1
|
Sgarlata GM, Rasolondraibe E, Salmona J, Le Pors B, Ralantoharijaona T, Rakotonanahary A, Jan F, Manzi S, Iribar A, Zaonarivelo JR, Volasoa Andriaholinirina N, Rasoloharijaona S, Chikhi L. The genomic diversity of the Eliurus genus in northern Madagascar with a putative new species. Mol Phylogenet Evol 2024; 193:107997. [PMID: 38128795 DOI: 10.1016/j.ympev.2023.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Madagascar exhibits extraordinarily high level of species richness and endemism, while being severely threatened by habitat loss and fragmentation (HL&F). In front of these threats to biodiversity, conservation effort can be directed, for instance, in the documentation of species that are still unknown to science, or in investigating how species respond to HL&F. The tufted-tail rats genus (Eliurus spp.) is the most speciose genus of endemic rodents in Madagascar, with 13 described species, which occupy two major habitat types: dry or humid forests. The large species diversity and association to specific habitat types make the Eliurus genus a suitable model for investigating species adaptation to new environments, as well as response to HL&F (dry vs humid). In the present study, we investigated Eliurus spp. genomic diversity across northern Madagascar, a region covered by both dry and humid fragmented forests. From the mitochondrial DNA (mtDNA) and nuclear genomic (RAD-seq) data of 124 Eliurus individuals sampled in poorly studied forests of northern Madagascar, we identified an undescribed Eliurus taxon (Eliurus sp. nova). We tested the hypothesis of a new Eliurus species using several approaches: i) DNA barcoding; ii) phylogenetic inferences; iii) species delimitation tests based on the Multi-Species Coalescent (MSC) model, iv) genealogical divergence index (gdi); v) an ad-hoc test of isolation-by-distance within versus between sister-taxa, vi) comparisons of %GC content patterns and vii) morphological analyses. All analyses support the recognition of the undescribed lineage as a putative distinct species. In addition, we show that Eliurus myoxinus, a species known from the dry forests of western Madagascar, is, surprisingly, found mostly in humid forests in northern Madagascar. In conclusion, we discuss the implications of such findings in the context of Eliurus species evolution and diversification, and use the distribution of northern Eliurus species as a proxy for reconstructing past changes in forest cover and vegetation type in northern Madagascar.
Collapse
Affiliation(s)
| | - Emmanuel Rasolondraibe
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar.
| | - Jordi Salmona
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| | - Barbara Le Pors
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tantely Ralantoharijaona
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Ando Rakotonanahary
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar.
| | - Fabien Jan
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Sophie Manzi
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| | - Amaia Iribar
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| | - John Rigobert Zaonarivelo
- Département des Sciences de la Nature et de l'Environnement, Université d'Antsiranana, 201 Antsiranana, Madagascar.
| | | | - Solofonirina Rasoloharijaona
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE),Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 -Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
2
|
Springer A, Durden LA, Kiene F, Klein A, Rakotondravony R, Ehlers J, Greiman SE, Blanco MB, Zohdy S, Kessler SE, Strube C, Radespiel U. Molecular phylogenetics of the sucking louse genus Lemurpediculus (Insecta: Phthiraptera), ectoparasites of lemurs, with descriptions of three new species. Int J Parasitol Parasites Wildl 2023; 20:138-152. [PMID: 36845223 PMCID: PMC9945782 DOI: 10.1016/j.ijppaw.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Sucking lice live in intimate association with their hosts and often display a high degree of host specificity. The present study investigated sucking lice of the genus Lemurpediculus from six mouse lemur (Microcebus) and two dwarf lemur (Cheirogaleus) species endemic to the island of Madagascar, considered a biodiversity hotspot. Louse phylogenetic trees were created based on cytochrome C oxidase subunit I (COI), elongation factor 1α (EF1α) and internal transcribed spacer 1 (ITS1) sequences. While clustering according to host species was generally observed for COI and ITS1, suggesting high host specificity of the examined lice, EF1α sequences alone did not distinguish between lice of different Microcebus species, possibly due to rather recent divergence. As bootstrap support for basal tree structure was rather low, further data are necessary to resolve the evolutionary history of louse-mouse lemur associations. Three new species of sucking lice are described: Lemurpediculus zimmermanni sp. Nov. From Microcebus ravelobensis, Lemurpediculus gerpi sp.nov. from Microcebus gerpi, and Lemurpediculus tsimanampesotsae sp. nov. from Microcebus griseorufus. These new species are compared with all known congeneric species and identifying features are illustrated for all known species of Lemurpediculus.
Collapse
Affiliation(s)
- Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Lance A. Durden
- Department of Biology, Georgia Southern University, 4324 Old Register Road, Statesboro, GA, 30458, USA
| | - Frederik Kiene
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany,Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Annette Klein
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Romule Rakotondravony
- École Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga 401, Madagascar,Faculté des Sciences, de Technologies et de l’Environnement, University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652. Mahajanga 401, Madagascar
| | - Julian Ehlers
- Animal Ecology and Conservation, Institute of Cell and Systems Biology of Animals, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stephen E. Greiman
- Department of Biology, Georgia Southern University, 4324 Old Register Road, Statesboro, GA, 30458, USA
| | - Marina B. Blanco
- Duke Lemur Center, Durham, NC, 27705, USA,Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Sarah Zohdy
- School of Forestry and Wildlife Sciences, 602 Duncan Drive, Auburn, AL, 36849, USA
| | - Sharon E. Kessler
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany,Corresponding author.
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany,Corresponding author.
| |
Collapse
|
3
|
Kessler SE, Tsangaras K, Rasoloharijaona S, Radespiel U, Greenwood AD. Long-term host-pathogen evolution of endogenous beta- and gammaretroviruses in mouse lemurs with little evidence of recent retroviral introgression. Virus Evol 2022; 9:veac117. [PMID: 36632481 PMCID: PMC9825726 DOI: 10.1093/ve/veac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Madagascar's flora and fauna have evolved in relative isolation since the island split from the African and Indian continents. When the last common ancestors of lemurs left Africa between 40 and 70 million years ago, they carried a subset of the viral diversity of the mainland population within them, which continued to evolve throughout the lemur radiation. Relative to other primate radiations, we know very little about the past or present viral diversity of lemurs, particularly mouse lemurs. Using high-throughput sequencing, we identified two gammaretroviruses and three betaretroviruses in the genomes of four species of wild mouse lemurs. The two gammaretroviruses and two betaretroviruses have not previously been described. One betaretrovirus was previously identified. All identified viruses are present in both Lorisiformes and Lemuriformes but absent from haplorrhine primates. The estimated ages of these viruses are consistent with the estimated divergence dates of the host lineages, suggesting they colonized the lemur genome after the Haplorrhine-Strepsirrhine split, but before the Lorisiformes-Lemuriformes split and before the colonization of Madagascar. The viral phylogenies connect multiple lineages of retroviruses from non-lemur and non-Madagascar-native species, suggesting substantial cross-species transmission occurred deep in the primate clade prior to its geographic dispersal. These phylogenies provide novel insights into known retroviral clades. They suggest that the origin of gammaretroviruses in rodents or bats may be premature and that the Jaagsiekte sheep virus clade may be older and more broadly distributed among mammals than previously thought.
Collapse
Affiliation(s)
| | - Kyriakos Tsangaras
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, Berlin 10315, Germany,Department of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, CY-2417, P.O. Box 24005, Nicosia, CY-1700, Cyprus
| | - Solofonirina Rasoloharijaona
- Faculty of Science, Technology and Environment, University of Mahajanga, 5 Georges V Street - Building KAKAL Mahajanga Be - Po. Box 652 , Mahajanga 401, Madagascar
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, Hannover 30559, Germany
| | | |
Collapse
|
4
|
Shifting Biogeographic Patterns of Microcebus ravelobensis and M. murinus. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Terray L, Denys C, Goodman SM, Soarimalala V, Lalis A, Cornette R. Skull morphological evolution in Malagasy endemic Nesomyinae rodents. PLoS One 2022; 17:e0263045. [PMID: 35120158 PMCID: PMC8815910 DOI: 10.1371/journal.pone.0263045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2022] [Indexed: 11/22/2022] Open
Abstract
Madagascar is a large island to the south-east of Africa and in many ways continental in size and ecological complexity. Here we aim to define how skull morphology of an endemic and monophyletic clade of rodents (sub-family Nesomyinae), that show considerable morphological variation, have evolved and how their disparity is characterized in context of the geographical and ecological complexity of the island. We performed a two-dimensional geometric morphometric analysis on 370 dorsal and 399 ventral skull images of 19 species (comprising all nine extant endemic genera) and tested the influence of three ecological parameters (climate, locomotor habitat and nychthemeral cycle) in a phylogenetic context on size and shape. The results indicate that skull shape appears to importantly reflect phylogeny, whereas skull size does not carry a significant phylogenetic signal. Skull shape is significantly influenced by climate while, skull size is not impacted by any of the ecological factors tested, which is controversial to expectations in an insular context. In conclusion, Nesomyinae must have evolved under unusual types of local constraints, preventing this radiation from demonstrating strong ecological release.
Collapse
Affiliation(s)
- Léa Terray
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, CP 51, Paris, France
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, CP 51, Paris, France
- * E-mail:
| | - Steven M. Goodman
- Field Museum of Natural History, Chicago, IL, United States of America
- Association Vahatra, Antananarivo, Madagascar
| | - Voahangy Soarimalala
- Association Vahatra, Antananarivo, Madagascar
- Institut des Sciences et Techniques de l’Environnement, University of Fianarantsoa, Fianarantsoa, Madagascar
| | - Aude Lalis
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, CP 51, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, CP 51, Paris, France
| |
Collapse
|
6
|
Teixeira H, Montade V, Salmona J, Metzger J, Bremond L, Kasper T, Daut G, Rouland S, Ranarilalatiana S, Rakotondravony R, Chikhi L, Behling H, Radespiel U. Past environmental changes affected lemur population dynamics prior to human impact in Madagascar. Commun Biol 2021; 4:1084. [PMID: 34526636 PMCID: PMC8443640 DOI: 10.1038/s42003-021-02620-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
Quaternary climatic changes have been invoked as important drivers of species diversification worldwide. However, the impact of such changes on vegetation and animal population dynamics in tropical regions remains debated. To overcome this uncertainty, we integrated high-resolution paleoenvironmental reconstructions from a sedimentary record covering the past 25,000 years with demographic inferences of a forest-dwelling primate species (Microcebus arnholdi), in northern Madagascar. Result comparisons suggest that climate changes through the African Humid Period (15.2 - 5.5 kyr) strongly affected the demographic dynamics of M. arnholdi. We further inferred a population decline in the last millennium which was likely shaped by the combination of climatic and anthropogenic impacts. Our findings demonstrate that population fluctuations in Malagasy wildlife were substantial prior to a significant human impact. This provides a critical knowledge of climatically driven, environmental and ecological changes in the past, which is essential to better understand the dynamics and resilience of current biodiversity.
Collapse
Affiliation(s)
- Helena Teixeira
- grid.412970.90000 0001 0126 6191Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Vincent Montade
- grid.7450.60000 0001 2364 4210University of Goettingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073 Goettingen, Germany ,grid.462058.d0000 0001 2188 7059ISEM, Université Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier, France
| | - Jordi Salmona
- grid.15781.3a0000 0001 0723 035XCNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Julia Metzger
- grid.412970.90000 0001 0126 6191Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany ,grid.419538.20000 0000 9071 0620Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Laurent Bremond
- grid.462058.d0000 0001 2188 7059ISEM, Université Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier, France
| | - Thomas Kasper
- grid.9613.d0000 0001 1939 2794Friedrich-Schiller-University Jena, Department of Physical Geography, Loebdergraben 32, 07743 Jena, Germany
| | - Gerhard Daut
- grid.9613.d0000 0001 1939 2794Friedrich-Schiller-University Jena, Department of Physical Geography, Loebdergraben 32, 07743 Jena, Germany
| | - Sylvie Rouland
- grid.462058.d0000 0001 2188 7059ISEM, Université Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier, France
| | - Sandratrinirainy Ranarilalatiana
- grid.440419.c0000 0001 2165 5629Université d’Antananarivo, Faculté des Sciences, Mention Biologie et Ecologie Végétale, Laboratoire de Palynologie Appliquée, B.P 905 - 101, Antananarivo, Madagascar
| | - Romule Rakotondravony
- Ecole Doctorale Ecosystèmes Naturels (EDEN), University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga, 401 Madagascar ,Faculté des Sciences, de Technologies et de l’Environnement, University of Mahajanga, 5 Rue Georges V - Immeuble KAKAL, Mahajanga Be, B.P. 652, Mahajanga, 401 Madagascar
| | - Lounès Chikhi
- grid.418346.c0000 0001 2191 3202Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, P-2780-156 Oeiras, Portugal ,grid.4399.70000000122879528Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bât. 4R1, 31062 Toulouse cedex 9, France
| | - Hermann Behling
- grid.7450.60000 0001 2364 4210University of Goettingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Ute Radespiel
- grid.412970.90000 0001 0126 6191Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
7
|
Miralles A, Ducasse J, Brouillet S, Flouri T, Fujisawa T, Kapli P, Knowles LL, Kumari S, Stamatakis A, Sukumaran J, Lutteropp S, Vences M, Puillandre N. SPART: A versatile and standardized data exchange format for species partition information. Mol Ecol Resour 2021; 22:430-438. [PMID: 34288531 DOI: 10.1111/1755-0998.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
A wide range of data types can be used to delimit species and various computer-based tools dedicated to this task are now available. Although these formalized approaches have significantly contributed to increase the objectivity of species delimitation (SD) under different assumptions, they are not routinely used by alpha-taxonomists. One obvious shortcoming is the lack of interoperability among the various independently developed SD programs. Given the frequent incongruences between species partitions inferred by different SD approaches, researchers applying these methods often seek to compare these alternative species partitions to evaluate the robustness of the species boundaries. This procedure is excessively time consuming at present, and the lack of a standard format for species partitions is a major obstacle. Here, we propose a standardized format, SPART, to enable compatibility between different SD tools exporting or importing partitions. This format reports the partitions and describes, for each of them, the assignment of individuals to the "inferred species". The syntax also allows support values to be optionally reported, as well as original trees and the full command lines used in the respective SD analyses. Two variants of this format are proposed, overall using the same terminology but presenting the data either optimized for human readability (matricial SPART) or in a format in which each partition forms a separate block (SPART.XML). ABGD, DELINEATE, GMYC, PTP and TR2 have already been adapted to output SPART files and a new version of LIMES has been developed to import, export, merge and split them.
Collapse
Affiliation(s)
- Aurélien Miralles
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | | | - Sophie Brouillet
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Tomas Flouri
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Tomochika Fujisawa
- Center for Data Science Education and Research, Shiga University, Shiga, Japan
| | - Paschalia Kapli
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - L Lacey Knowles
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA
| | - Sangeeta Kumari
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jeet Sukumaran
- Biology Department, LS 262, San Diego State University, San Diego, CA, USA
| | - Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Miguel Vences
- Braunschweig University of Technology, Zoological Institute, Braunschweig, Germany
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
8
|
Schäffler L, Kappeler PM, Halley JM. Mouse Lemurs in an Assemblage of Cheirogaleid Primates in Menabe Central, Western Madagascar – Three Reasons to Coexist. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.585781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological communities are structured by interactions between coexisting species that mutually influence their distribution and abundance. Ecologically similar species are expected to exclude one another from suitable habitat, so the coexistence of two mouse lemur species in an assemblage of several closely related cheirogaleid primates in the central Menabe region of Madagascar requires explanation. We assessed the occurrence of Madame Berthe’s mouse lemurs (Microcebus berthae) and Gray mouse lemurs (Microcebus murinus), and of two larger cheirogaleids, Coquerel’s giant mouse lemur (Mirza coquereli) and the western fat-tailed dwarf lemur (Cheirogaleus medius), by nocturnal line transect walks between 2003 and 2007. We explored interspecific interactions for four different scenarios with varying resource availability (degraded and non-degraded habitat in the wet and dry season), both on the regional spatial scale and on a finer local (transect) scale. We tested whether the interspecific distribution of mouse lemur individuals indicates interspecific competition and whether their regional coexistence might be stabilized by interactions with M. coquereli or C. medius. We developed the “Inter-Species Index of Attraction” (ISIA) to quantify the observed interspecific interactions within transects and determined if these were significantly different from a null model generated by a combination of randomization and bootstrapping to control for intraspecific aggregation. For the two mouse lemurs, interspecific spatial exclusion was most pronounced during the resource-poor dry season, consistent with the hypothesis of feeding competition. Seasonally varying distribution patterns indicated resource tracking in a spatio-temporally heterogeneous environment. The interspecific distribution of individuals suggested that the larger cheirogaleids benefit M. berthae at the expense of the more abundant M. murinus: spatial associations of both, M. coquereli and C. medius, with M. murinus were negative in most scenarios and across spatial scales, but neutral or even positive with M. berthae. Thus, our study revealed that coexistence among ecologically similar heterospecifics can rely on complex density-mediated interspecific processes varying with habitat quality and season. With regard to the stability of animal assemblages, this insight has major implications for biodiversity conservation.
Collapse
|
9
|
Schüßler D, Blanco MB, Salmona J, Poelstra J, Andriambeloson JB, Miller A, Randrianambinina B, Rasolofoson DW, Mantilla-Contreras J, Chikhi L, Louis EE, Yoder AD, Radespiel U. Ecology and morphology of mouse lemurs (Microcebus spp.) in a hotspot of microendemism in northeastern Madagascar, with the description of a new species. Am J Primatol 2020; 82:e23180. [PMID: 32716088 DOI: 10.1002/ajp.23180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Delimitation of cryptic species is increasingly based on genetic analyses but the integration of distributional, morphological, behavioral, and ecological data offers unique complementary insights into species diversification. We surveyed communities of nocturnal mouse lemurs (Microcebus spp.) in five different sites of northeastern Madagascar, measuring a variety of morphological parameters and assessing reproductive states for 123 individuals belonging to five different lineages. We documented two different non-sister lineages occurring in sympatry in two areas. In both cases, sympatric species pairs consisted of a locally restricted (M. macarthurii or M. sp. #3) and a more widespread lineage (M. mittermeieri or M. lehilahytsara). Estimated Extents of Occurrence (EOO) of these lineages differed remarkably with 560 and 1,500 km2 versus 9,250 and 50,700 km2 , respectively. Morphometric analyses distinguished unambiguously between sympatric species and detected more subtle but significant differences among sister lineages. Tail length and body size were most informative in this regard. Reproductive schedules were highly variable among lineages, most likely impacted by phylogenetic relatedness and environmental variables. While sympatric species pairs differed in their reproductive timing (M. sp. #3/M. lehilahytsara and M. macarthurii/M. mittermeieri), warmer lowland rainforests were associated with a less seasonal reproductive schedule for M. mittermeieri and M. lehilahytsara compared with populations occurring in montane forests. Distributional, morphological, and ecological data gathered in this study support the results of genomic species delimitation analyses conducted in a companion study, which identified one lineage, M. sp. #3, as meriting formal description as a new species. Consequently, a formal species description is included. Worryingly, our data also show that geographically restricted populations of M. sp. #3 and its sister species (M. macarthurii) are at high risk of local and perhaps permanent extinction from both deforestation and habitat fragmentation.
Collapse
Affiliation(s)
- Dominik Schüßler
- Research Group Ecology and Environmental Education, Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| | - Marina B Blanco
- Duke Lemur Center, Duke University, Durham, North Carolina.,Department of Biology, Duke University, Durham, North Carolina
| | - Jordi Salmona
- Laboratoire Évolution et Diversité 11 Biologique, CNRS, Université Paul Sabatier, IRD, UMR5174 EDB, Toulouse, France
| | - Jelmer Poelstra
- Department of Biology, Duke University, Durham, North Carolina
| | - Jean B Andriambeloson
- Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo, Madagascar
| | - Alex Miller
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Blanchard Randrianambinina
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), Antananarivo, Madagascar.,Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
| | - David W Rasolofoson
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), Antananarivo, Madagascar
| | - Jasmin Mantilla-Contreras
- Research Group Ecology and Environmental Education, Institute of Biology and Chemistry, University of Hildesheim, Hildesheim, Germany
| | - Lounès Chikhi
- Laboratoire Évolution et Diversité 11 Biologique, CNRS, Université Paul Sabatier, IRD, UMR5174 EDB, Toulouse, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, Nebraska
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Poelstra JW, Salmona J, Tiley GP, Schüßler D, Blanco MB, Andriambeloson JB, Bouchez O, Campbell CR, Etter PD, Hohenlohe PA, Hunnicutt KE, Iribar A, Johnson EA, Kappeler PM, Larsen PA, Manzi S, Ralison JM, Randrianambinina B, Rasoloarison RM, Rasolofoson DW, Stahlke AR, Weisrock DW, Williams RC, Chikhi L, Louis EE, Radespiel U, Yoder AD. Cryptic Patterns of Speciation in Cryptic Primates: Microendemic Mouse Lemurs and the Multispecies Coalescent. Syst Biol 2020; 70:203-218. [PMID: 32642760 DOI: 10.1093/sysbio/syaa053] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/13/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Mouse lemurs (Microcebus) are a radiation of morphologically cryptic primates distributed throughout Madagascar for which the number of recognized species has exploded in the past two decades. This taxonomic revision has prompted understandable concern that there has been substantial oversplitting in the mouse lemur clade. Here, we investigate mouse lemur diversity in a region in northeastern Madagascar with high levels of microendemism and predicted habitat loss. We analyzed RADseq data with multispecies coalescent (MSC) species delimitation methods for two pairs of sister lineages that include three named species and an undescribed lineage previously identified to have divergent mtDNA. Marked differences in effective population sizes, levels of gene flow, patterns of isolation-by-distance, and species delimitation results were found among the two pairs of lineages. Whereas all tests support the recognition of the presently undescribed lineage as a separate species, the species-level distinction of two previously described species, M. mittermeieri and M. lehilahytsara is not supported-a result that is particularly striking when using the genealogical discordance index (gdi). Nonsister lineages occur sympatrically in two of the localities sampled for this study, despite an estimated divergence time of less than 1 Ma. This suggests rapid evolution of reproductive isolation in the focal lineages and in the mouse lemur clade generally. The divergence time estimates reported here are based on the MSC calibrated with pedigree-based mutation rates and are considerably more recent than previously published fossil-calibrated relaxed-clock estimates. We discuss the possible explanations for this discrepancy, noting that there are theoretical justifications for preferring the MSC estimates in this case. [Cryptic species; effective population size; microendemism; multispecies coalescent; speciation; species delimitation.].
Collapse
Affiliation(s)
| | - Jordi Salmona
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - George P Tiley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Dominik Schüßler
- Research Group Ecology and Environmental Education, Department of Biology, University of Hildesheim, Universitaetsplatz 1, 31141 Hildesheim, Germany
| | - Marina B Blanco
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - Jean B Andriambeloson
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - C Ryan Campbell
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Paul D Etter
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| | - Amaia Iribar
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - Eric A Johnson
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC 27708, USA.,Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sophie Manzi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France
| | - JosÉ M Ralison
- Department of Zoology and Animal Biodiversity, University of Antananarivo, Antananarivo 101, Madagascar
| | - Blanchard Randrianambinina
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar.,Faculté des Sciences, University of Mahajanga, Mahajanga, Madagascar
| | - Rodin M Rasoloarison
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 6, 37077 Göttingen, Germany
| | - David W Rasolofoson
- Groupe d'Etude et de Recherche sur les Primates de Madagascar (GERP), BP 779, Antananarivo 101, Madagascar
| | - Amanda R Stahlke
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Rachel C Williams
- Department of Biology, Duke University, Durham, NC 27708, USA.,Duke Lemur Center, Duke University, Durham, NC 27705, USA
| | - LounÈs Chikhi
- CNRS, Université Paul Sabatier, IRD; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), 118 route de Narbonne, 31062 Toulouse, France.,Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Edward E Louis
- Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE, USA
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany Jelmer Poelstra, Jordi Salmona, George P. Tiley are the joint first authors. Ute Radespiel and Anne D. Yoder are the joint senior authors
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Pozzi L, Penna A, Bearder SK, Karlsson J, Perkin A, Disotell TR. Cryptic diversity and species boundaries within the Paragalago zanzibaricus species complex. Mol Phylogenet Evol 2020; 150:106887. [PMID: 32534184 DOI: 10.1016/j.ympev.2020.106887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022]
Abstract
The recently described genus Paragalago is a complex of several nocturnal and morphologically cryptic species distributed in the forests of eastern Africa. Species diversity within this genus has been mainly described using species-specific differences in their loud calls. However, molecular data are still lacking for this group and species boundaries remain unclear. In this study, we explore species diversity within the zanzibaricus-complex using a combination of mitochondrial and nuclear data and comparing multiple species delimitation methods. Our results consistently support the existence of three independent lineages, P. cocos, P. zanzibaricus, and P. granti, confirming previous hypotheses based on vocal data. We conclude that these three lineages represent valid cryptic species and we hypothesize that speciation within this complex was characterized by cycles of forest expansion and contraction in the Plio-Pleistocene.
Collapse
Affiliation(s)
- Luca Pozzi
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Anna Penna
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Simon K Bearder
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, UK
| | - Johan Karlsson
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, UK
| | - Andrew Perkin
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford, UK
| | - Todd R Disotell
- Department of Anthropology, New York University, New York, NY, USA; Department of Anthropology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
12
|
Dai C, Dong F, Yang X. Morphotypes or distinct species? A multilocus assessment of two East Asian scimitar babblers (Aves, Timaliidae). ZOOL SCR 2020. [DOI: 10.1111/zsc.12411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chuanyin Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University) Ministry of Education Guilin China
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology Guangxi Normal University Guilin China
- School of Biological Sciences Guizhou Normal College Guiyang China
| | - Feng Dong
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| | - Xiaojun Yang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming China
| |
Collapse
|
13
|
Hasiniaina AF, Radespiel U, Kessler SE, Rina Evasoa M, Rasoloharijaona S, Randrianambinina B, Zimmermann E, Schmidt S, Scheumann M. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation ( Microcebus spp.). Ecol Evol 2020; 10:3784-3797. [PMID: 32313636 PMCID: PMC7160168 DOI: 10.1002/ece3.6177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 11/06/2022] Open
Abstract
Acoustic phenotypic variation is of major importance for speciation and the evolution of species diversity. Whereas selective and stochastic forces shaping the acoustic divergence of signaling systems are well studied in insects, frogs, and birds, knowledge on the processes driving acoustic phenotypic evolution in mammals is limited. We quantified the acoustic variation of a call type exchanged during agonistic encounters across eight distinct species of the smallest-bodied nocturnal primate radiation, the Malagasy mouse lemurs. The species live in two different habitats (dry forest vs. humid forest), differ in geographic distance to each other, and belong to four distinct phylogenetic clades within the genus. Genetically defined species were discriminated reliably on the phenotypic level based on their acoustic distinctiveness in a discriminant function analysis. Acoustic variation was explained by genetic distance, whereas differences in morphology, forest type, or geographic distance had no effect. The strong impact of genetics was supported by a correlation between acoustic and genetic distance and the high agreement in branching pattern between the acoustic and molecular phylogenetic trees. In sum, stochastic factors such as genetic drift best explained acoustic diversification in a social communication call of mouse lemurs.
Collapse
Affiliation(s)
| | - Ute Radespiel
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Sharon E. Kessler
- Department of PsychologyFaculty of Natural SciencesUniversity of StirlingStirlingScotland
- Department of AnthropologyDurham UniversityDurhamUK
| | - Mamy Rina Evasoa
- Faculty of Science, Technology and EnvironmentUniversity of MahajangaMahajangaMadagascar
| | | | | | - Elke Zimmermann
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Sabine Schmidt
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Marina Scheumann
- Institute of ZoologyUniversity of Veterinary Medicine HannoverHannoverGermany
| |
Collapse
|
14
|
Quantitative morphological characters of the skull suggest that Akodon oenos (Rodentia, Cricetidae, Sigmodontinae) is not a junior synonym of A. spegazzinii. MAMMALIA 2020. [DOI: 10.1515/mammalia-2019-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAkodon oenos, a nominal form with type locality in northern Mendoza province, Argentina, has an intricate taxonomic history. Recently, it was considered a junior synonym of Akodon spegazzinii on the basis of morphological similarities of one individual captured in southern Mendoza with specimens belonging to the type series of A. oenos, plus the genetic similarity of that single specimen with representatives of A. spegazzinii. We compared specimens of the Akodon boliviensis species group recently captured in Mendoza with the type series of A. oenos and series of A. spegazzinii from northwestern Argentina. We conducted an analysis of molecular markers (cytochrome-b gene) and quantitative morphological studies (comparisons of skull measurements). Our results showed that: (1) all sequenced specimens of the A. boliviensis group from Mendoza form a monophyletic clade closely related to A. spegazzinii; (2) contrary to previous hypothesis, specimens of Akodon from Mendoza are morphologically distinctive in size and shape of the skull, from A. spegazzinii; and (3) within the A. boliviensis species group, specimens from Mendoza are distinctive. We argue that the synonymy of A. oenos under A. spegazzinii must await further studies, including molecular markers other than mitochondrial and samples of DNA sequences from topotypical specimens of A. oenos.
Collapse
|
15
|
Sgarlata GM, Salmona J, Le Pors B, Rasolondraibe E, Jan F, Ralantoharijaona T, Rakotonanahary A, Randriamaroson J, Marques AJ, Aleixo-Pais I, de Zoeten T, Ousseni DSA, Knoop SB, Teixeira H, Gabillaud V, Miller A, Ibouroi MT, Rasoloharijaona S, Zaonarivelo JR, Andriaholinirina NV, Chikhi L. Genetic and morphological diversity of mouse lemurs (Microcebus spp.) in northern Madagascar: The discovery of a putative new species? Am J Primatol 2019; 81:e23070. [PMID: 31808195 DOI: 10.1002/ajp.23070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Tropical forests harbor extremely high levels of biological diversity and are quickly disappearing. Despite the increasingly recognized high rate of habitat loss, it is expected that new species will be discovered as more effort is put to document tropical biodiversity. Exploring under-studied regions is particularly urgent if we consider the rapid changes in habitat due to anthropogenic activities. Madagascar is known for its extraordinary biological diversity and endemicity. It is also threatened by habitat loss and fragmentation. It holds more than 100 endemic primate species (lemurs). Among these, Microcebus (mouse lemurs) is one of the more diverse genera. We sampled mouse lemurs from several sites across northern Madagascar, including forests never sampled before. We obtained morphological data from 99 Microcebus individuals; we extracted DNA from tissue samples of 42 individuals and amplified two mitochondrial loci (cytb and cox2) commonly used for species identification. Our findings update the distribution of three species (Microcebus tavaratra, Microcebus arnholdi, and Microcebus mamiratra), including a major increase in the distribution area of M. arnholdi. We also report the discovery of a new Microcebus lineage genetically related to M. arnholdi. Several complementary approaches suggest that the newly identified Microcebus lineage might correspond to a new putative species, to be confirmed or rejected with additional data. In addition, morphological analyses showed (a) clear phenotypic differences between M. tavaratra and M. arnholdi, but no clear differences between the new Microcebus lineage and the sister species M. arnholdi; and (b) a significant correlation between climatic variables and morphology, suggesting a possible relationship between species identity, morphology, and environment. By integrating morphological, climatic, genetic, and spatial data of two northern Microcebus species, we show that the spatial distribution of forest-dwelling species may be used as a proxy to reconstruct the past spatial changes in forest cover and vegetation type.
Collapse
Affiliation(s)
| | - Jordi Salmona
- Instituto Gulbenkian de Ciênca, Oeiras, Portugal.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), IRD, CNRS, UPS, Université de Toulouse Midi-Pyrénées, Toulouse, France
| | | | - Emmanuel Rasolondraibe
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Fabien Jan
- Instituto Gulbenkian de Ciênca, Oeiras, Portugal
| | - Tantely Ralantoharijaona
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Ando Rakotonanahary
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Jacquis Randriamaroson
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | | | - Isa Aleixo-Pais
- Instituto Gulbenkian de Ciênca, Oeiras, Portugal.,Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK.,Centre for Research in Anthropology (CRIA-FCSH/NOVA), Lisbon, Portugal
| | | | - Dhurham Said Ali Ousseni
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | | | - Helena Teixeira
- Instituto Gulbenkian de Ciênca, Oeiras, Portugal.,Institute of Zoology, University of Veterinary Medicine Hanover, Hanover, Germany
| | | | - Alex Miller
- Instituto Gulbenkian de Ciênca, Oeiras, Portugal.,School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Mohamed Thani Ibouroi
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar.,Département des Sciences de la Nature et de l'Environnement, Université d'Antsiranana, Antsiranana, Madagascar.,Institut des Sciences et Industrie du Vivant et de l'environnement, AgroParisTech, Paris, France
| | - Solofonirina Rasoloharijaona
- Département de Biologie Animale et Ecologie, Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - John Rigobert Zaonarivelo
- Département des Sciences de la Nature et de l'Environnement, Université d'Antsiranana, Antsiranana, Madagascar
| | | | - Lounès Chikhi
- Instituto Gulbenkian de Ciênca, Oeiras, Portugal.,Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), IRD, CNRS, UPS, Université de Toulouse Midi-Pyrénées, Toulouse, France
| |
Collapse
|
16
|
Radespiel U, Lutermann H, Schmelting B, Zimmermann E. An empirical estimate of the generation time of mouse lemurs. Am J Primatol 2019; 81:e23062. [PMID: 31631370 DOI: 10.1002/ajp.23062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 11/05/2022]
Abstract
The generation time of organisms drives the rate of change in populations and across evolutionary times. In long-lived species, generation time should also account for overlapping generations, and the average age of parents has been proposed as a best approximation under these conditions. This study uses this definition to estimate the generation time of a widely studied small primate, Microcebus murinus, based on parentage data generated for a free-living population over a 6-year period in northwestern Madagascar. The average age of parents was calculated separately for mothers and fathers of three different offspring cohorts that differed in the degree of demographic uncertainty. In addition, adult survival rates were calculated for males and females based on long-term capture data from the same population to estimate the possible upper limits of generation time. Adult survival was low with only 44% of adult females and 38% of adult males being recaptured at the beginning of their second breeding season. The average age of mothers was 1.56-1.91 years, pointing toward a 2-year female generation time due to the high proportion of 1-year old mothers in all three cohorts. Female generation time estimates were fairly stable across the three offspring cohorts. In contrast, the average age of fathers differed by more than 1 year from the first to the third offspring cohort (1.71-2.83 years) pointing toward a 3-year generation time, but also suggesting a higher degree of demographic uncertainty in the early years of the study. For future modeling purposes, we, therefore, propose to use the average, 2.5 years, of male and female values as new estimate for the generation time of mouse lemurs.
Collapse
Affiliation(s)
- Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Heike Lutermann
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | | | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
17
|
Nicola MV, Johnson LA, Pozner R. Unraveling patterns and processes of diversification in the South Andean-Patagonian Nassauvia subgenus Strongyloma (Asteraceae, Nassauvieae). Mol Phylogenet Evol 2019; 136:164-182. [PMID: 30858079 DOI: 10.1016/j.ympev.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Congruence among different sources of data is highly desirable in phylogenetic analyses. However, plastid and nuclear DNA may record different evolutionary processes such that incongruence among results from these sources can help unravel complex evolutionary histories. That is the case of Nassauvia subgenus Strongyloma (Asteraceae), a taxon with five putative species distributed in the southern Andes and Patagonian steppe. Morphometric and phylogeographic information cast doubt on the integrity of its species, and previous molecular data even questioned the monophyly of the subgenus. We tested those questions using plastid and nuclear DNA sequences by the application of different methods such as phylogenetic trees, networks, a test of genealogical sorting, an analysis of population structure, calibration of the trees, and hybridization test, assembling non-synchronous incongruent results at subgenus and species levels in a single reconstruction. The integration of our molecular analyses and previous taxonomic, morphological, and molecular studies support subgenus Strongyloma as a monophyletic group. However, the topology of the nuclear trees and the evidence of polyploids within subgenus Nassauvia, suggest a hypothetical origin and initial radiation of Nassauvia related to an ancient hybridization event that occurred around 17-6.3 Myr ago near the Andes in west-central Patagonia. Plastid data suggest a recent diversification within subgenus Strongyloma, at most 9.8 Myr ago, towards the Patagonian steppe east of the Andes. These processes cause phylogenies to deviate from the species tree since each putative species lack exclusive ancestry. The non-monophyly of its species using both plastid and nuclear data is caused mainly by incomplete lineage sorting occurred since the Miocene. The final uplift of the Andes and Pliocene-Pleistocene glacial-interglacial and its consequences on the landscape and climate structured the genetic composition of this group of plants in the Patagonian steppe. The molecular data presented here agree with previous morphological studies, in that the five putative species typically accepted in this subgenus are not independent taxa. This study emphasizes that adding more than one sequence per species, not combining data with dissimilar inheritance patterns without first performed incongruence tests, exploring data through different methodologies, considering the timing of events, and searching for the causes of poorly resolved and/or incongruent phylogenies help to reveal complex biological underlying processes, which might otherwise remain hidden.
Collapse
Affiliation(s)
- Marcela V Nicola
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, C.C. 22, B1642HYD, San Isidro, Provincia de Buenos Aires, Argentina.
| | - Leigh A Johnson
- Department of Biology and Bean Life Science Museum, 4102 LSB, Brigham Young University, Provo, UT 84602, USA
| | - Raúl Pozner
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, C.C. 22, B1642HYD, San Isidro, Provincia de Buenos Aires, Argentina
| |
Collapse
|
18
|
Montero BK, Refaly E, Ramanamanjato J, Randriatafika F, Rakotondranary SJ, Wilhelm K, Ganzhorn JU, Sommer S. Challenges of next-generation sequencing in conservation management: Insights from long-term monitoring of corridor effects on the genetic diversity of mouse lemurs in a fragmented landscape. Evol Appl 2019; 12:425-442. [PMID: 30828365 PMCID: PMC6383737 DOI: 10.1111/eva.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 01/30/2023] Open
Abstract
Long-term genetic monitoring of populations is essential for efforts aimed at preserving genetic diversity of endangered species. Here, we employ a framework of long-term genetic monitoring to evaluate the effects of fragmentation and the effectiveness of the establishment of corridors in restoring population connectivity and genetic diversity of mouse lemurs Microcebus ganzhorni. To this end, we supplement estimates of neutral genetic diversity with the assessment of adaptive genetic variability of the major histocompatibility complex (MHC). In addition, we address the challenges of long-term genetic monitoring of functional diversity by comparing the genotyping performance and estimates of MHC variability generated by single-stranded conformation polymorphism (SSCP)/Sanger sequencing with those obtained by high-throughput sequencing (next-generation sequencing [NGS], Illumina), an issue that is particularly relevant when previous work serves as a baseline for planning management strategies that aim to ensure the viability of a population. We report that SSCP greatly underestimates individual diversity and that discrepancies in estimates of MHC diversity attributable to the comparisons of traditional and NGS genotyping techniques can influence the conclusions drawn from conservation management scenarios. Evidence of migration among fragments in Mandena suggests that mouse lemurs are robust to the process of fragmentation and that the effect of corridors is masked by ongoing gene flow. Nonetheless, results based on a larger number of shared private alleles at neutral loci between fragment pairs found after the establishment of corridors in Mandena suggest that gene flow is augmented as a result of enhanced connectivity. Our data point out that despite low effective population size, M. ganzhorni maintains high individual heterozygosity at neutral loci and at MHC II DRB gene and that selection plays a predominant role in maintaining MHC diversity. These findings highlight the importance of long-term genetic monitoring in order to disentangle between the processes of drift and selection maintaining adaptive genetic diversity in small populations.
Collapse
Affiliation(s)
- B. Karina Montero
- Animal Ecology and ConservationHamburg UniversityHamburgGermany
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | | | | | | | | | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | | | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| |
Collapse
|
19
|
Diversification of the widespread neotropical frog Physalaemus cuvieri in response to Neogene-Quaternary geological events and climate dynamics. Mol Phylogenet Evol 2018; 132:67-80. [PMID: 30508632 DOI: 10.1016/j.ympev.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 11/24/2022]
Abstract
Here we reconstructed the demographical history and the dispersal dynamics of Physalemus cuvieri through the Neogene-Quaternary periods by coupling DNA regions with different mutation rates, ecological niche modelling, reconstruction of spatio-temporal lineage dispersal and coalescent simulations. Still, to test alternative diversification scenarios we used approximate Bayesian computation. Molecular phylogenetic analysis recovered four deep and strongly supported clades, which we interpret as population lineages. The ancestral location reconstruction placed the root in southcentral Amazonia, and the dispersal events indicate that spatial displacement was widespread early in the diversification of this species. The demographical scenario of "Multiple Refugia" with recent lineage admixture was the most likely hypothesis to predict the observed genetic parameters of P. cuvieri. Our results revealed that Neogene orogenic events might have played a prominent role in the early diversification of P. cuvieri. The species shows deep divergences with strong regional population structure, despite its widespread distribution. Final uplift of the central Brazilian Plateau and formation of the river basins in Central South America played an important role in the origin, diversification and the maintenance of P. cuvieri lineages.
Collapse
|
20
|
Kordbacheh A, Wallace RL, Walsh EJ. Evidence supporting cryptic species within two sessile microinvertebrates, Limnias melicerta and L. ceratophylli (Rotifera, Gnesiotrocha). PLoS One 2018; 13:e0205203. [PMID: 30379825 PMCID: PMC6209156 DOI: 10.1371/journal.pone.0205203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/25/2022] Open
Abstract
Microorganisms, including rotifers, are thought to be capable of long distance dispersal. Therefore, they should show little population genetic structure due to high gene flow. Nevertheless, substantial genetic structure has been reported among populations of many taxa. In rotifers, genetic studies have focused on planktonic taxa leaving sessile groups largely unexplored. Here, we used COI gene and ITS region sequences to study genetic structure and delimit cryptic species in two sessile species (Limnias melicerta [32 populations]; L. ceratophylli [21 populations]). Among populations, ITS region sequences were less variable as compared to those of the COI gene (ITS; L. melicerta: 0-3.1% and L. ceratophylli: 0-4.4%; COI; L. melicerta: 0-22.7% and L. ceratophylli: 0-21.7%). Moreover, L. melicerta and L. ceratophylli were not resolved in phylogenetic analyses based on ITS sequences. Thus, we used COI sequences for species delimitation. Bayesian Species Delimitation detected nine putative cryptic species within L. melicerta and four putative cryptic species for L. ceratophylli. The genetic distance in the COI gene was 0-15.4% within cryptic species of L. melicerta and 0.5-0.6% within cryptic species of L. ceratophylli. Among cryptic species, COI genetic distance ranged 8.1-21.9% for L. melicerta and 15.1-21.2% for L. ceratophylli. The correlation between geographic and genetic distance was weak or lacking; thus geographic isolation cannot be considered a strong driver of genetic variation. In addition, geometric morphometric analyses of trophi did not show significant variation among cryptic species. In this study we used a conservative approach for species delimitation, yet we were able to show that species diversity in these sessile rotifers is underestimated.
Collapse
Affiliation(s)
- Azar Kordbacheh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Robert L. Wallace
- Department of Biology, Ripon College, Ripon, Wisconsin, United States of America
| | - Elizabeth J. Walsh
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| |
Collapse
|
21
|
Abstract
Conservation genetics is a branch of conservation biology that uses molecular data to assist in the conservation and management of imperiled populations, subspecies, and species. In this review, I examine conservation action plans (CAPs)—instrumental documents designed to influence conservation policy—for selected primate species. I use the information contained in CAPs as a means to guide this review. The primary genetics-based topics that are mentioned in CAPs are genetic connectivity, inbreeding, and subspecies/species delimitation. I discuss these topics as well as historical demographic inference and hybridization using examples from wild primate species to illustrate the myriad ways in which genetics can assist in conservation efforts. I also discuss some recent technological advances such as genomic capture techniques and the potential to do molecular work in remote locations.
Collapse
Affiliation(s)
- Richard R. Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia 22807, USA
| |
Collapse
|
22
|
Miller A, Mills H, Ralantoharijaona T, Volasoa NA, Misandeau C, Chikhi L, Bencini R, Salmona J. Forest Type Influences Population Densities of Nocturnal Lemurs in Manompana, Northeastern Madagascar. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0055-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Younger JL, Strozier L, Maddox JD, Nyári ÁS, Bonfitto MT, Raherilalao MJ, Goodman SM, Reddy S. Hidden diversity of forest birds in Madagascar revealed using integrative taxonomy. Mol Phylogenet Evol 2018; 124:16-26. [DOI: 10.1016/j.ympev.2018.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/15/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023]
|
24
|
Rina Evasoa M, Radespiel U, Hasiniaina AF, Rasoloharijaona S, Randrianambinina B, Rakotondravony R, Zimmermann E. Variation in reproduction of the smallest-bodied primate radiation, the mouse lemurs (Microcebus spp.): A synopsis. Am J Primatol 2018; 80:e22874. [PMID: 29767414 DOI: 10.1002/ajp.22874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 11/11/2022]
Abstract
Reproduction is a fundamental trait in the life history of any species and contributes to species diversity and evolution. Here, we aim to review the barely known variation in reproductive patterns of the smallest-bodied primate radiation, the Malagasy mouse lemurs, focusing on twelve species of four phylogenetic clades. We present a new reproductive field dataset collected between May and November 1996-2016 for nine species (Microcebus murinus, M. myoxinus, M. ravelobensis, M. bongolavensis, M. danfossi, M. sambiranensis, M. margothmarshae, M. mamiratra, and M. lehilahytsara) and add published field information on three additional species. In the majority of species, the estrus of females was recorded in the period of long days (day length longer than 12 hr), whereas male testes size increased about one to three months prior to this. Reproductive schedules varied considerably between the four clades. Sympatric species-pairs of different clades differed in the timing of female and male reproduction, suggesting strong phylogenetic constraints. Populations of the same species in a different ecological setting varied in the onset of reproduction, suggesting substantial environmental plasticity. Warm temperatures and rainfall throughout the year may allow for less expressed reproductive seasonality. Our results suggest that an interplay between phylogenetic relatedness, ambient temperature (as a proxy for thermo regulatory constraints), and rainfall (as a proxy for food availability), may best explain this variation. Findings further point to a more complex control of mouse lemur reproduction than previously described and illuminate phylogenetic constraints and adaptive potentials in behavioral reaction norms of a species-rich primate radiation.
Collapse
Affiliation(s)
- Mamy Rina Evasoa
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Alida F Hasiniaina
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
25
|
Weiss M, Weigand H, Weigand AM, Leese F. Genome-wide single-nucleotide polymorphism data reveal cryptic species within cryptic freshwater snail species-The case of the Ancylus fluviatilis species complex. Ecol Evol 2018; 8:1063-1072. [PMID: 29375779 PMCID: PMC5773296 DOI: 10.1002/ece3.3706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/20/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA barcoding utilizes short standardized DNA sequences to identify species and is increasingly used in biodiversity assessments. The technique has unveiled an unforeseeably high number of morphologically cryptic species. However, if speciation has occurred relatively recently and rapidly, the use of single gene markers, and especially the exclusive use of mitochondrial markers, will presumably fail in delimitating species. Therefore, the true number of biological species might be even higher. One mechanism that can result in rapid speciation is hybridization of different species in combination with polyploidization, that is, allopolyploid speciation. In this study, we analyzed the population genetic structure of the polyploid freshwater snail Ancylus fluviatilis, for which allopolyploidization was postulated as a speciation mechanism. DNA barcoding has already revealed four cryptic species within A. fluviatilis (i.e., A. fluviatilis s. str., Ancylus sp. A-C), but early allozyme data even hint at the presence of additional cryptic lineages in Central Europe. We combined COI sequencing with high-resolution genome-wide SNP data (ddRAD data) to analyze the genetic structure of A. fluviatilis populations in a Central German low mountain range (Sauerland). The ddRAD data results indicate the presence of three cryptic species within A. fluviatilis s. str. occurring in sympatry and even syntopy, whereas mitochondrial sequence data only support the existence of one species, with shared haplotypes between species. Our study hence points to the limitations of DNA barcoding when dealing with organismal groups where speciation is assumed to have occurred rapidly, for example, through the process of allopolyploidization. We therefore emphasize that single marker DNA barcoding can underestimate the true species diversity and argue in strong favor of using genome-wide data for species delimitation in such groups.
Collapse
Affiliation(s)
- Martina Weiss
- Aquatic Ecosystem ResearchUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| | - Hannah Weigand
- Aquatic Ecosystem ResearchUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| | - Alexander M. Weigand
- Aquatic Ecosystem ResearchUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
- Musée National d'Histoire NaturelleLuxembourgLuxembourg
| | - Florian Leese
- Aquatic Ecosystem ResearchUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| |
Collapse
|
26
|
Kaesler E, Kappeler PM, Brameier M, Demeler J, Kraus C, Rakotoniaina JH, Hämäläinen AM, Huchard E. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol Ecol 2017; 26:5629-5645. [PMID: 28833696 DOI: 10.1111/mec.14336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ("trans-species polymorphism"), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.
Collapse
Affiliation(s)
- Eva Kaesler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany
| | - Peter M Kappeler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markus Brameier
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Janina Demeler
- Institut für Parasitologie und Tropenveterinärmedizin, Berlin, Germany
| | - Cornelia Kraus
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Josué H Rakotoniaina
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anni M Hämäläinen
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elise Huchard
- Institute for Evolutionary Biology, Montpellier (ISEM, UMR 5554), CNRS, Université Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
27
|
Model-based analyses reveal insular population diversification and cryptic frog species in the Ischnocnema parva complex in the Atlantic forest of Brazil. Mol Phylogenet Evol 2017; 112:68-78. [DOI: 10.1016/j.ympev.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022]
|
28
|
Yang H, Lin CP, Liang AP. Phylogeography of the Rice Spittle Bug (Callitettix versicolor) Implies Two Long-Term Mountain Barriers in South China. Zoolog Sci 2017; 33:592-602. [PMID: 27927096 DOI: 10.2108/zs160042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
South China is a region of remarkable topographic complexity. However, the impact of climate fluctuations in the Pleistocene on the local fauna and especially insects has not been extensively studied. We integrated mitochondrial DNA (mtDNA) and microsatellite data of the rice spittle bug, Callitettix versicolor, to determine the genetic structure, potential biogeographic barriers, and historical demography of this species. The mtDNA data revealed two distinct lineages (Western and Eastern) congruent with the geographically separated western and eastern sub-regions of the Hengduan Mountains. The Eastern lineage was subdivided into two sub-lineages, E1 and E2, congruent with the geographically separated northern and southern sub-regions of the Dabie Mountains. E2 was further subdivided into two sub-groups, E2-1 and E2-2, with a hybrid zone (Guizhou and Hunan Provinces) in which their areas were contiguous. The genetic structures constructed using mtDNA were corroborated by four clusters (G1-G4) of microsatellite data. The populations of each cluster were nearly consistent with a sub-lineage of the mtDNA gene tree (G1-G4 corresponded to the Western, E1, E2-2 and E2-1 lineages, respectively). The divergence time estimated between the Western and Eastern lineages was 1.17 (0.50-2.37) to 0.89 (0.39-1.78) Mya, indicating that the lineages diversified on both geographic and temporal scales. The historical demography of the Eastern lineage showed continuous population growth after the Last Interglacial (LIG) and a stable population during the Last Glacial Maximum (LGM) period. However, the Western lineage remained largely unchanged during the LIG and LGM periods. This suggests that the historical demography of C. versicolor is probably related not only to the paleoclimate of South China, but also to the geological restriction and specific habitat preferences of species.
Collapse
Affiliation(s)
- Han Yang
- 1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chung-Ping Lin
- 2 Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ai-Ping Liang
- 1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Ezran C, Karanewsky CJ, Pendleton JL, Sholtz A, Krasnow MR, Willick J, Razafindrakoto A, Zohdy S, Albertelli MA, Krasnow MA. The Mouse Lemur, a Genetic Model Organism for Primate Biology, Behavior, and Health. Genetics 2017; 206:651-664. [PMID: 28592502 PMCID: PMC5499178 DOI: 10.1534/genetics.116.199448] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/08/2017] [Indexed: 01/24/2023] Open
Abstract
Systematic genetic studies of a handful of diverse organisms over the past 50 years have transformed our understanding of biology. However, many aspects of primate biology, behavior, and disease are absent or poorly modeled in any of the current genetic model organisms including mice. We surveyed the animal kingdom to find other animals with advantages similar to mice that might better exemplify primate biology, and identified mouse lemurs (Microcebus spp.) as the outstanding candidate. Mouse lemurs are prosimian primates, roughly half the genetic distance between mice and humans. They are the smallest, fastest developing, and among the most prolific and abundant primates in the world, distributed throughout the island of Madagascar, many in separate breeding populations due to habitat destruction. Their physiology, behavior, and phylogeny have been studied for decades in laboratory colonies in Europe and in field studies in Malagasy rainforests, and a high quality reference genome sequence has recently been completed. To initiate a classical genetic approach, we developed a deep phenotyping protocol and have screened hundreds of laboratory and wild mouse lemurs for interesting phenotypes and begun mapping the underlying mutations, in collaboration with leading mouse lemur biologists. We also seek to establish a mouse lemur gene "knockout" library by sequencing the genomes of thousands of mouse lemurs to identify null alleles in most genes from the large pool of natural genetic variants. As part of this effort, we have begun a citizen science project in which students across Madagascar explore the remarkable biology around their schools, including longitudinal studies of the local mouse lemurs. We hope this work spawns a new model organism and cultivates a deep genetic understanding of primate biology and health. We also hope it establishes a new and ethical method of genetics that bridges biological, behavioral, medical, and conservation disciplines, while providing an example of how hands-on science education can help transform developing countries.
Collapse
Affiliation(s)
- Camille Ezran
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | | | | | - Alex Sholtz
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Maya R Krasnow
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Jason Willick
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| | - Andriamahery Razafindrakoto
- Department of Animal Biology, Faculty of Science, University of Antananarivo, Antananarivo 101, BP 566, Madagascar, and
| | - Sarah Zohdy
- School of Forestry and Wildlife Sciences and College of Veterinary Medicine, Auburn University, Alabama 36849
| | - Megan A Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, California 94305
| | - Mark A Krasnow
- Department of Biochemistry
- Howard Hughes Medical Institute, and
| |
Collapse
|
30
|
Liu S, Jin W, Liu Y, Murphy RW, Lv B, Hao H, Liao R, Sun Z, Tang M, Chen W, Fu J. Taxonomic position of Chinese voles of the tribe Arvicolini and the description of 2 new species from Xizang, China. J Mammal 2017; 98:166-182. [PMID: 29674783 PMCID: PMC5901085 DOI: 10.1093/jmammal/gyw170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/10/2016] [Indexed: 11/22/2022] Open
Abstract
China has 26 species in the tribe Arvicolini. The taxonomic status of these voles remains controversial despite much effort. Herein, we evaluate the taxonomic position of 22 species plus 2 unidentified taxa using mitochondrial DNA gene sequences (cytb + CO1). We also evaluate 18 species and 2 unidentified taxa using morphological data. Phylogenetic analyses of cytb resolve monophyly for the genera Alexandromys, Lasiopodomys, Microtus, Neodon, Proedromys, and Volemys with strong support. Stenocranius clusters with Chionomys but with very weak support. Analyses of concatenated cytb + CO1 resolve the same genera with strong support, but the topology of the tree differs from that of cytb in that Chionomys roots at the base of the tree independent of Stenocranius, which forms the sister-group of Lasiopodomys in a more terminal position. The matrilineal genealogy excludes the type species Arvicola amphibius from the rest of the Arvicolini. This species forms the sister-group of Ondatra with high support. Neodon includes N. irene, N. linzhiensis, N. fuscus, N. leucurus, N. sikimensis, Microtus clarkei, and 2 unidentified specimens. Alexandromys includes the former species Microtus oeconomus, M. kikuchii, M. limnophilus, M. fortis, and M. maximowiczii. Finally, Microtus has the subgenera Blanfordimys, Microtus, Mynomes, Pedomys, Pitymys, and Terricola, which includes the Chinese species M. agrestis, M. arvalis, and Blanfordimys juldaschi. General mixed Yule-coalescent species delimitation modeling demarcates 6 currently recognized species and 2 new species of Neodon. A principal component analysis of the morphological data among 7 matrilines shows that all variables have positive loadings of high magnitude on the 1st component. Canonical discriminant analysis for Neodon (including M. clarkei and 2 unidentified species) correctly classifies 93.0% of specimens. Overall, our analyses support the recognition of Alexandromys, Lasiopodomys, Microtus, Neodon, Proedromys, and Volemys as genera. Stenocranius includes Microtus gregalis, and the genealogical position of Stenocranius remains uncertain. The status of Arvicola requires further study. We assign M. clarkei to Neodon and describe 2 new species of Neodon.
Collapse
Affiliation(s)
- Shaoying Liu
- Sichuan Academy of Forestry, No. 18, Xinghui Xilu Road, Chengdu 610081, Sichuan, China (SL, WJ, YL, RL, ZS, MT, JF)
| | - Wei Jin
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada (RWM)
| | - Yang Liu
- Chengdu Biology Institute of Chinese Academy of Science, Chengdu 610041, Sichuan, China (LB)
| | - Robert W Murphy
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China (HH)
| | - Bin Lv
- Guangxi Natural History Museum, Nanning, Guangxi 530012, China (WC)
| | - Haibang Hao
- Sichuan Academy of Forestry, No. 18, Xinghui Xilu Road, Chengdu 610081, Sichuan, China (SL, WJ, YL, RL, ZS, MT, JF)
| | - Rui Liao
- Sichuan Academy of Forestry, No. 18, Xinghui Xilu Road, Chengdu 610081, Sichuan, China (SL, WJ, YL, RL, ZS, MT, JF)
| | - Zhiyu Sun
- Sichuan Academy of Forestry, No. 18, Xinghui Xilu Road, Chengdu 610081, Sichuan, China (SL, WJ, YL, RL, ZS, MT, JF)
| | - Mingkun Tang
- Sichuan Academy of Forestry, No. 18, Xinghui Xilu Road, Chengdu 610081, Sichuan, China (SL, WJ, YL, RL, ZS, MT, JF)
| | - Weicai Chen
- Sichuan Academy of Forestry, No. 18, Xinghui Xilu Road, Chengdu 610081, Sichuan, China (SL, WJ, YL, RL, ZS, MT, JF)
| | - Jianrong Fu
- Sichuan Academy of Forestry, No. 18, Xinghui Xilu Road, Chengdu 610081, Sichuan, China (SL, WJ, YL, RL, ZS, MT, JF)
| |
Collapse
|
31
|
Hohenbrink P, Mundy NI, Radespiel U. Population genetics of mouse lemur vomeronasal receptors: current versus past selection and demographic inference. BMC Evol Biol 2017; 17:28. [PMID: 28109265 PMCID: PMC5251345 DOI: 10.1186/s12862-017-0874-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A major effort is underway to use population genetic approaches to identify loci involved in adaptation. One issue that has so far received limited attention is whether loci that show a phylogenetic signal of positive selection in the past also show evidence of ongoing positive selection at the population level. We address this issue using vomeronasal receptors (VRs), a diverse gene family in mammals involved in intraspecific communication and predator detection. In mouse lemurs, we previously demonstrated that both subfamilies of VRs (V1Rs and V2Rs) show a strong signal of directional selection in interspecific analyses. We predicted that ongoing sexual selection and/or co-evolution with predators may lead to current directional or balancing selection on VRs. Here, we re-sequence 17 VRs and perform a suite of selection and demographic analyses in sympatric populations of two species of mouse lemurs (Microcebus murinus and M. ravelobensis) in northwestern Madagascar. RESULTS M. ravelobensis had consistently higher genetic diversity at VRs than M. murinus. In general, we find little evidence for positive selection, with most loci evolving under purifying selection and one locus even showing evidence of functional loss in M. ravelobensis. However, a few loci in M. ravelobensis show potential evidence of positive selection. Using mismatch distributions and expansion models, we infer a more recent colonisation of the habitat by M. murinus than by M. ravelobensis, which most likely speciated in this region earlier on. CONCLUSIONS These findings suggest that the analysis of VR variation is useful in inferring demographic and phylogeographic history of mouse lemurs. In conclusion, this study reveals a substantial heterogeneity over time in selection on VR loci, suggesting that VR evolution is episodic.
Collapse
Affiliation(s)
- Philipp Hohenbrink
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany.,Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Nicholas I Mundy
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ, UK
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
32
|
Herrera JP. Testing the adaptive radiation hypothesis for the lemurs of Madagascar. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161014. [PMID: 28280597 PMCID: PMC5319363 DOI: 10.1098/rsos.161014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 05/12/2023]
Abstract
Lemurs, the diverse, endemic primates of Madagascar, are thought to represent a classic example of adaptive radiation. Based on the most complete phylogeny of living and extinct lemurs yet assembled, I tested predictions of adaptive radiation theory by estimating rates of speciation, extinction and adaptive phenotypic evolution. As predicted, lemur speciation rate exceeded that of their sister clade by nearly twofold, indicating the diversification dynamics of lemurs and mainland relatives may have been decoupled. Lemur diversification rates did not decline over time, however, as predicted by adaptive radiation theory. Optimal body masses diverged among dietary and activity pattern niches as lineages diversified into unique multidimensional ecospace. Based on these results, lemurs only partially fulfil the predictions of adaptive radiation theory, with phenotypic evolution corresponding to an 'early burst' of adaptive differentiation. The results must be interpreted with caution, however, because over the long evolutionary history of lemurs (approx. 50 million years), the 'early burst' signal of adaptive radiation may have been eroded by extinction.
Collapse
Affiliation(s)
- James P. Herrera
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Author for correspondence: James P. Herrera e-mail:
| |
Collapse
|
33
|
Miralles A, Köhler J, Glaw F, Vences M. Species delimitation methods put into taxonomic practice: two new Madascincus species formerly allocated to historical species names (Squamata, Scincidae). ZOOSYST EVOL 2016. [DOI: 10.3897/zse.92.9945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Female dominance in two basal primates, Microcebus murinus and Microcebus lehilahytsara: variation and determinants. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Yoder AD, Campbell CR, Blanco MB, Dos Reis M, Ganzhorn JU, Goodman SM, Hunnicutt KE, Larsen PA, Kappeler PM, Rasoloarison RM, Ralison JM, Swofford DL, Weisrock DW. Geogenetic patterns in mouse lemurs (genus Microcebus) reveal the ghosts of Madagascar's forests past. Proc Natl Acad Sci U S A 2016; 113:8049-56. [PMID: 27432945 PMCID: PMC4961119 DOI: 10.1073/pnas.1601081113] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phylogeographic analysis can be described as the study of the geological and climatological processes that have produced contemporary geographic distributions of populations and species. Here, we attempt to understand how the dynamic process of landscape change on Madagascar has shaped the distribution of a targeted clade of mouse lemurs (genus Microcebus) and, conversely, how phylogenetic and population genetic patterns in these small primates can reciprocally advance our understanding of Madagascar's prehuman environment. The degree to which human activity has impacted the natural plant communities of Madagascar is of critical and enduring interest. Today, the eastern rainforests are separated from the dry deciduous forests of the west by a large expanse of presumed anthropogenic grassland savanna, dominated by the Family Poaceae, that blankets most of the Central Highlands. Although there is firm consensus that anthropogenic activities have transformed the original vegetation through agricultural and pastoral practices, the degree to which closed-canopy forest extended from the east to the west remains debated. Phylogenetic and population genetic patterns in a five-species clade of mouse lemurs suggest that longitudinal dispersal across the island was readily achieved throughout the Pleistocene, apparently ending at ∼55 ka. By examining patterns of both inter- and intraspecific genetic diversity in mouse lemur species found in the eastern, western, and Central Highland zones, we conclude that the natural environment of the Central Highlands would have been mosaic, consisting of a matrix of wooded savanna that formed a transitional zone between the extremes of humid eastern and dry western forest types.
Collapse
Affiliation(s)
- Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708; Duke Lemur Center, Duke University, Durham, NC 27705;
| | | | | | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Jörg U Ganzhorn
- Tierökologie und Naturschutz, Universität Hamburg, 20146 Hamburg, Germany
| | - Steven M Goodman
- Field Museum of Natural History, Chicago, IL 60605; Association Vahatra, BP 3972, Antananarivo 101, Madagascar
| | | | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC 27708
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Centre, 37077 Goettingen, Germany
| | - Rodin M Rasoloarison
- Behavioral Ecology and Sociobiology Unit, German Primate Centre, 37077 Goettingen, Germany; Département de Biologie Animale, Université d'Antananarivo, BP 906, Antananarivo 101, Madagascar
| | - José M Ralison
- Département de Biologie Animale, Université d'Antananarivo, BP 906, Antananarivo 101, Madagascar
| | | | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
36
|
Pavan AC, Marroig G. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol Phylogenet Evol 2016; 103:184-198. [PMID: 27421565 DOI: 10.1016/j.ympev.2016.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
Abstract
A phylogenetic systematic perspective is instrumental in recovering new species and their evolutionary relationships. The advent of new technologies for molecular and morphological data acquisition and analysis, allied to the integration of knowledge from different areas, such as ecology and population genetics, allows for the emergence of more rigorous, accurate and complete scientific hypothesis on species diversity. Mustached bats (genus Pteronotus) are a good model for the application of this integrative approach. They are a widely distributed and a morphologically homogeneous group, but comprising species with remarkable differences in their echolocation strategy and feeding behavior. The latest systematic review suggested six species with 17 subspecies in Pteronotus. Subsequent studies using discrete morphological characters supported the same arrangement. However, recent papers reported high levels of genetic divergence among conspecific taxa followed by bioacoustic and geographic agreement, suggesting an underestimated diversity in the genus. To date, no study merging genetic evidences and morphometric variation along the entire geographic range of this group has been attempted. Based on a comprehensive sampling including representatives of all current taxonomic units, we attempt to delimit species in Pteronotus through the application of multiple methodologies and hierarchically distinct datasets. The molecular approach includes six molecular markers from three genetic transmission systems; morphological investigations used 41 euclidean distances estimated through three-dimensional landmarks collected from 1628 skulls. The phylogenetic analysis reveals a greater diversity than previously reported, with a high correspondence among the genetic lineages and the currently recognized subspecies in the genus. Discriminant analysis of variables describing size and shape of cranial bones support the rising of the genetic groups to the specific status. Based on multiples evidences, we present an updated taxonomic arrangement composed by 16 extant species and a new and more robust phylogenetic hypothesis for the species included in the genus Pteronotus. Studies developed under such integrative taxonomic approach are timely for a deeper and wider comprehension of Neotropical diversity, representing the first step for answering broader questions on evolutionary and ecological aspects of Neotropical life history.
Collapse
Affiliation(s)
- Ana Carolina Pavan
- Departamento de Genética e Biologia Evolutiva, IB/Universidade de São Paulo, 05508090, São Paulo, SP, Brazil.
| | - Gabriel Marroig
- Departamento de Genética e Biologia Evolutiva, IB/Universidade de São Paulo, 05508090, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Leavitt SD, Kraichak E, Vondrak J, Nelsen MP, Sohrabi M, Perez-Ortega S, St Clair LL, Lumbsch HT. Cryptic diversity and symbiont interactions in rock-posy lichens. Mol Phylogenet Evol 2016; 99:261-274. [DOI: 10.1016/j.ympev.2016.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 11/24/2022]
|
38
|
Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree. Syst Biol 2016; 65:772-91. [DOI: 10.1093/sysbio/syw035] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/30/2016] [Indexed: 01/14/2023] Open
|
39
|
Hotaling S, Foley ME, Lawrence NM, Bocanegra J, Blanco MB, Rasoloarison R, Kappeler PM, Barrett MA, Yoder AD, Weisrock DW. Species discovery and validation in a cryptic radiation of endangered primates: coalescent‐based species delimitation in
M
adagascar's mouse lemurs. Mol Ecol 2016; 25:2029-45. [DOI: 10.1111/mec.13604] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 02/16/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Scott Hotaling
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | - Mary E. Foley
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | | | - Jose Bocanegra
- Department of Biology University of Kentucky Lexington KY 40506 USA
| | | | - Rodin Rasoloarison
- Département de Biologie Animale Université d'Antananarivo BP 906 Antananarivo (101) Madagascar
- Behavioral Ecology and Sociobiology Unit German Primate Center (DPZ) 37077 Göttingen Germany
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit German Primate Center (DPZ) 37077 Göttingen Germany
| | - Meredith A. Barrett
- Center for Health and Community University of California San Francisco CA 94118 USA
| | - Anne D. Yoder
- Department of Biology Duke University Durham NC 27708 USA
| | | |
Collapse
|
40
|
Kuchta SR, Brown AD, Converse PE, Highton R. Multilocus Phylogeography and Species Delimitation in the Cumberland Plateau Salamander, Plethodon kentucki: Incongruence among Data Sets and Methods. PLoS One 2016; 11:e0150022. [PMID: 26974148 PMCID: PMC4790894 DOI: 10.1371/journal.pone.0150022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 02/08/2016] [Indexed: 11/29/2022] Open
Abstract
Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs) to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC), Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8-19.7 myr). By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population structure and introgressive hybridization, are discussed.
Collapse
Affiliation(s)
- Shawn R. Kuchta
- Department of Biological Sciences, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
| | - Ashley D. Brown
- Department of Biological Sciences, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
| | - Paul E. Converse
- Department of Biological Sciences, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America
| | - Richard Highton
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
41
|
|
42
|
|
43
|
Mrinalini, Thorpe RS, Creer S, Lallias D, Dawnay L, Stuart BL, Malhotra A. Convergence of multiple markers and analysis methods defines the genetic distinctiveness of cryptic pitvipers. Mol Phylogenet Evol 2015; 92:266-79. [DOI: 10.1016/j.ympev.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/24/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|
44
|
Lecompte E, Crouau-Roy B, Aujard F, Holota H, Murienne J. Complete mitochondrial genome of the gray mouse lemur, Microcebus murinus (Primates, Cheirogaleidae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3514-6. [PMID: 27158869 DOI: 10.3109/19401736.2015.1074196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the high-coverage complete mitochondrial genome sequence of the gray mouse lemur Microcebus murinus. The sequencing has been performed on an Illumina Hiseq 2500 platform, with a genome skimming strategy. The total length of this mitogenome is 16 963 bp, containing 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 non-coding region (D-loop region). The genome organization, nucleotide composition and codon usage are similar to those reported from other primate's mitochondrial genomes. The complete mitochondrial genome sequence reported here will be useful for comparative genomics studies in primates.
Collapse
Affiliation(s)
- Emilie Lecompte
- a Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, CNRS, Université Toulouse 3 Paul Sabatier , ENFA, Toulouse , France and
| | - Brigitte Crouau-Roy
- a Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, CNRS, Université Toulouse 3 Paul Sabatier , ENFA, Toulouse , France and
| | | | - Hélène Holota
- a Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, CNRS, Université Toulouse 3 Paul Sabatier , ENFA, Toulouse , France and
| | - Jérôme Murienne
- a Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, CNRS, Université Toulouse 3 Paul Sabatier , ENFA, Toulouse , France and
| |
Collapse
|
45
|
Abstract
The world of primate genomics is expanding rapidly in new and exciting ways owing to lowered costs and new technologies in molecular methods and bioinformatics. The primate order is composed of 78 genera and 478 species, including human. Taxonomic inferences are complex and likely a consequence of ongoing hybridization, introgression, and reticulate evolution among closely related taxa. Recently, we applied large-scale sequencing methods and extensive taxon sampling to generate a highly resolved phylogeny that affirms, reforms, and extends previous depictions of primate speciation. The next stage of research uses this phylogeny as a foundation for investigating genome content, structure, and evolution across primates. Ongoing and future applications of a robust primate phylogeny are discussed, highlighting advancements in adaptive evolution of genes and genomes, taxonomy and conservation management of endangered species, next-generation genomic technologies, and biomedicine.
Collapse
Affiliation(s)
- Jill Pecon-Slattery
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702; Current Affiliation: Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia 22630;
| |
Collapse
|
46
|
Hedin M, Carlson D, Coyle F. Sky island diversification meets the multispecies coalescent - divergence in the spruce-fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia. Mol Ecol 2015; 24:3467-84. [PMID: 26011071 DOI: 10.1111/mec.13248] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/31/2023]
Abstract
Microhexura montivaga is a miniature tarantula-like spider endemic to the highest peaks of the southern Appalachian mountains and is known only from six allopatric, highly disjunct montane populations. Because of severe declines in spruce-fir forest in the late 20th century, M. montivaga was formally listed as a US federally endangered species in 1995. Using DNA sequence data from one mitochondrial and seven nuclear genes, patterns of multigenic genetic divergence were assessed for six montane populations. Independent mitochondrial and nuclear discovery analyses reveal obvious genetic fragmentation both within and among montane populations, with five to seven primary genetic lineages recovered. Multispecies coalescent validation analyses [guide tree and unguided Bayesian Phylogenetics and Phylogeography (BPP), Bayes factor delimitation (BFD)] using nuclear-only data congruently recover six or seven distinct lineages; BFD analyses using combined nuclear plus mitochondrial data favour seven or eight lineages. In stark contrast to this clear genetic fragmentation, a survey of secondary sexual features for available males indicates morphological conservatism across montane populations. While it is certainly possible that morphologically cryptic speciation has occurred in this taxon, this system may alternatively represent a case where extreme population genetic structuring (but not speciation) leads to an oversplitting of lineage diversity by multispecies coalescent methods. Our results have clear conservation implications for this federally endangered taxon and illustrate a methodological issue expected to become more common as genomic-scale data sets are gathered for taxa found in naturally fragmented habitats.
Collapse
Affiliation(s)
- Marshal Hedin
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Dave Carlson
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | | |
Collapse
|
47
|
Pozzi L, Nekaris KAI, Perkin A, Bearder SK, Pimley ER, Schulze H, Streicher U, Nadler T, Kitchener A, Zischler H, Zinner D, Roos C. Remarkable ancient divergences amongst neglected lorisiform primates. Zool J Linn Soc 2015; 175:661-674. [PMID: 26900177 PMCID: PMC4744660 DOI: 10.1111/zoj.12286] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 11/29/2022]
Abstract
Lorisiform primates (Primates: Strepsirrhini: Lorisiformes) represent almost 10% of the living primate species and are widely distributed in sub-Saharan Africa and South/South-East Asia; however, their taxonomy, evolutionary history, and biogeography are still poorly understood. In this study we report the largest molecular phylogeny in terms of the number of represented taxa. We sequenced the complete mitochondrial cytochrome b gene for 86 lorisiform specimens, including ∼80% of all the species currently recognized. Our results support the monophyly of the Galagidae, but a common ancestry of the Lorisinae and Perodicticinae (family Lorisidae) was not recovered. These three lineages have early origins, with the Galagidae and the Lorisinae diverging in the Oligocene at about 30 Mya and the Perodicticinae emerging in the early Miocene. Our mitochondrial phylogeny agrees with recent studies based on nuclear data, and supports Euoticus as the oldest galagid lineage and the polyphyletic status of Galagoides. Moreover, we have elucidated phylogenetic relationships for several species never included before in a molecular phylogeny. The results obtained in this study suggest that lorisiform diversity remains substantially underestimated and that previously unnoticed cryptic diversity might be present within many lineages, thus urgently requiring a comprehensive taxonomic revision of this primate group.
Collapse
Affiliation(s)
- Luca Pozzi
- Behavioral Ecology and Sociobiology Unit German Primate Center, Leibniz Institute for Primate Research Kellnerweg 4 37077 Göttingen Germany
| | | | - Andrew Perkin
- Nocturnal Primate Research Group, Oxford Brookes UniversityOxfordOX3 0BPUK; Tanzania Forest Conservation GroupPO Box 23410Dar es SalaamTanzania
| | - Simon K Bearder
- Nocturnal Primate Research Group, Oxford Brookes University Oxford OX3 0BP UK
| | - Elizabeth R Pimley
- Nocturnal Primate Research Group, Oxford Brookes UniversityOxfordOX3 0BPUK; School of Natural & Social SciencesUniversity of GloucestershireFrancis Close HallSwindon RoadCheltenhamGloucestershireGL50 4AZUK
| | - Helga Schulze
- Department of Neuroanatomy MA 01/43 Ruhr University 44780 Bochum Germany
| | | | - Tilo Nadler
- Endangered Primate Rescue Center, Cuc Phuong National Park Nho Quan District, Ninh Binh Province Vietnam
| | - Andrew Kitchener
- Department of Natural SciencesNational Museums ScotlandChambers StreetEdinburghEH1 1JFUK; Institute of GeographySchool of GeoSciencesUniversity of EdinburghDrummond StreetEdinburghEH8 9XPUK
| | - Hans Zischler
- Institute of Anthropology University of Mainz Anselm-Franz-von-Bentzel-Weg 7 55128 Mainz Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory German Primate Center, Leibniz Institute for Primate Research Kellnerweg 4 37077 Göttingen Germany
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory German Primate Center, Leibniz Institute for Primate Research Kellnerweg 4 37077 Göttingen Germany
| |
Collapse
|
48
|
Wu Y, Molongoski JJ, Winograd DF, Bogdanowicz SM, Louyakis AS, Lance DR, Mastro VC, Harrison RG. Genetic structure, admixture and invasion success in a Holarctic defoliator, the gypsy moth (Lymantria dispar, Lepidoptera: Erebidae). Mol Ecol 2015; 24:1275-91. [DOI: 10.1111/mec.13103] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Yunke Wu
- Otis CPHST Lab; Joint Base Cape Cod; United States Department of Agriculture; 1398 West Truck Road Buzzards Bay MA 02542 USA
- Department of Ecology and Evolutionary Biology; Cornell University; Corson Hall Ithaca NY 14853 USA
| | - John J. Molongoski
- Otis CPHST Lab; Joint Base Cape Cod; United States Department of Agriculture; 1398 West Truck Road Buzzards Bay MA 02542 USA
| | - Deborah F. Winograd
- Otis CPHST Lab; Joint Base Cape Cod; United States Department of Agriculture; 1398 West Truck Road Buzzards Bay MA 02542 USA
| | - Steven M. Bogdanowicz
- Department of Ecology and Evolutionary Biology; Cornell University; Corson Hall Ithaca NY 14853 USA
| | - Artemis S. Louyakis
- Department of Microbiology and Cell Science; Space Life Sciences Laboratory; Kennedy Space Center; University of Florida; Gainesville FL 32611 USA
| | - David R. Lance
- Otis CPHST Lab; Joint Base Cape Cod; United States Department of Agriculture; 1398 West Truck Road Buzzards Bay MA 02542 USA
| | - Victor C. Mastro
- Otis CPHST Lab; Joint Base Cape Cod; United States Department of Agriculture; 1398 West Truck Road Buzzards Bay MA 02542 USA
| | - Richard G. Harrison
- Department of Ecology and Evolutionary Biology; Cornell University; Corson Hall Ithaca NY 14853 USA
| |
Collapse
|
49
|
Schäffler L, Saborowski J, Kappeler PM. Agent-mediated spatial storage effect in heterogeneous habitat stabilizes competitive mouse lemur coexistence in Menabe Central, Western Madagascar. BMC Ecol 2015; 15:7. [PMID: 25888023 PMCID: PMC4392807 DOI: 10.1186/s12898-015-0040-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Spatio-temporal distribution patterns of species in response to natural and anthropogenic drivers provide insight into the ecological processes that determine community composition. We investigated determinants of ecological structure in a species assemblage of 4 closely related primate species of the family Cheirogaleidae (Microcebus berthae, Microcebus murinus, Cheirogaleus medius, Mirza coquereli) in western Madagascar by extensive line transect surveys across spatial and temporal heterogeneities with the specific goal of elucidating the mechanisms stabilizing competitive coexistence of the two mouse lemur species (Microcebus spp.). RESULTS Interspecific competition between the mouse lemurs was indicated by negative spatial associations in degraded habitat and by habitat partitioning along anthropogenic disturbance gradients during dry seasons with resource scarcity. In non-degraded habitat, intraguild predator M. coquereli, but not C. medius, was negatively associated with M. murinus on the population level, whereas its regional distribution overlapped spatially with that of M. berthae. The species' interspecific distribution pattern across spatial and temporal heterogeneities corresponded to predictions for agent-mediated coexistence and thus confirmed M. coquereli's stabilizing impact on the coexistence of mouse lemurs. CONCLUSIONS Interspecific interactions contribute to ecological structure in this cheirogaleid assemblage and determinants vary across spatio-temporal heterogeneities. Coexistence of Microcebus spp. is stabilized by an agent-mediated spatial storage effect: M. coquereli creates refuges from competition for M. berthae in intact habitat, whereas anthropogenic environments provide M. murinus with an escape from resource competition and intraguild predation. Species persistence in the assemblage therefore depends on the conservation of habitat content and context that stabilizing mechanisms rely on. Our large-scale population level approach did not allow for considering all potential functional and stochastic drivers of ecological structure, a key limitation that accounts for the large proportion of unexplained variance in our models.
Collapse
Affiliation(s)
- Livia Schäffler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany.
- Present address: Museum für Naturkunde, Berlin, Germany.
| | - Joachim Saborowski
- Department Ecoinformatics, Biometrics and Forest Growth, and Department Ecosystem Modelling, Büsgen-Institute, Georg-August University of Göttingen, Göttingen, Germany.
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Göttingen, Germany.
| |
Collapse
|
50
|
Pechouskova E, Dammhahn M, Brameier M, Fichtel C, Kappeler PM, Huchard E. MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener. Immunogenetics 2015; 67:229-45. [PMID: 25687337 PMCID: PMC4357647 DOI: 10.1007/s00251-015-0827-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
Abstract
The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe’s mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB.
Collapse
Affiliation(s)
- Eva Pechouskova
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|