1
|
Castro C, Harshfield EL, Butterworth AS, Wood AM, Koulman A, Griffin JL. A lipidomic dataset for epidemiological studies of acute myocardial infarction. Data Brief 2024; 57:110925. [PMID: 39411341 PMCID: PMC11474276 DOI: 10.1016/j.dib.2024.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Understanding the cause of coronary heart diseases relies on the analysis of data from a range of techniques on an epidemiological scale. Lipidomics, the identification and quantification of lipid species in a system, is an omic approach increasingly used in epidemiology. The altered concentration of lipids in plasma is one of the recognised risk factors for these diseases. An important first step in the analysis is to profile lipids in healthy volunteers at an epidemiological level to understand how the geneome influences risk factors; for this reason we made use of the control samples within a bigger case-control sample collection in Pakistan from patients with first acute myocardial infarctions. After extraction, the samples were infused into a Thermo Exactive Orbitrap, without any up-front chromatographic separation. The use of direct infusion allowed fast experiment, facilitating the analysis of large sets of samples. The raw data were processed and analysed using scripts within R, to extract all the meaningful information. The data set originated from this study is a valuable resource to both increase our knowledge in lipid metabolism associated with myocardial infarction, and test new methods and strategy in analysing big lipidomic data sets.
Collapse
Affiliation(s)
- Cecilia Castro
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Eric L. Harshfield
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Angela M. Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Centre of Artificial Intelligence in Medicine, UK
- British Heart Foundation Data Science Centre, Health Data Research UK, London, UK
| | - Albert Koulman
- Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Julian L. Griffin
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
2
|
Zhang X, Liu H, Li C, Wei Y, Kan X, Liu X, Han X, Zhao Z, An T, Fang ZZ, Ma S, Zheng R, Li J. Abdominal obesity in youth: the associations of plasma Lysophophatidylcholine concentrations with insulin resistance. Pediatr Res 2024:10.1038/s41390-024-03652-z. [PMID: 39427100 DOI: 10.1038/s41390-024-03652-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUD This study aimed to explore the associations of lysophosphatidylcholines (LPCs) with insulin resistance (IR) and abdominal obesity among children and adolescents. METHODS A cross-sectional study was conducted on 612 young individuals, aged 7 to 18 years in Tianjin City, China. LC-MS metabolomic analysis was used to measure LPCs levels. The Homeostasis Model Assessment was used to estimate IR. Waist circumference measurements were used to assess abdominal obesity. Logistic regression models were employed to explore the relationships between LPCs and IR and abdominal obesity. Mediation analyses were performed to analyze whether LPCs affected IR through abdominal obesity. RESULTS Compared to their counterparts, five specific LPCs were significantly different in youth with IR. The levels of LPC 24:0 and 26:0 were significantly associated with IR after adjustment. Both decreased levels of LPC 24:0 and 26:0 associated with the increased risks of IR (OR: 0.64, 95%CI: 0.38-0.95; OR: 0.66, 95%CI: 0.40-1.00), and the ORs for abdominal obesity were 0.68 (95%CI: 0.38-1.00) and 0.51 (95%CI: 0.28-0.90), respectively. Mediation analysis indicated that abdominal obesity mediated the association between LPC 26:0 and IR, with a total effect (c) of -0.109 (P < 0.05), a direct effect (c') of -0.055 (P > 0.05), and an indirect effect through obesity (a × b) path with "a" of -0.125 (P < 0.05) and "b" of 0.426 (P < 0.05). CONCLUSION Overall findings suggest that decreased levels of LPC 24:0 and 26:0 were associated with increased risks of IR and abdominal obesity. Importantly, addressing abdominal obesity may mediate the impact of IR driven by LPC 26:0.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ying Wei
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan Kan
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxiao Liu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyi Han
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenghao Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tianfeng An
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Shifeng Ma
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Rongxiu Zheng
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jing Li
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Serna MF, Suarez-Ortegón MF, Jiménez-Charris E, Echeverri I, Cala MP, Mosquera M. Lipidomic signatures in Colombian adults with metabolic syndrome. J Diabetes Metab Disord 2024; 23:1279-1292. [PMID: 38932852 PMCID: PMC11196482 DOI: 10.1007/s40200-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 06/28/2024]
Abstract
Background and Aims Metabolic syndrome (MetS) comprises a set of risk factors that contribute to the development of chronic and cardiovascular diseases, increasing the mortality rate. Altered lipid metabolism is associated with the development of metabolic disorders such as insulin resistance, obesity, atherosclerosis, and metabolic syndrome; however, there is a lack of knowledge about lipids compounds and the lipidic pathways associated with this condition, particularly in the Latin-American population. Innovative approaches, such as lipidomic analysis, facilitate the identification of lipid species related to these risk factors. This study aimed to assess the plasma lipidome in subjects with MetS. Methods This correlation study included healthy adults and adults with MetS. Blood samples were analyzed. The lipidomic profile was determined using an Agilent Technologies 1260 liquid chromatography system coupled to a Q-TOF 6545 quadrupole mass analyzer with electrospray ionization. The main differences were determined between the groups. Results The analyses reveal a distinct lipidomic profile between healthy adults and those with MetS, including increased concentrations of most identified glycerolipids -both triglycerides and diglycerides- and decreased levels of ether lipids and sphingolipids, especially sphingomyelins, in MetS subjects. Association between high triglycerides, waist circumference, and most differentially expressed lipids were found. Conclusion Our results demonstrate dysregulation of lipid metabolism in subjects with Mets, supporting the potential utility of plasma lipidome analysis for a deeper understanding of MetS pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01423-5.
Collapse
Affiliation(s)
- María Fernanda Serna
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Calle 4B #36-00 Cali, Colombia
| | - Milton Fabián Suarez-Ortegón
- Departamento de Alimentación y Nutrición, Facultad de Ciencias de La Salud, Pontificia Universidad Javeriana Seccional Cali, Colombia. Cl. 18 #118-250, Barrio Pance, 760031 Cali, Valle del Cauca Colombia
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Calle 4B #36-00 Cali, Colombia
| | | | - Mónica P. Cala
- Metabolomics Core Facility-MetCore, Vice Presidency for Research, Universidad de los Andes, Carrera 1, #18A-12 Bogotá, Colombia
| | - Mildrey Mosquera
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Calle 4B #36-00 Cali, Colombia
| |
Collapse
|
4
|
Klemetti MM, Pettersson ABV, Ahmad Khan A, Ermini L, Porter TR, Litvack ML, Alahari S, Zamudio S, Illsley NP, Röst H, Post M, Caniggia I. Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk. J Extracell Vesicles 2024; 13:e12413. [PMID: 38353485 PMCID: PMC10865917 DOI: 10.1002/jev2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
| | - Ante B. V. Pettersson
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Aafaque Ahmad Khan
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Leonardo Ermini
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Tyler R. Porter
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Michael L. Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Sruthi Alahari
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | | | | | - Hannes Röst
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Isabella Caniggia
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Negm A, Stobbe K, Ben Fradj S, Sanchez C, Landra-Willm A, Richter M, Fleuriot L, Debayle D, Deval E, Lingueglia E, Rovere C, Noel J. Acid-sensing ion channel 3 mediates pain hypersensitivity associated with high-fat diet consumption in mice. Pain 2024; 165:470-486. [PMID: 37733484 DOI: 10.1097/j.pain.0000000000003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/07/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Lipid-rich diet is the major cause of obesity, affecting 13% of the worldwide adult population. Obesity is a major risk factor for metabolic syndrome that includes hyperlipidemia and diabetes mellitus. The early phases of metabolic syndrome are often associated with hyperexcitability of peripheral small diameter sensory fibers and painful diabetic neuropathy. Here, we investigated the effect of high-fat diet-induced obesity on the activity of dorsal root ganglion (DRG) sensory neurons and pain perception. We deciphered the underlying cellular mechanisms involving the acid-sensing ion channel 3 (ASIC3). We show that mice made obese through consuming high-fat diet developed the metabolic syndrome and prediabetes that was associated with heat pain hypersensitivity, whereas mechanical sensitivity was not affected. Concurrently, the slow conducting C fibers in the skin of obese mice showed increased activity on heating, whereas their mechanosensitivity was not altered. Although ASIC3 knockout mice fed with high-fat diet became obese, and showed signs of metabolic syndrome and prediabetes, genetic deletion, and in vivo pharmacological inhibition of ASIC3, protected mice from obesity-induced thermal hypersensitivity. We then deciphered the mechanisms involved in the heat hypersensitivity of mice and found that serum from high-fat diet-fed mice was enriched in lysophosphatidylcholine (LPC16:0, LPC18:0, and LPC18:1). These enriched lipid species directly increased the activity of DRG neurons through activating the lipid sensitive ASIC3 channel. Our results identify ASIC3 channel in DRG neurons and circulating lipid species as a mechanism contributing to the hyperexcitability of nociceptive neurons that can cause pain associated with lipid-rich diet consumption and obesity.
Collapse
Affiliation(s)
- Ahmed Negm
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Katharina Stobbe
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Selma Ben Fradj
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Clara Sanchez
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Arnaud Landra-Willm
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Margaux Richter
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | | | | | - Emmanuel Deval
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Carole Rovere
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Jacques Noel
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| |
Collapse
|
6
|
Gong T, Di H, Hu Y, Xu S, Chen J, Chen G, Wei X, Liu C. Gut microbiota and metabolites exhibit different profiles after very-low-caloric restriction in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2024; 14:1289571. [PMID: 38269247 PMCID: PMC10807290 DOI: 10.3389/fendo.2023.1289571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Background and aims To investigate the effect of short-term very-low-calorie restriction (VLCR) on metabolism in patients with type 2 diabetes (T2D), and elucidate the molecular mechanism through analyses on gut microbiota and small-molecule metabolites. Methods Fourteen T2D patients were hospitalized to receive VLCR (300-600 kcal/d) for 9 days. BMI, BP, and HR were taken before and after VLCR. Levels of blood lipids, fasting insulin, FBG, and 2h PBG were assessed. The microbial diversity in feces was detected by 16S rDNA high-throughput sequencing technology, and small-molecule metabolites in plasma and feces by untargeted metabolomics technology. Results After VLCR, BW, BMI, WC, BP, and levels of FBG and 2h PBG, insulin, HOMA-IR, and triglyceride decreased significantly in T2D patients (P<0.05). There was no significant change in the α-diversity of fecal microbiota, but the abundance of Bacteroidetes increased significantly, and the Firmicutes/Bacteroidetes ratio decreased significantly from 11.79 to 4.20. Parabacteroides distasonis showed an abundance having increased most prominently after VLCR treatment. Plasma level of amino acid metabolite L-arginine increased significantly. Plasma levels of three lipid metabolites, PC (14:0/20:4 [8Z, 11Z, 14Z, 17Z]), LysoPC (16:1 [9Z]) and LysoPC (18:1 [11Z]), were significantly reduced. Fecal levels of lipid metabolite LysoPC (18:1 [11Z]) and bile acid metabolite glycholic acid were significantly decreased. Conclusion In T2DM patients, VLCR can considerably reduce body weight and improve glucose and lipid metabolism without causing severe side effects. LysoPC (18:1 [11Z]) and Parabacteroides distasonis showed the most obvious difference after VLCR, which could be the indicators for VLCR in T2D.
Collapse
Affiliation(s)
- Tong Gong
- Department of Endocrinology, Jiangsu Province Second Hospital of Chinese Medicine, Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongjie Di
- Department of Endocrinology, Jiangsu Province Second Hospital of Chinese Medicine, Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongxin Hu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shuhang Xu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jie Chen
- Department of Nutrition, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiao Wei
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Zeng J, Zhang R, Zhao T, Wang H, Han L, Pu L, Jiang Y, Xu S, Ren H, Wang C. Plasma lipidomic profiling reveals six candidate biomarkers for the prediction of incident stroke in patients with hypertension. Metabolomics 2024; 20:13. [PMID: 38180633 DOI: 10.1007/s11306-023-02081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION The burden of stroke in patients with hypertension is very high, and its prediction is critical. OBJECTIVES We aimed to use plasma lipidomics profiling to identify lipid biomarkers for predicting incident stroke in patients with hypertension. METHODS This was a nested case-control study. Baseline plasma samples were collected from 30 hypertensive patients with newly developed stroke, 30 matched patients with hypertension, 30 matched patients at high risk of stroke, and 30 matched healthy controls. Lipidomics analysis was performed by ultrahigh-performance liquid chromatography-tandem mass spectrometry, and differential lipid metabolites were screened using multivariate and univariate statistical methods. Machine learning methods (least absolute shrinkage and selection operator, random forest) were used to identify candidate biomarkers for predicting stroke in patients with hypertension. RESULTS Co-expression network analysis revealed that the key molecular alterations of the lipid network in stroke implicate glycerophospholipid metabolism and choline metabolism. Six lipid metabolites were identified as candidate biomarkers by multivariate statistical and machine learning methods, namely phosphatidyl choline(40:3p)(rep), cholesteryl ester(20:5), monoglyceride(29:5), triglyceride(18:0p/18:1/18:1), triglyceride(18:1/18:2/21:0) and coenzyme(q9). The combination of these six lipid biomarkers exhibited good diagnostic and predictive ability, as it could indicate a risk of stroke at an early stage in patients with hypertension (area under the curve = 0.870; 95% confidence interval: 0.783-0.957). CONCLUSIONS We determined lipidomic signatures associated with future stroke development and identified new lipid biomarkers for predicting stroke in patients with hypertension. The biomarkers have translational potential and thus may serve as blood-based biomarkers for predicting hypertensive stroke.
Collapse
Affiliation(s)
- Jingjing Zeng
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, 315000, China
| | - Ruijie Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
| | - Tian Zhao
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
| | - Han Wang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
| | - Liyuan Han
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
| | - Liyuan Pu
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
| | - Yannan Jiang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo No.2 Hospital, Ningbo, 315000, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, China
| | - Shan Xu
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Huiming Ren
- Department of Rehabilitation Medicine, Ningbo No.2 Hospital, Ningbo, 315000, China.
| | - Changyi Wang
- Department of Non-Communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Cheng X, Xie H, Xiong Y, Sun P, Xue Y, Li K. Lipidomics profiles of human spermatozoa: insights into capacitation and acrosome reaction using UPLC-MS-based approach. Front Endocrinol (Lausanne) 2023; 14:1273878. [PMID: 38027124 PMCID: PMC10660817 DOI: 10.3389/fendo.2023.1273878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Lipidomics elucidates the roles of lipids in both physiological and pathological processes, intersecting with many diseases and cellular functions. The maintenance of lipid homeostasis, essential for cell health, significantly influences the survival, maturation, and functionality of sperm during fertilization. While capacitation and the acrosome reaction, key processes before fertilization, involve substantial lipidomic alterations, a comprehensive understanding of the changes in human spermatozoa's lipidomic profiles during these processes remains unknown. This study aims to explicate global lipidomic changes during capacitation and the acrosome reaction in human sperm, employing an untargeted lipidomic strategy using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Methods Twelve semen specimens, exceeding the WHO reference values for semen parameters, were collected. After discontinuous density gradient separation, sperm concentration was adjusted to 2 x 106 cells/ml and divided into three groups: uncapacitated, capacitated, and acrosome-reacted. UPLC-MS analysis was performed after lipid extraction from these groups. Spectral peak alignment and statistical analysis, using unsupervised principal component analysis (PCA), bidirectional orthogonal partial least squares discriminant analysis (O2PLS-DA) analysis, and supervised partial least-squares-latent structure discriminate analysis (PLS-DA), were employed to identify the most discriminative lipids. Results The 1176 lipid peaks overlapped across the twelve individuals in the uncapacitated, capacitated, and acrosome-reacted groups: 1180 peaks between the uncapacitated and capacitated groups, 1184 peaks between the uncapacitated and acrosome-reacted groups, and 1178 peaks between the capacitated and acrosome-reacted groups. The count of overlapping peaks varied among individuals, ranging from 739 to 963 across sperm samples. Moreover, 137 lipids had VIP values > 1.0 and twenty-two lipids had VIP > 1.5, based on the O2PLS-DA model. Furthermore, the identified twelve lipids encompassed increases in PI 44:10, LPS 20:4, LPA 20:5, and LPE 20:4, and decreases in 16-phenyl-tetranor-PGE2, PC 40:6, PS 35:4, PA 29:1, 20-carboxy-LTB4, and 2-oxo-4-methylthio-butanoic acid. Discussion This study has been the first time to investigate the lipidomics profiles associated with acrosome reaction and capacitation in human sperm, utilizing UPLC-MS in conjunction with multivariate data analysis. These findings corroborate earlier discoveries on lipids during the acrosome reaction and unveil new metabolites. Furthermore, this research highlights the effective utility of UPLC-MS-based lipidomics for exploring diverse physiological states in sperm. This study offers novel insights into lipidomic changes associated with capacitation and the acrosome reaction in human sperm, which are closely related to male reproduction.
Collapse
Affiliation(s)
- Xiaohong Cheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xie
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yamei Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Laboratory of Experimental Animal’s & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Wang T, Soundararajan A, Rabinowitz J, Jaiswal A, Osborne T, Pattabiraman PP. Identification of the novel role of sterol regulatory element binding proteins (SREBPs) in mechanotransduction and intraocular pressure regulation. FASEB J 2023; 37:e23248. [PMID: 37823226 PMCID: PMC10826798 DOI: 10.1096/fj.202301185r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Trabecular meshwork (TM) cells are contractile and mechanosensitive, and they aid in maintaining intraocular pressure (IOP) homeostasis. Lipids are attributed to modulating TM contractility, with poor mechanistic understanding. In this study using human TM cells, we identify the mechanosensing role of the transcription factors sterol regulatory element binding proteins (SREBPs) involved in lipogenesis. By constitutively activating SREBPs and pharmacologically inactivating SREBPs, we have mechanistically deciphered the attributes of SREBPs in regulating the contractile properties of TM. The pharmacological inhibition of SREBPs by fatostatin and molecular inactivation of SREBPs ex vivo and in vivo, respectively, results in significant IOP lowering. As a proof of concept, fatostatin significantly decreased the SREBPs responsive genes and enzymes involved in lipogenic pathways as well as the levels of the phospholipid, cholesterol, and triglyceride. Further, we show that fatostatin mitigated actin polymerization machinery and stabilization, and decreased ECM synthesis and secretion. We thus postulate that lowering lipogenesis in the TM outflow pathway can hold the key to lowering IOP by modifying the TM biomechanics.
Collapse
Affiliation(s)
- Ting Wang
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| | - Avinash Soundararajan
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
| | - Jeffrey Rabinowitz
- Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Anant Jaiswal
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, Florida, 33701, United States of America
| | - Timothy Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, Florida, 33701, United States of America
| | - Padmanabhan Paranji Pattabiraman
- Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Medical Neuroscience Graduate Program, Indiana University School of Medicine, 320 W. 15th Street, Indiana, 46202, United States of America
| |
Collapse
|
10
|
Alabed HBR, Del Grosso A, Bellani V, Urbanelli L, Carpi S, De Sarlo M, Bertocci L, Colagiorgio L, Buratta S, Scaccini L, Frongia Mancini D, Tonazzini I, Cecchini M, Emiliani C, Pellegrino RM. Untargeted Lipidomic Approach for Studying Different Nervous System Tissues of the Murine Model of Krabbe Disease. Biomolecules 2023; 13:1562. [PMID: 37892244 PMCID: PMC10605133 DOI: 10.3390/biom13101562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Krabbe disease is a rare neurodegenerative disease with an autosomal recessive character caused by a mutation in the GALC gene. The mutation leads to an accumulation of psychosine and a subsequent degeneration of oligodendrocytes and Schwann cells. Psychosine is the main biomarker of the disease. The Twitcher mouse is the most commonly used animal model to study Krabbe disease. Although there are many references to this model in the literature, the lipidomic study of nervous system tissues in the Twitcher model has received little attention. This study focuses on the comparison of the lipid profiles of four nervous system tissues (brain, cerebellum, spinal cord, and sciatic nerve) in the Twitcher mouse compared to the wild-type mouse. Altogether, approximately 230 molecular species belonging to 19 lipid classes were annotated and quantified. A comparison at the levels of class, molecular species, and lipid building blocks showed significant differences between the two groups, particularly in the sciatic nerve. The in-depth study of the lipid phenotype made it possible to hypothesize the genes and enzymes involved in the changes. The integration of metabolic data with genetic data may be useful from a systems biology perspective to gain a better understanding of the molecular basis of the disease.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Ambra Del Grosso
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Valeria Bellani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sara Carpi
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Miriam De Sarlo
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Lorenzo Bertocci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Laura Colagiorgio
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Luca Scaccini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Dorotea Frongia Mancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Ilaria Tonazzini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Marco Cecchini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| |
Collapse
|
11
|
Ding Y, Zhang C, Zhou M, Xiang Y, Tong A. Hetero-Diels-Alder Cycloaddition Reaction of Vinyl Ethers Enables Selective Fluorescent Labeling of Plasmalogens in Human Plasma Lipids. J Org Chem 2023; 88:13741-13748. [PMID: 37710996 DOI: 10.1021/acs.joc.3c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Plasmalogens (Pls) are vinyl ether-containing glycerophospholipids of broad biological interest. Their abnormal levels are associated with neurological disorders and cardiovascular diseases. The intricacy of analyzing Pls in lipid samples arises from the wide variety of other coexisting lipid species, which underscores the urgent need for a Pls-specific labeling reaction. To address this challenge, we report an efficient hetero-Diels-Alder cycloaddition reaction between nonterminal vinyl ethers of Pls and o-quinolinone quinone methide probes under mild conditions. On the basis of this mechanism, a selective fluorescent labeling method for Pls is developed. The application of this method permits the exclusive derivatization of Pls over other human plasma lipids. The process also imparts labeled Pls with distinct fluorescence emission and chromatographic retention properties. By integrating this method with high-performance liquid chromatography, we are able to identify individual chromatographic signatures of Pls from 10 different human plasma samples. This Pls signature analytical technique, empowered by the Pls-specific labeling reaction, is cost-effective and simple in terms of instrumentation, suggesting its promising potential for the early screening and diagnosis of diseases linked to Pls abnormalities.
Collapse
Affiliation(s)
- Yiwen Ding
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Chu Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Min Zhou
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Powell TL, Uhlson C, Madi L, Berry KZ, Chassen SS, Jansson T, Ferchaud-Roucher V. Fetal sex differences in placental LCPUFA ether and plasmalogen phosphatidylethanolamine and phosphatidylcholine contents in pregnancies complicated by obesity. Biol Sex Differ 2023; 14:66. [PMID: 37770949 PMCID: PMC10540428 DOI: 10.1186/s13293-023-00548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND We have previously reported that maternal obesity reduces placental transport capacity for lysophosphatidylcholine-docosahexaenoic acid (LPC-DHA), a preferred form for transfer of DHA (omega 3) to the fetal brain, but only in male fetuses. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC), have either sn-1 ester, ether or vinyl ether (plasmalogen) linkages to primarily unsaturated and monounsaturated fatty acids and DHA or arachidonic acid (ARA, omega 6) in the sn-2 position. Whether ether and plasmalogen PC and PE metabolism in placenta impacts transfer to the fetus is unexplored. We hypothesized that ether and plasmalogen PC and PE containing DHA and ARA are reduced in maternal-fetal unit in pregnancies complicated by obesity and these differences are dependent on fetal sex. METHODS In maternal, umbilical cord plasma and placentas from obese women (11 female/5 male infants) and normal weight women (9 female/7 male infants), all PC and PE species containing DHA and ARA were analyzed by LC-MS/MS. Placental protein expression of enzymes involved in phospholipid synthesis, were determined by immunoblotting. All variables were compared between control vs obese groups and separated by fetal sex, in each sample using the Benjamini-Hochberg false discovery rate adjustment to account for multiple testing. RESULTS Levels of ester PC containing DHA and ARA were profoundly reduced by 60-92% in male placentas of obese mothers, while levels of ether and plasmalogen PE containing DHA and ARA were decreased by 51-84% in female placentas. PLA2G4C abundance was lower in male placentas and LPCAT4 abundance was lower solely in females in obesity. In umbilical cord, levels of ester, ether and plasmalogen PC and PE with DHA were reduced by 43-61% in male, but not female, fetuses of obese mothers. CONCLUSIONS We found a fetal sex effect in placental PE and PC ester, ether and plasmalogen PE and PC containing DHA in response to maternal obesity which appears to reflect an ability of female placentas to adapt to maintain optimal fetal DHA transfer in maternal obesity.
Collapse
Affiliation(s)
- Theresa L Powell
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charis Uhlson
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lana Madi
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karin Zemski Berry
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stephanie S Chassen
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Ferchaud-Roucher
- Nantes Université, CHU Nantes, INRAE UMR 1280 PhAN, CRNH Ouest, 44000, Nantes, France.
- Nantes Université, INRAE, UMR 1280 PhAN, CHU Hôtel Dieu, HNB1, 1 place Alexis Ricordeau, 44093, Nantes, France.
| |
Collapse
|
13
|
White SL, Koulman A, Ozanne SE, Furse S, Poston L, Meek CL. Towards Precision Medicine in Gestational Diabetes: Pathophysiology and Glycemic Patterns in Pregnant Women With Obesity. J Clin Endocrinol Metab 2023; 108:2643-2652. [PMID: 36950879 PMCID: PMC10807907 DOI: 10.1210/clinem/dgad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
AIMS Precision medicine has revolutionized our understanding of type 1 diabetes and neonatal diabetes but has yet to improve insight into gestational diabetes mellitus (GDM), the most common obstetric complication and strongly linked to obesity. Here we explored if patterns of glycaemia (fasting, 1 hour, 2 hours) during the antenatal oral glucose tolerance test (OGTT), reflect distinct pathophysiological subtypes of GDM as defined by insulin secretion/sensitivity or lipid profiles. METHODS 867 pregnant women with obesity (body mass index ≥ 30 kg/m2) from the UPBEAT trial (ISRCTN 89971375) were assessed for GDM at 28 weeks' gestation (75 g oral glucose tolerance test OGTT; World Health Organization criteria). Lipid profiling of the fasting plasma OGTT sample was undertaken using direct infusion mass spectrometry and analyzed by logistic/linear regression, with and without adjustment for confounders. Insulin secretion and sensitivity were characterized by homeostatic model assessment 2b and 2s, respectively. RESULTS In women who developed GDM (n = 241), patterns of glycaemia were associated with distinct clinical and biochemical characteristics and changes to lipid abundance in the circulation. Severity of glucose derangement, rather than pattern of postload glycaemia, was most strongly related to insulin action and lipid abundance/profile. Unexpectedly, women with isolated postload hyperglycemia had comparable insulin secretion and sensitivity to euglycemic women, potentially indicative of a novel mechanistic pathway. CONCLUSIONS Patterns of glycemia during the OGTT may contribute to a precision approach to GDM as assessed by differences in insulin resistance/secretion. Further research is indicated to determine if isolated postload hyperglycemia reflects a different mechanistic pathway for targeted management.
Collapse
Affiliation(s)
- Sara L White
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 7EH, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge, CB2 0QQ, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge, CB2 0QQ, UK
| | - Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge, CB2 0QQ, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge, CB2 0QQ, UK
| | - Lucilla Poston
- Department of Women and Children’s Health, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 7EH, UK
| | - Claire L Meek
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge, CB2 0QQ, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Cambridge, CB2 0QQ, UK
- Department of Clinical Biochemistry/Wolfson Diabetes & Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| |
Collapse
|
14
|
Chen M, Miao G, Zhang Y, Umans JG, Lee ET, Howard BV, Fiehn O, Zhao J. Longitudinal Lipidomic Profile of Hypertension in American Indians: Findings From the Strong Heart Family Study. Hypertension 2023; 80:1771-1783. [PMID: 37334699 PMCID: PMC10526703 DOI: 10.1161/hypertensionaha.123.21144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Dyslipidemia is an important risk factor for hypertension and cardiovascular disease. Standard lipid panel cannot reflect the complexity of blood lipidome. The associations of individual lipid species with hypertension remain to be determined in large-scale epidemiological studies, especially in a longitudinal setting. METHODS Using liquid chromatography-mass spectrometry, we repeatedly measured 1542 lipid species in 3699 fasting plasma samples at 2 visits (1905 at baseline, 1794 at follow-up, ~5.5 years apart) from 1905 unique American Indians in the Strong Heart Family Study. We first identified baseline lipids associated with prevalent and incident hypertension, followed by replication of top hits in Europeans. We then conducted repeated measurement analysis to examine the associations of changes in lipid species with changes in systolic blood pressure, diastolic blood pressure, and mean arterial pressure. Network analysis was performed to identify lipid networks associated with the risk of hypertension. RESULTS Baseline levels of multiple lipid species, for example, glycerophospholipids, cholesterol esters, sphingomyelins, glycerolipids, and fatty acids, were significantly associated with both prevalent and incident hypertension in American Indians. Some lipids were confirmed in Europeans. Longitudinal changes in multiple lipid species, for example, acylcarnitines, phosphatidylcholines, fatty acids, and triacylglycerols, were significantly associated with changes in blood pressure measurements. Network analysis identified distinct lipidomic patterns associated with the risk of hypertension. CONCLUSIONS Baseline plasma lipid species and their longitudinal changes are significantly associated with hypertension development in American Indians. Our findings shed light on the role of dyslipidemia in hypertension and may offer potential opportunities for risk stratification and early prediction of hypertension.
Collapse
Affiliation(s)
- Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Elisa T. Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Barbara V. Howard
- MedStar Health Research Institute, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, CA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Mahrous E, Chen R, Zhao C, Farag MA. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit Rev Food Sci Nutr 2023; 64:9058-9081. [PMID: 37165484 DOI: 10.1080/10408398.2023.2207659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid analysis is an integral part of food authentication and quality control which provides consumers with the necessary information to make an informed decision about their lipid intake. Recent advancement in lipid analysis and lipidome scope represents great opportunities for food science. In this review we provide a comprehensive overview of available tools for extraction, analysis and interpretation of data related to dietary fats analyses. Different analytical platforms are discussed including GC, MS, NMR, IR and UV with emphasis on their merits and limitations alongside complementary tools such as chemometric models and lipid-targeted online databases. Applications presented here include quality control, authentication of organic and delicacy food, tracing dietary fat source and investigating the effect of heat/storage on lipids. A multitude of analytical methods with different sensitivity, affordability, reproducibility and ease of operation are now available to comprehensively analyze dietary fats. Application of these methods range from studies which favor the use of large data generating platforms such as MS-based methods, to routine quality control which demands easy to use affordable equipment as TLC and IR. Hence, this review provides a navigation tool for food scientists to help develop an optimal protocol for their future lipid analysis quest.
Collapse
Affiliation(s)
- Engy Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ruoxin Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Adua E. Decoding the mechanism of hypertension through multiomics profiling. J Hum Hypertens 2023; 37:253-264. [PMID: 36329155 PMCID: PMC10063442 DOI: 10.1038/s41371-022-00769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Hypertension, characterised by a constant high blood pressure, is the primary risk factor for multiple cardiovascular events and a major cause of death in adults. Excitingly, innovations in high-throughput technologies have enabled the global exploration of the whole genome (genomics), revealing dysregulated genes that are linked to hypertension. Moreover, post-genomic biomarkers, from the emerging fields of transcriptomics, proteomics, glycomics and lipidomics, have provided new insights into the molecular underpinnings of hypertension. In this paper, we review the pathophysiology of hypertension, and highlight the multi-omics approaches for hypertension prediction and diagnosis.
Collapse
Affiliation(s)
- Eric Adua
- School of Clinical Medicine, Medicine & Health, Rural Clinical Campus, University of New South Wales, Wagga Wagga, NSW, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
17
|
Staab TA, McIntyre G, Wang L, Radeny J, Bettcher L, Guillen M, Peck MP, Kalil AP, Bromley SP, Raftery D, Chan JP. The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging. Aging (Albany NY) 2023; 15:650-674. [PMID: 36787434 PMCID: PMC9970312 DOI: 10.18632/aging.204515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Lipid metabolism affects cell and physiological functions that mediate animal healthspan and lifespan. Lipidomics approaches in model organisms have allowed us to better understand changes in lipid composition related to age and lifespan. Here, using the model C. elegans, we examine the lipidomes of mutants lacking enzymes critical for sphingolipid metabolism; specifically, we examine acid sphingomyelinase (asm-3), which breaks down sphingomyelin to ceramide, and ceramide synthase (hyl-2), which synthesizes ceramide from sphingosine. Worm asm-3 and hyl-2 mutants have been previously found to be long- and short-lived, respectively. We analyzed longitudinal lipid changes in wild type animals compared to mutants at 1-, 5-, and 10-days of age. We detected over 700 different lipids in several lipid classes. Results indicate that wildtype animals exhibit increased triacylglycerols (TAG) at 10-days compared to 1-day, and decreased lysophoshatidylcholines (LPC). We find that 10-day hyl-2 mutants have elevated total polyunsaturated fatty acids (PUFA) and increased LPCs compared to 10-day wildtype animals. These changes mirror another short-lived model, the daf-16/FOXO transcription factor that is downstream of the insulin-like signaling pathway. In addition, we find that hyl-2 mutants have poor oxidative stress response, supporting a model where mutants with elevated PUFAs may accumulate more oxidative damage. On the other hand, 10-day asm-3 mutants have fewer TAGs. Intriguingly, asm-3 mutants have a similar lipid composition as the long-lived, caloric restriction model eat-2/mAChR mutant. Together, these analyses highlight the utility of lipidomic analyses to characterize metabolic changes during aging in C. elegans.
Collapse
Affiliation(s)
- Trisha A. Staab
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Grace McIntyre
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joycelyn Radeny
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Lisa Bettcher
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Melissa Guillen
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Margaret P. Peck
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Azia P. Kalil
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | | | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jason P. Chan
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| |
Collapse
|
18
|
Hu F, Yu H, Zong J, Xue J, Wen Z, Chen M, Du L, Chen T. The impact of hypertension for metabolites in patients with acute coronary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:50. [PMID: 36819519 PMCID: PMC9929784 DOI: 10.21037/atm-22-6409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Background Acute coronary syndrome (ACS) is one of the leading causes of death and is often accompanied by hypertension. Methods We investigated whether hypertension affects the metabolism of patients with ACS. Serum samples were provided from healthy controls (HCs; n=26), patients with ACS (n=20), or those patients with ACS complicated with hypertension (HTN, n=21), and all were subjected to non-targeted metabolomics analyses based on gas chromatography-mass spectrometry (GC/MS). Differential metabolites were screened using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) provided metabolic pathways related to these metabolites. Results Compared to those in the HC group, 12 metabolites were significantly upregulated and 6 significantly downregulated in the ACS group; among these, L-cystine and isocitric acid showed the most obvious differences, respectively. Compared to those in the ACS group, 3 metabolites were significantly upregulated and 2 metabolites were significantly downregulated in the ACS-HTN group, among which oleic acid and chenodeoxycholic acid showed the most marked difference, respectively. The five most prominent metabolic pathways involved in differential metabolites between the ACS and HC groups were arginine biosynthesis; oxidative phosphorylation; alanine, aspartate and glutamate metabolism; citrate cycle; and glucagon signaling pathway. The metabolic pathways between the ACS and ACS-HTN groups were steroid biosynthesis, fatty acid biosynthesis, arginine biosynthesis, primary bile acid biosynthesis, and tyrosine metabolism. Conclusions A comprehensive study of the changes in circulatory metabolomics and the influence of HTN was conducted in patients with ACS. A serum metabolomics test can be used to identify differentially metabolized molecules and allow the classification of patients with ACS or those complicated with HTN.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China;,Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huajiong Yu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China;,Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Ji Zong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Jianing Xue
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Zuoshi Wen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Mengjia Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China;,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| |
Collapse
|
19
|
Alabed HBR, Gorello P, Pellegrino RM, Lancioni H, La Starza R, Taddei AA, Urbanelli L, Buratta S, Fernandez AGL, Matteucci C, Caniglia M, Arcioni F, Mecucci C, Emiliani C. Comparison between Sickle Cell Disease Patients and Healthy Donors: Untargeted Lipidomic Study of Erythrocytes. Int J Mol Sci 2023; 24:ijms24032529. [PMID: 36768849 PMCID: PMC9917006 DOI: 10.3390/ijms24032529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common severe monogenic disorders in the world caused by a mutation on HBB gene and characterized by hemoglobin polymerization, erythrocyte rigidity, vaso-occlusion, chronic anemia, hemolysis, and vasculopathy. Recently, the scientific community has focused on the multiple genetic and clinical profiles of SCD. However, the lipid composition of sickle cells has received little attention in the literature. According to recent studies, changes in the lipid profile are strongly linked to several disorders. Therefore, the aim of this study is to dig deeper into lipidomic analysis of erythrocytes in order to highlight any variations between healthy and patient subjects. 241 lipid molecular species divided into 17 classes have been annotated and quantified. Lipidomic profiling of SCD patients showed that over 24% of total lipids were altered most of which are phospholipids. In-depth study of significant changes in lipid metabolism can give an indication of the enzymes and genes involved. In a systems biology scenario, these variations can be useful to improve the understanding of the biochemical basis of SCD and to try to make a score system that could be predictive for the severity of clinical manifestations.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
- Correspondence:
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Anna Aurora Taddei
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
| | - Anair Graciela Lema Fernandez
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Caterina Matteucci
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Maurizio Caniglia
- Pediatric Oncology-Hematology, Azienda Ospedaliera di Perugia, 06100 Perugia, Italy
| | - Francesco Arcioni
- Pediatric Oncology-Hematology, Azienda Ospedaliera di Perugia, 06100 Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, Laboratory of Molecular Medicine (CREO), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| |
Collapse
|
20
|
Dorninger F, Kiss A, Rothauer P, Stiglbauer-Tscholakoff A, Kummer S, Fallatah W, Perera-Gonzalez M, Hamza O, König T, Bober MB, Cavallé-Garrido T, Braverman NE, Forss-Petter S, Pifl C, Bauer J, Bittner RE, Helbich TH, Podesser BK, Todt H, Berger J. Overlapping and Distinct Features of Cardiac Pathology in Inherited Human and Murine Ether Lipid Deficiency. Int J Mol Sci 2023; 24:1884. [PMID: 36768204 PMCID: PMC9914995 DOI: 10.3390/ijms24031884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Peter Rothauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | - Alexander Stiglbauer-Tscholakoff
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Stefan Kummer
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Wedad Fallatah
- Department of Genetic Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Human Genetics and Pediatrics, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Mireia Perera-Gonzalez
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Ouafa Hamza
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Theresa König
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Michael B. Bober
- Skeletal Dysplasia Program, Nemours Children’s Hospital, 1600 Rockland Road, Wilmington, DE 19803, USA
| | - Tiscar Cavallé-Garrido
- Department of Pediatrics, Division of Cardiology, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Nancy E. Braverman
- Department of Human Genetics and Pediatrics, Montreal Children’s Hospital, McGill University, 1001 Décarie Blvd, Montreal, QC H4A 3J1, Canada
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Reginald E. Bittner
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Währinger Straße 13, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Bruno K. Podesser
- Center for Biomedical Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| |
Collapse
|
21
|
Borroni E, Frigerio G, Polledri E, Mercadante R, Maggioni C, Fedrizzi L, Pesatori AC, Fustinoni S, Carugno M. Metabolomic profiles in night shift workers: A cross-sectional study on hospital female nurses. Front Public Health 2023; 11:1082074. [PMID: 36908447 PMCID: PMC9999616 DOI: 10.3389/fpubh.2023.1082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background and aim Shift work, especially including night shifts, has been found associated with several diseases, including obesity, diabetes, cancers, and cardiovascular, mental, gastrointestinal and sleep disorders. Metabolomics (an omics-based methodology) may shed light on early biological alterations underlying these associations. We thus aimed to evaluate the effect of night shift work (NSW) on serum metabolites in a sample of hospital female nurses. Methods We recruited 46 nurses currently working in NSW in Milan (Italy), matched to 51 colleagues not employed in night shifts. Participants filled in a questionnaire on demographics, lifestyle habits, personal and family health history and work, and donated a blood sample. The metabolome was evaluated through a validated targeted approach measuring 188 metabolites. Only metabolites with at least 50% observations above the detection limit were considered, after standardization and log-transformation. Associations between each metabolite and NSW were assessed applying Tobit regression models and Random Forest, a machine-learning algorithm. Results When comparing current vs. never night shifters, we observed lower levels of 21 glycerophospholipids and 6 sphingolipids, and higher levels of serotonin (+171.0%, 95%CI: 49.1-392.7), aspartic acid (+155.8%, 95%CI: 40.8-364.7), and taurine (+182.1%, 95%CI: 67.6-374.9). The latter was higher in former vs. never night shifters too (+208.8%, 95%CI: 69.2-463.3). Tobit regression comparing ever (i.e., current + former) and never night shifters returned similar results. Years worked in night shifts did not seem to affect metabolite levels. The Random-Forest algorithm confirmed taurine and aspartic acid among the most important variables in discriminating current vs. never night shifters. Conclusions This study, although based on a small sample size, shows altered levels of some metabolites in night shift workers. If confirmed, our results may shed light on early biological alterations that might be related to adverse health effects of NSW.
Collapse
Affiliation(s)
- Elisa Borroni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Mercadante
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Cristina Maggioni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Fedrizzi
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Carugno
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
22
|
Park SJ, Park MJ, Park S, Lee ES, Lee DY. Integrative metabolomics of plasma and PBMCs identifies distinctive metabolic signatures in Behçet's disease. Arthritis Res Ther 2023; 25:5. [PMID: 36609408 PMCID: PMC9824930 DOI: 10.1186/s13075-022-02986-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Behçet's disease (BD) is a systemic inflammatory disease that involves various organs. The clinical manifestation-based diagnosis of BD is a time-consuming process, which makes it difficult to distinguish from patients with similar symptoms. Moreover, an authentic biomarker has not been developed for accurate diagnosis yet. Our current study investigated the unique metabolic signatures of BD and explored biomarkers for precise diagnosis based on an untargeted metabolomic approach. METHODS Integrative metabolomic and lipidomic profiling was performed on plasma samples of BD patients (n = 40), healthy controls (HCs, n = 18), and disease controls (DCs, n = 17) using GC-TOF MS and LC-Orbitrap MS. Additionally, the lipid profiles of 66 peripheral blood mononuclear cells (PBMCs) were analyzed from 29 BD patients, 18 HCs, and 19 DCs. RESULTS Plasma metabolic dysfunction in BD was determined in carbohydrate, hydroxy fatty acid, and polyunsaturated fatty acid metabolisms. A plasma biomarker panel with 13 compounds was constructed, which simultaneously distinguished BD from HC and DC (AUCs ranged from 0.810 to 0.966). Dysregulated PBMC metabolome was signatured by a significant elevation in lysophosphatidylcholines (LPCs) and ether-linked lysophosphatidylethanolamines (EtherLPEs). Ten PBMC-derived lipid composites showed good discrimination power (AUCs ranged from 0.900 to 0.973). Correlation analysis revealed a potential association between disease activity and the metabolites of plasma and PBMC, including sphingosine-1 phosphate and EtherLPE 18:2. CONCLUSIONS We identified metabolic biomarkers from plasma PBMC, which selectively discriminated BD from healthy control and patients with similar symptoms (recurrent mouth ulcers with/without genital ulcers). The strong correlation was determined between the BD activity and the lipid molecules. These findings may lead to the development for diagnostic and prognostic biomarkers based on a better understanding of the BD pathomechanism.
Collapse
Affiliation(s)
- Soo Jin Park
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Mi Jin Park
- grid.251916.80000 0004 0532 3933Department of Dermatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Sun Park
- grid.251916.80000 0004 0532 3933Department of Microbiology, Ajou University School of Medicine, Suwon, 16499 Republic of Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea. .,Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Zeng W, Beyene HB, Kuokkanen M, Miao G, Magliano DJ, Umans JG, Franceschini N, Cole SA, Michailidis G, Lee ET, Howard BV, Fiehn O, Curran JE, Blangero J, Meikle PJ, Zhao J. Lipidomic profiling in the Strong Heart Study identified American Indians at risk of chronic kidney disease. Kidney Int 2022; 102:1154-1166. [PMID: 35853479 PMCID: PMC10753995 DOI: 10.1016/j.kint.2022.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Dyslipidemia associates with and usually precedes the onset of chronic kidney disease (CKD), but a comprehensive assessment of molecular lipid species associated with risk of CKD is lacking. Here, we sought to identify fasting plasma lipids associated with risk of CKD among American Indians in the Strong Heart Family Study, a large-scale community-dwelling of individuals, followed by replication in Mexican Americans from the San Antonio Family Heart Study and Caucasians from the Australian Diabetes, Obesity and Lifestyle Study. We also performed repeated measurement analysis to examine the temporal relationship between the change in the lipidome and change in kidney function between baseline and follow-up of about five years apart. Network analysis was conducted to identify differential lipid classes associated with risk of CKD. In the discovery cohort, we found that higher baseline level of multiple lipid species, including glycerophospholipids, glycerolipids and sphingolipids, was significantly associated with increased risk of CKD, independent of age, sex, body mass index, diabetes and hypertension. Many lipid species were replicated in at least one external cohort at the individual lipid species and/or the class level. Longitudinal change in the plasma lipidome was significantly associated with change in the estimated glomerular filtration rate after adjusting for covariates, baseline lipids and the baseline rate. Network analysis identified distinct lipidomic signatures differentiating high from low-risk groups. Thus, our results demonstrated that disturbed lipid metabolism precedes the onset of CKD. These findings shed light on the mechanisms linking dyslipidemia to CKD and provide potential novel biomarkers for identifying individuals with early impaired kidney function at preclinical stages.
Collapse
Affiliation(s)
- Wenjie Zeng
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mikko Kuokkanen
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, Maryland, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - George Michailidis
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, Maryland, USA; Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, District of Columbia, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, Davis, California, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
24
|
Niu Z, Wu Q, Luo Y, Wang D, Zheng H, Wu Y, Yang X, Zeng R, Sun L, Lin X. Plasma Lipidomic Subclasses and Risk of Hypertension in Middle-Aged and Elderly Chinese. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:283-294. [PMID: 36939788 PMCID: PMC9590468 DOI: 10.1007/s43657-022-00057-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
While disrupted lipid metabolism is a well-established risk factor for hypertension in animal models, the links between various lipidomic signatures and hypertension in human studies remain unclear. We aimed to examine associations between plasma lipidomic profiles and prevalence of hypertension among 2248 community-living Chinese aged 50-70 years. Hypertension was defined according to 2020 International Society of Hypertension global hypertension practice guidelines and 2018 Chinese guidelines. In total, 728 plasma lipidomic species were profiled using high-coverage targeted lipidomics. After multivariate adjustment, including lifestyle, body mass index, blood lipids, and sodium intake, 110 metabolites from nine lipidomic subclasses showed significant associations with hypertension, among which phosphatidylethanolamines (PEs) had the strongest association. Eleven lipidomic signals for hypertension risk were further identified from the nine subclasses, including PE(18:0/18:2) (OR per SD, 1.49; 95% confidence intervals, 1.30-1.69), phosphatidylcholine (PC) (18:0/18:2) (1.27; 1.13-1.43), phosphatidylserine (18:0/18:0) (1.24; 1.09-1.41), lysophosphatidylinositol (18:1) (1.17; 1.06-1.29), triacylglycerol (52:5) (1.38; 1.18-1.61), diacylglycerol (16:0/18:2) (1.42; 1.19-1.69), dihydroceramide (24:0) (1.25; 1.09-1.43), hydroxyl-sphingomyelins (SM[2OH])C34:1 (1.19; 1.07-1.33), lysophosphatidylcholine (20:1) (0.86; 0.78-0.95), SM(OH)C38:1 (0.87; 0.79-0.96), and PC (18:2/20:1) (0.84; 0.75-0.94). Principal component analysis also showed that a factor mainly containing specific PEs was positively associated with hypertension (1.20; 1.09-1.33). Collectively, our study revealed that disturbances in multiple circulating lipidomic subclasses and signatures, especially PEs, were significantly associated with the prevalence of hypertension in middle-aged and elderly Chinese. Future studies are warranted to confirm our findings and determine the mechanisms underlying these associations. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00057-y.
Collapse
Affiliation(s)
- Zhenhua Niu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
| | - Qingqing Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yaogan Luo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
| | - Di Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
| | - He Zheng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
| | - Yanpu Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
| | - Xiaowei Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
| | - Rong Zeng
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031 China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024 China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024 China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai, 200031 China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024 China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024 China
| |
Collapse
|
25
|
Sun L, Chi B, Xia M, Ma Z, Zhang H, Jiang H, Zhang F, Tian Z. LC–MS-based lipidomic analysis of liver tissue sample from spontaneously hypertensive rats treated with extract hawthorn fruits. Front Pharmacol 2022; 13:963280. [PMID: 36016567 PMCID: PMC9395718 DOI: 10.3389/fphar.2022.963280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
At present, many experiments provide support for the cardiovascular protective effect of hawthorn (Crataegus oxyacantha) flower, leaf and fruit extracts. The aim of this study was to investigate the intervention mechanism of hawthorn fruit extract on spontaneously hypertensive rats (SHR) and its effect on their lipid metabolic pattern. After SHR was intervened by hawthorn extract (1.08 g/kg/d) for 6 weeks, the blood pressure and liver histopathology of rats were evaluated. An UHPLC-Q Extractive metabolomics approach was used to collect information on rat liver lipid metabolites, combined with multivariate data analysis to identify significantly different substances and potential biomarkers through mass spectrometry and database searches. Histomorphology of the liver was partially restored in the hawthorn-treated group. Hawthorn extract interferes with sphingolipid metabolism, glycerophospholipid metabolism and glycerolipids metabolism, improving partially disturbed metabolic pathways. This study showed that hawthorn could partially restore liver histomorphology and has anti-hypertensive effect by regulating lipid metabolism.
Collapse
Affiliation(s)
- Luping Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqing Chi
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingfeng Xia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongbin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haiqiang Jiang, ; Fang Zhang, ; Zhenhua Tian,
| | - Fang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haiqiang Jiang, ; Fang Zhang, ; Zhenhua Tian,
| | - Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haiqiang Jiang, ; Fang Zhang, ; Zhenhua Tian,
| |
Collapse
|
26
|
Wu ZE, Kruger MC, Cooper GJS, Sequeira IR, McGill AT, Poppitt SD, Fraser K. Dissecting the relationship between plasma and tissue metabolome in a cohort of women with obesity: Analysis of subcutaneous and visceral adipose, muscle, and liver. FASEB J 2022; 36:e22371. [PMID: 35704337 DOI: 10.1096/fj.202101812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Untargeted metabolomics of blood samples has become widely applied to study metabolic alterations underpinning disease and to identify biomarkers. However, understanding the relevance of a blood metabolite marker can be challenging if it is unknown whether it reflects the concentration in relevant tissues. To explore this field, metabolomic and lipidomic profiles of plasma, four sites of adipose tissues (ATs) from peripheral or central depot, two sites of muscle tissue, and liver tissue from a group of nondiabetic women with obesity who were scheduled to undergo bariatric surgery (n = 21) or other upper GI surgery (n = 5), were measured by liquid chromatography coupled with mass spectrometry. Relationships between plasma and tissue profiles were examined using Pearson correlation analysis subject to Benjamini-Hochberg correction. Plasma metabolites and lipids showed the highest number of significantly positive correlations with their corresponding concentrations in liver tissue, including lipid species of ceramide, mono- and di-hexosylceramide, sphingomyelin, phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine, dimethyl phosphatidylethanolamine, ether-linked PC, ether-linked PE, free fatty acid, cholesteryl ester, diacylglycerol and triacylglycerol, and polar metabolites linked to several metabolic functions and gut microbial metabolism. Plasma also showed significantly positive correlations with muscle for several phospholipid species and polar metabolites linked to metabolic functions and gut microbial metabolism, and with AT for several triacylglycerol species. In conclusion, plasma metabolomic and lipidomic profiles were reflective more of the liver profile than any of the muscle or AT sites examined in the present study. Our findings highlighted the importance of taking into consideration the metabolomic relationship of various tissues with plasma when postulating plasma metabolites marker to underlying mechanisms occurring in a specific tissue.
Collapse
Affiliation(s)
- Zhanxuan E Wu
- Food Chemistry and Structure, AgResearch Limited, Palmerston North, New Zealand.,School of Health Sciences, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Marlena C Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand.,Centre for Advanced Discovery and Experimental Therapeutics, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Ivana R Sequeira
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anne-Thea McGill
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Medicine, University of Auckland, Auckland, New Zealand.,Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- Food Chemistry and Structure, AgResearch Limited, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
27
|
Furse S, Koulman A, Ozanne SE, Poston L, White SL, Meek CL. Altered Lipid Metabolism in Obese Women With Gestational Diabetes and Associations With Offspring Adiposity. J Clin Endocrinol Metab 2022; 107:e2825-e2832. [PMID: 35359001 PMCID: PMC9757862 DOI: 10.1210/clinem/dgac206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 01/29/2023]
Abstract
CONTEXT Gestational diabetes (GDM) affects 20 million women/year worldwide and is associated with childhood obesity. Infants of affected mothers have increased adiposity from birth, which leads to obesity in later life. However, it remains unknown whether the effect of GDM upon neonatal body composition is due to hyperglycemia alone or is mediated by other pathways. OBJECTIVE To investigate plasma lipid profiles in obese women according to GDM diagnosis, infant birthweight percentiles, and adiposity. DESIGN Prospective cohort from UPBEAT trial (ISRCTN 89971375). SETTING Hospital and community. PATIENTS 867 obese pregnant women recruited in early pregnancy, assessed at 28 weeks for GDM. Offspring anthropometry was assessed at birth. OUTCOME (PRESPECIFIED) Neonatal birth percentile and abdominal circumference. METHODS Lipidomic profiling in the fasting plasma oral glucose tolerance test sample using direct infusion mass spectrometry. Analysis included logistic/linear regression, unadjusted and adjusted for maternal age, body mass index, parity, ethnicity, UPBEAT trial arm, and fetal sex. The limit of significance was P = 0.05 for offspring anthropometry and P = 0.002 for lipidomic data. RESULTS GDM in obese women was associated with elevated plasma concentrations of specific diglycerides [DG(32:0)] and triglycerides [TG(48:0), (50:1), (50:2)] containing fatty acids (16:0), (16:1), (18:0), and (18:1), consistent with increased de novo lipogenesis. In the whole cohort, these species were associated with birthweight percentile and neonatal abdominal circumference. Effects upon infant abdominal circumference remained significant after adjustment for maternal glycemia. CONCLUSIONS Increased de novo lipogenesis-related species in pregnant women with obesity and GDM are associated with measures of offspring adiposity and may be a target for improving lifelong health.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
| | - Lucilla Poston
- Department of Women and Children’s Health, School of Lifecourse and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 7EH, UK
| | - Sara L White
- Department of Women and Children’s Health, School of Lifecourse and Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 7EH, UK
| | - Claire L Meek
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Treatment Centre, Keith Day Road Cambridge, CB2 0QQ, UK
- Department of Clinical Biochemistry/Wolfson Diabetes & Endocrine Clinic, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQUK
| |
Collapse
|
28
|
Kupsch S, Eggers LF, Spengler D, Gisch N, Goldmann T, Fehrenbach H, Stichtenoth G, Krause MF, Schwudke D, Schromm AB. Characterization of phospholipid-modified lung surfactant in vitro and in a neonatal ARDS model reveals anti-inflammatory potential and surfactant lipidome signatures. Eur J Pharm Sci 2022; 175:106216. [PMID: 35618202 DOI: 10.1016/j.ejps.2022.106216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/27/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
A strong inflammatory immune response drives the lung pathology in neonatal acute respiratory distress syndrome (nARDS). Anti-inflammatory therapy is therefore a promising strategy for improved treatment of nARDS. We demonstrate a new function of the anionic phospholipids POPG, DOPG, and PIP2 as inhibitors of IL-1β release by LPS and ATP-induced inflammasome activation in human monocyte-derived and lung macrophages. Curosurf® surfactant was enriched with POPG, DOPG, PIP2 and the head-group derivative IP3, biophysically characterized and applicability was evaluated in a piglet model of nARDS. The composition of pulmonary surfactant from piglets was determined by shotgun lipidomics screens. After 72 h of nARDS, levels of POPG, DOPG, and PIP2 were enhanced in the respective treatment groups. Otherwise, we did not observe changes of individual lipid species in any of the groups. Surfactant proteins were not affected, with the exception of the IP3 treated group. Our data show that POPG, DOPG, and PIP2 are potent inhibitors of inflammasome activation; their enrichment in a surfactant preparation did not induce any negative effects on lipid profile and reduced biophysical function in vitro was mainly observed for PIP2. These results encourage to rethink the current strategies of improving surfactant preparations by inclusion of anionic lipids as potent anti-inflammatory immune regulators.
Collapse
Affiliation(s)
- Sarah Kupsch
- Division of Immunobiophysics, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Lars F Eggers
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Dietmar Spengler
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Torsten Goldmann
- Pathology of the University Medical Center Schleswig-Holstein (UKSH), Campus Luebeck and the Research Center Borstel, D-23845 Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), d-22927 Großhansdorf, Germany
| | - Heinz Fehrenbach
- Division of Experimental Pneumology, Priority Area Asthma and Allergies, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), d-22927 Großhansdorf, Germany
| | - Guido Stichtenoth
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Martin F Krause
- Department of Pediatrics, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), d-22927 Großhansdorf, Germany; German Center for Infection Research (DZIF), Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Germany
| | - Andra B Schromm
- Division of Immunobiophysics, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Germany.
| |
Collapse
|
29
|
Gilbertson NM, Eichner NZM, Gaitán JM, Pirtle JM, Kirby JL, Upchurch CM, Leitinger N, Malin SK. Impact of a short-term low calorie diet alone or with interval exercise on quality of life and oxidized phospholipids in obese females. Physiol Behav 2022; 246:113706. [PMID: 35033556 PMCID: PMC8821381 DOI: 10.1016/j.physbeh.2022.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
The objective of this study was to test if a low-calorie diet plus interval exercise (LCD+INT) reduced oxidized and non-oxidized phospholipids in relation to improved weight-related quality of life (QoL) to a greater extent than an energy-deficit matched LCD in obese females. Subjects (age: 47.2 ± 2.6 years, body mass index: 37.5 ± 1.3 kg/m2) were randomized to a 13-day LCD (n = 12; mixed meals of ∼1200 kcal/day) or LCD+INT (n = 13; 12 sessions of 60 min/day alternating 3 min at 50% and 90% peak heart rate plus an additional 350 kcal shake fed after exercise to match energy availability between groups). Weight-related QoL (Laval Questionnaire) as well as oxidized (POVPC, HOOA-PC, HPETE-PC, HETE-PC, PEIPC, KOOA-PC) and non-oxidized (PAPC and lysoPC) phospholipids were assessed pre- and post-intervention. Fitness (VO2peak), body composition (BodPod), and clinical bloods were also tested. LCD+INT significantly increased VO2peak (mL/kg/min, P = 0.03) compared to LCD despite similar fat loss, blood glucose, insulin sensitivity, and inflammatory responses. LCD+INT had significantly greater increases in QoL sexual life domain (P = 0.05) and tended to have a greater increase in the emotions domain (P = 0.09) and total score (P = 0.10) compared to LCD. There were no significant differences between treatments for changes in phospholipids despite LCD+INT increasing measured oxidized and non-oxidized phospholipids while LCD decreased POVPC, HOOA-PC, and PEIPC as well as non-oxidized PAPC and lysoPC. Interestingly, the rise in PEIPC correlated with elevated VO2peak (mL/kg/min r = 0.42, P = 0.05). Decreased caloric intake was, however, linked to a decrease in PAPC (r = 0.53, P = 0.01), lysoPC (r = 0.52, P = 0.02), POVPC (r = 0.43, P = 0.05), and HPETE-PC (r = 0.43, P = 0.05). The decrease in HETE-PC also correlated with increases in the QoL domains symptoms (r = -0.46, P = 0.04), hygiene/clothing (r = -0.53, P = 0.01), emotions (r = -0.53, P = 0.01), social interactions (r = -0.49, P = 0.02), and total score (r = -0.52, P = 0.02). In conclusion, although LCD and LCD+INT improved weight related QoL over 13 days in females with obesity, LCD+INT tended to improve sexual life, emotions as well as total QoL score more than LCD. These data suggest caloric restriction and fitness may act through different mechanisms to support QoL.
Collapse
Affiliation(s)
- Nicole M Gilbertson
- Department of Kinesiology, Pennsylvania State University, Altoona, PA, USA; Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | | | - Julian M Gaitán
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - John M Pirtle
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L Kirby
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Steven K Malin
- Department of Kinesiology, University of Virginia, Charlottesville, VA, USA; Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA; Division of Endocrinology, Metabolism and Nutrition, Rutgers University, New Brunswick, NJ, USA; Instutite for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA; Institiute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
30
|
Schooneveldt YL, Paul S, Calkin AC, Meikle PJ. Ether Lipids in Obesity: From Cells to Population Studies. Front Physiol 2022; 13:841278. [PMID: 35309067 PMCID: PMC8927733 DOI: 10.3389/fphys.2022.841278] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Ether lipids are a unique class of glycero- and glycerophospho-lipid that carry an ether or vinyl ether linked fatty alcohol at the sn-1 position of the glycerol backbone. These specialised lipids are important endogenous anti-oxidants with additional roles in regulating membrane fluidity and dynamics, intracellular signalling, immunomodulation and cholesterol metabolism. Lipidomic profiling of human population cohorts has identified new associations between reduced circulatory plasmalogen levels, an abundant and biologically active sub-class of ether lipids, with obesity and body-mass index. These findings align with the growing body of work exploring novel roles for ether lipids within adipose tissue. In this regard, ether lipids have now been linked to facilitating lipid droplet formation, regulating thermogenesis and mediating beiging of white adipose tissue in early life. This review will assess recent findings in both population studies and studies using cell and animal models to delineate the functional and protective roles of ether lipids in the setting of obesity. We will also discuss the therapeutic potential of ether lipid supplementation to attenuate diet-induced obesity.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Anna C. Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Anna C. Calkin,
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Peter J. Meikle,
| |
Collapse
|
31
|
Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep 2022; 4:100479. [PMID: 35469167 PMCID: PMC9034302 DOI: 10.1016/j.jhepr.2022.100479] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are a complex and diverse group of molecules with crucial roles in many physiological processes, as well as in the onset, progression, and maintenance of cancers. Fatty acids and cholesterol are the building blocks of lipids, orchestrating these crucial metabolic processes. In the liver, lipid alterations are prevalent as a cause and consequence of chronic hepatitis B and C virus infections, alcoholic hepatitis, and non-alcoholic fatty liver disease and steatohepatitis. Recent developments in lipidomics have also revealed that dynamic changes in triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol are involved in the development and progression of primary liver cancer. Accordingly, the transcriptional landscape of lipid metabolism suggests a carcinogenic role of increasing fatty acids and sterol synthesis. However, limited mechanistic insights into the complex nature of the hepatic lipidome have so far hindered the development of effective therapies.
Collapse
|
32
|
Ahmad S, Hammar U, Kennedy B, Salihovic S, Ganna A, Lind L, Sundström J, Ärnlöv J, Berne C, Risérus U, Magnusson PKE, Larsson SC, Fall T. Effect of General Adiposity and Central Body Fat Distribution on the Circulating Metabolome: A Multicohort Nontargeted Metabolomics Observational and Mendelian Randomization Study. Diabetes 2022; 71:329-339. [PMID: 34785567 DOI: 10.2337/db20-1120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/11/2021] [Indexed: 11/13/2022]
Abstract
Obesity is associated with adverse health outcomes, but the metabolic effects have not yet been fully elucidated. We aimed to investigate the association between adiposity and circulating metabolites and to address causality with Mendelian randomization (MR). Metabolomics data were generated with nontargeted ultraperformance liquid chromatography coupled to time-of-flight mass spectrometry in plasma and serum from three population-based Swedish cohorts: ULSAM (N = 1,135), PIVUS (N = 970), and TwinGene (N = 2,059). We assessed associations of general adiposity measured as BMI and central body fat distribution measured as waist-to-hip ratio adjusted for BMI (WHRadjBMI) with 210 annotated metabolites. We used MR analysis to assess causal effects. Lastly, we attempted to replicate the MR findings in the KORA and TwinsUK cohorts (N = 7,373), the CHARGE Consortium (N = 8,631), the Framingham Heart Study (N = 2,076), and the DIRECT Consortium (N = 3,029). BMI was associated with 77 metabolites, while WHRadjBMI was associated with 11 and 3 metabolites in women and men, respectively. The MR analyses in the Swedish cohorts suggested a causal association (P value <0.05) of increased general adiposity and reduced levels of arachidonic acid, dodecanedioic acid, and lysophosphatidylcholine (P-16:0) as well as with increased creatine levels. The results of the replication effort provided support for a causal association of adiposity with reduced levels of arachidonic acid (P value = 0.03). Adiposity is associated with variation of large parts of the circulating metabolome; however, further investigation of causality is required in well-powered cohorts.
Collapse
Affiliation(s)
- Shafqat Ahmad
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Preventive Medicine Division, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Beatrice Kennedy
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Samira Salihovic
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Andrea Ganna
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, Sydney, Australia
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Christian Berne
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Olund Villumsen S, Benfeitas R, Knudsen AD, Gelpi M, Høgh J, Thomsen MT, Murray D, Ullum H, Neogi U, Nielsen SD. Integrative Lipidomics and Metabolomics for System-Level Understanding of the Metabolic Syndrome in Long-Term Treated HIV-Infected Individuals. Front Immunol 2022; 12:742736. [PMID: 35095835 PMCID: PMC8791652 DOI: 10.3389/fimmu.2021.742736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
People living with HIV (PLWH) require life-long anti-retroviral treatment and often present with comorbidities such as metabolic syndrome (MetS). Systematic lipidomic characterization and its association with the metabolism are currently missing. We included 100 PLWH with MetS and 100 without MetS from the Copenhagen Comorbidity in HIV Infection (COCOMO) cohort to examine whether and how lipidome profiles are associated with MetS in PLWH. We combined several standard biostatistical, machine learning, and network analysis techniques to investigate the lipidome systematically and comprehensively and its association with clinical parameters. Additionally, we generated weighted lipid-metabolite networks to understand the relationship between lipidomic profiles with those metabolites associated with MetS in PLWH. The lipidomic dataset consisted of 917 lipid species including 602 glycerolipids, 228 glycerophospholipids, 61 sphingolipids, and 26 steroids. With a consensus approach using four different statistical and machine learning methods, we observed 13 differentially abundant lipids between PLWH without MetS and PLWH with MetS, which mainly belongs to diacylglyceride (DAG, n = 2) and triacylglyceride (TAG, n = 11). The comprehensive network integration of the lipidomics and metabolomics data suggested interactions between specific glycerolipids' structural composition patterns and key metabolites involved in glutamate metabolism. Further integration of the clinical data with metabolomics and lipidomics resulted in the association of visceral adipose tissue (VAT) and exposure to earlier generations of antiretroviral therapy (ART). Our integrative omics data indicated disruption of glutamate and fatty acid metabolism, suggesting their involvement in the pathogenesis of PLWH with MetS. Alterations in the lipid homeostasis and glutaminolysis need clinical interventions to prevent accelerated aging in PLWH with MetS.
Collapse
Affiliation(s)
- Sofie Olund Villumsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Andreas Dehlbæk Knudsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Marco Gelpi
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Julie Høgh
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Magda Teresa Thomsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Daniel Murray
- Personalized Medicine of Infectious Complications in Immune Deficiency (PERSIMUNE), Rigshospitalet, Copenhagen, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm, Sweden
- Manipal Institute of Virology (MIV), Manipal Academy of Higher Education, Manipal, India
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
34
|
A multi-omics study of circulating phospholipid markers of blood pressure. Sci Rep 2022; 12:574. [PMID: 35022422 PMCID: PMC8755711 DOI: 10.1038/s41598-021-04446-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.
Collapse
|
35
|
Michielsen CC, Hangelbroek RW, Bragt MC, Verheij ER, Wopereis S, Mensink RP, Afman LA. Comparative Analysis of the Effects of Fish Oil and Fenofibrate on Plasma Metabolomic Profiles in Overweight and Obese Individuals. Mol Nutr Food Res 2022; 66:e2100192. [PMID: 34808036 PMCID: PMC9286410 DOI: 10.1002/mnfr.202100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/31/2021] [Indexed: 11/21/2022]
Abstract
SCOPE The drug fenofibrate and dietary fish oils can effectively lower circulating triglyceride (TG) concentrations. However, a detailed comparative analysis of the effects on the plasma metabolome is missing. METHODS AND RESULTS Twenty overweight and obese subjects participate in a double-blind, cross-over intervention trial and receive in a random order 3.7 g day-1 n-3 fatty acids, 200 mg fenofibrate, or placebo treatment for 6 weeks. Four hundred twenty plasma metabolites are measured via gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Among the treatments, 237 metabolites are significantly different, of which 22 metabolites change in the same direction by fish oil and fenofibrate, including a decrease in several saturated TG-species. Fenofibrate additionally changes 33 metabolites, including a decrease in total cholesterol, and total lysophosphatidylcholine (LPC), whereas 54 metabolites are changed by fish oil, including an increase in unsaturated TG-, LPC-, phosphatidylcholine-, and cholesterol ester-species. All q < 0.05. CONCLUSION Fenofibrate and fish oil reduce several saturated TG-species markedly. These reductions have been associated with a decreased risk for developing cardiovascular disease (CVD). Interestingly, fish oil consumption increases several unsaturated lipid species, which have also been associated with a reduced CVD risk. Altogether, this points towards the power of fish oil to change the plasma lipid metabolome in a potentially beneficial way.
Collapse
Affiliation(s)
- Charlotte C.J.R. Michielsen
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen UniversityStippeneng 4Wageningenthe Netherlands
| | - Roland W.J. Hangelbroek
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen UniversityStippeneng 4Wageningenthe Netherlands
| | - Marjolijn C.E. Bragt
- NUTRIM School of Nutrition and Translational Research in MetabolismDepartment of Nutrition and Movement SciencesMaastricht University Medical Centre+P.O. Box 616Maastricht6200 MDthe Netherlands
| | - Elwin R. Verheij
- Unit Healthy LivingNetherlands Organisation for Applied Scientific Research (TNO)Zeist3704 HEthe Netherlands
| | - Suzan Wopereis
- Unit Healthy LivingNetherlands Organisation for Applied Scientific Research (TNO)Zeist3704 HEthe Netherlands
| | - Ronald P. Mensink
- NUTRIM School of Nutrition and Translational Research in MetabolismDepartment of Nutrition and Movement SciencesMaastricht University Medical Centre+P.O. Box 616Maastricht6200 MDthe Netherlands
| | - Lydia A. Afman
- Nutrition, Metabolism and Genomics GroupDivision of Human Nutrition and HealthWageningen UniversityStippeneng 4Wageningenthe Netherlands
| |
Collapse
|
36
|
Hu C, Luo W, Xu J, Han X. RECOGNITION AND AVOIDANCE OF ION SOURCE-GENERATED ARTIFACTS IN LIPIDOMICS ANALYSIS. MASS SPECTROMETRY REVIEWS 2022; 41:15-31. [PMID: 32997818 PMCID: PMC8287896 DOI: 10.1002/mas.21659] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 05/04/2023]
Abstract
Lipid research is attracting more and more attention as various key roles and novel biological functions of lipids have been demonstrated and discovered in the organism. Mass spectrometry (MS)-based lipidomics approaches are the most powerful and effective tools for analysis of cellular lipidomes with very high sensitivity and specificity. However, the artifacts generated from in-source fragmentation are always present in all kinds of ion sources, even soft ionization techniques (i.e., electrospray ionization and matrix-assisted laser desorption/ionization [MALDI]). These artifacts can cause many problems for lipidomics, especially when the fragment ions correspond to/are isomeric species of other endogenous lipid species in complex biological samples. These commonly observed artifacts could lead to misannotation, false identification, and consequently, incorrect attribution of phenotypes, and will have negative impact on any MS-based lipidomics research including but not limited to biomarker discovery, drug development, etc. Liquid chromatography-MS, shotgun lipidomics, and MALDI-MS imaging are three representative lipidomics approaches in which ion source-generated artifacts are all manifested and are comprehensively summarized in this article. The strategies on how to avoid/reduce the artifacts of in-source fragmentation on lipidomics analysis are also discussed in detail. We believe that with the recognition and avoidance of ion source-generated artifacts, MS-based lipidomics approaches will provide better accuracy on comprehensive analysis of biological samples and will make greater contribution to the research on metabolism and translational/precision medicine (collectively termed functional lipidomics). © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Wenqing Luo
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003 China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| |
Collapse
|
37
|
Song C, Lv W, Li Y, Nie P, Lu J, Geng Y, Heng Z, Song L. Alleviating the effect of quinoa and the underlying mechanism on hepatic steatosis in high-fat diet-fed rats. Nutr Metab (Lond) 2021; 18:106. [PMID: 34922572 PMCID: PMC8684231 DOI: 10.1186/s12986-021-00631-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/26/2021] [Indexed: 02/08/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic component of metabolic syndrome and has attracted widespread attention due to its increased prevalence. Daily dietary management is an effective strategy for the prevention of NAFLD. Quinoa, a nutritious pseudocereal, is abundant in antioxidative bioactive phytochemicals. In the present study, the effects of different amounts of quinoa on the progression of NAFLD and the related molecular mechanism were investigated. Methods Male SD rats were simultaneously administered a high fat diet (HF) and different amounts of quinoa (equivalent to 100 g/day and 300 g/day of human intake, respectively). After 12 weeks of the intervention, hepatic TG (triglyceride) and TC (total cholesterol) as well as serum antioxidative parameters were determined, and hematoxylin–eosin staining (H&E) staining was used to evaluate hepatic steatosis. Differential metabolites in serum and hepatic tissue were identified using UPLC-QTOF-MSE. The mRNA expression profile was investigated using RNA-Seq and further verified using real-time polymerase chain reaction (RT-PCR). Results Low amounts of quinoa (equivalent to 100 g/d of human intake) effectively controlled the weight of rats fed a high-fat diet. In addition, quinoa effectively inhibited the increase in hepatic TG and TC levels, mitigated pathological injury, promoted the increase in SOD and GSH-Px activities, and decreased MDA levels. Nontarget metabolic profile analysis showed that quinoa regulated lipid metabolites in the circulation system and liver such as LysoPC and PC. RNA-Seq and RT-PCR verification revealed that a high amount of quinoa more effectively upregulated genes related to lipid metabolism [Apoa (apolipoprotein)5, Apoa4, Apoc2] and downregulated genes related to the immune response [lrf (interferon regulatory factor)5, Tlr6 (Toll-like receptor), Tlr10, Tlr11, Tlr12]. Conclusion Quinoa effectively prevented NAFLD by controlling body weight, mitigating oxidative stress, and regulating the lipid metabolic profile and the expression of genes related to lipid metabolism and the immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00631-7.
Collapse
Affiliation(s)
- Chenwei Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Lv
- National Semi-Arid Agriculture Engineering Technology Research Center, Shijiazhuang, 050051, Hebei, China
| | - Yahui Li
- Center for Food Evaluation, State Administration for Market Regulation, Beijing, 100070, China
| | - Pan Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Lu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yanlou Geng
- National Semi-Arid Agriculture Engineering Technology Research Center, Shijiazhuang, 050051, Hebei, China.
| | - Zhang Heng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Lihua Song
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
38
|
Lanzon B, Martin-Taboada M, Castro-Alves V, Vila-Bedmar R, González de Pablos I, Duberg D, Gomez P, Rodriguez E, Orešič M, Hyötyläinen T, Morales E, Ruperez FJ, Medina-Gomez G. Lipidomic and Metabolomic Signature of Progression of Chronic Kidney Disease in Patients with Severe Obesity. Metabolites 2021; 11:836. [PMID: 34940593 PMCID: PMC8707539 DOI: 10.3390/metabo11120836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Severe obesity is a major risk for chronic kidney disease (CKD). Early detection and careful monitoring of renal function are critical for the prevention of CKD during obesity, since biopsies are not performed in patients with CKD and diagnosis is dependent on the assessment of clinical parameters. To explore whether distinct lipid and metabolic signatures in obesity may signify early stages of pathogenesis toward CKD, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) analyses were performed in the serum and the urine of severely obese patients with and without CKD. Moreover, the impact of bariatric surgery (BS) in lipid and metabolic signature was also studied, through LC-MS and GC-HRAM-MS analyses in the serum and urine of patients with severe obesity and CKD before and after undergoing BS. Regarding patients with severe obesity and CKD compared to severely obese patients without CKD, serum lipidome analysis revealed significant differences in lipid signature. Furthermore, serum metabolomics profile revealed significant changes in specific amino acids, with isoleucine and tyrosine, increased in CKD patients compared with patients without CKD. LC-MS and GC-HRAM-MS analysis in serum of patients with severe obesity and CKD after BS showed downregulation of levels of triglycerides (TGs) and diglycerides (DGs) as well as a decrease in branched-chain amino acid (BCAA), lysine, threonine, proline, and serine. In addition, BS removed most of the correlations in CKD patients against biochemical parameters related to kidney dysfunction. Concerning urine analysis, hippuric acid, valine and glutamine were significantly decreased in urine from CKD patients after surgery. Interestingly, bariatric surgery did not restore all the lipid species, some of them decreased, hence drawing attention to them as potential targets for early diagnosis or therapeutic intervention. Results obtained in this study would justify the use of comprehensive mass spectrometry-based lipidomics to measure other lipids aside from conventional lipid profiles and to validate possible early markers of risk of CKD in patients with severe obesity.
Collapse
Affiliation(s)
- Borja Lanzon
- LIPOBETA Group, Department Basic Sciences of Health, Faculty of Sciences of Health, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain; (B.L.); (M.M.-T.); (R.V.-B.)
| | - Marina Martin-Taboada
- LIPOBETA Group, Department Basic Sciences of Health, Faculty of Sciences of Health, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain; (B.L.); (M.M.-T.); (R.V.-B.)
| | - Victor Castro-Alves
- School of Science and Technology, Örebro University, 702 81 Örebro, Sweden; (V.C.-A.); (D.D.); (T.H.)
| | - Rocio Vila-Bedmar
- LIPOBETA Group, Department Basic Sciences of Health, Faculty of Sciences of Health, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain; (B.L.); (M.M.-T.); (R.V.-B.)
| | | | - Daniel Duberg
- School of Science and Technology, Örebro University, 702 81 Örebro, Sweden; (V.C.-A.); (D.D.); (T.H.)
| | - Pilar Gomez
- Department of Surgery, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (P.G.); (E.R.)
| | - Elias Rodriguez
- Department of Surgery, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (P.G.); (E.R.)
| | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden;
- Turku Bioscience, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81 Örebro, Sweden; (V.C.-A.); (D.D.); (T.H.)
| | - Enrique Morales
- Department of Nephrology, University Hospital 12 de Octubre, 28041 Madrid, Spain; (I.G.d.P.); (E.M.)
- Research Institute of University Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Medicine, Complutense University of Madrid, 28041 Madrid, Spain
| | - Francisco J. Ruperez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, 28668 Boadilla del Monte, Spain;
| | - Gema Medina-Gomez
- LIPOBETA Group, Department Basic Sciences of Health, Faculty of Sciences of Health, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain; (B.L.); (M.M.-T.); (R.V.-B.)
- LAFEMEX Laboratory, Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| |
Collapse
|
39
|
Changes in Circulating Metabolites during Weight Loss and Weight Loss Maintenance in Relation to Cardiometabolic Risk. Nutrients 2021; 13:nu13124289. [PMID: 34959840 PMCID: PMC8708084 DOI: 10.3390/nu13124289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: There is a substantial lack of knowledge of the biochemical mechanisms by which weight loss and weight regain exert their beneficial and adverse effects, respectively, on cardiometabolic outcomes. We examined associations between changes in circulating metabolites and changes in cardiometabolic risk factors during diet-induced weight loss and weight loss maintenance. (2) Methods: This prospective analysis of data from the Satiety Innovation (SATIN) study involved adults living with overweight and obesity (mean age=47.5). One hundred sixty-two subjects achieving ≥8% weight loss during an initial 8-week low-calorie diet (LCD) were included in a 12-week weight loss maintenance period. Circulating metabolites (m=123) were profiled using a targeted multiplatform approach. Data were analyzed using multivariate linear regression models. (3) Results: Decreases in the concentrations of several phosphatidylcholines (PCs), sphingomyelins (SMs), and valine were consistently associated with decreases in total (TChol) and low-density lipoprotein cholesterol (LDL-C) levels during the LCD. Increases in PCs and SMs were significantly associated with increases in TChol and LDL-C during the weight loss maintenance period. Decreases and increases in PCs during LCD and maintenance period, respectively, were associated with decreases in the levels of triglycerides. (4) Conclusions: The results of this study suggest that decreases in circulating PCs and SMs during weight loss and the subsequent weight loss maintenance period may decrease the cardiovascular risk through impacting TChol and LDL-C.
Collapse
|
40
|
Huck B, Hidalgo A, Waldow F, Schwudke D, Gaede KI, Feldmann C, Carius P, Autilio C, Pérez-Gil J, Schwarzkopf K, Murgia X, Loretz B, Lehr CM. Systematic Analysis of Composition, Interfacial Performance and Effects of Pulmonary Surfactant Preparations on Cellular Uptake and Cytotoxicity of Aerosolized Nanomaterials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Benedikt Huck
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| | - Alberto Hidalgo
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
| | - Franziska Waldow
- Research Center Borstel Leibniz Lung Center Parkallee 1-40 23845 Borstel Germany
- German Center for Infection Research Thematic Translational Unit Tuberculosis Site Research Center Borstel Parkallee 1-40 23845 Borstel Germany
| | - Dominik Schwudke
- Research Center Borstel Leibniz Lung Center Parkallee 1-40 23845 Borstel Germany
- German Center for Infection Research Thematic Translational Unit Tuberculosis Site Research Center Borstel Parkallee 1-40 23845 Borstel Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN) Research Center Borstel Leibniz Lung Center Site Research Center Borstel Parkallee 1-40 Borstel 23845 Germany
| | - Karoline I. Gaede
- BioMaterialBank Nord, Research Center Borstel Leibniz Lung Center Parkallee 35 23845 Borstel Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN) Research Center Borstel Leibniz Lung Center Site Research Center Borstel Parkallee 1-40 Borstel 23845 Germany
| | - Claus Feldmann
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology 76131 Karlsruhe Germany
| | - Patrick Carius
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute “Hospital 12 de Octubre (imas12)” Complutense University 28040 Madrid Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute “Hospital 12 de Octubre (imas12)” Complutense University 28040 Madrid Spain
| | - Konrad Schwarzkopf
- Klinikum Saarbrücken Department of Anaesthesia and Intensive Care 66119 Saarbrücken Germany
| | - Xabier Murgia
- Biotechnology Area GAIKER Technology Centre 48170 Zamudio Spain
| | - Brigitta Loretz
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| | - Claus-Michael Lehr
- Helmholtz Center for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery Saarland University Campus E8.1 66123 Saarbrucken Germany
- Department of Pharmacy Saarland University Campus E8 1 66123 Saarbrücken Germany
| |
Collapse
|
41
|
Onuh JO, Qiu H. Metabolic Profiling and Metabolites Fingerprints in Human Hypertension: Discovery and Potential. Metabolites 2021; 11:687. [PMID: 34677402 PMCID: PMC8539280 DOI: 10.3390/metabo11100687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of pathogenesis through biomarkers holds the key to controlling hypertension and preventing cardiovascular complications. Metabolomics profiling acts as a potent and high throughput tool offering new insights on disease pathogenesis and potential in the early diagnosis of clinical hypertension with a tremendous translational promise. This review summarizes the latest progress of metabolomics and metabolites fingerprints and mainly discusses the current trends in the application in clinical hypertension. We also discussed the associated mechanisms and pathways involved in hypertension's pathogenesis and explored related research challenges and future perspectives. The information will improve our understanding of the development of hypertension and inspire the clinical application of metabolomics in hypertension and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
42
|
Guida F, Tan VY, Corbin LJ, Smith-Byrne K, Alcala K, Langenberg C, Stewart ID, Butterworth AS, Surendran P, Achaintre D, Adamski J, Amiano P, Bergmann MM, Bull CJ, Dahm CC, Gicquiau A, Giles GG, Gunter MJ, Haller T, Langhammer A, Larose TL, Ljungberg B, Metspalu A, Milne RL, Muller DC, Nøst TH, Pettersen Sørgjerd E, Prehn C, Riboli E, Rinaldi S, Rothwell JA, Scalbert A, Schmidt JA, Severi G, Sieri S, Vermeulen R, Vincent EE, Waldenberger M, Timpson NJ, Johansson M. The blood metabolome of incident kidney cancer: A case-control study nested within the MetKid consortium. PLoS Med 2021; 18:e1003786. [PMID: 34543281 PMCID: PMC8496779 DOI: 10.1371/journal.pmed.1003786] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 10/07/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Excess bodyweight and related metabolic perturbations have been implicated in kidney cancer aetiology, but the specific molecular mechanisms underlying these relationships are poorly understood. In this study, we sought to identify circulating metabolites that predispose kidney cancer and to evaluate the extent to which they are influenced by body mass index (BMI). METHODS AND FINDINGS We assessed the association between circulating levels of 1,416 metabolites and incident kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case-control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years after blood collection. We found 25 metabolites robustly associated with kidney cancer risk. In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including 8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75 (95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10-8). In contrast, 4 amino acids, including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10-5), were positively associated with risk. Adjusting for BMI partly attenuated the risk association for some-but not all-metabolites, whereas other known risk factors of kidney cancer, such as smoking and alcohol consumption, had minimal impact on the observed associations. A mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome highlighted that some metabolites associated with kidney cancer risk are influenced by BMI. Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found inversely associated with kidney cancer risk (e.g., -0.17 SD change [ßBMI] in 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10-5). BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10-3). While our results were robust across the participating studies, they were limited to study participants of European descent, and it will, therefore, be important to evaluate if our findings can be generalised to populations with different genetic backgrounds. CONCLUSIONS This study suggests a potentially important role of the blood metabolome in kidney cancer aetiology by highlighting a wide range of metabolites associated with the risk of developing kidney cancer and the extent to which changes in levels of these metabolites are driven by BMI-the principal modifiable risk factor of kidney cancer.
Collapse
Affiliation(s)
- Florence Guida
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Vanessa Y. Tan
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Laura J. Corbin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Karl Smith-Byrne
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Karine Alcala
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Isobel D. Stewart
- MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - David Achaintre
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Chair of Experimental Genetics, School of Life Science, Weihenstephan, Technische Universität München, Freising, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastián, Spain
- Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Caroline J. Bull
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | | | - Audrey Gicquiau
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Arnulf Langhammer
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Tricia L. Larose
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
- Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | | | - Roger L. Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - David C. Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Therese H. Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Elin Pettersen Sørgjerd
- HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, Norway
| | - Cornelia Prehn
- Metabolomics and Proteomics Core (MPC), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Joseph A. Rothwell
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Équipe “Exposome et Hérédité”, CESP UMR1018, Inserm, Villejuif, France
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Équipe “Exposome et Hérédité”, CESP UMR1018, Inserm, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milano, Italy
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| |
Collapse
|
43
|
Abstract
Lipids are natural substances found in all living organisms and involved in many biological functions. Imbalances in the lipid metabolism are linked to various diseases such as obesity, diabetes, or cardiovascular disease. Lipids comprise thousands of chemically distinct species making them a challenge to analyze because of their great structural diversity.Thanks to the technological improvements in the fields of chromatography, high-resolution mass spectrometry, and bioinformatics over the last years, it is now possible to perform global lipidomics analyses, allowing the concomitant detection, identification, and relative quantification of hundreds of lipid species. This review shall provide an insight into a general lipidomics workflow and its application in metabolic biomarker research.
Collapse
|
44
|
Brandenburg J, Marwitz S, Tazoll SC, Waldow F, Kalsdorf B, Vierbuchen T, Scholzen T, Gross A, Goldenbaum S, Hölscher A, Hein M, Linnemann L, Reimann M, Kispert A, Leitges M, Rupp J, Lange C, Niemann S, Behrends J, Goldmann T, Heine H, Schaible UE, Hölscher C, Schwudke D, Reiling N. WNT6/ACC2-induced storage of triacylglycerols in macrophages is exploited by Mycobacterium tuberculosis. J Clin Invest 2021; 131:e141833. [PMID: 34255743 DOI: 10.1172/jci141833] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB. Using genetic and pharmacological approaches, we demonstrated that lack of functional WNT6 or ACC2 significantly reduced intracellular triacylglycerol (TAG) levels and Mtb survival in macrophages. Moreover, treatment of Mtb-infected mice with a combination of a pharmacological ACC2 inhibitor and the anti-TB drug isoniazid (INH) reduced lung TAG and cytokine levels, as well as lung weights, compared with treatment with INH alone. This combination also reduced Mtb bacterial numbers and the size of mononuclear cell infiltrates in livers of infected mice. In summary, our findings demonstrate that Mtb exploits WNT6/ACC2-induced storage of TAGs in macrophages to facilitate its intracellular survival, a finding that opens new perspectives for host-directed adjunctive treatment of pulmonary TB.
Collapse
Affiliation(s)
- Julius Brandenburg
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sebastian Marwitz
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Simone C Tazoll
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Franziska Waldow
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Bioanalytical Chemistry
| | - Barbara Kalsdorf
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases
| | | | | | - Annette Gross
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Svenja Goldenbaum
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | | | - Lara Linnemann
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | | | - Andreas Kispert
- Institute for Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Michael Leitges
- Division of BioMedical Sciences/Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jan Rupp
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Department of Infectious Diseases and Microbiology and
| | - Christoph Lange
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Clinical Infectious Diseases.,Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany.,Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | | | - Torsten Goldmann
- Pathology, Research Center Borstel, Borstel, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | | - Ulrich E Schaible
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - Christoph Hölscher
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Infection Immunology, and
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany.,Bioanalytical Chemistry
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
45
|
Łuczaj W, Jastrząb A, do Rosário Domingues M, Domingues P, Skrzydlewska E. Changes in Phospholipid/Ceramide Profiles and Eicosanoid Levels in the Plasma of Rats Irradiated with UV Rays and Treated Topically with Cannabidiol. Int J Mol Sci 2021; 22:8700. [PMID: 34445404 PMCID: PMC8395479 DOI: 10.3390/ijms22168700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic UV radiation causes oxidative stress and inflammation of skin and blood cells. Therefore, in this study, we assessed the effects of cannabidiol (CBD), a natural phytocannabinoid with antioxidant and anti-inflammatory properties, on the phospholipid (PL) and ceramide (CER) profiles in the plasma of nude rats irradiated with UVA/UVB and treated topically with CBD. The results obtained showed that UVA/UVB radiation increased the levels of phosphatidylcholines, lysophospholipids, and eicosanoids (PGE2, TxB2), while downregulation of sphingomyelins led to an increase in CER[NS] and CER[NDS]. Topical application of CBD to the skin of control rats significantly upregulated plasma ether-linked phosphatidylethanolamines (PEo) and ceramides. However, CBD administered to rats irradiated with UVA/UVB promoted further upregulation of CER and PEo and led to significant downregulation of lysophospholipids. This was accompanied by the anti-inflammatory effect of CBD, manifested by a reduction in the levels of proinflammatory PGE2 and TxB2 and a dramatic increase in the level of anti-inflammatory LPXA4. It can therefore be suggested that topical application of CBD to the skin of rats exposed to UVA/UVB radiation prevents changes in plasma phospholipid profile resulting in a reduction of inflammation by reducing the level of LPE and LPC species and increasing antioxidant capacity due to upregulation of PEo species.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Maria do Rosário Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
- CESAM, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| |
Collapse
|
46
|
Vvedenskaya O, Rose TD, Knittelfelder O, Palladini A, Wodke JAH, Schuhmann K, Ackerman JM, Wang Y, Has C, Brosch M, Thangapandi VR, Buch S, Züllig T, Hartler J, Köfeler HC, Röcken C, Coskun Ü, Klipp E, von Schoenfels W, Gross J, Schafmayer C, Hampe J, Pauling JK, Shevchenko A. Nonalcoholic fatty liver disease stratification by liver lipidomics. J Lipid Res 2021; 62:100104. [PMID: 34384788 PMCID: PMC8488246 DOI: 10.1016/j.jlr.2021.100104] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common metabolic dysfunction leading to hepatic steatosis. However, NAFLD's global impact on the liver lipidome is poorly understood. Using high-resolution shotgun mass spectrometry, we quantified the molar abundance of 316 species from 22 major lipid classes in liver biopsies of 365 patients, including nonsteatotic patients with normal or excessive weight, patients diagnosed with NAFL (nonalcoholic fatty liver) or NASH (nonalcoholic steatohepatitis), and patients bearing common mutations of NAFLD-related protein factors. We confirmed the progressive accumulation of di- and triacylglycerols and cholesteryl esters in the liver of NAFL and NASH patients, while the bulk composition of glycerophospho- and sphingolipids remained unchanged. Further stratification by biclustering analysis identified sphingomyelin species comprising n24:2 fatty acid moieties as membrane lipid markers of NAFLD. Normalized relative abundance of sphingomyelins SM 43:3;2 and SM 43:1;2 containing n24:2 and n24:0 fatty acid moieties, respectively, showed opposite trends during NAFLD progression and distinguished NAFL and NASH lipidomes from the lipidome of nonsteatotic livers. Together with several glycerophospholipids containing a C22:6 fatty acid moiety, these lipids serve as markers of early and advanced stages of NAFL.
Collapse
Affiliation(s)
- Olga Vvedenskaya
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Tim Daniel Rose
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Yuting Wang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Veera Raghavan Thangapandi
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Stephan Buch
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig Holstein, Kiel, Schleswig-Holstein, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum Munich at the University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus of Technische Universität Dresden, Dresden, Germany
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Witigo von Schoenfels
- Department of Visceral and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel Campus, Christian-Albrechts-University Kiel, Kiel, Germany; Christian Albrechts University in Kiel Center of Clinical Anatomy Kiel, Schleswig-Holstein, Germany
| | - Justus Gross
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Clemens Schafmayer
- Department of General, Visceral, Vascular and Transplant Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Josch Konstantin Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
47
|
Koseler A, Arslan I, Sabirli R, Zeytunluoglu A, Kılıç O, Kilic ID. Associations between serum lipids and mannose levels in coronary artery disease among nondiabetic patients. Biomark Med 2021; 15:1035-1042. [PMID: 34289736 DOI: 10.2217/bmm-2020-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Nondiabetic patients have been studied to determine whether modest elevations in plasma mannose levels may be associated with a greater incidence of coronary artery disease (CAD). Materials & methods: The plasma mannose, lipids (triglyceride, low-density lipoprotein, high-density lipoprotein, very low-density lipoprotein) and lactate dehydrogenase levels were successfully evaluated with respect to subsequent CAD using records of 120 nondiabetic patients and 120 healthy volunteers. CAD was identified from myocardial infarction and new diagnoses of angina. Results: Of 120 patients studied, the plasma mannose, triglyceride, lactate dehydrogenase and very low-density lipoprotein levels of patients were significantly higher than control groups. Conclusion: Our findings showed that elevated baseline mannose in plasma was associated with a progressive risk of CAD with time.
Collapse
Affiliation(s)
- Aylin Koseler
- Department of Biophysics, Pamukkale University Faculty of Medicine, Denizli, Turkey
| | - Idris Arslan
- Department of Biomedical Engineering, Bülent Ecevit University, Zonguldak, Turkey
| | - Ramazan Sabirli
- Department of Emergency Medicine, Kafkas University Faculty of Medicine, Kars, Turkey
| | - Ali Zeytunluoglu
- Pamukkale University Vocational School of Tech Sciences, Electronics & Automation, Denizli, Turkey
| | - Oğuz Kılıç
- Department of Cardiology, Simav Doç. Dr. İsmail Karakuyu State Hospital, Kütahya, Turkey
| | - Ismail Dogu Kilic
- Department of Cardiology, Pamukkale University Faculty of Medicine, Denizli, Turkey
| |
Collapse
|
48
|
Papandreou C, García-Gavilán J, Camacho-Barcia L, Toft Hansen T, Harrold JA, Sjödin A, Halford JCG, Bulló M. Changes in Circulating Metabolites During Weight Loss are Associated with Adiposity Improvement, and Body Weight and Adiposity Regain During Weight Loss Maintenance: The SATIN Study. Mol Nutr Food Res 2021; 65:e2001154. [PMID: 34184401 DOI: 10.1002/mnfr.202001154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/14/2021] [Indexed: 11/09/2022]
Abstract
SCOPE To examine the relationship between changes in circulating metabolites during diet-induced weight loss and changes of adiposity. This study also investigates changes in these metabolites in relation to body weight and adiposity regain during a weight loss maintenance period. METHODS AND RESULTS This cohort study is nested within the Satiety Innovation (SATIN) study. Participants (n = 162) achieving ≥8% weight loss during an initial 8-week low-calorie formula diet (LCD) are included in a 12-week weight loss maintenance period. A targeted metabolite profiling (123 metabolites) approach is applied using three different platforms (proton nuclear magnetic resonance, liquid chromatography mass spectrometry, gas chromatography mass spectrometry). Changes in several lipid species and citric acid are significantly associated with greater reduction of body weight, total fat, and abdominal adiposity distribution during the LCD. Decreases in the concentrations of lysophosphatidylcholines (LPCs) 14:0, LPC 20:3, phosphatidylcholine (PC) 32:2, PC 38:3, sphingomyelin (SM) 32:2, and increases in citric acid concentrations during the LCD are associated with adiposity regain and loss, respectively, during the weight loss maintenance period. CONCLUSIONS The results show that weight loss is associated with changes in lipid species and citric acid. These changes are related to subsequent weight and adiposity regain identifying the adipose lipid metabolism as an important factor for the maintenance of lost weight and adiposity.
Collapse
Affiliation(s)
- Christopher Papandreou
- Institut d'Investigació Sanitaria Pere Virgili, IISPV, Hospital Universitari Sant Joan, Reus, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine, Rovira i Virgili University, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud, Carlos III, Madrid, Spain
| | - Jesús García-Gavilán
- Institut d'Investigació Sanitaria Pere Virgili, IISPV, Hospital Universitari Sant Joan, Reus, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine, Rovira i Virgili University, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud, Carlos III, Madrid, Spain
| | - Lucía Camacho-Barcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Thea Toft Hansen
- Department of Nutrition, Exercise and Sports, Section for Obesity Research, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Joanne A Harrold
- Department of Psychological Sciences, Institute of Psychology Health and Society, University of Liverpool, Liverpool, UK
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Section for Obesity Research, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | | | - Mònica Bulló
- Institut d'Investigació Sanitaria Pere Virgili, IISPV, Hospital Universitari Sant Joan, Reus, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine, Rovira i Virgili University, Reus, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud, Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Yu X, Wang Q, Lu W, Zhang M, Chen K, Xue J, Zhao Q, Wang P, Luo P, Shen Q. Fast and Specific Screening of EPA/DHA-Enriched Phospholipids in Fish Oil Extracted from Different Species by HILIC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7997-8007. [PMID: 34240600 DOI: 10.1021/acs.jafc.1c01709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eicosapentaenoic acid- and docosahexaenoic acid-enriched phospholipids (PLEPA/DHA) have versatile health-beneficial functions and can be well absorbed in the intestine. Herein, a precursor ion scan-driven hydrophilic interaction chromatography mass spectrometry (PreIS-HILIC-MS) method with the fatty acyl moieties of m/z 301.6 and 327.6 locked was established to specifically and selectively screen PLEPA/DHA in different fish oil samples, including saury, grass carp, hairtail, and yellow croaker. Taking saury oil as an example, a total of 24 PLEPA/DHA were successfully identified and quantified, including 20 PCEPA/DHA and 4 PEEPA/DHA. Finally, this method was validated in terms of sensitivity (limit of detection ≤ 4.15 μg·mL-1), linearity (≥0.9979), precision (RSDintraday ≤ 4.65%), and recovery (≥78.6%). The performance of the PreIS-HILIC-MS method was also compared with that of the traditional full-scan mode, and the former demonstrated its unique superiority in targeted screening of PLEPA/DHA in fish oils.
Collapse
Affiliation(s)
- Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qingcheng Wang
- Department of Cardiology, Hangzhou Yuhang Hospital of Traditional Chinese Medicine, Yuhang 311106, Zhejiang, China
| | - Weibo Lu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kang Chen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China
| | - Pingya Wang
- Zhoushan Institute for Food and Drug Control, Zhoushan 316000, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
50
|
An exploratory analysis of comparative plasma metabolomic and lipidomic profiling in salt-sensitive and salt-resistant individuals from The Dietary Approaches to Stop Hypertension Sodium Trial. J Hypertens 2021; 39:1972-1981. [PMID: 34001808 PMCID: PMC8429079 DOI: 10.1097/hjh.0000000000002904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objective: This study conducted exploratory metabolomic and lipidomic profiling of plasma samples from the DASH (Dietary Approaches to Stop Hypertension) Sodium Trial to identify unique plasma biomarkers to identify salt-sensitive versus salt-resistant participants. Methods: Utilizing plasma samples from the DASH-Sodium Trial, we conducted untargeted metabolomic and lipidomic profiling on plasma from salt-sensitive and salt-resistant DASH-Sodium Trial participants. Study 1 analyzed plasma from 106 salt-sensitive and 85 salt-resistant participants obtained during screening when participants consumed their regular diet. Study 2 examined paired within-participant plasma samples in 20 salt-sensitive and 20 salt-resistant participants during a high-salt and low-salt dietary intervention. To investigate differences in metabolites or lipidomes that could discriminate between salt-sensitive and salt-resistant participants or the response to a dietary sodium intervention Principal Component Analysis and Orthogonal Partial Least Square Discriminant Analysis was conducted. Differential expression analysis was performed to validate observed variance and to determine the statistical significance. Results: Differential expression analysis between salt-sensitive and salt-resistant participants at screening revealed no difference in plasma metabolites or lipidomes. In contrast, three annotated plasma metabolites, tocopherol alpha, 2-ketoisocaproic acid, and citramalic acid, differed significantly between high-sodium and low-sodium dietary interventions in salt-sensitive participants. Conclusion: In DASH-Sodium Trial participants on a regular diet, plasma metabolomic or lipidomic signatures were not different between salt-sensitive and salt-resistant participants. High-sodium intake was associated with changes in specific circulating metabolites in salt-sensitive participants. Further studies are needed to validate the identified metabolites as potential biomarkers that are associated with the salt sensitivity of blood pressure.
Collapse
|