1
|
Chunga Pizarro CA, Buchholz RR, Hornbrook RS, Christensen K, Méndez M. Air Quality Monitoring and the Safety of Farmworkers in Wildfire Mandatory Evacuation Zones. GEOHEALTH 2024; 8:e2024GH001033. [PMID: 38979060 PMCID: PMC11227989 DOI: 10.1029/2024gh001033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
The increasing frequency and severity of wildfires due to climate change pose health risks to migrant farm workers laboring in wildfire-prone regions. This study focuses on Sonoma County, California, investigating the effectiveness of air monitoring and safety protections for farmworkers. The analysis employs AirNow and PurpleAir PM2.5 data acquired during the 2020 wildfire season, comparing spatial variability in air pollution. Results show significant differences between the single Sonoma County AirNow station data and the PurpleAir data in the regions directly impacted by wildfire smoke. Three distinct wildfire pollution episodes with elevated PM2.5 levels are identified to examine the regional variations. This study also examines the system used to exempt farmworkers from wildfire mandatory evacuation orders, finding incomplete information, ad hoc decision-making, and scant enforcement. In response, we make policy recommendations that include stricter requirements for employers, real-time air quality monitoring, post-exposure health screenings, and hazard pay. Our findings underscore the need for significant consideration of localized air quality readings and the importance of equitable disaster policies for protecting the health of farmworkers (particularly those who are undocumented migrants) in the face of escalating wildfire risks.
Collapse
Affiliation(s)
| | - Rebecca R Buchholz
- Atmospheric Chemistry Observations & Modeling Laboratory NSF National Center for Atmospheric Research Boulder CO USA
| | - Rebecca S Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory NSF National Center for Atmospheric Research Boulder CO USA
| | | | | |
Collapse
|
2
|
Prina M, Khan N, Akhter Khan S, Caicedo JC, Peycheva A, Seo V, Xue S, Sadana R. Climate change and healthy ageing: An assessment of the impact of climate hazards on older people. J Glob Health 2024; 14:04101. [PMID: 38783708 PMCID: PMC11116931 DOI: 10.7189/jogh.14.04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Background Climate change not only directly impacts older people's longevity but also healthy ageing, which is the process of maintaining physical and mental capacities while optimising functional abilities. The urgency to address both population ageing and climate change necessitates a rethink and assessment of the impact of climate change on older people. This includes identifying what can be done to anticipate, mitigate and adapt to climate change and engage older persons. Methods A review of climate change and healthy ageing forms the basis of evidence in this report. We developed a comprehensive search to assess current literature, combining terms related to ageing and climate change across four major data sets and assessing articles published up to the end of 2021. Results We summarised the current and future impact of climate change on older people and developed a framework identifying climate change impacts on older persons, recognising social and environmental determinants of healthy ageing. Major hazards and some key exposure pathways include extreme temperatures, wildfire, drought, flooding, storm and sea level rise, air quality, climate-sensitive infectious diseases, food and water insecurities, health and social care system displacement, migration, and relocation. Strategies to address climate change require interventions to improve systems and infrastructure to reduce vulnerability and increase resilience. As a heterogeneous group, older people's perceptions of climate change should be integrated into climate activism. Increasing climate change literacy among older people and enabling them to promote intergenerational dialogue will drive the development and implementation of equitable solutions. Pathways may operate via direct or indirect exposures, requiring longitudinal studies that enable assessment of exposures and outcomes at multiple time points, and analyses of cumulative impacts of hazards across the life course. Conclusions The lack of systematic reviews and primary research on the impact of most climate hazards, except for heat, on older people is apparent. Future research should include outcomes beyond mortality and morbidity and assess how older people interact with their environment by focusing on their capacities and optimising abilities for being and doing what they value.
Collapse
Affiliation(s)
- Matthew Prina
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England, UK
| | - Nusrat Khan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England, UK
| | - Samia Akhter Khan
- Department of Global Health & Social Medicine, King’s College London, London, England, UK
- Department of Health Service & Population Health, King’s College London, London, England, UK
| | | | - Anna Peycheva
- Department of Child and Adolescent Psychiatry, King’s College London, London, England, UK
| | - Veri Seo
- Department of Psychiatry, Cambridge Health Alliance, Cambridge, Massachusetts, USA
| | - Siqi Xue
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ritu Sadana
- World Health Organization, Geneva, Switzerland
| |
Collapse
|
3
|
Mishra M, Guria R, Baraj B, Nanda AP, Santos CAG, Silva RMD, Laksono FAT. Spatial analysis and machine learning prediction of forest fire susceptibility: a comprehensive approach for effective management and mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171713. [PMID: 38503392 DOI: 10.1016/j.scitotenv.2024.171713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Forest fires (FF) in tropical seasonal forests impact ecosystem. Addressing FF in tropical ecosystems has become a priority to mitigate impacts on biodiversity loss and climate change. The escalating frequency and intensity of FF globally have become a mounting concern. Understanding their tendencies, patterns, and vulnerabilities is imperative for conserving ecosystems and facilitating the development of effective prevention and management strategies. This study investigates the trends, patterns, and spatiotemporal distribution of FF for the period of 2001-2022, and delineates the forest fire susceptibility zones in Odisha State, India. The study utilized: (a) MODIS imagery to examine active fire point data; (b) Kernel density tools; (c) FF risk prediction using two machine learning algorithms, namely Support Vector Machine (SVM) and Random Forest (RF); (d) Receiver Operating Characteristic and Area Under the Curve, along with various evaluation metrics; and (e) a total of 19 factors, including three topographical, seven climatic, four biophysical, and five anthropogenic, to create a map indicating areas vulnerable to FF. The validation results revealed that the RF model achieved a precision exceeding 94 % on the validation datasets, while the SVM model reached 89 %. The estimated forest fire susceptibility zones using RF and SVM techniques indicated that 20.14 % and 16.72 % of the area, respectively, fall under the "Very High Forest Fire" susceptibility class. Trend analysis reveals a general upward trend in forest fire occurrences (R2 = 0.59), with a notable increase after 2015, peaking in 2021. Notably, Angul district was identified as the most affected area, documenting the highest number of forest fire incidents over the past 22 years. Additionally, forest fire mitigation plans have been developed by drawing insights from forest fire management strategies implemented in various countries worldwide. Overall, this analysis provides valuable insights for policymakers and forest management authorities to develop effective strategies for forest fire prevention and mitigation.
Collapse
Affiliation(s)
- Manoranjan Mishra
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Rajkumar Guria
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Biswaranjan Baraj
- Department of Geography, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore 756089, Odisha, India
| | - Ambika Prasad Nanda
- Tata Steel Rural Development Society, Kalinganagar, Above SBI ATM Duburi Chowk, Jajpur district 755026, Odisha, India.
| | - Celso Augusto Guimarães Santos
- Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa 58051-900, Paraíba, Brazil.
| | | | - Fx Anjar Tri Laksono
- Department of Geology and Meteorology, Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary; Department of Geological Engineering, Faculty of Engineering, Jenderal Soedirman University, 53371 Purbalingga, Indonesia.
| |
Collapse
|
4
|
Xu R, Yu P, Liu Y, Chen G, Yang Z, Zhang Y, Wu Y, Beggs PJ, Zhang Y, Boocock J, Ji F, Hanigan I, Jay O, Bi P, Vargas N, Leder K, Green D, Quail K, Huxley R, Jalaludin B, Hu W, Dennekamp M, Vardoulakis S, Bone A, Abrahams J, Johnston FH, Broome R, Capon T, Li S, Guo Y. Climate change, environmental extremes, and human health in Australia: challenges, adaptation strategies, and policy gaps. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 40:100936. [PMID: 38116505 PMCID: PMC10730315 DOI: 10.1016/j.lanwpc.2023.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 12/21/2023]
Abstract
Climate change presents a major public health concern in Australia, marked by unprecedented wildfires, heatwaves, floods, droughts, and the spread of climate-sensitive infectious diseases. Despite these challenges, Australia's response to the climate crisis has been inadequate and subject to change by politics, public sentiment, and global developments. This study illustrates the spatiotemporal patterns of selected climate-related environmental extremes (heatwaves, wildfires, floods, and droughts) across Australia during the past two decades, and summarizes climate adaptation measures and actions that have been taken by the national, state/territory, and local governments. Our findings reveal significant impacts of climate-related environmental extremes on the health and well-being of Australians. While governments have implemented various adaptation strategies, these plans must be further developed to yield concrete actions. Moreover, Indigenous Australians should not be left out in these adaptation efforts. A collaborative, comprehensive approach involving all levels of government is urgently needed to prevent, mitigate, and adapt to the health impacts of climate change.
Collapse
Affiliation(s)
- Rongbin Xu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yanming Liu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Zhengyu Yang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yiwen Zhang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Paul J. Beggs
- Faculty of Science and Engineering, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ying Zhang
- Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jennifer Boocock
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia
| | - Fei Ji
- NSW Department of Planning and Environment, Sydney, NSW 2150, Australia
| | - Ivan Hanigan
- WHO Collaborating Centre for Climate Change and Health Impact Assessment, School of Population Health, Curtin University, Perth, WA 6102, Australia
| | - Ollie Jay
- Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicole Vargas
- Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- School of Medicine and Psychology, College of Health & Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Karin Leder
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Donna Green
- School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katie Quail
- School of Biological, Earth & Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rachel Huxley
- Faculty of Health, Deakin University, Melbourne, VIC 3125, Australia
| | - Bin Jalaludin
- School of Population Health, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenbiao Hu
- School of Public Health & Social Work, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Martine Dennekamp
- Environment Protection Authority Victoria, Melbourne, VIC 3053, Australia
| | - Sotiris Vardoulakis
- Healthy Environments And Lives (HEAL) National Research Network, College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia
| | - Angie Bone
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Jonathan Abrahams
- Monash University Disaster Resilience Initiative, Melbourne, VIC 3800, Australia
| | - Fay H. Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7005, Australia
| | - Richard Broome
- The New South Wales Ministry of Health, Sydney, NSW 2065, Australia
| | - Tony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
5
|
Adu MK, Agyapong B, Agyapong VIO. Children's Psychological Reactions to Wildfires: a Review of Recent Literature. Curr Psychiatry Rep 2023; 25:603-616. [PMID: 37851204 DOI: 10.1007/s11920-023-01451-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE OF REVIEW This review aims to synthesize currently available literature regarding the impact of wildfire on mental health, specifically the psychological reactions of children to wildfires. The information gathered from this review will help health experts understand and address the mental health needs of children during wildfire disasters and may serve as a base for future studies to evaluate evidence-based public health responses to mitigate adverse outcomes. RECENT FINDINGS The results identified post-traumatic stress disorder (PTSD), anxiety, depression, stress, alcohol/substance misuse, hopelessness, low resilience, reduced quality of life, and self-esteem as the psychological conditions manifesting in children and adolescent post-wildfire disaster. PTSD was the most evaluated psychological reaction in the participants (7 out of eight studies). This review highlights that deleterious mental health effects, such as PTSD, depression, anxiety, and suicidality, can persist in children for years post-wildfire disaster. Factors such as gender, direct exposure to the wildfire, re-traumatization, and resilience informed or ameliorated the severity of the impact of wildfire on children and adolescents. Our findings further emphasize the need for multi-year funding and programs to support children and adolescents' mental health, including children with disabilities in the communities that have experienced wildfire disasters.
Collapse
Affiliation(s)
- Medard K Adu
- Department of Psychiatry, Faculty of Medicine, Abbie J. Lane Memorial Building, Dalhousie University, QEII Health Sciences Centre, 5909 Veterans Memorial Lane, 8Th Floor, Halifax, NS, B3H 2E2, Canada
| | - Belinda Agyapong
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Vincent I O Agyapong
- Department of Psychiatry, Faculty of Medicine, Abbie J. Lane Memorial Building, Dalhousie University, QEII Health Sciences Centre, 5909 Veterans Memorial Lane, 8Th Floor, Halifax, NS, B3H 2E2, Canada.
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
6
|
de Souza Fernandes Duarte E, Salgueiro V, Costa MJ, Lucio PS, Potes M, Bortoli D, Salgado R. Fire-Pollutant-Atmosphere Components and Its Impact on Mortality in Portugal During Wildfire Seasons. GEOHEALTH 2023; 7:e2023GH000802. [PMID: 37811341 PMCID: PMC10558046 DOI: 10.1029/2023gh000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 10/10/2023]
Abstract
This study analyzed fire-pollutant-meteorological variables and their impact on cardio-respiratory mortality in Portugal during wildfire season. Data of burned area, particulate matter with a diameter of 10 or 2.5 μm (μm) or less (PM10, PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), temperature, relative humidity, wind speed, aerosol optical depth and mortality rates of Circulatory System Disease (CSD), Respiratory System Disease (RSD), Pneumonia (PNEU), Chronic Obstructive Pulmonary Disease, and Asthma (ASMA), were used. Only the months of 2011-2020 wildfire season (June-July-August-September-October) with a burned area greater than 1,000 ha were considered. Principal component analysis was used on fire-pollutant-meteorological variables to create two indices called Pollutant-Burning Interaction (PBI) and Atmospheric-Pollutant Interaction (API). PBI was strongly correlated with the air pollutants and burned area while API was strongly correlated with temperature and relative humidity, and O3. Cluster analysis applied to PBI-API divided the data into two Clusters. Cluster 1 included colder and wetter months and higher NO2 concentration. Cluster 2 included warmer and dried months, and higher PM10, PM2.5, CO, and O3 concentrations. The clusters were subjected to Principal Component Linear Regression to better understand the relationship between mortality and PBI-API indices. Cluster 1 showed statistically significant (p-value < 0.05) correlation (r) between RSDxPBI (r RSD = 0.58) and PNEUxPBI (r PNEU = 0.67). Cluster 2 showed statistically significant correlations between RSDxPBI (r RSD = 0.48), PNEUxPBI (r PNEU = 0.47), COPDxPBI (r COPD = 0.45), CSDxAPI (r CSD = 0.70), RSDxAPI (r CSD = 0.71), PNEUxAPI (r PNEU = 0.49), and COPDxAPI (r PNEU = 0.62). Cluster 2 analysis indicates that the warmest, driest, and most polluted months of the wildfire season were associated with cardio-respiratory mortality.
Collapse
Affiliation(s)
- Ediclê de Souza Fernandes Duarte
- Instituto de Ciências da Terra—ICT (Pólo de Évora)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Earth Remote Sensing Laboratory (EaRSLab)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Departamento de FísicaEscola de Ciências e Tecnologia (ECT)Universidade de ÉvoraÉvoraPortugal
| | - Vanda Salgueiro
- Instituto de Ciências da Terra—ICT (Pólo de Évora)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Earth Remote Sensing Laboratory (EaRSLab)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Departamento de FísicaEscola de Ciências e Tecnologia (ECT)Universidade de ÉvoraÉvoraPortugal
| | - Maria João Costa
- Instituto de Ciências da Terra—ICT (Pólo de Évora)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Earth Remote Sensing Laboratory (EaRSLab)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Departamento de FísicaEscola de Ciências e Tecnologia (ECT)Universidade de ÉvoraÉvoraPortugal
| | - Paulo Sérgio Lucio
- Departamento de Ciências Atmosféricas e ClimáticasUniversidade Federal do Rio Grande do NorteNatalBrazil
| | - Miguel Potes
- Instituto de Ciências da Terra—ICT (Pólo de Évora)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Earth Remote Sensing Laboratory (EaRSLab)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Departamento de FísicaEscola de Ciências e Tecnologia (ECT)Universidade de ÉvoraÉvoraPortugal
| | - Daniele Bortoli
- Instituto de Ciências da Terra—ICT (Pólo de Évora)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Earth Remote Sensing Laboratory (EaRSLab)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Departamento de FísicaEscola de Ciências e Tecnologia (ECT)Universidade de ÉvoraÉvoraPortugal
| | - Rui Salgado
- Instituto de Ciências da Terra—ICT (Pólo de Évora)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Earth Remote Sensing Laboratory (EaRSLab)Instituto de Investigação e Formação Avançada (IIFA)Universidade de ÉvoraÉvoraPortugal
- Departamento de FísicaEscola de Ciências e Tecnologia (ECT)Universidade de ÉvoraÉvoraPortugal
| |
Collapse
|
7
|
Fadadu RP, Chee E, Jung A, Chen JY, Abuabara K, Wei ML. Air pollution and global healthcare use for atopic dermatitis: A systematic review. J Eur Acad Dermatol Venereol 2023; 37:1958-1970. [PMID: 37184289 DOI: 10.1111/jdv.19193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Increasing air pollution is common around the world, but the impacts of outdoor air pollution exposure on atopic dermatitis (AD) are unclear. We synthesized the current global epidemiologic evidence for air pollution exposure and associated medical visits for AD among adults and children. This review followed PRISMA guidelines, and searches were conducted on PubMed, MEDLINE, Web of Science and EMBASE databases. The searches yielded 390 studies, and after screening, 18 studies around the world assessing at least 5,197,643 medical visits for AD in total were included for the final analysis. We found that exposure to particulate matter ≤2.5 μm in diameter (PM2.5 ) [(10/11) of studies], particulate matter ≤10 μm in diameter (PM10 ) (11/13), nitrogen dioxide (NO2 ) (12/14) and sulfur dioxide (SO2 ) (10/13) was positively associated with AD visits. Results were equivocal for ozone [(4/8) of studies reported positive association] and limited for carbon monoxide [(1/4) of studies reported positive association]. When stratifying results by patient age, patient sex and season, we found that the associations with particulate matter, NO2 and O3 may be affected by temperature. Exposure to selected air pollutants is associated with AD visits, and increasingly poor worldwide air quality may increase global healthcare use for AD.
Collapse
Affiliation(s)
- R P Fadadu
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - E Chee
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - A Jung
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Information, University of California, Berkeley, Berkeley, California, USA
| | - J Y Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| | - K Abuabara
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - M L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
- Dermatology Service, San Francisco VA Health Care System, San Francisco, California, USA
| |
Collapse
|
8
|
Bessa MJ, Sarmento B, Oliveira M, Rodrigues F. In vitro data for fire pollutants: contribution of studies using human cell models towards firefighters' occupational. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:238-255. [PMID: 36883725 DOI: 10.1080/10937404.2023.2187909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Firefighters are the principal line of defense against fires, being at elevated risk of exposure to health-relevant pollutants released during fires and burning processes. Although many biomonitoring studies exist, only a limited number of human in vitro investigations in fire risk assessment are currently available. In vitro studies stand out as valuable tools to assess the toxicity mechanisms involved following exposure to fire pollutants at a cellular level. The aim of the present review was to contextualize existing in vitro studies using human cell models exposed to chemicals emitted from fire emissions and wood smoke and discuss the implications of the observed toxic outcomes on adverse health effects detected in firefighters. Most of the reported in vitro investigations focused on monocultures respiratory models and exposure to particulate matter (PM) extracts collected from fire effluents. Overall, (1) a decrease in cellular viability, (2) enhanced oxidative stress, (3) increased pro-inflammatory cytokines levels and (4) elevated cell death frequencies were noted. However, limited information remains regarding the toxicity mechanisms initiated by firefighting activities. Hence, more studies employing advanced in vitro models and exposure systems using human cell lines are urgently needed taking into consideration different routes of exposure and health-related pollutants released from fires. Data are needed to establish and define firefighters' occupational exposure limits and to propose mitigation strategies to promote beneficial human health.
Collapse
Affiliation(s)
- Maria João Bessa
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO - Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- INEB - Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Porto, Portugal
| | | |
Collapse
|
9
|
Varshney K, Makleff S, Krishna RN, Romero L, Willems J, Wickes R, Fisher J. Mental health of vulnerable groups experiencing a drought or bushfire: A systematic review. Glob Ment Health (Camb) 2023; 10:e24. [PMID: 37860103 PMCID: PMC10581865 DOI: 10.1017/gmh.2023.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 10/21/2023] Open
Abstract
Natural hazards are increasing because of climate change, and they disproportionately affect vulnerable populations. Prior reviews of the mental health consequences of natural hazard events have not focused on the particular experiences of vulnerable groups. Based on the expected increase in fires and droughts in the coming years, the aim of this systematic review is to synthesize the global evidence about the mental health of vulnerable populations after experiencing natural hazards. We searched databases such as Ovid MEDLINE, EMBASE, CINAHL and Ovid PsycInfo using a systematic strategy, which yielded 3,401 publications. We identified 18 eligible studies conducted in five different countries with 15,959 participants. The most common vulnerabilities were living in a rural area, occupying a low socioeconomic position, being a member of an ethnic minority and having a medical condition. Common experiences reported by vulnerable individuals affected by drought included worry, hopelessness, isolation and suicidal thoughts and behaviors. Those affected by fire reported experiencing posttraumatic stress disorder (PTSD) and anger. These mental health problems exacerbated existing health and socioeconomic challenges. The evidence base about mental health in vulnerable communities affected by natural hazards can be improved by including standardized measures and comparison groups, examining the role of intersectional vulnerabilities, and disaggregating data routinely to allow for analyses of the particular experiences of vulnerable communities. Such efforts will help ensure that programs are informed by an understanding of the unique needs of these communities.
Collapse
Affiliation(s)
- Karan Varshney
- Global and Women’s Health Unit, Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Shelly Makleff
- Global and Women’s Health Unit, Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Revathi N. Krishna
- Global and Women’s Health Unit, Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Lorena Romero
- Ian Potter Library, Alfred Health, Melbourne, VIC, Australia
| | - Julie Willems
- Global and Women’s Health Unit, Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Rebecca Wickes
- School of Criminology and Criminal Justice, Griffith University, Brisbane, VIC, Australia
| | - Jane Fisher
- Global and Women’s Health Unit, Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Drought, HIV Testing, and HIV Transmission Risk Behaviors: A Population-Based Study in 10 High HIV Prevalence Countries in Sub-Saharan Africa. AIDS Behav 2023; 27:855-863. [PMID: 36066761 DOI: 10.1007/s10461-022-03820-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/01/2022]
Abstract
Droughts are associated with poor health outcomes and disruption of public health programming. Data on the association between drought and HIV testing and transmission risk behaviors are limited. We combined data from Demographic and Health Surveys from 10 high HIV prevalence sub-Saharan African countries with a high-resolution measure of drought. We estimated the association between drought and recent HIV testing, report of condomless sex, and number of sexual partners in the last year. Respondents exposed to drought were less likely to have an HIV test and more likely to have condomless sex, although effect sizes were small. We found evidence for effect modification by sex and age for the association between drought and HIV testing, such that the negative association between drought and HIV testing was strongest among men (marginal risk ratio [mRR] 0.92, 95% CI 0.89-0.95) and adolescents (mRR 0.90, 95% CI 0.86-0.93). Drought may hinder HIV testing programs in countries with high HIV prevalence.
Collapse
|
11
|
Santoso M, Hopke PK, Damastuti E, Lestiani DD, Kurniawati S, Kusmartini I, Prakoso D, Kumalasari D, Riadi A. The air quality of Palangka Raya, Central Kalimantan, Indonesia: The impacts of forest fires on visibility. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1191-1200. [PMID: 35583524 DOI: 10.1080/10962247.2022.2077474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Airborne particles in urban Palangka Raya, Kalimantan from Oct 2011 until Oct 2020 have been collected and analyzed for PM2.5, PM10, and Black Carbon (BC) concentrations. Palangka Raya is a city that serves the capital of the Central Kalimantan province on the island of Borneo. Kalimantan is affected by peat fires that occur periodically. There were identified increases in PM2.5 and PM10 concentrations during El Niño periods. During the forest fire episode in September - October 2015, PM2.5 and PM10 concentrations increased significantly, to nearly 400 µg/m3 and 800 µg/m3, respectively, and visibility in the city was reduced to < 0.2 miles. The highest BC concentrations were observed during this massive forest fires episode. The regression analyses for PM2.5, PM10 and visibility in Palangka Raya during the period of 2011-2020, showed a non-linear correlation with reduction in visibility due to increased PM2.5 and PM10. There was no correlation for BC with visibility. Air quality in Palangka Raya was at a relatively good level with concentrations below the national ambient air quality standard when there were no forest fires event. Emissions from forest fires caused a substantial reduction in air quality reaching concentrations well above ambient air quality standards and are likely to have caused adverse health effects on the people living in the area.Implications: Indonesia has repeatedly experienced forest fires, especially on Kalimantan and Sumatera Islands, which burned large areas of peatland. The forest fires leading to increasing PM concentrations especially in the PM2.5 size range which influence visibility. The seasonal variations of BC in Palangka Raya and the relationships of fine particulates with visibility were assessed. The results of regression analyses for PM2.5 and PM10 to visibility during the period of 2011-2020 showed non-linear relationships. An increasing of PM2.5 and PM10 concentrations during El Nino periods were detected well above the ambient air quality standard. To ensure effective and continued handling and prevention of forest and peatland fires, the government set up a special task force and review on several rules, including laws and government regulations as well as governor regulations that permit the burning of forest and peatland areas. These results are expected to be used to formulate more effective mitigations in reducing forest fires events in Indonesia.
Collapse
Affiliation(s)
- Muhayatun Santoso
- Research and Technology Center for Applied Nuclear BATAN, National Research and Innovation Agency (BRIN), Bandung, Indonesia
| | - Philip K Hopke
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Endah Damastuti
- Research and Technology Center for Applied Nuclear BATAN, National Research and Innovation Agency (BRIN), Bandung, Indonesia
| | - Diah Dwiana Lestiani
- Research and Technology Center for Applied Nuclear BATAN, National Research and Innovation Agency (BRIN), Bandung, Indonesia
| | - Syukria Kurniawati
- Research and Technology Center for Applied Nuclear BATAN, National Research and Innovation Agency (BRIN), Bandung, Indonesia
| | - Indah Kusmartini
- Research and Technology Center for Applied Nuclear BATAN, National Research and Innovation Agency (BRIN), Bandung, Indonesia
| | - Djoko Prakoso
- Research and Technology Center for Applied Nuclear BATAN, National Research and Innovation Agency (BRIN), Bandung, Indonesia
| | - Dyah Kumalasari
- Research and Technology Center for Applied Nuclear BATAN, National Research and Innovation Agency (BRIN), Bandung, Indonesia
| | - Ahmad Riadi
- Environmental Laborarotaroy Regional Technical Implementing Unit, The Environmental Agency of Palangka Raya City, Palangka Raya, Indonesia
| |
Collapse
|
12
|
Wolpert F, Quintas-Soriano C, Pulido F, Huntsinger L, Plieninger T. Collaborative agroforestry to mitigate wildfires in Extremadura, Spain: land manager motivations and perceptions of outcomes, benefits, and policy needs. AGROFORESTRY SYSTEMS 2022; 96:1135-1149. [PMID: 36249598 PMCID: PMC9550154 DOI: 10.1007/s10457-022-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Wildfires are increasing in severity, and magnitude in the Mediterranean Basin in recent years, reaching a yearly average of 450 000 ha over the last decade. Drivers include climate change, land-use change, and land abandonment. Wildfire mitigation requires landscape-level action as impact to each parcel is affected by the conditions of the others. We conducted a case study of a regional-level initiative that develops community efforts to mitigate wildfires through silvo-pastoral agroforestry systems, using an integrated landscape management approach. This approach involves collaboration among stakeholders to achieve multiple objectives. In order to derive insights into its potential, we asked participating land managers: (1) What motivates their participation?, (2) How do they perceive initiative outcomes?, and as urban outmigrants with non-traditional goals are increasing in rural areas, (3) Do responses differ between rural and neo-rural participants? Our results show that managers feel highly affected by wildfires and are strongly motivated to reduce wildfire risk. Land abandonment and inappropriate policy were major concerns. The initiative was seen to have positive outcomes for individual participants as well as the region, and to stimulate community connectedness. We conclude that fit to local contexts, integrated landscape management can be a well-received approach to reducing wildfire risk. Agroforestry systems in Extremadura can act as "productive fuelbreaks" that reduce fire risk over extensive areas, while restoring traditional landscapes. We suggest that programs to reduce wildfire risk can also be used as a leverage point for financing rural revival and provision of multiple ecosystem services. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10457-022-00771-6.
Collapse
Affiliation(s)
- Franziska Wolpert
- Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, 37213 Witzenhausen, Germany
| | - Cristina Quintas-Soriano
- Biology and Geology Department, Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), University of Almeria, Almería, Spain
| | - Fernando Pulido
- Institute for Dehesa Research (INDEHESA), University of Extremadura, Plasencia, Spain
| | - Lynn Huntsinger
- Department of Environmental Science, Policy, and Management (ESPM), University of California, Berkeley, USA
| | - Tobias Plieninger
- Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, 37213 Witzenhausen, Germany
- Department of Agricultural Economics and Rural Development, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
13
|
Becker DA, Maas A, Bayham J, Crooks J. The Unintended Benefits of the Conservation Reserve Program for Air Quality. GEOHEALTH 2022; 6:e2022GH000648. [PMID: 36248061 PMCID: PMC9553094 DOI: 10.1029/2022gh000648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
The link between agriculture and air pollution is well-established, as are the benefits of the US Department of Agriculture's Conservation Reserve Program (CRP). However, little research has linked CRP to air quality directly. This study aims to address this gap by modeling the relationship between CRP and fine particulate matter (PM2.5) concentrations at the county level from 2001 to 2016. Several econometric models are estimated with panel data while controlling for drought, population, and wildfire. Results show that CRP has a statistically significant negative effect on PM2.5 concentrations. Using estimates from this model, we project an avoided 1,353 deaths, 1,687 deaths, and 3,022 deaths nationally in 2008 relative to three different counterfactual scenarios: all CRP acreage placed under cultivation, increased drought, and a combination of the first two. The value of the avoided mortality is estimated to be $9.5 billion, $11.8 billion, and $21.2 billion, respectively. These findings provide evidence that CRP may generate economic gains in terms of avoided mortality, well above the cost of the program.
Collapse
Affiliation(s)
- Douglas A. Becker
- Agricultural Economics and Rural SociologyUniversity of IdahoMoscowIDUSA
| | - Alexander Maas
- Agricultural Economics and Rural SociologyUniversity of IdahoMoscowIDUSA
| | | | - James Crooks
- Division of Biostatistics and BioinformaticsNational Jewish HealthDenverCOUSA
| |
Collapse
|
14
|
Mao W, Adu M, Eboreime E, Shalaby R, Nkire N, Agyapong B, Pazderka H, Obuobi-Donkor G, Owusu E, Oluwasina F, Zhang Y, Agyapong VIO. Post-Traumatic Stress Disorder, Major Depressive Disorder, and Wildfires: A Fifth-Year Postdisaster Evaluation among Residents of Fort McMurray. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9759. [PMID: 35955114 PMCID: PMC9368448 DOI: 10.3390/ijerph19159759] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Background: Over 90,000 residents had to be evacuated from Fort McMurray (FMM), Alberta, Canada due to the wildfire that engulfed the city in May 2016. Overall, about 2400 homes or 10% of the housing stock in Fort McMurray were destroyed. The fire consumed about 200,000 hectors of forest, reaching into Saskatchewan. During major disasters, communities’ infrastructure is disrupted, and psychological, economic, and environmental effects are felt for years afterwards. Objective: Five years after the wildfire disaster, this study assessed the prevalence rate of major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) in Fort McMurray residents and determined the demographic, clinical, and other risk factors of probable MDD and PTSD. Methodology: A quantitative cross-sectional survey was conducted to collect data through an online questionnaire administered via REDCap between 24 April and 2 June 2021. The Patient Health Questionnaire (PHQ-9) was used to assess the presence of MDD symptoms in respondents. The PTSD Checklist for DSM-5 (PCL-C) was used to assess likely PTSD in respondents. Descriptive, univariate, and multivariate regression analyses were employed. Results: 186 out of 249 individuals who accessed the survey link completed it (74.7% response rate). The median age of the subscribers was 42. The sample included a majority of 159 (85.5%) females; 98 (52.7%) > 40 years of age; 175 (94.1%) employed; and 132 (71%) in a relationship. The overall prevalence of MDD symptoms in our study sample was 45.0% (76). Four variables independently predicted MDD symptoms in the multivariate logistic regression model, including: unemployed (OR = 12.39; 95% CI: 1.21−126.37), have received a mental diagnosis of MDD (OR = 4.50; 95% CI: 1.57−12.92), taking sedative-hypnotics (OR = 5.27; 95% CI: 1.01−27.39), and willingness to receive mental health counseling (OR = 4.90; 95% CI: 1.95−12.31). The prevalence of likely PTSD among our respondents was 39.6% (65). Three independent variables: received a mental health depression diagnosis from a health professional (OR = 4.49; 95% CI: 1.40−14.44), would like to receive mental health counseling (OR = 4.36, 95% CI: 1.54−12.34), and have only limited or no support from family (OR = 11.01, 95% CI: 1.92−63.20) contributed significantly to the model for predicting likely PTSD among respondents while controlling the other factors in the regression model. Conclusions: According to this study, unemployment, taking sleeping pills, having a prior depression diagnosis, and the willingness to receive mental health counseling significantly increase the odds of having MDD and PTSD following wildfires. Family support may protect against the development of these conditions.
Collapse
Affiliation(s)
- Wanying Mao
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Medard Adu
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Ejemai Eboreime
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Reham Shalaby
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Nnamdi Nkire
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Belinda Agyapong
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Global Psychological E-Health Foundation, Edmonton, AB T6G 2B7, Canada
| | - Hannah Pazderka
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | | | - Ernest Owusu
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Folajinmi Oluwasina
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Yanbo Zhang
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Vincent I O Agyapong
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, 5909 Veterans Memorial Lane, 8th Floor, Abbie J. Lane Memorial Building, QEII Health Sciences Centre, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
15
|
Real-Time Integration of Segmentation Techniques for Reduction of False Positive Rates in Fire Plume Detection Systems during Forest Fires. REMOTE SENSING 2022. [DOI: 10.3390/rs14112701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Governmental offices are still highly concerned with controlling the escalation of forest fires due to their social, environmental and economic consequences. This paper presents new developments to a previously implemented system for the classification of smoke columns with object detection and a deep learning-based approach. The study focuses on identifying and correcting several False Positive cases while only obtaining a small reduction of the True Positives. Our approach was based on using an instance segmentation algorithm to obtain the shape, color and spectral features of the object. An ensemble of Machine Learning (ML) algorithms was then used to further identify smoke objects, obtaining a removal of around 95% of the False Positives, with a reduction to 88.7% (from 93.0%) of the detection rate on 29 newly acquired daily sequences. This model was also compared with 32 smoke sequences of the public HPWREN dataset and a dataset of 75 sequences attaining 9.6 and 6.5 min, respectively, for the average time elapsed from the fire ignition and the first smoke detection.
Collapse
|
16
|
Kondo MC, Reid CE, Mockrin MH, Heilman WE, Long D. Socio-demographic and health vulnerability in prescribed-burn exposed versus unexposed counties near the National Forest System. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150564. [PMID: 34582859 PMCID: PMC9063456 DOI: 10.1016/j.scitotenv.2021.150564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Prescribed fire is an increasingly important tool in restoring ecological conditions and reducing uncontrolled wildfire. Prescribed burn techniques could reduce public health impacts associated with wildfire smoke exposure. However, there have been few assessments of the health impacts of prescribed burning, and potential vulnerabilities among populations exposed to smoke from prescribed fires. Our study area focused on counties in and near U.S. National Forests - a set of lands distributed across the U.S. In county-level analyses, we compared the sociodemographic and health characteristics of areas that were exposed with those that were not exposed to prescribe burns during the years 2010-2019 on a national level and within three regions. In addition, using spatial error regression models, we looked for associations between prescribed fire exposure and health behaviors and outcomes while controlling for spatial autocorrelation. On a national level, we found disproportionate prescribed fire exposure in rural counties with higher percentage mobile home and vacant housing units, and higher percentage African-American and white populations. Regionally, we found evidence of disproportionate exposure to prescribed burns among counties with lower percentage white population, higher percentage Hispanic population and mobile homes in the southern region, and to high poverty counties with high vacancy in the western region. These findings could indicate that vulnerable populations face potential health risks from prescribed burning smoke exposure, but also that they are not missing out on the benefits of prescribed burning, which could involve considerably lower smoke exposure compared to uncontrolled wildfire. In addition, in regression analyses, we found no evidence of disproportionate health burden in exposed compared to unexposed counties. Awareness of these patterns could influence both large-scale or institutional polices about prescribed burning practice, and could be used to build decision-making factors into modeling tools and smoke management plans, as well as community-engagement around wildfire risk reduction.
Collapse
Affiliation(s)
- Michelle C Kondo
- Northern Research Station, USDA Forest Service, 100 N. 20th St, Ste 205, Philadelphia, PA 19103, United States of America.
| | - Colleen E Reid
- Department of Geography, University of Colorado at Boulder, GUGG 110, 260 UCB, Boulder, CO 80309-0260, United States of America.
| | - Miranda H Mockrin
- Northern Research Station, USDA Forest Service, 5523 Research Park Dr, Suite 350, Baltimore, MD 21228, United States of America.
| | - Warren E Heilman
- Northern Research Station - Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, 3101 Technology Blvd., Suite F, Lansing, MI 48910, United States of America.
| | - David Long
- Applied Population Laboratory, University of Wisconsin - Madison, 316 Agriculture Hall, 1450 Linden Dr., Madison, WI 53706, United States of America.
| |
Collapse
|
17
|
Hauser N, Conlon KC, Desai A, Kobziar LN. Climate Change and Infections on the Move in North America. Infect Drug Resist 2022; 14:5711-5723. [PMID: 35002262 PMCID: PMC8722568 DOI: 10.2147/idr.s305077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Climate change is increasingly recognized for its impacts on human health, including how biotic and abiotic factors are driving shifts in infectious disease. Changes in ecological conditions and processes due to temperature and precipitation fluctuations and intensified disturbance regimes are affecting infectious pathogen transmission, habitat, hosts, and the characteristics of pathogens themselves. Understanding the relationships between climate change and infectious diseases can help clinicians broaden the scope of differential diagnoses when interviewing, diagnosing, and treating patients presenting with infections lacking obvious agents or transmission pathways. Here, we highlight key examples of how the mechanisms of climate change affect infectious diseases associated with water, fire, land, insects, and human transmission pathways in the hope of expanding the analytical framework for infectious disease diagnoses. Increased awareness of these relationships can help prepare both clinical physicians and epidemiologists for continued impacts of climate change on infectious disease in the future.
Collapse
Affiliation(s)
- Naomi Hauser
- Department of Medicine, Division of Infectious Disease, University of California Davis Health, Sacramento, CA, USA.,Climate Adaptation Research Center, University of California, Davis, CA, USA
| | - Kathryn C Conlon
- Climate Adaptation Research Center, University of California, Davis, CA, USA.,Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA.,Department of Veterinary Medicine & Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Angel Desai
- Department of Medicine, Division of Infectious Disease, University of California Davis Health, Sacramento, CA, USA
| | - Leda N Kobziar
- Department of Natural Resources and Society, University of Idaho, Coeur d'Alene, ID, USA
| |
Collapse
|
18
|
Fitzpatrick KM, Wild TC, Pritchard C, Azimi T, McGee T, Sperber J, Albert L, Montesanti S. Health Systems Responsiveness in Addressing Indigenous Residents' Health and Mental Health Needs Following the 2016 Horse River Wildfire in Northern Alberta, Canada: Perspectives From Health Service Providers. Front Public Health 2021; 9:723613. [PMID: 34957001 PMCID: PMC8704385 DOI: 10.3389/fpubh.2021.723613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/31/2021] [Indexed: 12/03/2022] Open
Abstract
Following the 2016 Horse River Wildfire in northern Alberta, the provincial health authority, the ministry of health, non-profit and charitable organizations, and regional community-based service agencies mobilized to address the growing health and mental health concerns among Indigenous residents and communities through the provision of services and supports. Among the communities and residents that experienced significant devastation and loss were First Nation and Métis residents in the region. Provincial and local funding was allocated to new recovery positions and to support pre-existing health and social programs. The objective of this research was to qualitatively describe the health systems response to the health impacts following the wildfire from the perspective of service providers who were directly responsible for delivering or organizing health and mental wellness services and supports to Indigenous residents. Semi-structured qualitative interviews were conducted with 15 Indigenous and 10 non-Indigenous service providers from the Regional Municipality of Wood Buffalo (RMWB). Interviews were transcribed verbatim and a constant comparative analysis method was used to identify themes. Following service provider interviews, a supplemental document review was completed to provide background and context for the qualitative findings from interviews. The document review allowed for a better understanding of the health systems response at a systems level following the wildfire. Triangulation of semi-structured interviews and organization report documents confirmed our findings. The conceptual framework by Mirzoev and Kane for understanding health systems responsiveness guided our data interpretation. Our findings were divided into three themes (1) service provision in response to Indigenous mental health concerns (2) gaps in Indigenous health-related services post-wildfire and (3) adopting a health equity lens in post-disaster recovery. The knowledge gained from this research can help inform future emergency management and assist policy and decision makers with culturally safe and responsive recovery planning. Future recovery and response efforts should consider identifying and addressing underlying health, mental health, and emotional concerns in order to be more effective in assisting with healing for Indigenous communities following a public health emergency such as a wildfire disaster.
Collapse
Affiliation(s)
| | - T Cameron Wild
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Caillie Pritchard
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Tara Azimi
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Tara McGee
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jodi Sperber
- Kee Tas Kee Now Tribal Council, Atikameg, AB, Canada
| | | | - Stephanie Montesanti
- School of Public Health, University of Alberta, Edmonton, AB, Canada.,Centre for Healthy Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Heaney E, Hunter L, Clulow A, Bowles D, Vardoulakis S. Efficacy of Communication Techniques and Health Outcomes of Bushfire Smoke Exposure: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10889. [PMID: 34682636 PMCID: PMC8536189 DOI: 10.3390/ijerph182010889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Public health officials communicate the relevant risks of bushfire smoke exposure and associated health protection measures to affected populations. Increasing global bushfire incidence in the context of climate change motivated this scoping review. English-language publications related to adverse health outcomes following bushfire smoke exposure and publications relating to communication during natural disasters were included. Bushfire smoke events potentially increase healthcare contact, especially presentations triggered by respiratory illness. At-risk populations include those with underlying cardiorespiratory disease, elderly, paediatric, pregnant persons, and First Nations people. We found that social media, television, and radio are among the most common information sources utilised in bushfire smoke events. Message style, content, and method of delivery can directly influence message uptake and behaviour modification. Age, rurality, and geographical location influence information source preferences. Culturally and linguistically diverse groups and those with hearing, vision, and mobility-related disabilities may benefit from targeted health recommendations. This review emphasises the health effects of bushfire smoke exposure and related communication recommendations during and after bushfire smoke events. Additional investigation may further clarify the health effects of bushfire smoke exposure and efficacy of related health messaging, particularly in at-risk populations. Quantitative comparison of communication methods may yield more specific recommendations for future bushfire smoke events.
Collapse
Affiliation(s)
- Emily Heaney
- ANU Medical School, Australian National University, Canberra, ACT 2601, Australia; (E.H.); (L.H.); (A.C.)
| | - Laura Hunter
- ANU Medical School, Australian National University, Canberra, ACT 2601, Australia; (E.H.); (L.H.); (A.C.)
| | - Angus Clulow
- ANU Medical School, Australian National University, Canberra, ACT 2601, Australia; (E.H.); (L.H.); (A.C.)
| | - Devin Bowles
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia; (D.B.); (S.V.)
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, ACT 2601, Australia; (D.B.); (S.V.)
| |
Collapse
|
20
|
Rodney RM, Swaminathan A, Calear AL, Christensen BK, Lal A, Lane J, Leviston Z, Reynolds J, Trevenar S, Vardoulakis S, Walker I. Physical and Mental Health Effects of Bushfire and Smoke in the Australian Capital Territory 2019-20. Front Public Health 2021; 9:682402. [PMID: 34722432 PMCID: PMC8551801 DOI: 10.3389/fpubh.2021.682402] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
The 2019-20 bushfire season in south-eastern Australia was one of the most severe in recorded history. Bushfire smoke-related air pollution reached hazardous levels in major metropolitan areas, including the Australian Capital Territory (ACT), for prolonged periods of time. Bushfire smoke directly challenges human health through effects on respiratory and cardiac function, but can also indirectly affect health, wellbeing and quality of life. Few studies have examined the specific health effects of bushfire smoke, separate from direct effects of fire, and looked beyond physical health symptoms to consider effects on mental health and lifestyle in Australian communities. This paper describes an assessment of the health impacts of this prolonged exposure to hazardous levels of bushfire smoke in the ACT and surrounding area during the 2019-20 bushfire season. An online survey captured information on demographics, health (physical and mental health, sleep) and medical advice seeking from 2,084 adult participants (40% male, median age 45 years). Almost all participants (97%) experienced at least one physical health symptom that they attributed to smoke, most commonly eye or throat irritation, and cough. Over half of responders self-reported symptoms of anxiety and/or feeling depressed and approximately half reported poorer sleep. Women reported all symptoms more frequently than men. Participants with existing medical conditions or poorer self-rated health, parents and those directly affected by fire (in either the current or previous fire seasons) also experienced poorer physical, mental health and/or sleep symptoms. Approximately 17% of people sought advice from a medical health practitioner, most commonly a general practitioner, to manage their symptoms. This study demonstrated that prolonged exposure to bushfire smoke can have substantial effects on health. Holistic approaches to understanding, preventing and mitigating the effects of smoke, not just on physical health but on mental health, and the intersection of these, is important. Improved public health messaging is needed to address uncertainty about how individuals can protect their and their families health for future events. This should be informed by identifying subgroups of the population, such as those with existing health conditions, parents, or those directly exposed to fire who may be at a greater risk.
Collapse
Affiliation(s)
- Rachael M. Rodney
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Ashwin Swaminathan
- Departments of General Medicine and Infectious Diseases, The Canberra Hospital, Canberra, ACT, Australia
| | - Alison L. Calear
- Centre for Mental Health Research, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| | - Bruce K. Christensen
- Research School of Psychology, The Australian National University, Canberra, ACT, Australia
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| | - Jo Lane
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| | - Zoe Leviston
- Research School of Psychology, The Australian National University, Canberra, ACT, Australia
| | - Julia Reynolds
- Research School of Psychology, The Australian National University, Canberra, ACT, Australia
| | - Susan Trevenar
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| | - Iain Walker
- Research School of Psychology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
21
|
Health Risks to the Russian Population from Temperature Extremes at the Beginning of the XXI Century. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Climate change and climate-sensitive disasters caused by climatic hazards have a significant and increasing direct and indirect impact on human health. Due to its vast area, complex geographical environment and various climatic conditions, Russia is one of the countries that suffers significantly from frequent climate hazards. This paper provides information about temperature extremes in Russia in the beginning of the 21st century, and their impact on human health. A literature search was conducted using the electronic databases Web of Science, Science Direct, Scopus, and e-Library, focusing on peer-reviewed journal articles published in English and in Russian from 2000 to 2021. The results are summarized in 16 studies, which are divided into location-based groups, including Moscow, Saint Petersburg and other large cities located in various climatic zones: in the Arctic, in Siberia and in the southern regions, in ultra-continental and monsoon climate. Heat waves in cities with a temperate continental climate lead to a significant increase in all-cause mortality than cold waves, compared with cities in other climatic zones. At the same time, in northern cities, in contrast to the southern regions and central Siberia, the influence of cold waves is more pronounced on mortality than heat waves. To adequately protect the population from the effects of temperature waves and to carry out preventive measures, it is necessary to know specific threshold values of air temperature in each city.
Collapse
|
22
|
Nagata JM, Epstein A, Ganson KT, Benmarhnia T, Weiser SD. Drought and child vaccination coverage in 22 countries in sub-Saharan Africa: A retrospective analysis of national survey data from 2011 to 2019. PLoS Med 2021; 18:e1003678. [PMID: 34582463 PMCID: PMC8478213 DOI: 10.1371/journal.pmed.1003678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Extreme weather events, including droughts, are expected to increase in parts of sub-Saharan Africa and are associated with a number of poor health outcomes; however, to the best of our knowledge, the link between drought and childhood vaccination remains unknown. The objective of this study was to evaluate the relationship between drought and vaccination coverage. METHODS AND FINDINGS We investigated the association between drought and vaccination coverage using a retrospective analysis of Demographic and Health Surveys data in 22 sub-Saharan African countries among 137,379 children (50.4% male) born from 2011 to 2019. Drought was defined as an established binary variable of annual rainfall less than or equal to the 15th percentile relative to the 29 previous years, using data from Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data. We evaluated the association between drought at the date of birth and receipt of bacillus Calmette-Guérin (BCG), diphtheria-pertussis-tetanus (DPT), and polio vaccinations, and the association between drought at 12 months of age and receipt of measles vaccination. We specified logistic regression models with survey fixed effects and standard errors clustered at the enumeration area level, adjusting for child-, mother-, and household-level covariates and estimated marginal risk differences (RDs). The prevalence of drought at date of birth in the sample was 11.8%. Vaccination rates for each vaccination ranged from 70.6% (for 3 doses of the polio vaccine) to 86.0% (for BCG vaccination); however, only 57.6% of children 12 months and older received all recommended doses of BCG, DPT, polio, and measles vaccinations. In adjusted models, drought at date of birth was negatively associated with BCG vaccination (marginal RD = -1.5; 95% CI -2.2, -0.9), DPT vaccination (marginal RD = -1.4; 95% CI -2.2, -0.5), and polio vaccination (marginal RD = -1.3; 95% CI -2.3, -0.3). Drought at 12 months was negatively associated with measles vaccination (marginal RD = -1.9; 95% CI -2.8, -0.9). We found a dose-response relationship between drought and DPT and polio vaccinations, with the strongest associations closest to the timing of drought. Limitations include some heterogeneity in findings across countries. CONCLUSIONS In this study, we observed that drought was associated with lower odds of completion of childhood BCG, DPT, and polio vaccinations. These findings indicate that drought may hinder vaccination coverage, one of the most important interventions to prevent infections among children. This work adds to a growing body of literature suggesting that health programs should consider impacts of severe weather in their programming.
Collapse
Affiliation(s)
- Jason M. Nagata
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Adrienne Epstein
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Kyle T. Ganson
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Ontario, Canada
| | - Tarik Benmarhnia
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, California, United States of America
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Sheri D. Weiser
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
23
|
Horney JA, Karaye IM, Abuabara A, Gearhart S, Grabich S, Perez-Patron M. The Impact of Natural Disasters on Suicide in the United States, 2003–2015. CRISIS 2021; 42:328-334. [DOI: 10.1027/0227-5910/a000723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Background: Natural disasters are increasing in frequency and severity and impacted populations develop mental health conditions at higher rates than those not impacted. Aims: In this study, we investigate the association between exposure to a major natural disaster and suicide in the US. Method: Using county-level data on disaster declarations, mortality files, and population data, suicide rates were estimated for three 12-month periods before and after the disaster. Pooled rates were estimated predisaster and compared with postdisaster suicide rates using Poisson-generated Z tests and 95% confidence intervals. Results: A total of 281 major disasters were included. The suicide rate increased for each type of disaster and across all disasters in the first 2 years of follow-up. The largest overall increases in suicide rates were seen 2 years postdisaster. Limitations: Limitations include the ecologic study design, county-level exposure, and low power. Conclusion: Increases in county-level suicide rates after disasters were not statistically significant, although there was evidence that increases were delayed until 2 years postdisaster. Additional studies are needed to improve understanding of nonfatal suicide attempts after disasters and the role elevated social support plays in suicide prevention postdisaster. Future studies should consider pre-existing mental health, secondary stressors, and proximity to hazards.
Collapse
Affiliation(s)
| | | | - Alexander Abuabara
- Department Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, USA
| | | | - Shannon Grabich
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, USA
| | - Maria Perez-Patron
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Zhou X, Josey K, Kamareddine L, Caine MC, Liu T, Mickley LJ, Cooper M, Dominici F. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. SCIENCE ADVANCES 2021; 7:7/33/eabi8789. [PMID: 34389545 PMCID: PMC8363139 DOI: 10.1126/sciadv.abi8789] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/24/2021] [Indexed: 05/03/2023]
Abstract
The year 2020 brought unimaginable challenges in public health, with the confluence of the COVID-19 pandemic and wildfires across the western United States. Wildfires produce high levels of fine particulate matter (PM2.5). Recent studies reported that short-term exposure to PM2.5 is associated with increased risk of COVID-19 cases and deaths. We acquired and linked publicly available daily data on PM2.5, the number of COVID-19 cases and deaths, and other confounders for 92 western U.S. counties that were affected by the 2020 wildfires. We estimated the association between short-term exposure to PM2.5 during the wildfires and the epidemiological dynamics of COVID-19 cases and deaths. We adjusted for several time-varying confounding factors (e.g., weather, seasonality, long-term trends, mobility, and population size). We found strong evidence that wildfires amplified the effect of short-term exposure to PM2.5 on COVID-19 cases and deaths, although with substantial heterogeneity across counties.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Environmental Systems Research Institute, Redlands, CA, USA
| | - Kevin Josey
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Leila Kamareddine
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miah C Caine
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - Tianjia Liu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Loretta J Mickley
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA
| | - Matthew Cooper
- Department of Global Health and Population, Harvard University, Boston, MA, USA
| | - Francesca Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Data Science Initiative, Cambridge, MA, USA
| |
Collapse
|
25
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Leaf Thermal and Chemical Properties as Natural Drivers of Plant Flammability of Native and Exotic Tree Species of the Valparaíso Region, Chile. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137191. [PMID: 34281128 PMCID: PMC8297029 DOI: 10.3390/ijerph18137191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Forest fires are one of the main environmental threats in Chile. Fires in this Mediterranean climate region frequently affect native forests and exotic plantations, including in several cases urban and rural settlements. Considering the scarcity of information regarding the fire response dynamics of tree species that are frequently affected by fires, this study aims to establish a flammability classification according to the evolution of the fire initiation risk presented by the most affected forest species in the Valparaíso region. Three exotic species, Eucalyptus globulus, Pinus radiata, and Acacia dealbata, and two native species, Cryptocarya alba and Quillaja saponaria, were studied. Flammability assays indicate that E. globulus, A. dealbata, and C. alba are extremely flammable, whereas P. radiata and Q. saponaria are flammable. Furthermore, E. globulus and A. dealbata have the highest heating values while Q. saponaria has the lowest values. The extreme flammability of E. globulus, A. dealbata, and C. alba indicates a high susceptibility to ignite. Furthermore, the high heat of combustion of E. globulus and A. dealbata can be associated with a high energy release, increasing the risk of fires spreading. In contrast, Q. saponaria has the lowest predisposition to ignite and capacity to release heat. Accordingly, this work shows that all studied tree species contain organic metabolites that are potentially flammable (sesquiterpenes, aliphatic hydrocarbons, alcohol esters, ketones, diterpenes, and triterpenes) and can be considered as drivers of flammability in vegetation. Finally, these preliminary results will aid in the construction of more resilient landscapes in the near future.
Collapse
|
27
|
Montesanti S, Fitzpatrick K, Azimi T, McGee T, Fayant B, Albert L. Exploring Indigenous Ways of Coping After a Wildfire Disaster in Northern Alberta, Canada. QUALITATIVE HEALTH RESEARCH 2021; 31:1472-1485. [PMID: 33971774 PMCID: PMC8278559 DOI: 10.1177/10497323211009194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In May 2016, a wildfire devastated a northern region of Alberta, Canada, resulting in negative consequences on physical and mental stress, social relationships, and overall resilience among Indigenous residents. Research on coping and managing stress following a disaster has failed to incorporate unique characteristics from Indigenous perspectives. Sharing circles were held in urban and rural community settings to capture: (a) Indigenous perspectives of coping, (b) individual and collective strengths that helped Indigenous residents and communities to cope during and after the wildfire, and (c) intergenerational experiences of coping from stress among Indigenous residents. Indigenous residents' experience with coping from the wildfire was shaped by: (a) heightened physical and emotional stress, (b) existing structural inequities, and (c) strong community cohesion and connection to culture. An unexpected outcome of this research was the therapeutic value of the sharing circles for participants to share their experience.
Collapse
Affiliation(s)
| | - Kayla Fitzpatrick
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Tara Azimi
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Tara McGee
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bryan Fayant
- McMurray Métis Local 1935, Fort McMurray, Alberta, Canada
| | | |
Collapse
|
28
|
PREVALENCE, TREATMENT, AND SURVIVAL OF BURNED WILDLIFE PRESENTING TO REHABILITATION FACILITIES FROM 2015 TO 2018. J Zoo Wildl Med 2021; 52:555-563. [PMID: 34130398 DOI: 10.1638/2020-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2020] [Indexed: 11/21/2022] Open
Abstract
In recent decades, wildfires have increased in frequency and geographic scale across the globe. The human health implications and ecological succession after wildfires are well documented and studied, but there is a lack of empirical research about the direct effects of wildfires on wildlife. Recent wildfires have demonstrated the need to better understand animal burn injuries and innovations in veterinary burn treatment. An online survey was distributed to wildlife rehabilitation facilities internationally to collect baseline information about the number and type of burned wildlife cases admitted, treatments used, and survivorship of wildlife affected by wildfires. Approximately 80% (n = 49) of all respondents (n = 61) reported admitting cases of burned wildlife from 2015 to 2018. Respondents included facilities from six different countries and roughly 43% of facilities reported having a veterinarian on staff. Electrical burns were most commonly reported with 89% of respondents stating that they had seen electrical burns while 38% of respondents reported seeing wildfire-source thermal burns in wildlife patients. Respondents were asked about their frequency of use of different treatment methods. Bandages, colloid fluids, and opioids were used at significantly higher rates at facilities with veterinarians compared with facilities that did not report having a veterinarian; however, survival of burned wildlife patients did not significantly differ based on the factor of having a veterinarian on staff. Long-term and short-term complications were commonly reported for wildlife burn patients; 88% of facilities reported scarring, 81% reported alopecia, and 61% reported sepsis. Burned animals admitted to facilities were reported to have equal odds of dying and surviving. Burn care recommendations have changed considerably in recent decades. This study provided a unique opportunity to compare contemporary recommendations in human medicine with current methods used in wildlife rehabilitation facilities to identify potential areas of further investigation and improvement for wildlife medicine.
Collapse
|
29
|
Combined Effect of Hot Weather and Outdoor Air Pollution on Respiratory Health: Literature Review. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060790] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Association between short-term exposure to ambient air pollution and respiratory health is well documented. At the same time, it is widely known that extreme weather events intrinsically exacerbate air pollution impact. Particularly, hot weather and extreme temperatures during heat waves (HW) significantly affect human health, increasing risks of respiratory mortality and morbidity. Concurrently, a synergistic effect of air pollution and high temperatures can be combined with weather–air pollution interaction during wildfires. The purpose of the current review is to summarize literature on interplay of hot weather, air pollution, and respiratory health consequences worldwide, with the ultimate goal of identifying the most dangerous pollution agents and vulnerable population groups. A literature search was conducted using electronic databases Web of Science, Pubmed, Science Direct, and Scopus, focusing only on peer-reviewed journal articles published in English from 2000 to 2021. The main findings demonstrate that the increased level of PM10 and O3 results in significantly higher rates of respiratory and cardiopulmonary mortality. Increments in PM2.5 and PM10, O3, CO, and NO2 concentrations during high temperature episodes are dramatically associated with higher admissions to hospital in patients with chronic obstructive pulmonary disease, daily hospital emergency transports for asthma, acute and chronic bronchitis, and premature mortality caused by respiratory disease. Excessive respiratory health risk is more pronounced in elderly cohorts and small children. Both heat waves and outdoor air pollution are synergistically linked and are expected to be more serious in the future due to greater climate instability, being a crucial threat to global public health that requires the responsible involvement of researchers at all levels. Sustainable urban planning and smart city design could significantly reduce both urban heat islands effect and air pollution.
Collapse
|
30
|
Sorensen C, House JA, O'Dell K, Brey SJ, Ford B, Pierce JR, Fischer EV, Lemery J, Crooks JL. Associations Between Wildfire-Related PM 2.5 and Intensive Care Unit Admissions in the United States, 2006-2015. GEOHEALTH 2021; 5:e2021GH000385. [PMID: 33977181 PMCID: PMC8095362 DOI: 10.1029/2021gh000385] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 05/29/2023]
Abstract
Wildfire smoke is a growing public health concern in the United States. Numerous studies have documented associations between ambient smoke exposure and severe patient outcomes for single-fire seasons or limited geographic regions. However, there are few national-scale health studies of wildfire smoke in the United States, few studies investigating Intensive Care Unit (ICU) admissions as an outcome, and few specifically framed around hospital operations. This study retrospectively examined the associations between ambient wildfire-related PM2.5 at a hospital ZIP code with total hospital ICU admissions using a national-scale hospitalization data set. Wildfire smoke was characterized using a combination of kriged PM2.5 monitor observations and satellite-derived plume polygons from National Oceanic and Atmospheric Administration's Hazard Mapping System. ICU admissions data were acquired from Premier, Inc. and encompass 15%-20% of all U.S. ICU admissions during the study period. Associations were estimated using a distributed-lag conditional Poisson model under a time-stratified case-crossover design. We found that a 10 μg/m3 increase in daily wildfire PM2.5 was associated with a 2.7% (95% CI: 1.3, 4.1; p = 0.00018) increase in ICU admissions 5 days later. Under stratification, positive associations were found among patients aged 0-20 and 60+, patients living in the Midwest Census Region, patients admitted in the years 2013-2015, and non-Black patients, though other results were mixed. Following a simulated severe 7-day 120 μg/m3 smoke event, our results predict ICU bed utilization peaking at 131% (95% CI: 43, 239; p < 10-5) over baseline. Our work suggests that hospitals may need to preposition vital critical care resources when severe smoke events are forecast.
Collapse
Affiliation(s)
- Cecilia Sorensen
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
- Center for Health, Work & EnvironmentColorado School of Public HealthAuroraCOUSA
| | | | - Katelyn O'Dell
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Steven J. Brey
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Bonne Ford
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jay Lemery
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
| | - James L. Crooks
- Division of Biostatistics and Bioinformatics and Department of Immunology and Genomic MedicineNational Jewish HealthDenverCOUSA
- Department of EpidemiologyColorado School of Public HealthAuroraCOUSA
| |
Collapse
|
31
|
Singh P, Roy A, Bhasin D, Kapoor M, Ravi S, Dey S. Crop Fires and Cardiovascular Health - A Study from North India. SSM Popul Health 2021; 14:100757. [PMID: 33869720 PMCID: PMC8040334 DOI: 10.1016/j.ssmph.2021.100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 11/27/2022] Open
Abstract
We examine the impact of exposure to biomass burning events (primarily crop burning) on the prevalence of hypertension in four North Indian states. We use data from the National Family Health Survey-IV for 2015-16 and employ a multivariate logistic and linear model to estimate the effect of exposure to biomass burning on the prevalence of hypertension and blood pressure, respectively. The adjusted odds ratio of hypertension among individuals living in areas with high intensity of biomass (HIB) burning (defined as exposure to > 100 fire-events during the past 30 days) is 1.15 [95% CI: 1.003–1.32]. The odds ratios further increase at a higher intensity of biomass burning and downwind fires are found to be responsible for the negative effect of fires on cardiovascular health. We also find that the systolic and diastolic blood pressure for older cohorts is significantly higher due to exposure to HIB. We estimate that elimination of HIB would prevent loss of 70–91 thousand DALYs every year and 1.73 to 2.24 Billion USD (in PPP terms) over 5 years by reducing the prevalence of hypertension. Therefore, curbing biomass burning will be associated with significant health and economic benefits in North India. Exposure to biomass burning is associated with a higher chance of being hypertensive in states of North India. The population of age 40 years and above are more vulnerable to adverse effects of exposure to biomass burning. Estimated benefit from elimination of biomass burning would be 1.73 Billion (in PPP $) over 5 years.
Collapse
Affiliation(s)
- Prachi Singh
- Ashoka University, India.,Indian Statistical Institute, Delhi, India
| | - Ambuj Roy
- Department of Cardiology, Cardiothoracic Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Dinkar Bhasin
- Department of Cardiology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | | | | | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India & Centre of Excellence for Research on Clean Air (CERCA), Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
32
|
Hassan EM, Mahmoud HN. Orchestrating performance of healthcare networks subjected to the compound events of natural disasters and pandemic. Nat Commun 2021; 12:1338. [PMID: 33637734 PMCID: PMC7910591 DOI: 10.1038/s41467-021-21581-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/27/2021] [Indexed: 01/24/2023] Open
Abstract
The current COVID-19 pandemic has demonstrated the vulnerability of healthcare systems worldwide. When combined with natural disasters, pandemics can further strain an already exhausted healthcare system. To date, frameworks for quantifying the collective effect of the two events on hospitals are nonexistent. Moreover, analytical methods for capturing the dynamic spatiotemporal variability in capacity and demand of the healthcare system posed by different stressors are lacking. Here, we investigate the combined impact of wildfire and pandemic on a network of hospitals. We combine wildfire data with varying courses of the spread of COVID-19 to evaluate the effectiveness of different strategies for managing patient demand. We show that losing access to medical care is a function of the relative occurrence time between the two events and is substantial in some cases. By applying viable mitigation strategies and optimizing resource allocation, patient outcomes could be substantially improved under the combined hazards.
Collapse
Affiliation(s)
- Emad M Hassan
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - Hussam N Mahmoud
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
33
|
Salvador C, Nieto R, Linares C, Díaz J, Alves CA, Gimeno L. Drought effects on specific-cause mortality in Lisbon from 1983 to 2016: Risks assessment by gender and age groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142332. [PMID: 33182008 DOI: 10.1016/j.scitotenv.2020.142332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Portugal (Southwestern Europe) experiences a high incidence of dry hazards such as drought, a phenomenon that entails a notable burden of morbidity and mortality worldwide. For the first time in the Lisbon district, a time-series study was conducted to evaluate the impact of drought measured by the Standardised Precipitation Index (SPI) and Standardised Precipitation-Evapotranspiration Index (SPEI) on the daily natural, circulatory, and respiratory mortality from 1983 to 2016. An assessment by gender and adult age population groups (45-64, 65-74, ≥75 years old) was included. To estimate the relative risks and attributable risks, generalised linear models with a Poisson link were used. Additionally, the influence of heatwaves and atmospheric pollution for the period from 2007 to 2016 (available period for pollution data) was considered. The main findings indicate statistically significant associations between drought conditions and all analysed causes of mortality. Moreover, SPEI shows an improved capability to reflect the different risks. People in the 45-64 year-old group did not indicate any significant influence in any of the cases, whereas the oldest groups had the highest risk. The drought effects on mortality among the population varied across the different study periods, and in general, the men population was affected more than the women population (except for the SPEI and circulatory mortality during the long study period). The short-term influence of droughts on mortality could be explained primarily by the effect of heatwaves and pollution; however, when both gender and age were considered in the Poisson models, the effect of drought also remained statistically significant when all climatic phenomena were included for specific groups of the total population and men. This type of study facilitates a better understanding of the population at risk and allows the development of more effective measures to mitigate the drought effects on the population.
Collapse
Affiliation(s)
- C Salvador
- EPhysLab (Environmental Physics Laboratory), CIM-UVIGO, Universidade de Vigo, Ourense, Spain.
| | - R Nieto
- EPhysLab (Environmental Physics Laboratory), CIM-UVIGO, Universidade de Vigo, Ourense, Spain
| | - C Linares
- Department of Epidemiology and Biostatistics, National School of Public Health, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - J Díaz
- Department of Epidemiology and Biostatistics, National School of Public Health, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - C A Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - L Gimeno
- EPhysLab (Environmental Physics Laboratory), CIM-UVIGO, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
34
|
Sena A, Ebi K. When Land Is Under Pressure Health Is Under Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:E136. [PMID: 33375481 PMCID: PMC7796245 DOI: 10.3390/ijerph18010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022]
Abstract
The land provides vital resources to support life on Earth. Land ecosystems services have social, cultural, and spiritual benefits and promote human health and well-being. However, human activities, particularly ongoing unsustainable land practices, are negatively impacting ecosystems through desertification, land degradation and drought (DLDD). This article highlights the pressures and impacts of DLDD on human health through exposure pathways, including water security and safety; sanitation and hygiene; food security and safety; air quality; and soil quality. We describe the impacts on 19 health outcomes in three groups: non-communicable diseases; injuries; and infections, parasitic and nutritional diseases. The magnitude of these health impacts is mediated by social, economic, and health system-related factors. We propose actions for the health sector to respond to the DLDD challenges.
Collapse
Affiliation(s)
- Aderita Sena
- Centre of the Study and Research of Health Emergencies and Disasters, Oswaldo Cruz Foundation, Rio de Janeiro 21040-361, Brazil
| | - Kristie Ebi
- Department of Global Health, University of Washington, Seattle, Washington, WA 98195, USA;
| |
Collapse
|
35
|
Differences in the Estimation of Wildfire-Associated Air Pollution by Satellite Mapping of Smoke Plumes and Ground-Level Monitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218164. [PMID: 33167314 PMCID: PMC7663802 DOI: 10.3390/ijerph17218164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/30/2022]
Abstract
Wildfires, which are becoming more frequent and intense in many countries, pose serious threats to human health. To determine health impacts and provide public health messaging, satellite-based smoke plume data are sometimes used as a proxy for directly measured particulate matter levels. We collected data on particulate matter <2.5 μm in diameter (PM2.5) concentration from 16 ground-level monitoring stations in the San Francisco Bay Area and smoke plume density from satellite imagery for the 2017–2018 California wildfire seasons. We tested for trends and calculated bootstrapped differences in the median PM2.5 concentrations by plume density category on a 0–3 scale. The median PM2.5 concentrations for categories 0, 1, 2, and 3 were 16, 22, 25, and 63 μg/m3, respectively, and there was much variability in PM2.5 concentrations within each category. A case study of the Camp Fire illustrates that in San Francisco, PM2.5 concentrations reached their maximum many days after the peak for plume density scores. We found that air pollution characterization by satellite imagery did not precisely align with ground-level PM2.5 concentrations. Public health practitioners should recognize the need to combine multiple sources of data regarding smoke patterns when developing public guidance to limit the health effects of wildfire smoke.
Collapse
|
36
|
Marko T, Suarez M, Todorova E, Mark C, Julie P. A Scoping Review of Nurses' Contributions to Health-Related, Wildfire Research. ANNUAL REVIEW OF NURSING RESEARCH 2020; 38:73-96. [PMID: 32102956 DOI: 10.1891/0739-6686.38.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exposure to unprecedented levels of wildfire smoke is increasing cardiopulmonary mortality and is especially catastrophic to people with preexisting respiratory conditions such as asthma. Wildfire smoke is a mixture of hazardous air pollutants and airborne particulate matter and wildfires are burning larger areas of land and lasting longer, extending the smoke season. The wildfire season is also expected to lengthen as a result of the changing climate. This scoping review examines publications related to wildfires and health in order to explore the ways in which nursing science contributes to research on the health effects of wildfires and strategies to decrease exposure to wildfires and/or wildfire smoke. Nursing's contribution to wildfire research needs to increase to meet the demands of this rapidly growing, international problem. Nurses have an opportunity to protect the public's health through interventional research focused on preventing exposure and applying what is learned to practice.
Collapse
|
37
|
Assessment of the Characteristics of Recent Major Wildfires in the USA, Australia and Brazil in 2018–2019 Using Multi-Source Satellite Products. REMOTE SENSING 2020. [DOI: 10.3390/rs12111803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study analysed the characteristics of the recent (2018–2019) wildfires that occurred in the USA, Brazil, and Australia using Moderate Resolution Imaging Spectroradiometer (MODIS) active fires (AF), fire radiative power (FRP, MW) and burned area (BA) products. Meteorological and environmental parameters were also analysed. The study found various patterns in the spatial distribution of fires, FRP and BA at the three sites, associated with various vegetation compositions, prevailing meteorological and environmental conditions and anthropogenic activities. We found significant fire clusters along the western and eastern coasts of the USA and Australia, respectively, while vastly distributed clusters were found in Brazil. Across all sites, significant fire intensity was recorded over forest cover (FC) and shrublands (SL), attributed to highly combustible tree crown fuel load characterised by leafy canopies and thin branches. In agreement, BA over FC was the highest in the USA and Australia, while Brazil was dominated by the burning of SL, characteristic of fire-tolerant Cerrado. The relatively lower BA over FC in Brazil can be attributed to fuel availability and proximity to highly flammable cover types such as cropland, SL and grasslands rather than fuel flammability. Overall, this study contributes to a better understanding of wildfires in various regions and the underlying environmental and meteorological causal factors, towards better wildfire disaster management strategies and habitat-specific firefighting.
Collapse
|
38
|
Cianconi P, Betrò S, Janiri L. The Impact of Climate Change on Mental Health: A Systematic Descriptive Review. Front Psychiatry 2020; 11:74. [PMID: 32210846 PMCID: PMC7068211 DOI: 10.3389/fpsyt.2020.00074] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Climate change is one of the great challenges of our time. The consequences of climate change on exposed biological subjects, as well as on vulnerable societies, are a concern for the entire scientific community. Rising temperatures, heat waves, floods, tornadoes, hurricanes, droughts, fires, loss of forest, and glaciers, along with disappearance of rivers and desertification, can directly and indirectly cause human pathologies that are physical and mental. However, there is a clear lack in psychiatric studies on mental disorders linked to climate change. METHODS Literature available on PubMed, EMBASE, and Cochrane library until end of June 2019 were reviewed. The total number of articles and association reports was 445. From these, 163 were selected. We looked for the association between classical psychiatric disorders such as anxiety schizophrenia, mood disorder and depression, suicide, aggressive behaviors, despair for the loss of usual landscape, and phenomena related to climate change and extreme weather. Review of literature was then divided into specific areas: the course of change in mental health, temperature, water, air pollution, drought, as well as the exposure of certain groups and critical psychological adaptations. RESULTS Climate change has an impact on a large part of the population, in different geographical areas and with different types of threats to public health. However, the delay in studies on climate change and mental health consequences is an important aspect. Lack of literature is perhaps due to the complexity and novelty of this issue. It has been shown that climate change acts on mental health with different timing. The phenomenology of the effects of climate change differs greatly-some mental disorders are common and others more specific in relation to atypical climatic conditions. Moreover, climate change also affects different population groups who are directly exposed and more vulnerable in their geographical conditions, as well as a lack of access to resources, information, and protection. Perhaps it is also worth underlining that in some papers the connection between climatic events and mental disorders was described through the introduction of new terms, coined only recently: ecoanxiety, ecoguilt, ecopsychology, ecological grief, solastalgia, biospheric concern, etc. CONCLUSIONS The effects of climate change can be direct or indirect, short-term or long-term. Acute events can act through mechanisms similar to that of traumatic stress, leading to well-understood psychopathological patterns. In addition, the consequences of exposure to extreme or prolonged weather-related events can also be delayed, encompassing disorders such as posttraumatic stress, or even transmitted to later generations.
Collapse
Affiliation(s)
- Paolo Cianconi
- Department of Neurosciences, Institute of Psychiatry, Catholic University, Rome, Italy
| | | | - Luigi Janiri
- Department of Neurosciences, Institute of Psychiatry, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
39
|
Messier K, Tidwell L, Ghetu C, Rohlman D, Scott R, Bramer L, Dixon H, Waters K, Anderson K. Indoor versus Outdoor Air Quality during Wildfires. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2019; 6:696-701. [PMID: 32095488 PMCID: PMC7039657 DOI: 10.1021/acs.estlett.9b00599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The human behavioral modification recommendations during wildfire events are based on particulate matter and may be confounded by the potential risks of gas-phase pollutants such as polycyclic aromatic hydrocarbons (PAHs). Moreover, the majority of adults spend over 90 percent of their time indoors where there is an increased concern of indoor air quality during wildfire events. We address these timely concerns by evaluating paired indoor and outdoor PAH concentrations in residential locations and their relationship with satellite model-based categorization of wildfire smoke intensity. Low-density polyethylene passive air samplers were deployed at six urban sites for 1 week in Eugene, Oregon with matched indoor and outdoor samples and 24 h time resolution. Samples were then quantitatively analyzed for 63 PAH concentrations using gas-chromatography-tandem mass spectrometry. A probabilistic principal components analysis was used to reduce all 63 PAHs into an aggregate measure. Linear regression of the first principal component against indoor versus outdoor shows that indoor gas-phase PAH concentrations are consistently equal to or greater than outdoor concentrations. Regression against a satellite-based model for wildfire smoke shows that outdoor, but not indoor gas-phase PAH concentrations are likely associated with wildfire events. These results point toward the need to include gas-phase pollutants such as PAHs in air pollution risk assessment.
Collapse
Affiliation(s)
- K.P. Messier
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - L.G. Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - C.C. Ghetu
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - D. Rohlman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - R.P. Scott
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - L.M. Bramer
- Computational Analytics Division, Pacific Northwest National Laboratory, Richland, 99352, Washington, United States of America
| | - H.M. Dixon
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - K.M. Waters
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States of America
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, United States of America
| | - K.A. Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States of America
- Corresponding author: Kim A. Anderson, Oregon State University, Department of Environmental and Molecular Toxicology, 1007 Agricultural and Life Sciences Building, Corvallis, Oregon 97331, USA, Telephone: (541) 737-8501, Fax: (541) 737-0497,
| |
Collapse
|
40
|
Salvador C, Nieto R, Linares C, Diaz J, Gimeno L. Effects on daily mortality of droughts in Galicia (NW Spain) from 1983 to 2013. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:121-133. [PMID: 30690347 DOI: 10.1016/j.scitotenv.2019.01.217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Climate change scenarios indicate an increase in the intensity and frequency of droughts in several regions of the world in the 21st century, especially in Southern Europe, highlighting the threat to global health. For the first time, a time-series diagnostic study has been conducted regarding the impact of droughts in Galicia, a region in north-western Spain, on daily natural-cause mortality, daily circulatory-cause mortality, and daily respiratory-cause mortality, from 1983 to 2013. We analysed the drought periods over the area of interest using the daily Standardized Evapotranspiration-Precipitation Index (SPEI) and the daily Standardized Precipitation Index (SPI), obtained at various timescales (1, 3, 6, 9 months), to identify and classify the intensity of drought and non-drought periods. Generalized linear models with the Poisson regression link were used to calculate the Relative Risks (RRs) of different causes of mortality, and the percentage of Attributable Risk Mortality (%AR) was calculated based on RRs data. According to our findings, there were statistically significant (p < 0.05) associations between drought periods, measured by both the daily SPEI and SPI, and daily mortality in all provinces of Galicia (except Pontevedra) for different timescales. Furthermore, drought periods had a greater influence on daily mortality in the interior provinces of Galicia than in the coastal regions, with Lugo being the most affected. In short term, the effect of droughts (along with heatwaves) on daily mortality was observed in interior regions and was mainly explained by atmospheric pollution effect throughout 2000 to 2009 period in Ourense, being respiratory causes of mortality the group most strongly associated. The fact that droughts are likely to become increasingly frequent and intense in the context of climate change and the lack of studies that have considered the impact of droughts on specific causes of mortality make this type of analysis necessary.
Collapse
Affiliation(s)
- C Salvador
- EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, Ourense, Spain.
| | - R Nieto
- EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, Ourense, Spain
| | - C Linares
- Department of Epidemiology and Biostatistics, National School of Public Health, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - J Diaz
- Department of Epidemiology and Biostatistics, National School of Public Health, Carlos III National Institute of Health (Instituto de Salud Carlos III/ISCIII), Madrid, Spain
| | - L Gimeno
- EPhysLab (Environmental Physics Laboratory), Facultade de Ciencias, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
41
|
Pałczyński C, Kupryś-Lipinska I, Wittczak T, Jassem E, Breborowicz A, Kuna P. The position paper of the Polish Society of Allergology on climate changes, natural disasters and allergy and asthma. Postepy Dermatol Alergol 2018; 35:552-562. [PMID: 30618521 PMCID: PMC6320485 DOI: 10.5114/ada.2017.71273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022] Open
Abstract
The observed global climate change is an indisputable cause of the increased frequency of extreme weather events and related natural disasters. This phenomenon is observed all over the world including Poland. Moreover, Polish citizens as tourists are also exposed to climate phenomena that do not occur in our climate zone. Extreme weather events and related disasters can have a significant impact on people with allergic diseases, including asthma. These effects may be associated with the exposure to air pollution, allergens, and specific microclimate conditions. Under the auspices of the Polish Society of Allergology, experts in the field of environmental allergy prepared a statement on climate changes, natural disasters and allergy and asthma to reduce the risk of adverse health events provoked by climate and weather factors. The guidelines contain the description of the factors related to climate changes and natural disasters affecting the course of allergic diseases, the specific microclimate conditions and the recommendations of the Polish Society of Allergology for vulnerable population, patients suffering from asthma and allergy diseases, allergologists and authorities in the event of climate and weather hazards.
Collapse
Affiliation(s)
- Cezary Pałczyński
- Department of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Izabela Kupryś-Lipinska
- Department of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | | | - Ewa Jassem
- Department of Allergology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Breborowicz
- Department of Pediatric Pneumonolgy, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
42
|
Modeling Wildfire Smoke Pollution by Integrating Land Use Regression and Remote Sensing Data: Regional Multi-Temporal Estimates for Public Health and Exposure Models. ATMOSPHERE 2018. [DOI: 10.3390/atmos9090335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To understand the health effects of wildfire smoke, it is important to accurately assess smoke exposure over space and time. Particulate matter (PM) is a predominant pollutant in wildfire smoke. In this study, we develop land-use regression (LUR) models to investigate the impact that a cluster of wildfires in the northwest USA had on the level of PM in southern Alberta (Canada), in the summer of 2015. Univariate aerosol optical depth (AOD) and multivariate AOD-LUR models were used to estimate the level of PM2.5 in urban and rural areas. For epidemiological studies, it is also important to distinguish between wildfire-related PM2.5 and PM2.5 originating from other sources. We therefore subdivided the study period into three sub-periods: (1) Pre-fire, (2) during-fire, and (3) post-fire. We then developed separate models for each sub-period. With this approach, we were able to identify different predictors significantly associated with smoke-related PM2.5 verses PM2.5 of different origin. Leave-one-out cross-validation (LOOCV) was used to evaluate the models’ performance. Our results indicate that model predictors and model performance are highly related to the level of PM2.5, and the pollution source. The predictive ability of both uni- and multi-variate models were higher in the during-fire period than in the pre- and post-fire periods.
Collapse
|
43
|
Hutchinson JA, Vargo J, Milet M, French NHF, Billmire M, Johnson J, Hoshiko S. The San Diego 2007 wildfires and Medi-Cal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Med 2018; 15:e1002601. [PMID: 29990362 PMCID: PMC6038982 DOI: 10.1371/journal.pmed.1002601] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/01/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The frequency and intensity of wildfires is anticipated to increase as climate change creates longer, warmer, and drier seasons. Particulate matter (PM) from wildfire smoke has been linked to adverse respiratory and possibly cardiovascular outcomes. Children, older adults, and persons with underlying respiratory and cardiovascular conditions are thought to be particularly vulnerable. This study examines the healthcare utilization of Medi-Cal recipients during the fall 2007 San Diego wildfires, which exposed millions of persons to wildfire smoke. METHODS AND FINDINGS Respiratory and cardiovascular International Classification of Diseases (ICD)-9 codes were identified from Medi-Cal fee-for-service claims for emergency department presentations, inpatient hospitalizations, and outpatient visits. For a respiratory index and a cardiovascular index of key diagnoses and individual diagnoses, we calculated rate ratios (RRs) for the study population and different age groups for 3 consecutive 5-day exposure periods (P1 [October 22-26], P2 [October 27-31], and P3 [November 1-5]) versus pre-fire comparison periods matched on day of week (5-day periods starting 3, 4, 5, 6, 8, and 9 weeks before each exposed period). We used a bidirectional symmetric case-crossover design to examine emergency department presentations with any respiratory diagnosis and asthma specifically, with exposure based on modeled wildfire-derived fine inhalable particles that are 2.5 micrometers and smaller (PM2.5). We used conditional logistic regression to estimate odds ratios (ORs), adjusting for temperature and relative humidity, to assess same-day and moving averages. We also evaluated the United States Environmental Protection Agency (EPA)'s Air Quality Index (AQI) with this conditional logistic regression method. We identified 21,353 inpatient hospitalizations, 25,922 emergency department presentations, and 297,698 outpatient visits between August 16 and December 15, 2007. During P1, total emergency department presentations were no different than the reference periods (1,071 versus 1,062.2; RR 1.01; 95% confidence interval [CI] 0.95-1.08), those for respiratory diagnoses increased by 34% (288 versus 215.3; RR 1.34; 95% CI 1.18-1.52), and those for asthma increased by 112% (58 versus 27.3; RR 2.12; 95% CI 1.57-2.86). Some visit types continued to be elevated in later time frames, e.g., a 72% increase in outpatient visits for acute bronchitis in P2. Among children aged 0-4, emergency department presentations for respiratory diagnoses increased by 70% in P1, and very young children (0-1) experienced a 243% increase for asthma diagnoses. Associated with a 10 μg/m3 increase in PM2.5 (72-hour moving average), we found 1.08 (95% CI 1.04-1.13) times greater odds of an emergency department presentation for asthma. The AQI level "unhealthy for sensitive groups" was associated with significantly elevated odds of an emergency department presentation for respiratory conditions the day following exposure, compared to the AQI level "good" (OR 1.73; 95% CI 1.18-2.53). Study limitations include the use of patient home address to estimate exposures and demographic differences between Medi-Cal beneficiaries and the general population. CONCLUSIONS Respiratory diagnoses, especially asthma, were elevated during the wildfires in the vulnerable population of Medi-Cal beneficiaries. Wildfire-related healthcare utilization appeared to persist beyond the initial high-exposure period. Increased adverse health events were apparent even at mildly degraded AQI levels. Significant increases in health events, especially for respiratory conditions and among young children, are expected based on projected climate scenarios of wildfire frequency in California and globally.
Collapse
Affiliation(s)
- Justine A. Hutchinson
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, United States of America
| | - Jason Vargo
- Climate Change and Health Equity Program, California Department of Public Health, Richmond, California, United States of America
| | - Meredith Milet
- Climate Change and Health Equity Program, California Department of Public Health, Richmond, California, United States of America
| | - Nancy H. F. French
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, Michigan, United States of America
| | - Michael Billmire
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, Michigan, United States of America
| | - Jeffrey Johnson
- Epidemiology & Immunization Services Branch, Health & Human Services Agency, County of San Diego, San Diego, California, United States of America
| | - Sumi Hoshiko
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Wettstein ZS, Hoshiko S, Fahimi J, Harrison RJ, Cascio WE, Rappold AG. Cardiovascular and Cerebrovascular Emergency Department Visits Associated With Wildfire Smoke Exposure in California in 2015. J Am Heart Assoc 2018; 7:e007492. [PMID: 29643111 PMCID: PMC6015400 DOI: 10.1161/jaha.117.007492] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/16/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Wildfire smoke is known to exacerbate respiratory conditions; however, evidence for cardiovascular and cerebrovascular events has been inconsistent, despite biological plausibility. METHODS AND RESULTS A population-based epidemiologic analysis was conducted for daily cardiovascular and cerebrovascular emergency department (ED) visits and wildfire smoke exposure in 2015 among adults in 8 California air basins. A quasi-Poisson regression model was used for zip code-level counts of ED visits, adjusting for heat index, day of week, seasonality, and population. Satellite-imaged smoke plumes were classified as light, medium, or dense based on model-estimated concentrations of fine particulate matter. Relative risk was determined for smoky days for lag days 0 to 4. Rates of ED visits by age- and sex-stratified groups were also examined. Rates of all-cause cardiovascular ED visits were elevated across all lags, with the greatest increase on dense smoke days and among those aged ≥65 years at lag 0 (relative risk 1.15, 95% confidence interval [1.09, 1.22]). All-cause cerebrovascular visits were associated with smoke, especially among those 65 years and older, (1.22 [1.00, 1.49], dense smoke, lag 1). Respiratory conditions were also increased, as anticipated (1.18 [1.08, 1.28], adults >65 years, dense smoke, lag 1). No association was found for the control condition, acute appendicitis. Elevated risks for individual diagnoses included myocardial infarction, ischemic heart disease, heart failure, dysrhythmia, pulmonary embolism, ischemic stroke, and transient ischemic attack. CONCLUSIONS Analysis of an extensive wildfire season found smoke exposure to be associated with cardiovascular and cerebrovascular ED visits for all adults, particularly for those over aged 65 years.
Collapse
Affiliation(s)
- Zachary S Wettstein
- School of Medicine, University of California San Francisco, San Francisco, CA
| | - Sumi Hoshiko
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA
| | - Jahan Fahimi
- Department of Emergency Medicine, University of California San Francisco, San Francisco, CA
| | - Robert J Harrison
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Occupational Health Branch, California Department of Public Health, Richmond, CA
| | - Wayne E Cascio
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Durham, NC
| | - Ana G Rappold
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Durham, NC
| |
Collapse
|
45
|
Robinne FN, Bladon KD, Miller C, Parisien MA, Mathieu J, Flannigan MD. A spatial evaluation of global wildfire-water risks to human and natural systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1193-1206. [PMID: 28851140 DOI: 10.1016/j.scitotenv.2017.08.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for human activities and ecosystems is required for sustainable development; however, no global assessment of wildfire impacts on water supply is currently available. Here, we provide the first global evaluation of wildfire risks to water security, in the form of a spatially explicit index. We adapted the Driving forces-Pressure-State-Impact-Response risk analysis framework to select a comprehensive set of indicators of fire activity and water availability, which we then aggregated to a single index of wildfire-water risk using a simple additive weighted model. Our results show that water security in many regions of the world is potentially vulnerable, regardless of socio-economic status. However, in developing countries, a critical component of the risk is the lack of socio-economic capability to respond to disasters. Our work highlights the importance of addressing wildfire-induced risks in the development of water security policies; the geographic differences in the components of the overall risk could help adapting those policies to different regional contexts.
Collapse
Affiliation(s)
- François-Nicolas Robinne
- Western Partnership for Wildland Fire Science, Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - Kevin D Bladon
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331, USA.
| | - Carol Miller
- Aldo Leopold Wilderness Research Institute, 790 East Beckwith Avenue, Missoula, MT 59801, USA.
| | - Marc-André Parisien
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320-122nd Street, Edmonton, AB T6H 3S5, Canada.
| | - Jérôme Mathieu
- Sorbonne Universities, UPMC Univ. Paris 06, IRD, CNRS, INRA, UPEC, University Paris Diderot Institute of Ecology and Environmental Sciences, iEES Paris, 4 place Jussieu, 75005 Paris, France.
| | - Mike D Flannigan
- Western Partnership for Wildland Fire Science, Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| |
Collapse
|
46
|
|
47
|
Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. Critical Review of Health Impacts of Wildfire Smoke Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1334-43. [PMID: 27082891 PMCID: PMC5010409 DOI: 10.1289/ehp.1409277] [Citation(s) in RCA: 515] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 09/14/2015] [Accepted: 03/10/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Wildfire activity is predicted to increase in many parts of the world due to changes in temperature and precipitation patterns from global climate change. Wildfire smoke contains numerous hazardous air pollutants and many studies have documented population health effects from this exposure. OBJECTIVES We aimed to assess the evidence of health effects from exposure to wildfire smoke and to identify susceptible populations. METHODS We reviewed the scientific literature for studies of wildfire smoke exposure on mortality and on respiratory, cardiovascular, mental, and perinatal health. Within those reviewed papers deemed to have minimal risk of bias, we assessed the coherence and consistency of findings. DISCUSSION Consistent evidence documents associations between wildfire smoke exposure and general respiratory health effects, specifically exacerbations of asthma and chronic obstructive pulmonary disease. Growing evidence suggests associations with increased risk of respiratory infections and all-cause mortality. Evidence for cardiovascular effects is mixed, but a few recent studies have reported associations for specific cardiovascular end points. Insufficient research exists to identify specific population subgroups that are more susceptible to wildfire smoke exposure. CONCLUSIONS Consistent evidence from a large number of studies indicates that wildfire smoke exposure is associated with respiratory morbidity with growing evidence supporting an association with all-cause mortality. More research is needed to clarify which causes of mortality may be associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke, and if certain populations are more susceptible. CITATION Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT. 2016. Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124:1334-1343; http://dx.doi.org/10.1289/ehp.1409277.
Collapse
Affiliation(s)
- Colleen E. Reid
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Harvard Center for Population and Development Studies, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts, USA
- Address correspondence to C.E. Reid, Harvard Center for Population and Development Studies, 9 Bow St., Cambridge, MA 02138 USA. Telephone: (617) 495-8108. E-mail:
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fay H. Johnston
- Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Environmental Health Services, Department of Health and Human Services, Hobart, Tasmania, Australia
| | - Michael Jerrett
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - John R. Balmes
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Catherine T. Elliott
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Office of the Chief Medical Officer of Health, Yukon Health and Social Services, Whitehorse, Yukon, Canada
| |
Collapse
|
48
|
|
49
|
Yusa A, Berry P, J Cheng J, Ogden N, Bonsal B, Stewart R, Waldick R. Climate Change, Drought and Human Health in Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8359-412. [PMID: 26193300 PMCID: PMC4515727 DOI: 10.3390/ijerph120708359] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
Droughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate. A review of the Canadian, U.S. and international literature relevant to the Canadian context was conducted to better define these impacts and adaptations available to protect health. Drought can impact respiratory health, mental health, illnesses related to exposure to toxins, food/water security, rates of injury and infectious diseases (including food-, water- and vector-borne diseases). A range of direct and indirect adaptation (e.g., agricultural adaptation) options exist to cope with drought. Many have already been employed by public health officials, such as communicable disease monitoring and surveillance and public education and outreach. However, gaps exist in our understanding of the impacts of short-term vs. prolonged drought on the health of Canadians, projections of drought and its characteristics at the regional level and the effectiveness of current adaptations. Further research will be critical to inform adaptation planning to reduce future drought-related risks to health.
Collapse
Affiliation(s)
- Anna Yusa
- Environmental Health Program, Health Canada, 180 Queen St. West, Toronto, ON M5V 3L7, Canada.
| | - Peter Berry
- Climate Change and Health Office, Health Canada, 269 Laurier Ave. West, Ottawa, ON K1A 0K9, Canada.
| | - June J Cheng
- Sherbourne Health Centre, 333 Sherbourne St., Toronto, ON M5A 2S5, Canada.
| | - Nicholas Ogden
- Centre for Food-Borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, 3200 Sicotte, P.O. Box 5000, Saint-Hyacinthe, QC J2S 7C6, Canada.
| | - Barrie Bonsal
- Watershed Hydrology and Ecology Research Division, Environment Canada, 11 Innovation Blvd., Saskatoon, Saskatchewan S7N 3H5, Canada.
| | - Ronald Stewart
- Department of Environment and Geography, University of Manitoba, 70A Dysart Road, Winnipeg, MB R3T 2N2, Canada.
| | - Ruth Waldick
- Environmental Health, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0Z2, Canada.
- Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
50
|
D'Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, Al-Enezi F, Al-Muhsen S, Ansotegui I, Baena-Cagnani CE, Baker DJ, Bayram H, Bergmann KC, Boulet LP, Buters JTM, D'Amato M, Dorsano S, Douwes J, Finlay SE, Garrasi D, Gómez M, Haahtela T, Halwani R, Hassani Y, Mahboub B, Marks G, Michelozzi P, Montagni M, Nunes C, Oh JJW, Popov TA, Portnoy J, Ridolo E, Rosário N, Rottem M, Sánchez-Borges M, Sibanda E, Sienra-Monge JJ, Vitale C, Annesi-Maesano I. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J 2015; 8:25. [PMID: 26207160 PMCID: PMC4499913 DOI: 10.1186/s40413-015-0073-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/29/2015] [Indexed: 01/08/2023] Open
Abstract
The prevalence of allergic airway diseases such as asthma and rhinitis has increased dramatically to epidemic proportions worldwide. Besides air pollution from industry derived emissions and motor vehicles, the rising trend can only be explained by gross changes in the environments where we live. The world economy has been transformed over the last 25 years with developing countries being at the core of these changes. Around the planet, in both developed and developing countries, environments are undergoing profound changes. Many of these changes are considered to have negative effects on respiratory health and to enhance the frequency and severity of respiratory diseases such as asthma in the general population. Increased concentrations of greenhouse gases, and especially carbon dioxide (CO2), in the atmosphere have already warmed the planet substantially, causing more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods – all of which can put the respiratory health of the public at risk. These changes in climate and air quality have a measurable impact not only on the morbidity but also the mortality of patients with asthma and other respiratory diseases. The massive increase in emissions of air pollutants due to economic and industrial growth in the last century has made air quality an environmental problem of the first order in a large number of regions of the world. A body of evidence suggests that major changes to our world are occurring and involve the atmosphere and its associated climate. These changes, including global warming induced by human activity, have an impact on the biosphere, biodiversity, and the human environment. Mitigating this huge health impact and reversing the effects of these changes are major challenges. This statement of the World Allergy Organization (WAO) raises the importance of this health hazard and highlights the facts on climate-related health impacts, including: deaths and acute morbidity due to heat waves and extreme meteorological events; increased frequency of acute cardio-respiratory events due to higher concentrations of ground level ozone; changes in the frequency of respiratory diseases due to trans-boundary particle pollution; altered spatial and temporal distribution of allergens (pollens, molds, and mites); and some infectious disease vectors. According to this report, these impacts will not only affect those with current asthma but also increase the incidence and prevalence of allergic respiratory conditions and of asthma. The effects of climate change on respiratory allergy are still not well defined, and more studies addressing this topic are needed. Global warming is expected to affect the start, duration, and intensity of the pollen season on the one hand, and the rate of asthma exacerbations due to air pollution, respiratory infections, and/or cold air inhalation, and other conditions on the other hand.
Collapse
Affiliation(s)
- Gennaro D'Amato
- Department of Respiratory Diseases, Division of Pneumology and Allergology, High Specialty Hospital "A. Cardarelli" Napoli, Italy, University of Naples Medical School, Via Rione Sirignano, 10, 80121 Napoli, Italy
| | - Stephen T Holgate
- Southampton General Hospital, Clinical and Experimental Sciences, University of Southampton, Hampshire, UK
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Dennis K Ledford
- Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lorenzo Cecchi
- Interdepartmental Centre of Bioclimatology, University of Florence Allergy and Clinical Immunology Section, Azienda Sanitaria di Prato, Italy
| | - Mona Al-Ahmad
- Department of Allergy, Al-Rashid Center, Ministry of Health, Khobar, Kuwait
| | - Fatma Al-Enezi
- Al-Rashid Allergy and Respiratory Center, Khobar, Kuwait
| | - Saleh Al-Muhsen
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ignacio Ansotegui
- Department of Allergy and Immunology, Hospital Quirón Bizkaia, Erandio, Spain
| | - Carlos E Baena-Cagnani
- Centre for Research in Respiratory Medicine, Faculty of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - David J Baker
- Emeritus Consultant Anaesthesiologist, SAMU de Paris, Hôpital Necker - Enfants Malades, Paris, France
| | - Hasan Bayram
- Department of Chest Diseases, Respiratory Research Laboratory, Allergy Division, School of Medicine, University of Gaziantep, Şehitkamil/Gaziantep, 27310 Turkey
| | | | - Louis-Philippe Boulet
- Quebec Heart and Lung Institute, Laval University, 2725 chemin Sainte-Foy, Quebec City, G1V 4G5 Canada
| | - Jeroen T M Buters
- ZAUM - Center of Allergy and Environment, Helmholtz Zentrum München/Technische Universität München, Munich, Germany
| | - Maria D'Amato
- University of Naples, Institute of Respiratory Diseases, Naples, Italy
| | - Sofia Dorsano
- World Allergy Organization, Milwaukee, Wisconsin United States
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Sarah Elise Finlay
- Consultant in Emergency Medicine, Chelsea and Westminster Hospital, London, UK
| | - Donata Garrasi
- Development Assistance Committee, Organisation of Economic Cooperation and Development, Paris, France
| | | | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Rabih Halwani
- Prince Naif Center for Immunology Research, College of Medicine, King Saud University, P.O.Box 2925, Postal Code 11461 Riyadh, Saudi Arabia
| | - Youssouf Hassani
- Epidemiology of Respiratory and Allergic Disease Department, UMR-S, Institute Pierre Louis of Epidemiology and Public Health, INSERM Medical School Saint-Antoine, UPMC Sorbonne Universités, Paris, France
| | - Basam Mahboub
- University of Sharjah, and, Rashid Hospital DHA, Abu Dhabi, United Arab Emirates
| | - Guy Marks
- South Western Sydney Clinical School, UNSW, Australia and Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Paola Michelozzi
- Dipartimento Epidemiologia Regione Lazio, UOC Epidemiologia Ambientale, Roma, Italy
| | - Marcello Montagni
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Carlos Nunes
- Center of Allergy of Algarve, Hospital Particular do Algarve, Particular do Algarve, Brasil
| | - Jay Jae-Won Oh
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Korea
| | - Todor A Popov
- Clinic of Allergy and Asthma, Medical University in Sofia, Sofia, Bulgaria
| | - Jay Portnoy
- Children's Mercy Hospitals & Clinics, Kansas City, Missouri USA
| | - Erminia Ridolo
- Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43100 Parma, Italy
| | - Nelson Rosário
- Division of Pediatric Respiratory Medicine, Hospital de Clínicas, Federal University of Parana, Rua Tte. João Gomes da Silva 226, 80810-100 Curitiba, PR Brazil
| | - Menachem Rottem
- Allergy Asthma and Immunology, Emek Medical Center, Afula, and the Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa, Israel
| | | | - Elopy Sibanda
- Asthma, Allergy and Immune Dysfunction Clinic, Harare, Zimbabwe
| | - Juan José Sienra-Monge
- Allergy and Immunology Department, Hospital Infantil de México Federico Gómez, SSA, México City, Mexico
| | - Carolina Vitale
- University of Naples, Institute of Respiratory Diseases, Naples, Italy
| | - Isabella Annesi-Maesano
- Epidemiology of Respiratory and Allergic Disease Department (EPAR), Institute Pierre Louis of Epidemiology and Public Health, UMR-S 1136, INSERM, Paris, France ; UPMC, Sorbonne Universités, Medical School Saint-Antoine, 803-804-806, 8 etage/Floor 27, Rue Chaligny, CEDEX 12, 75571 Paris, France
| |
Collapse
|