1
|
Fujii A, Kawada-Matsuo M, Nguyen-Tra Le M, Masuda K, Tadera K, Suzuki Y, Nishihama S, Hisatsune J, Sugawara Y, Kashiyama S, Shiba H, Aikawa T, Ohge H, Sugai M, Komatsuzawa H. Antibiotic susceptibility and genome analysis of Enterococcus species isolated from inpatients in one hospital with no apparent outbreak of vancomycin-resistant Enterococcus in Japan. Microbiol Immunol 2024; 68:254-266. [PMID: 38873884 DOI: 10.1111/1348-0421.13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
To prevent nosocomial infection, it is important to screen for potential vancomycin-resistant Enterococcus (VRE) among patients. In this study, we analyzed enterococcal isolates from inpatients in one hospital without any apparent outbreak of VRE. Enterococcal isolates were collected from inpatients at Hiroshima University Hospital from April 1 to June 30, 2021 using selective medium for Enterococci. Multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing were performed. A total of 164 isolates, including Enterococcus faecium (41 isolates), Enterococcus faecalis (80 isolates), Enterococcus raffinosus (11 isolates), Enterococcus casseliflavus (nine isolates), Enterococcus avium (12 isolates), Enterococcus lactis (eight isolates), Enterococcus gallinarum (two isolates), and Enterococcus malodoratus (one isolate), were analyzed. We found one vanA-positive E. faecium, which was already informed when the patient was transferred to the hospital, nine vanC-positive E. casseliflavus, and two vanC-positive E. gallinarum. E. faecium isolates showed resistance to ampicillin (95.1%), imipenem (95.1%), and levofloxacin (87.8%), and E. faecalis isolates showed resistance to minocycline (49.4%). Ampicillin- and levofloxacin-resistant E. faecium had multiple mutations in penicillin-binding protein 5 (PBP5) (39/39 isolates) and ParC/GyrA (21/36 isolates), respectively. E. raffinosus showed resistance to ampicillin (81.8%), imipenem (45.5%), and levofloxacin (45.5%), and E. lactis showed resistance to ampicillin (37.5%) and imipenem (50.0%). The linezolid resistance genes optrA and cfr(B) were found only in one isolate of E. faecalis and E. raffinosus, respectively. This study, showing the status of enterococci infection in hospitalized patients, is one of the important information when considering nosocomial infection control of VRE.
Collapse
Affiliation(s)
- Ayumi Fujii
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kanako Masuda
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| | - Kayoko Tadera
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yujin Suzuki
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Saki Nishihama
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junzo Hisatsune
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Seiya Kashiyama
- Section of Clinical Laboratory, Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ohge
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Department of Infectious Diseases, Hiroshima University Hospital, Hiroshima, Japan
| | - Motoyuki Sugai
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Project Research Center for Nosocomial Infectious Diseases, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Zhong Y, Guo J, Zheng Y, Lin H, Su Y. Metabolomics analysis of the lactobacillus plantarum ATCC 14917 response to antibiotic stress. BMC Microbiol 2024; 24:229. [PMID: 38943061 PMCID: PMC11212188 DOI: 10.1186/s12866-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Huale Lin
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Top J, Zhang X, Hendrickx APA, Boeren S, van Schaik W, Huebner J, Willems RJL, Leavis HL, Paganelli FL. YajC, a predicted membrane protein, promotes Enterococcus faecium biofilm formation in vitro and in a rat endocarditis model. FEMS MICROBES 2024; 5:xtae017. [PMID: 38860142 PMCID: PMC11163983 DOI: 10.1093/femsmc/xtae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Biofilm formation is a critical step in the pathogenesis of difficult-to-treat Gram-positive bacterial infections. We identified that YajC, a conserved membrane protein in bacteria, plays a role in biofilm formation of the clinically relevant Enterococcus faecium strain E1162. Deletion of yajC conferred significantly impaired biofilm formation in vitro and was attenuated in a rat endocarditis model. Mass spectrometry analysis of supernatants of washed ΔyajC cells revealed increased amounts in cytoplasmic and cell-surface-located proteins, including biofilm-associated proteins, suggesting that proteins on the surface of the yajC mutant are only loosely attached. In Streptococcus mutans YajC has been identified in complex with proteins of two cotranslational membrane protein-insertion pathways; the signal recognition particle (SRP)-SecYEG-YajC-YidC1 and the SRP-YajC-YidC2 pathway, but its function is unknown. In S. mutans mutation of yidC1 and yidC2 resulted in impaired protein insertion in the cell membrane and secretion in the supernatant. The E. faecium genome contains all homologous genes encoding for the cotranslational membrane protein-insertion pathways. By combining the studies in S. mutans and E. faecium, we propose that YajC is involved in the stabilization of the SRP-SecYEG-YajC-YidC1 and SRP-YajC-Yid2 pathway or plays a role in retaining proteins for proper docking to the YidC insertases for translocation in and over the membrane.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Building 60, Yujingwan, Linyi City, Shandong Province, 276000, China
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control (Clb), National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, PO box 8128, 6700 ET Wageningen, the Netherlands
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Hauner Children's Hospital, Ludwig-Maximilian Universität München, Lindwurmstr. 4, 80337 Munich, Germany
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, PO box 85500, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
4
|
Grunnvåg JS, Hegstad K, Lentz CS. Activity-based protein profiling of serine hydrolases and penicillin-binding proteins in Enterococcus faecium. FEMS MICROBES 2024; 5:xtae015. [PMID: 38813097 PMCID: PMC11134295 DOI: 10.1093/femsmc/xtae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Enterococcus faecium is a gut commensal bacterium which is gaining increasing relevance as an opportunistic, nosocomial pathogen. Its high level of intrinsic and acquired antimicrobial resistance is causing a lack of treatment options, particularly for infections with vancomycin-resistant strains, and prioritizes the identification and functional validation of novel druggable targets. Here, we use activity-based protein profiling (ABPP), a chemoproteomics approach using functionalized covalent inhibitors, to detect active serine hydrolases across 11 E. faecium and Enterococcus lactis strains. Serine hydrolases are a big and diverse enzyme family, that includes known drug targets such as penicillin-binding proteins (PBPs), whereas other subfamilies are underexplored. Comparative gel-based ABPP using Bocillin-FL revealed strain- and growth condition-dependent variations in PBP activities. Profiling with the broadly serine hydrolase-reactive fluorescent probe fluorophosphonate-TMR showed a high similarity across E. faecium clade A1 strains, but higher variation across A2 and E. lactis strains. To identify these serine hydrolases, we used a biotinylated probe analog allowing for enrichment and identification via liquid chromatography-mass spectrometry. We identified 11 largely uncharacterized targets (α,β-hydrolases, SGNH-hydrolases, phospholipases, and amidases, peptidases) that are druggable and accessible in live vancomycin-resistant E. faecium E745 and may possess vital functions that are to be characterized in future studies.
Collapse
Affiliation(s)
- Jeanette S Grunnvåg
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, P.O. Box 56, 9038 Tromsø, Norway
| | - Christian S Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology, UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
- Centre for New Antibacterial Strategies (CANS), UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway
| |
Collapse
|
5
|
Singh KV, Galloway-Peña J, Montealegre MC, Dong X, Murray BE. Genomic context as well as sequence of both psr and penicillin-binding protein 5 contributes to β-lactam resistance in Enterococcus faecium. mBio 2024; 15:e0017024. [PMID: 38564699 PMCID: PMC11077988 DOI: 10.1128/mbio.00170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.
Collapse
Affiliation(s)
- Kavindra V. Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Jessica Galloway-Peña
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Maria Camila Montealegre
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| | - Xingxing Dong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
6
|
Chen Z, Niu C, Wei L, Huang Z, Ran S. Genome-wide analysis of acid tolerance genes of Enterococcus faecalis with RNA-seq and Tn-seq. BMC Genomics 2024; 25:261. [PMID: 38454321 PMCID: PMC10921730 DOI: 10.1186/s12864-024-10162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Enterococcus faecalis, a formidable nosocomial and community-acquired opportunistic pathogen, can persist a wide range of extreme environments, including low pH and nutrient deficiency. Clarifying the survival mechanism of E. faecalis in low-pH conditions is the key to combating the infectious diseases caused by E. faecalis. In this study, we combined transcriptome profiling (RNA-seq) and transposon insertion sequencing (TIS) to comprehensively understand the genes that confer these features on E. faecalis. The metadata showed that genes whose products are involved in cation transportation and amino acid biosynthesis were predominantly differentially expressed under acid conditions. The products of genes such as opp1C and copY reduced the hydrion concentration in the cell, whereas those of gldA2, gnd2, ubiD, and ubiD2 mainly participated in amino metabolism, increasing matters to neutralize excess acid. These, together with the folE and hexB genes, which are involved in mismatch repair, form a network of E. faecalis genes necessary for its survival under acid conditions.
Collapse
Affiliation(s)
- Zhanyi Chen
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chenguang Niu
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Nucleic acid drug Research and Development Institute, CSPC, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
7
|
Mametov R, Sagandykova G, Monedeiro F, Florkiewicz A, Piszczek P, Radtke A, Pomastowski P. Metabolic profiling of bacteria with the application of polypyrrole-MOF SPME fibers and plasmonic nanostructured LDI-MS substrates. Sci Rep 2024; 14:5562. [PMID: 38448652 PMCID: PMC10917794 DOI: 10.1038/s41598-024-56107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Here we present application of innovative lab-made analytical devices such as plasmonic silver nanostructured substrates and polypyrrole-MOF solid-phase microextraction fibers for metabolic profiling of bacteria. For the first time, comprehensive metabolic profiling of both volatile and non-volatile low-molecular weight compounds in eight bacterial strains was carried out with utilization of lab-made devices. Profiles of low molecular weight metabolites were analyzed for similarities and differences using principal component analysis, hierarchical cluster analysis and random forest algorithm. The results showed clear differentiation between Gram positive (G+) and Gram negative (G-) species which were identified as distinct clusters according to their volatile metabolites. In case of non-volatile metabolites, differentiation between G+ and G- species and clustering for all eight species were observed for the chloroform fraction of the Bligh & Dyer extract, while methanolic fraction failed to recover specific ions in the profile. Furthermore, the results showed correlation between volatile and non-volatile metabolites, which suggests that lab-made devices presented in the current study might be complementary and therefore, useful for species differentiation and gaining insights into bacterial metabolic pathways.
Collapse
Affiliation(s)
- Radik Mametov
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland.
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Fernanda Monedeiro
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-901, Brazil
| | - Aleksandra Florkiewicz
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100, Toruń, Poland
| | - Pawel Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| |
Collapse
|
8
|
Xu L, Wu Y, Yang X, Pang X, Wu Y, Li X, Liu X, Zhao Y, Yu L, Wang P, Ye B, Jiang S, Ma J, Zhang X. The Fe-S cluster biosynthesis in Enterococcus faecium is essential for anaerobic growth and gastrointestinal colonization. Gut Microbes 2024; 16:2359665. [PMID: 38831611 PMCID: PMC11152105 DOI: 10.1080/19490976.2024.2359665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The facultative anaerobic Gram-positive bacterium Enterococcus faecium is a ubiquitous member of the human gut microbiota. However, it has gradually evolved into a pathogenic and multidrug resistant lineage that causes nosocomial infections. The establishment of high-level intestinal colonization by enterococci represents a critical step of infection. The majority of current research on Enterococcus has been conducted under aerobic conditions, while limited attention has been given to its physiological characteristics in anaerobic environments, which reflects its natural colonization niche in the gut. In this study, a high-density transposon mutant library containing 26,620 distinct insertion sites was constructed. Tn-seq analysis identified six genes that significantly contribute to growth under anaerobic conditions. Under anaerobic conditions, deletion of sufB (encoding Fe-S cluster assembly protein B) results in more extensive and significant impairments on carbohydrate metabolism compared to aerobic conditions. Consistently, the pathways involved in this utilization-restricted carbohydrates were mostly expressed at significantly lower levels in mutant compared to wild-type under anaerobic conditions. Moreover, deletion of sufB or pflA (encoding pyruvate formate lyase-activating protein A) led to failure of gastrointestinal colonization in mice. These findings contribute to our understanding of the mechanisms by which E. faecium maintains proliferation under anaerobic conditions and establishes colonization in the gut.
Collapse
Affiliation(s)
- Linan Xu
- College of Agriculture and Forestry, Linyi University, Linyi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xiangpeng Yang
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Xinxin Pang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yansha Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xingshuai Li
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yuzhong Zhao
- College of Agriculture and Forestry, Linyi University, Linyi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Lumin Yu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Peikun Wang
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Bin Ye
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junfei Ma
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, China
| |
Collapse
|
9
|
Sanz-García F, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. The Pseudomonas aeruginosa Resistome: Permanent and Transient Antibiotic Resistance, an Overview. Methods Mol Biol 2024; 2721:85-102. [PMID: 37819517 DOI: 10.1007/978-1-0716-3473-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
One of the most concerning characteristics of Pseudomonas aeruginosa is its low susceptibility to several antibiotics of common use in clinics, as well as its facility to acquire increased resistance levels. Consequently, the study of the antibiotic resistance mechanisms of this bacterium is of relevance for human health. For such a study, different types of resistance should be distinguished. The intrinsic resistome is composed of a set of genes, present in the core genome of P. aeruginosa, which contributes to its characteristic, species-specific, phenotype of susceptibility to antibiotics. Acquired resistance refers to those genetic events, such as the acquisition of mutations or antibiotic resistance genes that reduce antibiotic susceptibility. Finally, antibiotic resistance can be transiently acquired in the presence of specific compounds or under some growing conditions. The current article provides information on methods currently used to analyze intrinsic, mutation-driven, and transient antibiotic resistance in P. aeruginosa.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Qian Y, Zhou D, Li M, Zhao Y, Liu H, Yang L, Ying Z, Huang G. Application of CRISPR-Cas system in the diagnosis and therapy of ESKAPE infections. Front Cell Infect Microbiol 2023; 13:1223696. [PMID: 37662004 PMCID: PMC10470840 DOI: 10.3389/fcimb.2023.1223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Antimicrobial-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. ESKAPE pathogens are the most common opportunistic pathogens in nosocomial infections, and a considerable number of their clinical isolates are not susceptible to conventional antimicrobial therapy. Therefore, innovative therapeutic strategies that can effectively deal with ESKAPE pathogens will bring huge social and economic benefits and ease the suffering of tens of thousands of patients. Among these strategies, CRISPR (clustered regularly interspaced short palindromic repeats) system has received extra attention due to its high specificity. Regrettably, there is currently no direct CRISPR-system-based anti-infective treatment. This paper reviews the applications of CRISPR-Cas system in the study of ESKAPE pathogens, aiming to provide directions for the research of ideal new drugs and provide a reference for solving a series of problems caused by multidrug-resistant bacteria (MDR) in the post-antibiotic era. However, most research is still far from clinical application.
Collapse
Affiliation(s)
- Yizheng Qian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dapeng Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Burn Plastic and Wound Repair Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Min Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yongxiang Zhao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Huanhuan Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Li Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhiqin Ying
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
11
|
Rodríguez-Lucas C, Ladero V. Enterococcal Phages: Food and Health Applications. Antibiotics (Basel) 2023; 12:antibiotics12050842. [PMID: 37237745 DOI: 10.3390/antibiotics12050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Enterococcus is a diverse genus of Gram-positive bacteria belonging to the lactic acid bacteria (LAB) group. It is found in many environments, including the human gut and fermented foods. This microbial genus is at a crossroad between its beneficial effects and the concerns regarding its safety. It plays an important role in the production of fermented foods, and some strains have even been proposed as probiotics. However, they have been identified as responsible for the accumulation of toxic compounds-biogenic amines-in foods, and over the last 20 years, they have emerged as important hospital-acquired pathogens through the acquisition of antimicrobial resistance (AMR). In food, there is a need for targeted measures to prevent their growth without disturbing other LAB members that participate in the fermentation process. Furthermore, the increase in AMR has resulted in the need for the development of new therapeutic options to treat AMR enterococcal infections. Bacteriophages have re-emerged in recent years as a precision tool for the control of bacterial populations, including the treatment of AMR microorganism infections, being a promising weapon as new antimicrobials. In this review, we focus on the problems caused by Enterococcus faecium and Enterococcus faecalis in food and health and on the recent advances in the discovery and applications of enterococcus-infecting bacteriophages against these bacteria, with special attention paid to applications against AMR enterococci.
Collapse
Affiliation(s)
- Carlos Rodríguez-Lucas
- Microbiology Laboratory, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Translational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA CSIC, 33300 Villaviciosa, Spain
- Molecular Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
12
|
Liu X, Pang X, Wu Y, Wu Y, Xu L, Chen Q, Niu J, Zhang X. New Insights into the Lactic Acid Resistance Determinants of Listeria monocytogenes Based on Transposon Sequencing and Transcriptome Sequencing Analyses. Microbiol Spectr 2023; 11:e0275022. [PMID: 36541787 PMCID: PMC9927151 DOI: 10.1128/spectrum.02750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that can tolerate a variety of extreme environments. In particular, its acid resistance (AR) capability is considered one of the key factors threating food safety. Here, we employed a microbial functional genomic technology termed transposon sequencing (Tn-seq), leading to the identification of two genes involved in cell wall peptidoglycan biosynthesis (murF) and phosphate transport (lmo2248) that play key roles in lactic acid resistance (LAR) of L. monocytogenes. Deletion of lmo2248 significantly impaired the ability of LAR in L. monocytogenes, demonstrating the accuracy of the Tn-seq results. Transcriptome analysis revealed that 31.7% of the L. monocytogenes genes on the genome were differentially expressed under lactic acid (LA) treatment, in which genes involved in phosphate transport were influenced most significantly. These findings shed light on the LAR mechanisms of L. monocytogenes, which may contribute to the development of novel strategies against foodborne pathogens. IMPORTANCE Listeria monocytogenes is a Gram-positive foodborne pathogen with high lethality and strong stress resistance, and its strong acid tolerance leads to many foodborne illnesses occurring in low-pH foods. Lactic acid is a generally recognized as safe (GRAS) food additive approved for use by the FDA. However, the genetic determinants of lactic acid resistance in L. monocytogenes have not been fully identified. In this study, the lactic acid resistance determinants of L. monocytogenes were comprehensively identified by Tn-seq on a genome-wide scale. Two genes, murF (cell wall peptidoglycan biosynthesis) and lmo2248 (phosphate transport), were identified to play an important role in the lactic acid resistance. Moreover, genome-wide transcriptomic analysis showed that phosphotransferase system (PTS)-related genes play a key role at the transcriptional level. These findings contribute to a better understanding of the lactic acid resistance mechanism of L. monocytogenes and may provide unique targets for the development of other novel antimicrobial agents.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Linan Xu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianrui Niu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Xinglin Zhang
- College of Agriculture and Forestry, Linyi University, Linyi, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Microbiome-mediated fructose depletion restricts murine gut colonization by vancomycin-resistant Enterococcus. Nat Commun 2022; 13:7718. [PMID: 36513659 PMCID: PMC9748033 DOI: 10.1038/s41467-022-35380-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Multidrug-resistant organisms (MDRO) are a major threat to public health. MDRO infections, including those caused by vancomycin-resistant Enterococcus (VRE), frequently begin by colonization of the intestinal tract, a crucial step that is impaired by the intestinal microbiota. However, the specific members of the microbiota that suppress MDRO colonization and the mechanisms of such protection are largely unknown. Here, using metagenomics and mouse models that mimic the patients' exposure to antibiotics, we identified commensal bacteria associated with protection against VRE colonization. We further found a consortium of five strains that was sufficient to restrict VRE gut colonization in antibiotic treated mice. Transcriptomics in combination with targeted metabolomics and in vivo assays indicated that the bacterial consortium inhibits VRE growth through nutrient depletion, specifically by reducing the levels of fructose, a carbohydrate that boosts VRE growth in vivo. Finally, in vivo RNA-seq analysis of each strain of the consortium in combination with ex vivo and in vivo assays demonstrated that a single bacterium (Olsenella sp.) could recapitulate the effect of the consortium. Our results indicate that nutrient depletion by specific commensals can reduce VRE intestinal colonization, which represents a novel non-antibiotic based strategy to prevent infections caused by this multidrug-resistant organism.
Collapse
|
14
|
Li Y, Molyneaux N, Zhang H, Zhou G, Kerr C, Adams MD, Berkner KL, Runge KW. A multiplexed, three-dimensional pooling and next-generation sequencing strategy for creating barcoded mutant arrays: construction of a Schizosaccharomyces pombe transposon insertion library. Nucleic Acids Res 2022; 50:e102. [PMID: 35766443 PMCID: PMC9508820 DOI: 10.1093/nar/gkac546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Arrayed libraries of defined mutants have been used to elucidate gene function in the post-genomic era. Yeast haploid gene deletion libraries have pioneered this effort, but are costly to construct, do not reveal phenotypes that may occur with partial gene function and lack essential genes required for growth. We therefore devised an efficient method to construct a library of barcoded insertion mutants with a wider range of phenotypes that can be generalized to other organisms or collections of DNA samples. We developed a novel but simple three-dimensional pooling and multiplexed sequencing approach that leveraged sequence information to reduce the number of required sequencing reactions by orders of magnitude, and were able to identify the barcode sequences and DNA insertion sites of 4391 Schizosaccharomyces pombe insertion mutations with only 40 sequencing preparations. The insertion mutations are in the genes and untranslated regions of nonessential, essential and noncoding RNA genes, and produced a wider range of phenotypes compared to the cognate deletion mutants, including novel phenotypes. This mutant library represents both a proof of principle for an efficient method to produce novel mutant libraries and a valuable resource for the S. pombe research community.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Neil Molyneaux
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Haitao Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Gang Zhou
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Carly Kerr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Mark D Adams
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen L Berkner
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Kurt W Runge
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
15
|
Krause AL, Stinear TP, Monk IR. Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiol Rev 2022; 46:6650352. [PMID: 35883217 PMCID: PMC9779914 DOI: 10.1093/femsre/fuac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are Gram-positive commensal gut bacteria that can also cause fatal infections. To study clinically relevant multi-drug resistant E. faecalis and E. faecium strains, methods are needed to overcome physical (thick cell wall) and enzymatic barriers that limit the transfer of foreign DNA and thus prevent facile genetic manipulation. Enzymatic barriers to DNA uptake identified in E. faecalis and E. faecium include type I, II and IV restriction modification systems and CRISPR-Cas. This review examines E. faecalis and E. faecium DNA defence systems and the methods with potential to overcome these barriers. DNA defence system bypass will allow the application of innovative genetic techniques to expedite molecular-level understanding of these important, but somewhat neglected, pathogens.
Collapse
Affiliation(s)
- Alexandra L Krause
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Ian R Monk
- Corresponding author: Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia. E-mail:
| |
Collapse
|
16
|
Pang X, Wu Y, Liu X, Wu Y, Shu Q, Niu J, Chen Q, Zhang X. The Lipoteichoic Acid-Related Proteins YqgS and LafA Contribute to the Resistance of Listeria monocytogenes to Nisin. Microbiol Spectr 2022; 10:e0209521. [PMID: 35196823 PMCID: PMC8865564 DOI: 10.1128/spectrum.02095-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a major pathogen contributing to foodborne outbreaks with high mortality. Nisin, a natural antimicrobial, has been widely used as a food preservative. However, the mechanisms of L. monocytogenes involved in nisin resistance have not yet to be fully defined. A mariner transposon library was constructed in L. monocytogenes, leading to the identification of 99 genes associated with the innate resistance to nisin via Transposon sequencing (Tn-seq) analysis. To validate the accuracy of the Tn-seq results, we constructed five mutants (ΔyqgS, ΔlafA, ΔvirR, ΔgtcA, and Δlmo1464) in L. monocytogenes. The results revealed that yqgS and lafA, the lipoteichoic acid-related genes, were essential for resistance to nisin, while the gtcA and lmo1464 mutants showed substantially enhanced nisin resistance. Densely wrinkled, collapsed surface and membrane breakdown were shown on ΔyqgS and ΔlafA mutants under nisin treatment. Deletion of yqgS and lafA altered the surface charge, and decreased the resistance to general stress conditions and cell envelope-acting antimicrobials. Furthermore, YqgS and LafA are required for biofilm formation and cell invasion of L. monocytogenes. Collectively, these results reveal novel mechanisms of nisin resistance in L. monocytogenes and may provide unique targets for the development of food-grade inhibitors for nisin-resistant foodborne pathogens. IMPORTANCE Listeria monocytogenes is an opportunistic Gram-positive pathogen responsible for listeriosis, and is widely present in a variety of foods including ready-to-eat foods, meat, and dairy products. Nisin is the only licensed lantibiotic by the FDA for use as a food-grade inhibitor in over 50 countries. A prior study suggests that L. monocytogenes are more resistant than other Gram-positive pathogens in nisin-mediated bactericidal effects. However, the mechanisms of L. monocytogenes involved in nisin resistance have not yet to be fully defined. Here, we used a mariner transposon library to identify nisin-resistance-related genes on a genome-wide scale via transposon sequencing. We found, for the first time, that YqgS and LafA (Lipoteichoic acid-related proteins) are required for resistance to nisin. Subsequently, we investigated the roles of YqgS and LafA in L. monocytogenes stress resistance, antimicrobial resistance, biofilm formation, and virulence in mammalian cells.
Collapse
Affiliation(s)
- Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Qin Shu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jianrui Niu
- College of Agriculture and Forestry, Linyi University, Linyi, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
- College of Agriculture and Forestry, Linyi University, Linyi, China
| |
Collapse
|
17
|
Abstract
Considered a serious threat by the Centers for Disease Control and Prevention, multidrug-resistant Enterococcus faecium is an increasing cause of hospital-acquired infection. Here, we provide details on a single-plasmid CRISPR-Cas12a system for generating clean deletions and insertions. Single manipulations were carried out in under 2 weeks, with successful deletions/insertions present in >80% of the clones tested. Using this method, we generated three individual clean deletion mutations in the acpH, treA, and lacL genes and inserted codon-optimized unaG, enabling green fluorescent protein (GFP)-like fluorescence under the control of the trehalase operon. The use of in vivo recombination for plasmid construction kept costs to a minimum. IMPORTANCE Enterococcus faecium is increasingly associated with hard-to-treat antibiotic-resistant infections. The ability to generate clean genomic alterations is the first step in generating a complete mechanistic understanding of how E. faecium acquires pathogenic traits and causes disease. Here, we show that CRISPR-Cas12a can be used to quickly (under 2 weeks) and cheaply delete or insert genes into the E. faecium genome. This substantial improvement over current methods should speed up research on this important opportunistic pathogen.
Collapse
|
18
|
Top J, Baan J, Bisschop A, Arredondo-Alonso S, van Schaik W, Willems RJL. Functional characterization of a gene cluster responsible for inositol catabolism associated with hospital-adapted isolates of Enterococcus faecium. MICROBIOLOGY-SGM 2021; 167. [PMID: 34491894 DOI: 10.1099/mic.0.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterococcus faecium is a nosocomial, multidrug-resistant pathogen. Whole genome sequence studies revealed that hospital-associated E. faecium isolates are clustered in a separate clade A1. Here, we investigated the distribution, integration site and function of a putative iol gene cluster that encodes for myo-inositol (MI) catabolism. This iol gene cluster was found as part of an ~20 kbp genetic element (iol element), integrated in ICEEfm1 close to its integrase gene in E. faecium isolate E1679. Among 1644 E. faecium isolates, ICEEfm1 was found in 789/1227 (64.3 %) clade A1 and 3/417 (0.7 %) non-clade A1 isolates. The iol element was present at a similar integration site in 180/792 (22.7 %) ICEEfm1-containing isolates. Examination of the phylogenetic tree revealed genetically closely related isolates that differed in presence/absence of ICEEfm1 and/or iol element, suggesting either independent acquisition or loss of both elements. E. faecium iol gene cluster containing isolates E1679 and E1504 were able to grow in minimal medium with only myo-inositol as carbon source, while the iolD-deficient mutant in E1504 (E1504∆iolD) lost this ability and an iol gene cluster negative recipient strain gained this ability after acquisition of ICEEfm1 by conjugation from donor strain E1679. Gene expression profiling revealed that the iol gene cluster is only expressed in the absence of other carbon sources. In an intestinal colonization mouse model the colonization ability of E1504∆iolD mutant was not affected relative to the wild-type E1504 strain. In conclusion, we describe and functionally characterise a gene cluster involved in MI catabolism that is associated with the ICEEfm1 island in hospital-associated E. faecium isolates. We were unable to show that this gene cluster provides a competitive advantage during gut colonisation in a mouse model. Therefore, to what extent this gene cluster contributes to the spread and ecological specialisation of ICEEfm1-carrying hospital-associated isolates remains to be investigated.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jery Baan
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Chen V, Griffin ME, Maguin P, Varble A, Hang HC. RecT Recombinase Expression Enables Efficient Gene Editing in Enterococcus spp. Appl Environ Microbiol 2021; 87:e0084421. [PMID: 34232061 PMCID: PMC8388837 DOI: 10.1128/aem.00844-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecium is a ubiquitous Gram-positive bacterium that has been recovered from the environment, food, and microbiota of mammals. Commensal strains of E. faecium can confer beneficial effects on host physiology and immunity, but antibiotic usage has afforded antibiotic-resistant and pathogenic isolates from livestock and humans. However, the dissection of E. faecium functions and mechanisms has been restricted by inefficient gene-editing methods. To address these limitations, here, we report that the expression of E. faecium RecT recombinase significantly improves the efficiency of recombineering technologies in both commensal and antibiotic-resistant strains of E. faecium and other Enterococcus species such as E. durans and E. hirae. Notably, the expression of RecT in combination with clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 and guide RNAs (gRNAs) enabled highly efficient scarless single-stranded DNA recombineering to generate specific gene-editing mutants in E. faecium. Moreover, we demonstrate that E. faecium RecT expression facilitated chromosomal insertions of double-stranded DNA templates encoding antibiotic-selectable markers to generate gene deletion mutants. As a further proof of principle, we use CRISPR-Cas9-mediated recombineering to knock out both sortase A genes in E. faecium for downstream functional characterization. The general RecT-mediated recombineering methods described here should significantly enhance genetic studies of E. faecium and other closely related species for functional and mechanistic studies. IMPORTANCE Enterococcus faecium is widely recognized as an emerging public health threat with the rise of drug resistance and nosocomial infections. Nevertheless, commensal Enterococcus strains possess beneficial health functions in mammals to upregulate host immunity and prevent microbial infections. This functional dichotomy of Enterococcus species and strains highlights the need for in-depth studies to discover and characterize the genetic components underlying its diverse activities. However, current genetic engineering methods in E. faecium still require passive homologous recombination from plasmid DNA. This involves the successful cloning of multiple homologous fragments into a plasmid, introducing the plasmid into E. faecium, and screening for double-crossover events that can collectively take up to multiple weeks to perform. To alleviate these challenges, we show that RecT recombinase enables the rapid and efficient integration of mutagenic DNA templates to generate substitutions, deletions, and insertions in the genomic DNA of E. faecium. These improved recombineering methods should facilitate functional and mechanistic studies of Enterococcus.
Collapse
Affiliation(s)
- Victor Chen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Matthew E. Griffin
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
| | - Pascal Maguin
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Andrew Varble
- Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA
| | - Howard C. Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, New York, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Department of Chemistry, Scripps Research, La Jolla, California, USA
| |
Collapse
|
20
|
Lytic bacteriophages facilitate antibiotic sensitization of Enterococcus faecium. Antimicrob Agents Chemother 2021; 65:AAC.00143-21. [PMID: 33649110 PMCID: PMC8092871 DOI: 10.1128/aac.00143-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecium, a commensal of the human intestine, has emerged as a hospital-adapted, multi-drug resistant (MDR) pathogen. Bacteriophages (phages), natural predators of bacteria, have regained attention as therapeutics to stem the rise of MDR bacteria. Despite their potential to curtail MDR E. faecium infections, the molecular events governing E. faecium-phage interactions remain largely unknown. Such interactions are important to delineate because phage selective pressure imposed on E. faecium will undoubtedly result in phage resistance phenotypes that could threaten the efficacy of phage therapy. In an effort to understand the emergence of phage resistance in E. faecium, three newly isolated lytic phages were used to demonstrate that E. faecium phage resistance is conferred through an array of cell wall-associated molecules, including secreted antigen A (SagA), enterococcal polysaccharide antigen (Epa), wall teichoic acids, capsule, and an arginine-aspartate-aspartate (RDD) protein of unknown function. We find that capsule and Epa are important for robust phage adsorption and that phage resistance mutations in sagA, epaR, and epaX enhance E. faecium susceptibility to ceftriaxone, an antibiotic normally ineffective due to its low affinity for enterococcal penicillin binding proteins. Consistent with these findings, we provide evidence that phages potently synergize with cell wall (ceftriaxone and ampicillin) and membrane-acting (daptomycin) antimicrobials to slow or completely inhibit the growth of E. faecium Our work demonstrates that the evolution of phage resistance comes with fitness defects resulting in drug sensitization and that lytic phages could serve as effective antimicrobials for the treatment of E. faecium infections.
Collapse
|
21
|
Staerck C, Wasselin V, Budin-Verneuil A, Rincé I, Cacaci M, Weigel M, Giraud C, Hain T, Hartke A, Riboulet-Bisson E. Analysis of glycerol and dihydroxyacetone metabolism in Enterococcus faecium. FEMS Microbiol Lett 2021; 368:6232157. [PMID: 33864460 DOI: 10.1093/femsle/fnab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Glycerol (Gly) can be dissimilated by two pathways in bacteria. Either this sugar alcohol is first oxidized to dihydroxyacetone (DHA) and then phosphorylated or it is first phosphorylated to glycerol-3-phosphate (GlyP) followed by oxidation. Oxidation of GlyP can be achieved by NAD-dependent dehydrogenases or by a GlyP oxidase. In both cases, dihydroxyacetone phosphate is the product. Genomic analysis showed that Enterococcus faecium harbors numerous genes annotated to encode activities for the two pathways. However, our physiological analyses of growth on glycerol showed that dissimilation is limited to aerobic conditions and that despite the presence of genes encoding presumed GlyP dehydrogenases, the GlyP oxidase is essential in this process. Although E. faecium contains an operon encoding the phosphotransfer protein DhaM and DHA kinase, which are required for DHA phosphorylation, it is unable to grow on DHA. This operon is highly expressed in stationary phase but its physiological role remains unknown. Finally, data obtained from sequencing of a transposon mutant bank of E. faecium grown on BHI revealed that the GlyP dehydrogenases and a major intrinsic family protein have important but hitherto unknown physiological functions.
Collapse
Affiliation(s)
- Cindy Staerck
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Valentin Wasselin
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Aurélie Budin-Verneuil
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Isabelle Rincé
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Margherita Cacaci
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Biomedical Research Facility Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Caroline Giraud
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University Giessen, Biomedical Research Facility Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany.,German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Schubertstrasse 81, D-35392 Giessen, Germany
| | - Axel Hartke
- Normandie Univ, UNICAEN U2RM-Stress and Virulence, Esplanade de la Paix, 14032 Caen, France
| | | |
Collapse
|
22
|
Kalfopoulou E, Huebner J. Advances and Prospects in Vaccine Development against Enterococci. Cells 2020; 9:cells9112397. [PMID: 33147722 PMCID: PMC7692742 DOI: 10.3390/cells9112397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Enterococci are the second most common Gram-positive pathogen responsible for nosocomial infections. Due to the limited number of new antibiotics that reach the medical practice and the resistance of enterococci to the current antibiotic options, passive and active immunotherapies have emerged as a potential prevention and/or treatment strategy against this opportunistic pathogen. In this review, we explore the pathogenicity of these bacteria and their interaction with the host immune response. We provide an overview of the capsular polysaccharides and surface-associated proteins that have been described as potential antigens in anti-enterococcal vaccine formulations. In addition, we describe the current status in vaccine development against enterococci and address the importance and the current advances toward the development of well-defined vaccines with broad coverage against enterococci.
Collapse
Affiliation(s)
- Ermioni Kalfopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany;
| | - Johannes Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany
- Correspondence: ; Tel.: +49-89-44005-7970
| |
Collapse
|
23
|
de Maat V, Arredondo-Alonso S, Willems RJL, van Schaik W. Conditionally essential genes for survival during starvation in Enterococcus faecium E745. BMC Genomics 2020; 21:568. [PMID: 32811437 PMCID: PMC7437932 DOI: 10.1186/s12864-020-06984-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The nosocomial pathogen Enterococcus faecium can survive for prolonged periods of time on surfaces in the absence of nutrients. This trait is thought to contribute to the ability of E. faecium to spread among patients in hospitals. There is currently a lack of data on the mechanisms that are responsible for the ability of E. faecium to survive in the absence of nutrients. RESULTS We performed a high-throughput transposon mutant library screening (Tn-seq) to identify genes that have a role in long-term survival during incubation in phosphate-buffered saline (PBS) at 20 °C. A total of 24 genes were identified by Tn-seq to contribute to survival in PBS, with functions associated with the general stress response, DNA repair, metabolism, and membrane homeostasis. The gene which was quantitatively most important for survival in PBS was usp (locus tag: EfmE745_02439), which is predicted to encode a 17.4 kDa universal stress protein. After generating a targeted deletion mutant in usp, we were able to confirm that usp significantly contributes to survival in PBS and this defect was restored by in trans complementation. The usp gene is present in 99% of a set of 1644 E. faecium genomes that collectively span the diversity of the species. CONCLUSIONS We postulate that usp is a key determinant for the remarkable environmental robustness of E. faecium. Further mechanistic studies into usp and other genes identified in this study may shed further light on the mechanisms by which E. faecium can survive in the absence of nutrients for prolonged periods of time.
Collapse
Affiliation(s)
- Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands. .,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
24
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
25
|
de Maat V, Stege PB, Dedden M, Hamer M, van Pijkeren JP, Willems RJL, van Schaik W. CRISPR-Cas9-mediated genome editing in vancomycin-resistant Enterococcus faecium. FEMS Microbiol Lett 2020; 366:5697197. [PMID: 31905238 PMCID: PMC9189978 DOI: 10.1093/femsle/fnz256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022] Open
Abstract
The Gram-positive bacterium Enterococcus faecium is becoming increasingly prevalent as a cause of hospital-acquired, antibiotic-resistant infections. A fundamental part of research into E. faecium biology relies on the ability to generate targeted mutants but this process is currently labour-intensive and time-consuming, taking 4 to 5 weeks per mutant. In this report, we describe a method relying on the high recombination rates of E. faecium and the application of the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas9 genome editing tool to more efficiently generate targeted mutants in the E. faecium chromosome. Using this tool and the multi-drug resistant clinical E. faecium strain E745, we generated a deletion mutant in the lacL gene, which encodes the large subunit of the E. faeciumβ-galactosidase. Blue/white screening using 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) could be used to distinguish between the wild-type and lacL deletion mutant. We also inserted two copies of gfp into the intrinsic E. faecium macrolide resistance gene msrC to generate stable green fluorescent cells. We conclude that CRISPR-Cas9 can be used to generate targeted genome modifications in E. faecium in 3 weeks, with limited hands-on time. This method can potentially be implemented in other Gram-positive bacteria with high intrinsic recombination rates.
Collapse
Affiliation(s)
- Vincent de Maat
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Paul B Stege
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Mark Dedden
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Maud Hamer
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Jan-Peter van Pijkeren
- Department of Food Science, A203B Babcock Hall, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Institute of Microbiology and Infection, Biosciences building, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
26
|
Pidot SJ, Gao W, Buultjens AH, Monk IR, Guerillot R, Carter GP, Lee JYH, Lam MMC, Grayson ML, Ballard SA, Mahony AA, Grabsch EA, Kotsanas D, Korman TM, Coombs GW, Robinson JO, Gonçalves da Silva A, Seemann T, Howden BP, Johnson PDR, Stinear TP. Increasing tolerance of hospital Enterococcus faecium to handwash alcohols. Sci Transl Med 2019; 10:10/452/eaar6115. [PMID: 30068573 DOI: 10.1126/scitranslmed.aar6115] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/10/2018] [Accepted: 04/03/2018] [Indexed: 11/03/2022]
Abstract
Alcohol-based disinfectants and particularly hand rubs are a key way to control hospital infections worldwide. Such disinfectants restrict transmission of pathogens, such as multidrug-resistant Staphylococcus aureus and Enterococcus faecium Despite this success, health care infections caused by E. faecium are increasing. We tested alcohol tolerance of 139 hospital isolates of E. faecium obtained between 1997 and 2015 and found that E. faecium isolates after 2010 were 10-fold more tolerant to killing by alcohol than were older isolates. Using a mouse gut colonization model of E. faecium transmission, we showed that alcohol-tolerant E. faecium resisted standard 70% isopropanol surface disinfection, resulting in greater mouse gut colonization compared to alcohol-sensitive E. faecium We next looked for bacterial genomic signatures of adaptation. Alcohol-tolerant E. faecium accumulated mutations in genes involved in carbohydrate uptake and metabolism. Mutagenesis confirmed the roles of these genes in the tolerance of E. faecium to isopropanol. These findings suggest that bacterial adaptation is complicating infection control recommendations, necessitating additional procedures to prevent E. faecium from spreading in hospital settings.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Wei Gao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Andrew H Buultjens
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Romain Guerillot
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Glen P Carter
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Jean Y H Lee
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Margaret M C Lam
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - M Lindsay Grayson
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Victoria 3800, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Andrew A Mahony
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Elizabeth A Grabsch
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Despina Kotsanas
- Monash Infectious Diseases, Monash Health, Clayton, Victoria 3168, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Clayton, Victoria 3168, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - J Owen Robinson
- Antimicrobial Resistance and Infectious Diseases Research Laboratory, School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, Western Australia 6150, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Torsten Seemann
- Melbourne Bioinformatics, University of Melbourne, Carlton, Victoria 3053, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.,Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia
| | - Paul D R Johnson
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia. .,Infectious Diseases Department, Austin Health, Heidelberg, Victoria 3084, Australia.,Department of Medicine, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
27
|
Li M, Liu Q, Teng Y, Ou L, Xi Y, Chen S, Duan G. The resistance mechanism of Escherichia coli induced by ampicillin in laboratory. Infect Drug Resist 2019; 12:2853-2863. [PMID: 31571941 PMCID: PMC6750165 DOI: 10.2147/idr.s221212] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Multi-drug-resistant Escherichia coli poses a great threat to human health, especially resistant to ampicillin (AMP), but the mechanism of drug resistance is not very clear. PURPOSE To understand the mechanism of resistance of E. coli to beta-lactam antibiotics by inducing drug resistance of sensitive bacteria in laboratory. METHODS Clinical sensitive E. coli strain was induced into resistance strain by 1/2 minimum inhibitive concentration (MIC) induced trails of AMP. The drug resistance spectrum was measured by modified K-B susceptibility test. Whole-genome sequencing analysis was used to analyze primary sensitive strain, and resequencing was used to analyze induced strains. Protein tertiary structure encoded by the gene containing single nucleotide polymorphism (SNP) was analyzed by bioinformatics. RESULTS After 315 hrs induced, the MIC value of E. coli 15743 reached to 256 µg/mL, 64 times higher than that of the sensitive bacteria. During the induction process, the bacterial resistance process is divided into two stages. The rate of drug resistance occurs rapidly before reaching the critical concentration of 32 µg/mL, and then the resistance rate slows down. Sequencing of the genome of resistant strain showed that E. coli 15743 drug-resistant strain with the MIC values of 32 and 256 µg/mL contained four and eight non-synonymous SNPs, respectively. These non-synonymous SNPs were distributed in the genes of frdD, ftsI, acrB, OmpD, marR, VgrG, and envZ. CONCLUSION These studies will improve our understanding of the molecular mechanism of AMP resistance of E. coli, and may provide the basis for prevention and control of multi-drug-resistant bacteria and generation of new antibiotics to treat E. coli infection.
Collapse
Affiliation(s)
- Mengchen Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Qiaoli Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yanli Teng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Liuyang Ou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical College, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
28
|
Zhou L, Wang L, Tian P, Bao T, Li L, Zhao X. The LiaFSR and BsrXRS Systems Contribute to Bile Salt Resistance in Enterococcus faecium Isolates. Front Microbiol 2019; 10:1048. [PMID: 31134041 PMCID: PMC6522849 DOI: 10.3389/fmicb.2019.01048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCSs) are dominant regulating components in bacteria for responding to environmental stimuli. However, little information is available on how TCSs in Enterococcus faecium respond to bile salts - an important environmental stimulus for intestinal bacteria. In this study, the gene expression of 2 TCSs, BsrXRS and LiaFSR, was positively correlated with survival rates of different E. faecium isolates during exposure to ox gall. Moreover, gene disruptions of bsrR, bsrS, liaS, and liaR significantly reduced the survival rates of E. faecium in the presence of ox gall. Finally, EMSA results indicated that BsrR functioned as a transcription regulator for expression of its own gene as well as lipoate-protein ligase A (lplA). Additional 27 potential target genes by BsrR were revealed through in silico analyses. These findings suggest that BsrXRS and LiaFSR systems play important roles in bile salt resistance in E. faecium.
Collapse
Affiliation(s)
- Luoxiong Zhou
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Ping Tian
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tingting Bao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lianbin Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Department of Animal Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Smith RE, Salamaga B, Szkuta P, Hajdamowicz N, Prajsnar TK, Bulmer GS, Fontaine T, Kołodziejczyk J, Herry JM, Hounslow AM, Williamson MP, Serror P, Mesnage S. Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system. PLoS Pathog 2019; 15:e1007730. [PMID: 31048927 PMCID: PMC6497286 DOI: 10.1371/journal.ppat.1007730] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to lysozyme, a key effector of the innate immune system. This high level of resistance requires a complex network of transcriptional regulators and several genes (oatA, pgdA, dltA and sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/pgdA/dltA/sigV mutant led to the identification of several independent insertions clustered on the chromosome. These mutations were located in a locus referred to as the enterococcal polysaccharide antigen (EPA) variable region located downstream of the highly conserved epaA-epaR genes proposed to encode a core synthetic machinery. The epa variable region was previously proposed to be responsible for EPA decorations, but the role of this locus remains largely unknown. Here, we show that EPA decoration contributes to resistance towards charged antimicrobials and underpins virulence in the zebrafish model of infection by conferring resistance to phagocytosis. Collectively, our results indicate that the production of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis infections and reveal an essential role of the modification of this surface polymer for enterococcal pathogenesis. Enterococcus faecalis is a commensal bacterium colonizing the gastro-intestinal tract of humans. This organism can cause life-threatening opportunistic infections and represents a reservoir for the transmission of antibiotic resistance genes such as resistance to vancomycin. E. faecalis strains responsible for nosocomial infections are also found in healthy individuals and the virulence factors identified so far are not strictly associated with clinical isolates. The molecular basis underpinning E. faecalis infections therefore remains unclear. In this work, we identify several mutations clustered on the chromosome, which play a role in the resistance of E. faecalis to effectors of the innate immune system such as lysozyme and bile salts. We show that the corresponding genes contribute to the decoration of a conserved polysaccharide called the enterococcal polysaccharide antigen and that this decoration is essential for E. faecalis virulence. This mechanism critical for pathogenesis represents an attractive therapeutic target to control enterococcal infections.
Collapse
Affiliation(s)
- Robert E. Smith
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Bartłomiej Salamaga
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Piotr Szkuta
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Natalia Hajdamowicz
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Tomasz K. Prajsnar
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Gregory S. Bulmer
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | | | - Justyna Kołodziejczyk
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Jean-Marie Herry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Andrea M. Hounslow
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Mike P. Williamson
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
- * E-mail: (PS); (SM)
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
- * E-mail: (PS); (SM)
| |
Collapse
|
30
|
Enterococcus faecium TIR-Domain Genes Are Part of a Gene Cluster Which Promotes Bacterial Survival in Blood. Int J Microbiol 2019; 2018:1435820. [PMID: 30631364 PMCID: PMC6304867 DOI: 10.1155/2018/1435820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/14/2018] [Indexed: 11/29/2022] Open
Abstract
Enterococcus faecium has undergone a transition to a multidrug-resistant nosocomial pathogen. The population structure of E. faecium is characterized by a sharp distinction of clades, where the hospital-adapted lineage is primarily responsible for bacteremia. So far, factors that were identified in hospital-adapted strains and that promoted pathogenesis of nosocomial E. faecium mainly play a role in adherence and biofilm production, while less is known about factors contributing to survival in blood. This study identified a gene cluster, which includes genes encoding bacterial Toll/interleukin-1 receptor- (TIR-) domain-containing proteins (TirEs). The cluster was found to be unique to nosocomial strains and to be located on a putative mobile genetic element of phage origin. The three genes within the cluster appeared to be expressed as an operon. Expression was detected in bacterial culture media and in the presence of human blood. TirEs are released into the bacterial supernatant, and TirE2 is associated with membrane vesicles. Furthermore, the tirE-gene cluster promotes bacterial proliferation in human blood, indicating that TirE may contribute to the pathogenesis of bacteremia.
Collapse
|
31
|
Hygienemaßnahmen zur Prävention der Infektion durch Enterokokken mit speziellen Antibiotikaresistenzen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:1310-1361. [DOI: 10.1007/s00103-018-2811-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
The intrinsic resistome of Klebsiella pneumoniae. Int J Antimicrob Agents 2018; 53:29-33. [PMID: 30236960 DOI: 10.1016/j.ijantimicag.2018.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/24/2018] [Accepted: 09/09/2018] [Indexed: 01/26/2023]
Abstract
Molecular epidemiology studies aiming at understanding the acquisition of antimicrobial resistance by clinical isolates of Klebsiella pneumoniae are regularly published; however, information on the genes that contribute to its characteristic phenotype of resistance to antibiotics (intrinsic resistome) is scarce. To fill this gap, a K. pneumoniae transposon mutant library was screened and 171 mutants presenting changes in their susceptibility to antibiotics were selected, in which the transposon insertion site was determined in 75. Twenty-seven mutants for which insertion points had been previously identified were included in the analysis. A total of 102 mutants were selected for further studies. In 70 mutants the transposon was inserted in a gene with a known function, whilst in 19 the insertion occurred in genes encoding proteins with unknown functions and 13 insertions occurred in intergenic regions. Moreover, 87 of the insertions were localised in the chromosome, with 15 insertions located in the two plasmids carried by this strain. Whereas some of the mutated genes are already known to be involved in antimicrobial resistance (ampG, acrB, tolC), several of them are involved in regular processes of bacterial physiology, including K. pneumoniae virulence. Together with results published for other organisms, these results support that determinants involved in basic processes of bacterial physiology may contribute to antimicrobial resistance. These findings also indicate that, besides acquired resistance genes, plasmids may harbour other genes belonging to their backbone that can also be involved in resistance.
Collapse
|
33
|
Integrated transcriptomic analysis of Trichosporon Asahii uncovers the core genes and pathways of fluconazole resistance. Sci Rep 2017; 7:17847. [PMID: 29259317 PMCID: PMC5736589 DOI: 10.1038/s41598-017-18072-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Trichosporon asahii (T. asahii) has emerged as a dangerous pathogen that causes rare but life-threatening infections. Its resistance to certain antifungal agents makes it difficult to treat, especially for patients undergoing long-term antibiotic therapy. In this study, we performed a series of fluconazole (FLC) perturbation experiments for two T. asahii strains, a clinical isolate stain CBS 2479 (T2) and an environmental isolate strain CBS 8904 (T8), to uncover potential genes and pathways involved in FLC resistance. We achieved 10 transcriptomes of T2 and T8 that were based on dose and time series of FLC perturbations. Systematic comparisons of the transcriptomes revealed 32 T2 genes and 25 T8 genes that are highly sensitive to different FLC perturbations. In both T2 and T8 strains with the phenotype of FLC resistance, the processes of oxidation-reduction and transmembrane transport were detected to be significantly changed. The antifungal susceptibility testing of FLC and penicillin revealed their resistance pathways are merged. Accumulated mutations were found in 564 T2 and 225 T8 genes, including four highly mutated genes that are functionally related to the target of rapamycin complex (TOR). Our study provides abundant data towards genome-wide understanding of the molecular basis of FLC resistance in T. asahii.
Collapse
|
34
|
Zhang X, de Maat V, Guzmán Prieto AM, Prajsnar TK, Bayjanov JR, de Been M, Rogers MRC, Bonten MJM, Mesnage S, Willems RJL, van Schaik W. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics 2017; 18:893. [PMID: 29162049 PMCID: PMC5699109 DOI: 10.1186/s12864-017-4299-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
Abstract
Background The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq). Results We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes ranging between 9.3 kbp and 223.7 kbp. We then compared the transcriptome of E. faecium E745 during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. The E. faecium E745 transposon mutant library was then used to identify genes that were specifically required for growth of E. faecium in serum. Genes involved in de novo nucleotide biosynthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants were tested for their virulence in an intravenous zebrafish infection model and exhibited significantly attenuated virulence compared to E. faecium E745. Conclusions Genes involved in carbohydrate metabolism and nucleotide biosynthesis of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism. These genes may serve as targets for the development of novel anti-infectives for the treatment of E. faecium bloodstream infections. Electronic supplementary material The online version of this article (10.1186/s12864-017-4299-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinglin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Ana M Guzmán Prieto
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Tomasz K Prajsnar
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Mark de Been
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands. .,Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
35
|
Pérez-Pascual D, Rochat T, Kerouault B, Gómez E, Neulat-Ripoll F, Henry C, Quillet E, Guijarro JA, Bernardet JF, Duchaud E. More Than Gliding: Involvement of GldD and GldG in the Virulence of Flavobacterium psychrophilum. Front Microbiol 2017; 8:2168. [PMID: 29163446 PMCID: PMC5682007 DOI: 10.3389/fmicb.2017.02168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022] Open
Abstract
A fascinating characteristic of most members of the genus Flavobacterium is their ability to move over surfaces by gliding motility. Flavobacterium psychrophilum, an important pathogen of farmed salmonids worldwide, contains in its genome the 19 gld and spr genes shown to be required for gliding or spreading in Flavobacterium johnsoniae; however, their relative role in its lifestyle remains unknown. In order to address this issue, two spreading deficient mutants were produced as part of a Tn4351 mutant library in F. psychrophilum strain THCO2-90. The transposons were inserted in gldD and gldG genes. While the wild-type strain is proficient in adhesion, biofilm formation and displays strong proteolytic activity, both mutants lost these characteristics. Extracellular proteome comparisons revealed important modifications for both mutants, with a significant reduction of the amounts of proteins likely transported through the outer membrane by the Type IX secretion system, indicating that GldD and GldG proteins are required for an effective activity of this system. In addition, a significant decrease in virulence was observed using rainbow trout bath and injection infection models. Our results reveal additional roles of gldD and gldG genes that are likely of importance for the F. psychrophilum lifestyle, including virulence.
Collapse
Affiliation(s)
- David Pérez-Pascual
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Brigitte Kerouault
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Esther Gómez
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Fabienne Neulat-Ripoll
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Celine Henry
- PAPPSO, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Edwige Quillet
- GABI, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jose A Guijarro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Instituto de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain
| | - Jean F Bernardet
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Duchaud
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
36
|
Fields RN, Roy H. Deciphering the tRNA-dependent lipid aminoacylation systems in bacteria: Novel components and structural advances. RNA Biol 2017; 15:480-491. [PMID: 28816600 PMCID: PMC6103681 DOI: 10.1080/15476286.2017.1356980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
tRNA-dependent addition of amino acids to lipids on the outer surface of the bacterial membrane results in decreased effectiveness of antimicrobials such as cationic antimicrobial peptides (CAMPs) that target the membrane, and increased virulence of several pathogenic species. After a brief introduction to CAMPs and the various bacterial resistance mechanisms used to counteract these compounds, this review focuses on recent advances in tRNA-dependent pathways for lipid modification in bacteria. Phenotypes associated with amino acid lipid modifications and regulation of their expression will also be discussed.
Collapse
Affiliation(s)
- Rachel N Fields
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| | - Hervé Roy
- a Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando , Florida , United States of America
| |
Collapse
|
37
|
Ge B, Domesle KJ, Yang Q, Young SR, Rice-Trujillo CL, Bodeis Jones SM, Gaines SA, Keller MW, Li X, Piñeiro SA, Whitney BM, Harbottle HC, Gilbert JM. Effects of low concentrations of erythromycin, penicillin, and virginiamycin on bacterial resistance development in vitro. Sci Rep 2017; 7:11017. [PMID: 28887450 PMCID: PMC5591201 DOI: 10.1038/s41598-017-09593-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
Distillers grains are co-products of the corn ethanol industry widely used in animal feed. We examined the effects of erythromycin, penicillin, and virginiamycin at low concentrations reflective of those detected in distillers grains on bacterial resistance selection. At 0.1 µg/ml erythromycin, macrolide-resistant mutants were induced in one Campylobacter coli and one Enterococcus faecium strain, while these strains plus three additional C. coli, one additional E. faecium, and one C. jejuni also developed resistance when exposed to 0.25 µg/ml erythromycin. At 0.5 µg/ml erythromycin, a total of eight strains (four Campylobacter and four Enterococcus) obtained macrolide-resistant mutants, including two strains from each genus that were not selected at lower erythromycin concentrations. For penicillin, three of five E. faecium strains but none of five Enterococcus faecalis strains consistently developed resistance at all three selection concentrations. Virginiamycin at two M1:S1 ratios did not induce resistance development in four out of five E. faecium strains; however, increased resistance was observed in the fifth one under 0.25 and 0.5 µg/ml virginiamycin selections. Although not yet tested in vivo, these findings suggest a potential risk of stimulating bacterial resistance development in the animal gut when distillers grains containing certain antibiotic residues are used in animal feed.
Collapse
Affiliation(s)
- Beilei Ge
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology, Laurel, Maryland, 20708, USA.
| | - Kelly J Domesle
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology, Laurel, Maryland, 20708, USA
| | - Qianru Yang
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology, Laurel, Maryland, 20708, USA
| | - Shenia R Young
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology, Laurel, Maryland, 20708, USA
| | - Crystal L Rice-Trujillo
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology, Laurel, Maryland, 20708, USA
| | - Sonya M Bodeis Jones
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology, Laurel, Maryland, 20708, USA
| | - Stuart A Gaines
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Division of Animal and Food Microbiology, Laurel, Maryland, 20708, USA
| | - Marla W Keller
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Surveillance and Compliance, Division of Animal Feeds, Rockville, Maryland, 20855, USA
| | - Xin Li
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Surveillance and Compliance, Division of Animal Feeds, Rockville, Maryland, 20855, USA
| | - Silvia A Piñeiro
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Division of Human Food Safety, Rockville, Maryland, 20855, USA
| | - Brooke M Whitney
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Division of Human Food Safety, Rockville, Maryland, 20855, USA
| | - Heather C Harbottle
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Division of Human Food Safety, Rockville, Maryland, 20855, USA
| | - Jeffrey M Gilbert
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Division of Human Food Safety, Rockville, Maryland, 20855, USA
| |
Collapse
|
38
|
Ngbede EO, Raji MA, Kwanashie CN, Kwaga JKP, Adikwu AA, Maurice NA, Adamu AM. Characterization of high level ampicillin- and aminoglycoside-resistant enterococci isolated from non-hospital sources. J Med Microbiol 2017; 66:1027-1032. [DOI: 10.1099/jmm.0.000518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Emmanuel O. Ngbede
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Veterinary Pathology & Microbiology, University of Agriculture Makurdi, Benue State, Nigeria
| | - Mashood A. Raji
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Clara N. Kwanashie
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Jacob K. P. Kwaga
- Department of Veterinary Public Health & Preventive Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Alex A. Adikwu
- Department of Veterinary Public Health & Preventive Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Veterinary Public Health & Preventive Medicine, University of Agriculture Makurdi, Benue State, Nigeria
| | - Nanven A. Maurice
- Department of Veterinary Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Department of Diagnostic and Extension, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Andrew M. Adamu
- Veterinary Teaching Hospital, University of Abuja, Abuja, Nigeria
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
39
|
Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K, Gilmore MS, Whiteley M. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat Microbiol 2017; 2:17079. [PMID: 28555625 PMCID: PMC5774221 DOI: 10.1038/nmicrobiol.2017.79] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/14/2017] [Indexed: 11/09/2022]
Abstract
Identifying genes required by pathogens during infection is critical for antimicrobial development. Here, we use a Monte Carlo simulation-based method to analyse high-throughput transposon sequencing data to determine the role of infection site and co-infecting microorganisms on the in vivo 'essential' genome of Staphylococcus aureus. We discovered that co-infection of murine surgical wounds with Pseudomonas aeruginosa results in conversion of ∼25% of the in vivo S. aureus mono-culture essential genes to non-essential. Furthermore, 182 S. aureus genes are uniquely essential during co-infection. These 'community dependent essential' (CoDE) genes illustrate the importance of studying pathogen gene essentiality in polymicrobial communities.
Collapse
Affiliation(s)
- Carolyn B. Ibberson
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| | - Apollo Stacy
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| | - Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Justine L. Dees
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| | - Kendra Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Michael S. Gilmore
- Department of Ophthalmology and Department of Microbiology and Immunobiology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
40
|
Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM, Gilmore MS. Tracing the Enterococci from Paleozoic Origins to the Hospital. Cell 2017; 169:849-861.e13. [PMID: 28502769 DOI: 10.1016/j.cell.2017.04.027] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 01/16/2023]
Abstract
We examined the evolutionary history of leading multidrug resistant hospital pathogens, the enterococci, to their origin hundreds of millions of years ago. Our goal was to understand why, among the vast diversity of gut flora, enterococci are so well adapted to the modern hospital environment. Molecular clock estimation, together with analysis of their environmental distribution, phenotypic diversity, and concordance with host fossil records, place the origins of the enterococci around the time of animal terrestrialization, 425-500 mya. Speciation appears to parallel the diversification of hosts, including the rapid emergence of new enterococcal species following the End Permian Extinction. Major drivers of speciation include changing carbohydrate availability in the host gut. Life on land would have selected for the precise traits that now allow pathogenic enterococci to survive desiccation, starvation, and disinfection in the modern hospital, foreordaining their emergence as leading hospital pathogens.
Collapse
Affiliation(s)
- François Lebreton
- Department of Ophthalmology and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Jose T Saavedra
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Timothy J Straub
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA.
| | - Michael S Gilmore
- Department of Ophthalmology and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Infectious Disease & Microbiome Program, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
41
|
Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02461-16. [PMID: 28223383 DOI: 10.1128/aac.02461-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci.
Collapse
|
42
|
The Two-Component System ChtRS Contributes to Chlorhexidine Tolerance in Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02122-16. [PMID: 28242664 DOI: 10.1128/aac.02122-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Enterococcus faecium is one of the primary causes of nosocomial infections. Disinfectants are commonly used to prevent infections with multidrug-resistant E. faecium in hospitals. Worryingly, E. faecium strains that exhibit tolerance to disinfectants have already been described. We aimed to identify and characterize E. faecium genes that contribute to tolerance to the disinfectant chlorhexidine (CHX). We used a transposon mutant library, constructed in a multidrug-resistant E. faecium bloodstream isolate, to perform a genome-wide screen to identify genetic determinants involved in tolerance to CHX. We identified a putative two-component system (2CS), composed of a putative sensor histidine kinase (ChtS) and a cognate DNA-binding response regulator (ChtR), which contributed to CHX tolerance in E. faecium Targeted chtR and chtS deletion mutants exhibited compromised growth in the presence of CHX. Growth of the chtR and chtS mutants was also affected in the presence of the antibiotic bacitracin. The CHX- and bacitracin-tolerant phenotype of E. faecium E1162 was linked to a unique, nonsynonymous single nucleotide polymorphism in chtR Transmission electron microscopy showed that upon challenge with CHX, the ΔchtR and ΔchtS mutants failed to divide properly and formed long chains. Normal growth and cell morphology were restored when the mutations were complemented in trans Morphological abnormalities were also observed upon exposure of the ΔchtR and ΔchtS mutants to bacitracin. The tolerance to both chlorhexidine and bacitracin provided by ChtRS in E. faecium highlights the overlap between responses to disinfectants and antibiotics and the potential for the development of cross-tolerance for these classes of antimicrobials.
Collapse
|
43
|
Differential Penicillin-Binding Protein 5 (PBP5) Levels in the Enterococcus faecium Clades with Different Levels of Ampicillin Resistance. Antimicrob Agents Chemother 2016; 61:AAC.02034-16. [PMID: 27821450 DOI: 10.1128/aac.02034-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Ampicillin resistance in Enterococcus faecium is a serious concern worldwide, complicating the treatment of E. faecium infections. Penicillin-binding protein 5 (PBP5) is considered the main ampicillin resistance determinant in E. faecium The three known E. faecium clades showed sequence variations in the pbp5 gene that are associated with their ampicillin resistance phenotype; however, these changes alone do not explain the array of resistance levels observed among E. faecium clinical strains. We aimed to determine if the levels of PBP5 are differentially regulated between the E. faecium clades, with the hypothesis that variations in PBP5 levels could help account for the spectrum of ampicillin MICs seen in E. faecium We studied pbp5 mRNA levels and PBP5 protein levels as well as the genetic environment upstream of pbp5 in 16 E. faecium strains that belong to the different E. faecium clades and for which the ampicillin MICs covered a wide range. Our results found that pbp5 and PBP5 levels are increased in subclade A1 and A2 ampicillin-resistant strains compared to those in clade B and subclade A2 ampicillin-susceptible strains. Furthermore, we found evidence of major clade-associated rearrangements in the region upstream of pbp5, including large DNA fragment insertions, deletions, and single nucleotide polymorphisms, that may be associated with the differential regulation of PBP5 levels between the E. faecium clades. Overall, these findings highlight the contribution of the clade background to the regulation of PBP5 abundance and point to differences in the region upstream of pbp5 as likely contributors to the differential expression of ampicillin resistance.
Collapse
|
44
|
Novais C, Tedim AP, Lanza VF, Freitas AR, Silveira E, Escada R, Roberts AP, Al-Haroni M, Baquero F, Peixe L, Coque TM. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer. Front Microbiol 2016; 7:1581. [PMID: 27766095 PMCID: PMC5053079 DOI: 10.3389/fmicb.2016.01581] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18, and ST78) in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works) with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180–280 kb) chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase) and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen.
Collapse
Affiliation(s)
- Carla Novais
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Ana P Tedim
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain
| | - Val F Lanza
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do PortoPorto, Portugal; Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Eduarda Silveira
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Ricardo Escada
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do PortoPorto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando PessoaPorto, Portugal
| | - Adam P Roberts
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London London, UK
| | - Mohammed Al-Haroni
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London London, UK
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC)Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC)Madrid, Spain
| |
Collapse
|
45
|
The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Med Chem 2016; 8:1133-51. [DOI: 10.4155/fmc-2016-0027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Most efforts in the development of antimicrobials have focused on the screening of lethal targets. Nevertheless, the constant expansion of antimicrobial resistance makes the antibiotic resistance determinants themselves suitable targets for finding inhibitors to be used in combination with antibiotics. Among them, inhibitors of antibiotic inactivating enzymes and of multidrug efflux pumps are suitable candidates for improving the efficacy of antibiotics. In addition, the application of systems biology tools is helping to understand the changes in bacterial physiology associated to the acquisition of resistance, including the increased susceptibility to other antibiotics displayed by some antibiotic-resistant mutants. This information is useful for implementing novel strategies based in metabolic interventions or combination of antibiotics for improving the efficacy of antibacterial therapy.
Collapse
|
46
|
Guzman Prieto AM, van Schaik W, Rogers MRC, Coque TM, Baquero F, Corander J, Willems RJL. Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones? Front Microbiol 2016; 7:788. [PMID: 27303380 PMCID: PMC4880559 DOI: 10.3389/fmicb.2016.00788] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus, Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E. faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital-associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host-adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E. faecalis.
Collapse
Affiliation(s)
- Ana M Guzman Prieto
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| | - Teresa M Coque
- Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; CIBER Epidemiología y Salud PúblicaMadrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Fernando Baquero
- Hospital Universitario Ramon y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; CIBER Epidemiología y Salud PúblicaMadrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana Asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki Helsinki, Finland
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
47
|
Fisher JF, Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a025221. [PMID: 27091943 DOI: 10.1101/cshperspect.a025221] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670
| |
Collapse
|
48
|
Paganelli FL, Huebner J, Singh KV, Zhang X, van Schaik W, Wobser D, Braat JC, Murray BE, Bonten MJM, Willems RJL, Leavis HL. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation. J Infect Dis 2016; 214:189-95. [PMID: 26984142 DOI: 10.1093/infdis/jiw108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/07/2016] [Indexed: 02/02/2023] Open
Abstract
Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis.
Collapse
Affiliation(s)
- Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Hauner Children's Hospital, Ludwigs-Maximilian Universität München Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Germany
| | - Kavindra V Singh
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens
| | - Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Dominique Wobser
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Germany
| | - Johanna C Braat
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Barbara E Murray
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Helen L Leavis
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
49
|
The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets. Sci Rep 2015; 5:18255. [PMID: 26675410 PMCID: PMC4682149 DOI: 10.1038/srep18255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.
Collapse
|
50
|
Sinnige JC, de Been M, Zhou M, Bonten MJM, Willems RJL, Top J. Growth condition-dependent cell surface proteome analysis of Enterococcus faecium. Proteomics 2015; 15:3806-14. [PMID: 26316380 DOI: 10.1002/pmic.201500138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/16/2015] [Accepted: 08/24/2015] [Indexed: 01/25/2023]
Abstract
The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood stream isolate, was grown until mid-log phase in brain heart infusion medium (BHI) with, or without 0.02% bile salts, Tryptic Soy Broth with 1% glucose (TSBg) and urine, and its cell surface was "shaved" using immobilized trypsin. Peptides were identified using MS/MS. Mapping against the translated E1162 whole genome sequence identified 67 proteins that were differentially detected in different conditions. In urine, 14 proteins were significantly more and nine proteins less abundant relative to the other conditions. Growth in BHI-bile and TSBg, revealed four and six proteins, respectively, which were uniquely present in these conditions while two proteins were uniquely present in both conditions. Thus, proteolytic shaving of E. faecium cells identified differentially surface exposed proteins in different growth conditions. These proteins are of special interest as they provide more insight in the adaptive mechanisms and may serve as targets for the development of novel therapeutics against this multi-resistant emerging pathogen. All MS data have been deposited in the ProteomeXchange with identifier PXD002497 (http://proteomecentral.proteomexchange.org/dataset/PXD002497).
Collapse
Affiliation(s)
- Jan C Sinnige
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark de Been
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Biodiversity Centre, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|