence methods (anti-GFAP and anti-GS). In addition, the astrocytic branches in that hippocampal area were examined. Our results showed an increase in GFAP+ astrocytes and a reduction in GS+ astrocytes in Furnas-exposed mice compared to animals from Rabo de Peixe. In addition, astrocytes in the dentate gyrus of chronically exposed animals exhibited longer branches compared to those residing at the reference site. Thus, reactive astrogliosis and astrocyte dysfunction are found in mice living in an active volcanic environment.
Collapse
Affiliation(s)
- A Navarro
- Department of Biotechnology, University of Alicante , Alicante, Spain
| | - M García
- Department of Biotechnology, University of Alicante , Alicante, Spain
| | - A S Rodrigues
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores , Ponta Delgada, Portugal
| | - P V Garcia
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores , Ponta Delgada, Portugal
| | - R Camarinho
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores , Ponta Delgada, Portugal
| | - Y Segovia
- Department of Biotechnology, University of Alicante , Alicante, Spain
| |
Collapse
|
32
|
Smeyne RJ, Noyce AJ, Byrne M, Savica R, Marras C. Infection and Risk of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 11:31-43. [PMID: 33361610 PMCID: PMC7990414 DOI: 10.3233/jpd-202279] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson’s disease (PD) is thought to be caused by a combination of genetic and environmental factors. Bacterial or viral infection has been proposed as a potential risk factor, and there is supporting although not entirely consistent epidemiologic and basic science evidence to support its role. Encephalitis caused by influenza has included parkinsonian features. Epidemiological evidence is most compelling for an association between PD and hepatitis C virus. Infection with Helicobacter pylori may be associated not only with PD risk but also response to levodopa. Rapidly evolving knowledge regarding the role of the microbiome also suggests a role of resident bacteria in PD risk. Biological plausibility for the role for infectious agents is supported by the known neurotropic effects of specific viruses, particular vulnerability of the substantia nigra and even the promotion of aggregation of alpha-synuclein. A common feature of implicated viruses appears to be production of high levels of cytokines and chemokines that can cross the blood-brain barrier leading to microglial activation and inflammation and ultimately neuronal cell death. Based on multiple avenues of evidence it appears likely that specific bacterial and particularly viral infections may increase vulnerability to PD. The implications of this for PD prevention requires attention and may be most relevant once preventive treatments for at-risk populations are developed.
Collapse
Affiliation(s)
- Richard J Smeyne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alastair J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.,Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Matthew Byrne
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota and Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's disease, Toronto Western Hospital and the University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Giuliano C, Cerri S, Blandini F. Potential therapeutic effects of polyphenols in Parkinson's disease: in vivo and in vitro pre-clinical studies. Neural Regen Res 2021; 16:234-241. [PMID: 32859769 PMCID: PMC7896204 DOI: 10.4103/1673-5374.290879] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder characterized by a combination of severe motor and non-motor symptoms. Over the years, several factors have been discovered to play a role in the pathogenesis of this disease, in particular, neuroinflammation and oxidative stress. To date, the pharmacological treatments used in Parkinson’s disease are exclusively symptomatic. For this reason, in recent years, the research has been directed towards the discovery and study of new natural molecules to develop potential neuroprotective therapies against Parkinson’s disease. In this context, natural polyphenols have raised much attention for their important anti-inflammatory and antioxidant properties, but also for their ability to modulate protein misfolding. In this review, we propose to summarize the relevant in vivo and in vitro studies concerning the potential therapeutic role of natural polyphenols in Parkinson’s disease.
Collapse
Affiliation(s)
- Claudio Giuliano
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
34
|
Abstract
OBJECTIVE Several studies suggested a potential role of viral infection in the pathophysiology of Parkinson's disease (PD). However, the association between herpes zoster and PD was not investigated well till now. METHODS Using the Taiwan National Health Insurance Research Database, 13 083 patients aged ≥45 years with herpes zoster and 52 332 (1:4) age-/sex-matched controls were enrolled between 1998 and 2008 and followed to the end of 2011. Those who developed PD during the follow-up period were identified. RESULTS The Cox regression analysis with adjustment of demographic characteristics, health system utilization, and comorbidities demonstrated that patients with herpes zoster had an increased risk (hazard ratio [HR]: 1.80, 95% confidence interval [CI]: 1.43-2.28) of developing PD in later life compared to the control group. Sensitivity tests after excluding the first year (HR: 1.50, 95% CI: 1.16-1.93) and first 2-year (HR: 1.44, 95% CI: 1.10-1.88) observation periods showed consistent results. CONCLUSIONS Patients with herpes zoster were more likely to develop PD in later life compared to the controls. Additional studies are necessary for validating our results and to clarify the underlying pathophysiology between herpes zoster and PD.
Collapse
|
35
|
Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation-An Interesting Interplay in Parkinson's Disease. Int J Mol Sci 2020; 21:E8421. [PMID: 33182554 PMCID: PMC7697354 DOI: 10.3390/ijms21228421] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, caused by, so far, unknown pathogenetic mechanisms. There is no doubt that pro-inflammatory immune-mediated mechanisms are pivotal to the pathogenicity and progression of the disease. In this review, we highlight the binary role of microglia activation in the pathophysiology of the disorder, both neuroprotective and neuromodulatory. We present how the expression of several cytokines implicated in dopaminergic neurons (DA) degeneration could be used as biomarkers for PD. Viral infections have been studied and correlated to the disease progression, usually operating as trigger factors for the inflammatory process. The gut-brain axis and the possible contribution of the peripheral bowel inflammation to neuronal death, mainly dopaminergic neurons, seems to be a main contributor of brain neuroinflammation. The role of the immune system has also been analyzed implicating a-synuclein in the activation of innate and adaptive immunity. We also discuss therapeutic approaches concerning PD and neuroinflammation, which have been studied in experimental and in vitro models and data stemming from epidemiological studies.
Collapse
Affiliation(s)
- Chrysoula Marogianni
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Maria Sokratous
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| | | | - Dimitrios Bogdanos
- Department of Internal Medicine, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (C.M.); (M.S.); (E.D.)
| |
Collapse
|
36
|
Fernández-Espejo E. Microorganisms that are related with increased risk for Parkinson's disease. Neurologia 2020; 38:S0213-4853(20)30301-7. [PMID: 33160724 DOI: 10.1016/j.nrl.2020.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder that affects more than 7 million people worldwide. Its aetiology is unknown, although the hypothesis of a genetic susceptibility to environmental agents is accepted. These environmental agents include fungi, bacteria, and viruses. Three microorganisms are directly associated with a significantly increased risk of developing Parkinson's disease: the fungal genus Malassezia, the bacterium Helicobacter pylori, and the hepatitis C virus. If the host is vulnerable due to genetic susceptibility or immune weakness, these microorganisms can access and infect the nervous system, causing chronic neuroinflammation with neurodegeneration. Other microorganisms show an epidemiological association with the disease, including the influenza type A, Japanese encephalitis type B, St Louis, and West Nile viruses. These viruses can affect the nervous system, causing encephalitis, which can result in parkinsonism. This article reviews the role of all these microorganisms in Parkinson's disease.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Laboratorio de Neurología Molecular, Universidad de Sevilla, Sevilla, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA), Málaga, España.
| |
Collapse
|
37
|
Hasan S, Mielke MM, Ahlskog JE, Bower J, Turcano P, Savica R. Infections or Sepsis Preceding Clinically Diagnosed α-Synucleinopathies: A Case-Control Study. Mov Disord 2020; 35:1684-1689. [PMID: 32479692 PMCID: PMC7818650 DOI: 10.1002/mds.28111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Several studies have proposed a role for infections to induce an inflammatory response triggering Parkinson's disease. This remains controversial and the influence of severe infections on other α-synucleinopathies (Dementia with Lewy Bodies, Parkinson's disease dementia, and Multiple System Atrophy) has not been adequately investigated. OBJECTIVES To assess the association between hospitalization-required infections or sepsis and risk of clinically diagnosed α-synucleinopathies. METHODS Using the medical records-linkage system (Rochester Epidemiology Project), we identified all α-synucleinopathy cases of in Olmsted County (1991-2010). Cases were matched by symptom-onset age and sex to controls. We reviewed complete medical records to detect hospital-required infections or sepsis preceding clinical-motor onset of α-synucleinopathies. We used conditional logistic regression to calculate the odds ratio of all α-synucleinopathies, adjusting for medications, coffee, and smoking. RESULTS There was no association between infection-related hospitalization (odds ratio: 1.05; 95% confidence interval: 0.78-1.40; P = 0.76) or sepsis (odds ratio: 0.86; 95% confidence interval: 0.40-1.85; P = 0.70) and all α-synucleinopathies in multivariable analyses. We did not identify any associations after stratifying for type of α-synucleinopathy, sex, and age at clinical-motor onset. We analyzed sepsis separately with similar results. CONCLUSION We did not observe any associations between infections leading to hospitalization or sepsis and development of any α-synucleinopathies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Shemonti Hasan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | - James Bower
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Wang L, Liu Y, Yan S, Du T, Fu X, Gong X, Zhou X, Zhang T, Wang X. Disease Progression-Dependent Expression of CD200R1 and CX3CR1 in Mouse Models of Parkinson's Disease. Aging Dis 2020; 11:254-268. [PMID: 32257540 PMCID: PMC7069458 DOI: 10.14336/ad.2019.0615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022] Open
Abstract
Microglial activation is an important contributor to the pathogenesis of Parkinson’s disease (PD). Microglia are tightly and efficiently regulated by immune checkpoints, including CD200-CD200R1 and CX3CL1-CX3CR1. Understanding the involvement of these checkpoints in disease progression provides important insights into how microglial activation contributes to PD pathology. However, so far, studies have produced seemingly conflicting results. In this study, we demonstrate that CD200R1 expression is down-regulated at both early and late stage of PD model, and CX3CR1 expression is down-regulated in early stage and recovered in late stage. In primary cultured microglia, CD200R1 and CX3CR1 expressions are both directly regulated by LPS or α-synuclein, and CD200R1 expression is more sensitively regulated than CX3CR1. In addition, CD200 knockout causes an increase in proinflammatory cytokine production and microglial activation in the midbrain. Remarkably, DA neurons in the substantial nigra are degenerated in CD200-/- mice. Finally, activation of the CD200R with CD200Fc alleviates the neuroinflammation in microglia. Together, these results suggest that immune checkpoints play distinct functional roles in different stage of PD pathology, and the CD200-CD200R1 axis plays a significant role in nigrostriatal neuron viability and function.
Collapse
Affiliation(s)
- Le Wang
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Yang Liu
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Shuxin Yan
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tianshu Du
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xia Fu
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- 2Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Xinyu Zhou
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Ting Zhang
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- 1Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,2Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Keshavarzian A, Engen P, Bonvegna S, Cilia R. The gut microbiome in Parkinson's disease: A culprit or a bystander? PROGRESS IN BRAIN RESEARCH 2020; 252:357-450. [PMID: 32247371 DOI: 10.1016/bs.pbr.2020.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, large-scale metagenomics projects such as the Human Microbiome Project placed the gut microbiota under the spotlight of research on its role in health and in the pathogenesis several diseases, as it can be a target for novel therapeutical approaches. The emerging concept of a microbiota modulation of the gut-brain axis in the pathogenesis of neurodegenerative disorders has been explored in several studies in animal models, as well as in human subjects. Particularly, research on changes in the composition of gut microbiota as a potential trigger for alpha-synuclein (α-syn) pathology in Parkinson's disease (PD) has gained increasing interest. In the present review, we first provide the basis to the understanding of the role of gut microbiota in healthy subjects and the molecular basis of the gut-brain interaction, focusing on metabolic and neuroinflammatory factors that could trigger the alpha-synuclein conformational changes and aggregation. Then, we critically explored preclinical and clinical studies reporting on the changes in gut microbiota in PD, as compared to healthy subjects. Furthermore, we examined the relationship between the gut microbiota and PD clinical features, discussing data consistently reported across studies, as well as the potential sources of inconsistencies. As a further step toward understanding the effects of gut microbiota on PD, we discussed the relationship between dysbiosis and response to dopamine replacement therapy, focusing on Levodopa metabolism. We conclude that further studies are needed to determine whether the gut microbiota changes observed so far in PD patients is the cause or, instead, it is merely a consequence of lifestyle changes associated with the disease. Regardless, studies so far strongly suggest that changes in microbiota appears to be impactful in pathogenesis of neuroinflammation. Thus, dysbiotic microbiota in PD could influence the disease course and response to medication, especially Levodopa. Future research will assess the impact of microbiota-directed therapeutic intervention in PD patients.
Collapse
Affiliation(s)
- Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | - Phillip Engen
- Department of Internal Medicine, Division of Digestive Disease and Nutrition, Rush University Medical Center, Chicago, IL, United States
| | | | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
40
|
Wang H, Liu X, Tan C, Zhou W, Jiang J, Peng W, Zhou X, Mo L, Chen L. Bacterial, viral, and fungal infection-related risk of Parkinson's disease: Meta-analysis of cohort and case-control studies. Brain Behav 2020; 10:e01549. [PMID: 32017453 PMCID: PMC7066372 DOI: 10.1002/brb3.1549] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS Recent studies showed that patients with various bacterial, viral, and fungal infections might be at increased risk of Parkinson's disease (PD). However, the risk of PD in patients with each specific infection varied. This meta-analysis estimated the association between various infections and PD risk. METHODS Literature published from January 1965 to October 2019 in PubMed and EMBASE databases was searched. Data were extracted and pooled using random/fixed effects model. Sensitivity analysis and meta-regression were also performed to analyze the source of heterogeneity. Publication bias was estimated by the trim and fill. RESULTS Twenty-three out of 6,609 studies were included. Helicobacter pylori (HP; pooled OR = 1.653, 1.426-1.915, p < .001), hepatitis C virus (HCV; pooled OR = 1.195, 1.012-1.410, p = .035), Malassezia (pooled OR = 1.694, 1.367-2.100, p < .001), and pneumoniae (pooled OR = 1.595, 1.020-2.493, p = .041) infection were associated with increased PD risk. Influenza virus, herpes virus, hepatitis B virus, scarlet fever, mumps virus, chicken pox, pertussis, German measles, and measles were not associated with PD risk. After antiviral treatment against HCV reduced the risk of PD in patients with HCV infection (OR = 0.672, 0.571-0.791, p < .001). Significant heterogeneity exists among the included studies. CONCLUSION Patients with infection of HP, HCV, Malassezia, pneumoniae might be an increased risk of PD. Antiviral treatment of HCV could reduce the risk of PD.
Collapse
Affiliation(s)
- Hui Wang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xi Liu
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Changhong Tan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wen Zhou
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jin Jiang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wuxue Peng
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuan Zhou
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lijuan Mo
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lifen Chen
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
41
|
Impact of Maternal Separation on Dopamine System and its Association with Parkinson's Disease. Neuromolecular Med 2020; 22:335-340. [PMID: 31933131 DOI: 10.1007/s12017-019-08587-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/25/2019] [Indexed: 01/09/2023]
Abstract
As a type of stress, maternal separation (MS) has been one of the most widely used models in neuropsychiatric research. An increasing number of studies has found that MS not only affects the function of the hypothalamic-pituitary-adrenal axis and hippocampal 5-hydroxytryptamine system, but also causes dysfunction of the central dopamine (DA) system and increases the susceptibility of dopaminergic neurons to pathogenic factors of Parkinson's disease (PD), for instance, 6-hydroxydopamine, thus impairing motor function. We reviewed the impact of MS on the DA system and its correlation with PD and found the following: (1) discrepant effects of MS on the DA system have been reported; (2) MS is a good model to study the impact of stress on the occurrence and development of PD, however, unified modeling criteria of MS are required; (3) correlation between MS and PD may involve the impact of MS on the DA system, which however is not the only connection; (4) intervening measures can block pathways between MS and PD, which provides reference for the prevention of PD in specific populations such as left-behind children.
Collapse
|
42
|
Boros FA, Maszlag-Török R, Vécsei L, Klivényi P. Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson's disease. Brain Res 2020; 1730:146672. [PMID: 31953211 DOI: 10.1016/j.brainres.2020.146672] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder that poses serious burden to individuals and society as well. Although a number of PD associated genetic factors have been identified, the molecular mechanism of the disease so far has not been completely elucidated. Involvement of long non-coding RNAs (lncRNAs) in the pathology of neurodegenerative disorders is attracting increased interest because of the diverse mechanisms lncRNAs affect gene expression and cellular homeostasis at different levels. We aimed to test the feasibility of detecting alterations in lncRNA levels in easily accessible samples of PD patients by routine laboratory technique. By narrowing the number of selected lncRNAs implicated in neurodegeneration and increasing the number of PD samples included, we found one out of 41 lncRNAs readily detectable in increased level in peripheral blood of PD patients. We detected NEAT1 to be significantly up-regulated in PD patients in multiple comparisons. NEAT1 is the core element of nuclear paraspeckles and it plays role in regulation of transcription, mRNA and miRNA levels, mitochondrial and cellular homeostasis. Our finding is in accord with recent data demonstrating changes in the level of NEAT1 in neurons of PD patients and in several models of the disease. However, to our knowledge this is the first study to report NEAT1 up-regulation in blood of PD patients. Identification of altered expression of this lncRNA in the periphery might help to a better understanding of the mechanisms underlying PD, and can contribute to the identification of new therapeutic targets and disease markers.
Collapse
Affiliation(s)
- Fanni Annamária Boros
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Rita Maszlag-Török
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
| |
Collapse
|
43
|
Walkden H, Delbaz A, Nazareth L, Batzloff M, Shelper T, Beacham IR, Chacko A, Shah M, Beagley KW, Tello Velasquez J, St John JA, Ekberg JAK. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl Trop Dis 2020; 14:e0008017. [PMID: 31978058 PMCID: PMC7002012 DOI: 10.1371/journal.pntd.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.
Collapse
Affiliation(s)
- Heidi Walkden
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ali Delbaz
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Todd Shelper
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Anu Chacko
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Kenneth W. Beagley
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - James A. St John
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jenny A. K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
44
|
Wang LY, Yu X, Li XX, Zhao YN, Wang CY, Wang ZY, He ZY. Catalpol Exerts a Neuroprotective Effect in the MPTP Mouse Model of Parkinson's Disease. Front Aging Neurosci 2019; 11:316. [PMID: 31849636 PMCID: PMC6889905 DOI: 10.3389/fnagi.2019.00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
The degeneration of dopaminergic (DA) neurons in Parkinson’s disease (PD) is related to inflammation and oxidative stress. Anti-inflammatory agents could reduce the risk or slow the progression of PD. Catalpol, an iridoid glycoside extracted from the roots of Rehmannia radix, has been reported to reduce the release of inflammatory factors and exert neuroprotective effects. 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP)-treated mice were used as the PD model and the roles of catalpol on DA neurons and its potential mechanism were investigated in this study. We found that catalpol administration mitigated the loss of DA neurons induced by MPTP and increased exploratory behavior along with tyrosine hydroxylase (TH) expression, which was accompanied by astrocyte and microglia activation. Importantly, catalpol administration significantly inhibited MPTP-triggered oxidative stress, restored growth-associated protein 43 (GAP43) and vascular endothelial growth factor (VEGF) levels. Further, we found that catalpol suppressed the activation of MKK4/JNK/c-Jun signaling, and reduced the pro-inflammatory factors and inflammasome in the mouse model of PD. Our results suggest that catalpol relieves MPTP-triggered oxidative stress, which may benefit to avoid the occurrence of chronic inflammatory reaction. Catalpol alleviates MPTP-triggered oxidative stress and thereby prevents neurodegenerative diseases-related inflammatory reaction, highlighting its therapeutic potential for the management of PD symptoms.
Collapse
Affiliation(s)
- Li-Yuan Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Xin Yu
- Institute of Health Science, China Medical University, Shenyang, China
| | - Xiao-Xi Li
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Yi-Nan Zhao
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Chun-Yan Wang
- Institute of Health Science, China Medical University, Shenyang, China
| | - Zhan-You Wang
- Institute of Health Science, China Medical University, Shenyang, China
| | - Zhi-Yi He
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
MANDAL DIBYENDUSEKHAR, SAMANTA SUDIP, ALZAHRANI ABDULLAHKHAMES, CHATTOPADHYAY JOYDEV. STUDY OF A PREDATOR–PREY MODEL WITH PEST MANAGEMENT PERSPECTIVE. J BIOL SYST 2019. [DOI: 10.1142/s021833901950013x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, pest control has become a very interesting research topic because it is closely associated with agricultural and economic loss. Empirical evidence shows that pest insects are responsible for lower crop production and many other adverse effects on the farming sector. There are several biological, physical and chemical control mechanisms. However, the biological control of pest populations by using natural enemies is one of the most important ecosystem services adopted in agriculture around the world. In the present study, we consider an ecological model consisting of prey (pest) and its natural enemy as the predator. Different system equilibria are obtained, their stability is analyzed, and Hopf bifurcation of the system around the interior equilibrium is discussed. The sufficient permanence criteria of the system are also derived. Moreover, we perform bifurcation analysis to explore the existence of limit cycle. We also investigate the stability property of the positive periodic solution when the interior equilibrium loses its stability. Our analytical results are further verified through numerical simulations. Our findings suggest that, in the absence of a super predator, pest and natural enemy show stable coexistence. However, in the presence of super predator, if the natural enemy is killed at a lower rate, both pest and natural enemy coexist. Finally, above a threshold value, the natural enemy is eradicated from the system and pest outbreak occurs.
Collapse
Affiliation(s)
- DIBYENDU SEKHAR MANDAL
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| | - SUDIP SAMANTA
- Department of Mathematics, Faculty of Science & Arts - Rabigh, King Abdulaziz University, Rabigh 25732, Saudi Arabia
- Department of Mathematics, Bankura University, West Bengal 722155, India
| | - ABDULLAH KHAMES ALZAHRANI
- Department of Mathematics, Faculty of Science & Arts - Rabigh, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - JOYDEV CHATTOPADHYAY
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| |
Collapse
|
46
|
Huang W, Xu Y, Zhang Y, Zhang P, Zhang Q, Zhang Z, Xu F. Metabolomics-driven identification of adenosine deaminase as therapeutic target in a mouse model of Parkinson's disease. J Neurochem 2019; 150:282-295. [PMID: 31121068 DOI: 10.1111/jnc.14774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is one of the driving forces of progressive neurodegeneration in Parkinson's disease (PD). The metabolomics approach has been proved highly useful in identifying potential therapeutic targets. Here, to identify inflammation-relevant treatment targets for PD, mass spectrometry-based untargeted metabolomics was applied to characterize metabolic changes in the striatum of mice with double-hit PD induced by lipopolysaccharide plus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Seven days after the final MPTP administration, metabolites from the purine metabolism pathway, including adenosine, 1-methyladenosine, adenine, inosine, hypoxanthine, xanthine, xanthosine, and guanosine, were found to be significantly dysregulated. The metabolite-protein interaction network and changes in the concentration ratio of these metabolites indicated that adenosine and adenosine deaminase (ADA; EC 3.5.4.4) were the most promising therapeutic targets and adenosine augmentation might be a rational approach to slow PD progression. These findings were then verified in a subacute MPTP-induced PD mouse model treated with ADA inhibition alone or in conjunction with antagonism of adenosine A2A receptors (A2A R). Behavioral, biochemical, and immunohistochemical analysis demonstrated that ADA inhibition significantly ameliorated the MPTP-mediated motor disabilities, dopamine depletion, and dopaminergic cell death. Significantly enhanced neuroprotective effects were further observed when the ADA inhibitor was utilized in conjunction with an A2A R antagonist. Together, our study indicated for the first time that ADA inhibitors protected against neurodegeneration induced by the neurotoxin MPTP, and ADA inhibitors in combination with A2A R antagonists showed additive antiparkinsonian effects.
Collapse
Affiliation(s)
- Wanqiu Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Yazhou Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Yuxin Zhang
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, P. R.China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Gunma University Initiative for Advanced Research (GIAR), Gunma University, Gunma, Japan.,Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qianqian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P. R. China.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
47
|
Abstract
Inflammasomes are protein platforms consisting of multiple proteins. The biological function includes the activation of caspase-1, leading to the maturation of IL-1β and IL-18. These pro-inflammatory cytokines promote fundamental inflammatory processes in numerous infectious diseases. The inflammasome-mediated inflammation has become increasingly important in central nervous system disorders. In neurodegenerative disorders, significant contributors to disease progression include neuroinflammation and inflammatory cascades initiated by the inflammasome protein complex. This review discusses the recent progress of research on inflammasome associated with neurodegenerative disorders.
Collapse
|
48
|
Impact of infection on risk of Parkinson's disease: a quantitative assessment of case-control and cohort studies. J Neurovirol 2019; 25:221-228. [PMID: 30632012 DOI: 10.1007/s13365-018-0707-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/10/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Identifying modifiable risk factors for Parkinson's disease (PD) to help prevent this disease has attracted increasing interest in recent years for the limited effective drugs at present. Despite many studies indicated that infection acts as a risk factor for PD, there is no quantitative assessment of the impact of viral and bacterial infections on the risk of developing PD. The present study performed a meta-analysis on the basis of 38 datasets from 13 studies covering 287,773 PD cases and 7,102,901 controls to ascertain the association between PD and infection and the differences in the strength of the viral and bacterial infections. The overall meta-analytic results indicated that individuals with infection had a 20% increased risk of PD compared with controls (OR 1.20, 95%CI 1.07-1.32). The subgroup analysis according to the type of infection found that bacterial infection had a significant impact on increased risk of PD (OR 1.40, 95%CI 1.32-1.48). The present analysis indicated that infection could increase the risk of developing PD, and physician should be aware of the risk of developing PD in subjects with infection.
Collapse
|
49
|
Role of NADPH oxidase in cooperative reactive oxygen species generation in dopaminergic neurons induced by combined treatment with dieldrin and lindane. Toxicol Lett 2018; 299:47-55. [DOI: 10.1016/j.toxlet.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/31/2018] [Accepted: 09/16/2018] [Indexed: 11/19/2022]
|
50
|
Hasby Saad M, Safwat O, El-Guindy D, Raafat R, Elgendy D, Hasby E. Biomolecular Changes and Cortical Neurodegenerative Lesions in Trichinella Spiralis Infected BALB/c Mice: A Preliminary Study Elucidating a Potential Relationship Between Systemic Helminthic Infections and Idiopathic Parkinson's. Helminthologia 2018; 55:261-274. [PMID: 31662657 PMCID: PMC6662001 DOI: 10.2478/helm-2018-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/28/2018] [Indexed: 02/05/2023] Open
Abstract
Idiopathic Parkinson's (IP) is a neurodegenerative disease that is suspected to be due to exposure to infections during early life. Toxoplasmosishas been the only suspected parasitic infection in IP (Celik et al., 2010). Recently, some non-central nervous system bacterial and viral infections have been incriminated in IP (Çamcı & Oğuz, 2016). So in the current study, we tried to explore if the systemic inflammatory reactions triggered by some helminths like Trichinella spiralis can induce Parkinsonian lesions in the brain, especially that the cerebral complications have been reported in 10-20% of Trichinella spiralis infected patients . An experimental study was designed to assess the neurodegenerative and biomolecular changes that may occur in Trichinella spiralis infected BALB/C mice in comparison to rotenone induced PD model and apparently healthy ones. The motor affection was significantly lesser in the Trichinella infected mice than the Parkinson's model, but when the catalepsy score was calculated (through the grid and bar tests) it was found to be significantly higher in the infected mice than in the healthy ones. A significant increase in the blood advanced oxidative protein products (AOPP), IFN-γ, TGF-β, and brain DNA fragmentation was also detected in the Trichinella spiralis infected mice. After histopathological examination, a significant increase in the cortical apoptotic neurons and Lewy's body were observed in the Trichinella infected and the rotenone induced Parkinson's model sections. A significant decrease in the immunohistochemical expression of the tyrosine hydroxylase expression in the brain sections and the ELISA measured dopamine level in the brain homogenate was also reported in the infected mice group. This study findings may collectively suggest that the systemic inflammatory reactions and the oxidative stresses associated with some systemic helminthic infections like trichinellosis are possible to precipitate neurodegenerative lesions and biomolecular changes in the brain , and manifest with IPD later in life.
Collapse
Affiliation(s)
- M. Hasby Saad
- Medical Parasitology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - O. Safwat
- Biochemistry, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - D. El-Guindy
- Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - R. Raafat
- Biochemistry, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - D. Elgendy
- Medical Parasitology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | - E. Hasby
- Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| |
Collapse
|