1
|
Liu F, Liao H, Fang Z, Tang Q, Liu Y, Li C, Zhou C, Zhang Y, Shen J. MicroRNA-6954-3p Downregulation Contributes to Orofacial Neuropathic Pain in Mice Via Targeting Voltage-Gated Sodium Channel β2 Subunit Protein. THE JOURNAL OF PAIN 2024; 25:104598. [PMID: 38866121 DOI: 10.1016/j.jpain.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
The voltage-gated sodium channel β2 subunit protein (SCN2B) plays a crucial role in neuropathic pain. However, the role and mechanisms of SCN2B in orofacial neuropathic pain are still unclear. This study aimed to investigate the upstream regulatory mechanisms of SCN2B in the trigeminal ganglion (TG) underlying orofacial neuropathic pain. Chronic constriction injury of the infraorbital nerve (CCI-ION) of mice was performed to establish the model of orofacial neuropathic pain. Von Frey filament test was performed to detect the head withdrawal threshold (HWT) of mice. Quantitative reverse transcription-polymerase chain, western blotting (WB), fluorescence in situ hybridization, and immunofluorescence (IF) staining were used to detect the expression and distribution of SCN2B and miR-6954-3p in the TG of mice. A luciferase activity assay was carried out to prove the binding between SCN2B messenger ribonucleic acid (mRNA) and miR-6954-3p. After the CCI-ION surgery, the levels of Scn2b mRNA and protein significantly increased and miR-6954-3p decreased in the TG of mice with decreasing HWT. IF staining revealed that SCN2B was expressed specifically in the TG neurons. Silencing SCN2B in the TG of CCI-ION mice significantly increased the HWT. Importantly, the 3'-untranslated region of Scn2b mRNA was proved to bind with miR-6954-3p. Fluorescence in situ hybridization and IF staining demonstrated that miR-6954-3p was expressed in TG neurons and co-expressed with SCN2B. Furthermore, intraganglionic injection of miR-6954-3p agomir into the TG of CCI-ION mice resulted in the downregulation of SCN2B and increased the HWT. These findings suggest that the downregulation of miR-6954-3p in the TG promotes orofacial neuropathic pain by promoting SCN2B expression following trigeminal nerve injury. PERSPECTIVE: This study points to the important role of SCN2B in orofacial neuropathic pain. Furthermore, miR-6954-3p is proven to regulate the expression of SCN2B by binding to the 3'-untranslated region of Scn2b mRNA. These findings indicate that SCN2B and miR-6954-3p are potential therapeutic targets for the treatment of orofacial neuropathic pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Honglin Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhonghan Fang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qingfeng Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yajing Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chen Zhou
- Laboratory of Anesthesia and Critical Care Medicine & Translational Neuroscience Center & West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Williams ZJ, Alvarez-Laviada A, Hoagland D, Jourdan LJ, Poelzing S, Gorelik J, Gourdie RG. Development and characterization of the mode-of-action of inhibitory and agonist peptides targeting the voltage-gated sodium channel SCN1B beta-subunit. J Mol Cell Cardiol 2024; 194:32-45. [PMID: 38942073 DOI: 10.1016/j.yjmcc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Cardiac arrhythmia treatment is a clinical challenge necessitating safer and more effective therapies. Recent studies have highlighted the role of the perinexus, an intercalated disc nanodomain enriched in voltage-gated sodium channels including both Nav1.5 and β1 subunits, adjacent to gap junctions. These findings offer insights into action potential conduction in the heart. A 19-amino acid SCN1B (β1/β1B) mimetic peptide, βadp1, disrupts VGSC beta subunit-mediated adhesion in cardiac perinexii, inducing arrhythmogenic changes. We aimed to explore βadp1's mechanism and develop novel SCN1B mimetic peptides affecting β1-mediated adhesion. Using patch clamp assays in neonatal rat cardiomyocytes and electric cell substrate impedance sensing (ECIS) in β1-expressing cells, we observed βadp1 maintained inhibitory effects for up to 5 h. A shorter peptide (LQLEED) based on the carboxyl-terminus of βadp1 mimicked this inhibitory effect, while dimeric peptides containing repeated LQLEED sequences paradoxically promoted intercellular adhesion over longer time courses. Moreover, we found a link between these peptides and β1-regulated intramembrane proteolysis (RIP) - a signaling pathway effecting gene transcription including that of VGSC subunits. βadp1 increased RIP continuously over 48 h, while dimeric agonists acutely boosted RIP for up to 6 h. In the presence of DAPT, an RIP inhibitor, βadp1's effects on ECIS-measured intercellular adhesion was reduced, suggesting a relationship between RIP and the peptide's inhibitory action. In conclusion, novel SCN1B (β1/β1B) mimetic peptides are reported with the potential to modulate intercellular VGSC β1-mediated adhesion, potentially through β1 RIP. These findings suggest a path towards the development of anti-arrhythmic drugs targeting the perinexus.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | | | - Daniel Hoagland
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | - L Jane Jourdan
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States
| | - Steven Poelzing
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States; School of Medicine, Virgina Polytechnic University, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Roanoke, VA, United States
| | - Julia Gorelik
- Department of Myocardial Function, Imperial College London, London, United Kingdom
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, VA, United States; School of Medicine, Virgina Polytechnic University, Roanoke, VA, United States; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Roanoke, VA, United States.
| |
Collapse
|
3
|
Pei S, Wang N, Mei Z, Zhangsun D, Craik DJ, McIntosh JM, Zhu X, Luo S. Conotoxins Targeting Voltage-Gated Sodium Ion Channels. Pharmacol Rev 2024; 76:828-845. [PMID: 38914468 PMCID: PMC11331937 DOI: 10.1124/pharmrev.123.000923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Voltage-gated sodium (NaV) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on NaV channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases. Typically, conotoxins contain two or three disulfide bonds, and these internal crossbraces contribute to conotoxins having compact, well defined structures and high stability. Of the conotoxins containing three disulfide bonds, some selectively target mammalian NaV channels and can block, stimulate, or modulate these channels. Such conotoxins have great potential to serve as pharmacological tools for studying the functions and characteristics of NaV channels or as drug leads for neurologic diseases related to NaV channels. Accordingly, discovering or designing conotoxins targeting NaV channels with high potency and selectivity is important. The amino acid sequences, disulfide bond connectivity, and three-dimensional structures are key factors that affect the biological activity of conotoxins, and targeted synthetic modifications of conotoxins can greatly improve their activity and selectivity. This review examines NaV channel-targeted conotoxins, focusing on their structures, activities, and designed modifications, with a view toward expanding their applications. SIGNIFICANCE STATEMENT: NaV channels are crucial in various neurologic diseases. Some conotoxins selectively target NaV channels, causing either blockade or activation, thus enabling their use as pharmacological tools for studying the channels' characteristics and functions. Conotoxins also have promising potential to be developed as drug leads. The disulfide bonds in these peptides are important for stabilizing their structures, thus leading to enhanced specificity and potency. Together, conotoxins targeting NaV channels have both immediate research value and promising future application prospects.
Collapse
Affiliation(s)
- Shengrong Pei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Nan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Zaoli Mei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - David J Craik
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - J Michael McIntosh
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China (S.P., N.W., Z.M., D.Z., X.Z., S.L.); Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China (D.Z., S.L.); Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia (D.J.C.); Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah (J.M.M.); and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah (J.M.M.)
| |
Collapse
|
4
|
Aman TK, Raman IM. Resurgent current in context: Insights from the structure and function of Na and K channels. Biophys J 2024; 123:1924-1941. [PMID: 38130058 PMCID: PMC11309984 DOI: 10.1016/j.bpj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Discovered just over 25 years ago in cerebellar Purkinje neurons, resurgent Na current was originally described operationally as a component of voltage-gated Na current that flows upon repolarization from relatively depolarized potentials and speeds recovery from inactivation, increasing excitability. Its presence in many excitable cells and absence from others has raised questions regarding its biophysical and molecular mechanisms. Early studies proposed that Na channels capable of generating resurgent current are subject to a rapid open-channel block by an endogenous blocking protein, which binds upon depolarization and unblocks upon repolarization. Since the time that this mechanism was suggested, many physiological and structural studies of both Na and K channels have revealed aspects of gating and conformational states that provide insights into resurgent current. These include descriptions of domain movements for activation and inactivation, solution of cryo-EM structures with pore-blocking compounds, and identification of native blocking domains, proteins, and modulatory subunits. Such results not only allow the open-channel block hypothesis to be refined but also link it more clearly to research that preceded it. This review considers possible mechanisms for resurgent Na current in the context of earlier and later studies of ion channels and suggests a framework for future research.
Collapse
Affiliation(s)
- Teresa K Aman
- Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, Illinois.
| |
Collapse
|
5
|
Williams ZJ, Payne LB, Wu X, Gourdie RG. New focus on cardiac voltage-gated sodium channel β1 and β1B: Novel targets for treating and understanding arrhythmias? Heart Rhythm 2024:S1547-5271(24)02742-5. [PMID: 38908461 DOI: 10.1016/j.hrthm.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Voltage-gated sodium channels (VGSCs) are transmembrane protein complexes that are vital to the generation and propagation of action potentials in nerve and muscle fibers. The canonical VGSC is generally conceived as a heterotrimeric complex formed by 2 classes of membrane-spanning subunit: an α-subunit (pore forming) and 2 β-subunits (non-pore forming). NaV1.5 is the main sodium channel α-subunit of mammalian ventricle, with lower amounts of other α-subunits, including NaV1.6, being present. There are 4 β-subunits (β1-β4) encoded by 4 genes (SCN1B-SCN4B), each of which is expressed in cardiac tissues. Recent studies suggest that in addition to assignments in channel gating and trafficking, products of Scn1b may have novel roles in conduction of action potential in the heart and intracellular signaling. This includes evidence that the β-subunit extracellular amino-terminal domain facilitates adhesive interactions in intercalated discs and that its carboxyl-terminal region is a substrate for a regulated intramembrane proteolysis (RIP) signaling pathway, with a carboxyl-terminal peptide generated by β1 RIP trafficked to the nucleus and altering transcription of various genes, including NaV1.5. In addition to β1, the Scn1b gene encodes for an alternative splice variant, β1B, which contains an identical extracellular adhesion domain to β1 but has a unique carboxyl-terminus. Although β1B is generally understood to be a secreted variant, evidence indicates that when co-expressed with NaV1.5, it is maintained at the cell membrane, suggesting potential unique roles for this understudied protein. In this review, we focus on what is known of the 2 β-subunit variants encoded by Scn1b in heart, with particular focus on recent findings and the questions raised by this new information. We also explore data that indicate β1 and β1B may be attractive targets for novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Zachary J Williams
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Laura Beth Payne
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Xiaobo Wu
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia
| | - Robert G Gourdie
- Fralin Biomedical Research Institute, Virginia Polytechnic University, Roanoke, Virginia; School of Medicine, Virgina Polytechnic University, Roanoke, Virginia; Department of Biomedical Engineering and Mechanics, Virginia Polytechnic University, Blacksburg, Virginia.
| |
Collapse
|
6
|
Heinle JW, Dalessio S, Janicki P, Ouyang A, Vrana KE, Ruiz-Velasco V, Coates MD. Insights into the voltage-gated sodium channel, Na V1.8, and its role in visceral pain perception. Front Pharmacol 2024; 15:1398409. [PMID: 38855747 PMCID: PMC11158627 DOI: 10.3389/fphar.2024.1398409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Pain is a major issue in healthcare throughout the world. It remains one of the major clinical issues of our time because it is a common sequela of numerous conditions, has a tremendous impact on individual quality of life, and is one of the top drivers of cost in medicine, due to its influence on healthcare expenditures and lost productivity in those affected by it. Patients and healthcare providers remain desperate to find new, safer and more effective analgesics. Growing evidence indicates that the voltage-gated sodium channel Nav1.8 plays a critical role in transmission of pain-related signals throughout the body. For that reason, this channel appears to have strong potential to help develop novel, more selective, safer, and efficacious analgesics. However, many questions related to the physiology, function, and clinical utility of Nav1.8 remain to be answered. In this article, we discuss the latest studies evaluating the role of Nav1.8 in pain, with a particular focus on visceral pain, as well as the steps taken thus far to evaluate its potential as an analgesic target. We also review the limitations of currently available studies related to this topic, and describe the next scientific steps that have already been undertaken, or that will need to be pursued, to fully unlock the capabilities of this potential therapeutic target.
Collapse
Affiliation(s)
- J. Westley Heinle
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Piotr Janicki
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Ann Ouyang
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Matthew D. Coates
- Division of Gastroenterology and Hepatology, Penn State College of Medicine, Hershey, PA, United States
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
7
|
Redhardt M, Raunser S, Raisch T. Cryo-EM structure of the Slo1 potassium channel with the auxiliary γ1 subunit suggests a mechanism for depolarization-independent activation. FEBS Lett 2024; 598:875-888. [PMID: 38553946 DOI: 10.1002/1873-3468.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 04/23/2024]
Abstract
Mammalian Ca2+-dependent Slo K+ channels can stably associate with auxiliary γ subunits which fundamentally alter their behavior. By a so far unknown mechanism, the four γ subunits reduce the need for voltage-dependent activation and, thereby, allow Slo to open independently of an action potential. Here, using cryo-EM, we reveal how the transmembrane helix of γ1/LRRC26 binds and presumably stabilizes the activated voltage-sensor domain of Slo1. The activation is further enhanced by an intracellular polybasic stretch which locally changes the charge gradient across the membrane. Our data provide a possible explanation for Slo1 regulation by the four γ subunits and also their different activation efficiencies. This suggests a novel activation mechanism of voltage-gated ion channels by auxiliary subunits.
Collapse
Affiliation(s)
- Milena Redhardt
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
8
|
Lai HJ, Lee MJ, Yu HW, Chen KW, Tsai KL, Lin PC, Huang CW. Biophysical mechanisms underlying tefluthrin-induced modulation of gating changes and resurgent current generation in the human Na v1.4 channel. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105833. [PMID: 38582596 DOI: 10.1016/j.pestbp.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/08/2024]
Abstract
Human skeletal muscle contraction is triggered by activation of Nav1.4 channels. Nav1.4 channels can generate resurgent currents by channel reopening at hyperpolarized potentials through a gating transition dependent on the intracellular Navβ4 peptide in the physiological conditions. Tefluthrin (TEF) is a pyrethroid insecticide that can disrupt electrical signaling in nerves and skeletal muscle, resulting in seizures, muscle spasms, fasciculations, and mental confusion. TEF can also induce tail currents through other voltage-gated sodium channels in the absence of Navβ4 peptide, suggesting that muscle spasms may be caused by resurgent currents. Further, intracellular Navβ4 peptide and extracellular TEF may show competitive or synergistic effects; however, their binding sites are still unknown. To address these issues, electrophysiological recordings were performed on CHO-K1 cells expressing Nav1.4 channels with intracellular Navβ4 peptide, extracellular TEF, or both. TEF and Navβ4 peptide induced a hyperpolarizing shift of activation and inactivation curves in the Nav1.4 channel. TEF also substantially prolonged the inactivation time constants, while simultaneous application of Navβ4 peptide partially reversed this effect. Resurgent currents were enhanced by TEF and Navβ4 peptide at negative potentials, but TEF more potently enhances resurgent currents and dampens decay of resurgent currents. With longer depolarization, peak resurgent currents decay was fastest with the TEF alone. Molecular docking suggested that TEF and Navβ4 peptide binding site(s) are not in the narrowest part of the channel pore, but rather in the bundle-crossing regions and in the domain linkers, respectively. TEF can induce resurgent currents independently and synergistically with Navβ4 peptide, which may explain the muscle spasms observed in TEF intoxication.
Collapse
Affiliation(s)
- Hsing-Jung Lai
- Department of Neurology, National Taiwan University Hospital, Taipei 10617, Taiwan; Department of Physiology, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei 10617, Taiwan; Department of Medical genetics, National Taiwan University Hospital, Taipei 10617, Taiwan
| | - Hsin-Wei Yu
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kuan-Wen Chen
- Genetics Generation Advancement Corporation, Taipei 11494, Taiwan
| | - Ke-Li Tsai
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pi-Chen Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chiung-Wei Huang
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
9
|
Catterall WA. Voltage gated sodium and calcium channels: Discovery, structure, function, and Pharmacology. Channels (Austin) 2023; 17:2281714. [PMID: 37983307 PMCID: PMC10761118 DOI: 10.1080/19336950.2023.2281714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve and muscle, and voltage-gated calcium channels couple depolarization of the plasma membrane to intracellular events such as secretion, contraction, synaptic transmission, and gene expression. In this Review and Perspective article, I summarize early work that led to identification, purification, functional reconstitution, and determination of the amino acid sequence of the protein subunits of sodium and calcium channels and showed that their pore-forming subunits are closely related. Decades of study by antibody mapping, site-directed mutagenesis, and electrophysiological recording led to detailed two-dimensional structure-function maps of the amino acid residues involved in voltage-dependent activation and inactivation, ion permeation and selectivity, and pharmacological modulation. Most recently, high-resolution three-dimensional structure determination by X-ray crystallography and cryogenic electron microscopy has revealed the structural basis for sodium and calcium channel function and pharmacological modulation at the atomic level. These studies now define the chemical basis for electrical signaling and provide templates for future development of new therapeutic agents for a range of neurological and cardiovascular diseases.
Collapse
|
10
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life (Basel) 2023; 13:life13051191. [PMID: 37240836 DOI: 10.3390/life13051191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The pore-forming subunits (α subunits) of voltage-gated sodium channels (VGSC) are encoded in humans by a family of nine highly conserved genes. Among them, SCN1A, SCN2A, SCN3A, and SCN8A are primarily expressed in the central nervous system. The encoded proteins Nav1.1, Nav1.2, Nav1.3, and Nav1.6, respectively, are important players in the initiation and propagation of action potentials and in turn of the neural network activity. In the context of neurological diseases, mutations in the genes encoding Nav1.1, 1.2, 1.3 and 1.6 are responsible for many forms of genetic epilepsy and for Nav1.1 also of hemiplegic migraine. Several pharmacological therapeutic approaches targeting these channels are used or are under study. Mutations of genes encoding VGSCs are also involved in autism and in different types of even severe intellectual disability (ID). It is conceivable that in these conditions their dysfunction could indirectly cause a certain level of neurodegenerative processes; however, so far, these mechanisms have not been deeply investigated. Conversely, VGSCs seem to have a modulatory role in the most common neurodegenerative diseases such as Alzheimer's, where SCN8A expression has been shown to be negatively correlated with disease severity.
Collapse
Affiliation(s)
| | - Mario Nizzari
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Ilaria Zanardi
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| |
Collapse
|
12
|
Salvage SC, Jeevaratnam K, Huang CL, Jackson AP. Cardiac sodium channel complexes and arrhythmia: structural and functional roles of the β1 and β3 subunits. J Physiol 2023; 601:923-940. [PMID: 36354758 PMCID: PMC10953345 DOI: 10.1113/jp283085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
In cardiac myocytes, the voltage-gated sodium channel NaV 1.5 opens in response to membrane depolarisation and initiates the action potential. The NaV 1.5 channel is typically associated with regulatory β-subunits that modify gating and trafficking behaviour. These β-subunits contain a single extracellular immunoglobulin (Ig) domain, a single transmembrane α-helix and an intracellular region. Here we focus on the role of the β1 and β3 subunits in regulating NaV 1.5. We catalogue β1 and β3 domain specific mutations that have been associated with inherited cardiac arrhythmia, including Brugada syndrome, long QT syndrome, atrial fibrillation and sudden death. We discuss how new structural insights into these proteins raises new questions about physiological function.
Collapse
Affiliation(s)
| | | | - Christopher L.‐H. Huang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
13
|
Structure of human Na V1.6 channel reveals Na + selectivity and pore blockade by 4,9-anhydro-tetrodotoxin. Nat Commun 2023; 14:1030. [PMID: 36823201 PMCID: PMC9950489 DOI: 10.1038/s41467-023-36766-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The sodium channel NaV1.6 is widely expressed in neurons of the central and peripheral nervous systems, which plays a critical role in regulating neuronal excitability. Dysfunction of NaV1.6 has been linked to epileptic encephalopathy, intellectual disability and movement disorders. Here we present cryo-EM structures of human NaV1.6/β1/β2 alone and complexed with a guanidinium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-TTX), revealing molecular mechanism of NaV1.6 inhibition by the blocker. The apo-form structure reveals two potential Na+ binding sites within the selectivity filter, suggesting a possible mechanism for Na+ selectivity and conductance. In the 4,9-ah-TTX bound structure, 4,9-ah-TTX binds to a pocket similar to the tetrodotoxin (TTX) binding site, which occupies the Na+ binding sites and completely blocks the channel. Molecular dynamics simulation results show that subtle conformational differences in the selectivity filter affect the affinity of TTX analogues. Taken together, our results provide important insights into NaV1.6 structure, ion conductance, and inhibition.
Collapse
|
14
|
Valente P, Marte A, Franchi F, Sterlini B, Casagrande S, Corradi A, Baldelli P, Benfenati F. A Push-Pull Mechanism Between PRRT2 and β4-subunit Differentially Regulates Membrane Exposure and Biophysical Properties of NaV1.2 Sodium Channels. Mol Neurobiol 2023; 60:1281-1296. [PMID: 36441479 PMCID: PMC9899197 DOI: 10.1007/s12035-022-03112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein implicated in the control of neurotransmitter release and neural network stability. Accordingly, PRRT2 loss-of-function mutations associate with pleiotropic paroxysmal neurological disorders, including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. PRRT2 is a negative modulator of the membrane exposure and biophysical properties of Na+ channels NaV1.2/NaV1.6 predominantly expressed in brain glutamatergic neurons. NaV channels form complexes with β-subunits that facilitate the membrane targeting and the activation of the α-subunits. The opposite effects of PRRT2 and β-subunits on NaV channels raises the question of whether PRRT2 and β-subunits interact or compete for common binding sites on the α-subunit, generating Na+ channel complexes with distinct functional properties. Using a heterologous expression system, we have observed that β-subunits and PRRT2 do not interact with each other and act as independent non-competitive modulators of NaV1.2 channel trafficking and biophysical properties. PRRT2 antagonizes the β4-induced increase in expression and functional activation of the transient and persistent NaV1.2 currents, without affecting resurgent current. The data indicate that β4-subunit and PRRT2 form a push-pull system that finely tunes the membrane expression and function of NaV channels and the intrinsic neuronal excitability.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132, Genova, Italy. .,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Antonella Marte
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Franchi
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Bruno Sterlini
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy ,IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy. .,Center for Synaptic Neuroscience and Technology, Istituto Italiano Di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
15
|
Abad-Rodríguez J, Brocca ME, Higuero AM. Glycans and Carbohydrate-Binding/Transforming Proteins in Axon Physiology. ADVANCES IN NEUROBIOLOGY 2023; 29:185-217. [PMID: 36255676 DOI: 10.1007/978-3-031-12390-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mature nervous system relies on the polarized morphology of neurons for a directed flow of information. These highly polarized cells use their somatodendritic domain to receive and integrate input signals while the axon is responsible for the propagation and transmission of the output signal. However, the axon must perform different functions throughout development before being fully functional for the transmission of information in the form of electrical signals. During the development of the nervous system, axons perform environmental sensing functions, which allow them to navigate through other regions until a final target is reached. Some axons must also establish a regulated contact with other cells before reaching maturity, such as with myelinating glial cells in the case of myelinated axons. Mature axons must then acquire the structural and functional characteristics that allow them to perform their role as part of the information processing and transmitting unit that is the neuron. Finally, in the event of an injury to the nervous system, damaged axons must try to reacquire some of their immature characteristics in a regeneration attempt, which is mostly successful in the PNS but fails in the CNS. Throughout all these steps, glycans perform functions of the outermost importance. Glycans expressed by the axon, as well as by their surrounding environment and contacting cells, encode key information, which is fine-tuned by glycan modifying enzymes and decoded by glycan binding proteins so that the development, guidance, myelination, and electrical transmission functions can be reliably performed. In this chapter, we will provide illustrative examples of how glycans and their binding/transforming proteins code and decode instructive information necessary for fundamental processes in axon physiology.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain.
| | - María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| | - Alonso Miguel Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Toledo, Spain
| |
Collapse
|
16
|
Postrigan AE, Babushkina NP, Svintsova LI, Plotnikova IV, Skryabin NA. Clinical and Genetic Characteristics of Congenital Long QT Syndrome. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Elleman AV, Du Bois J. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception. Chembiochem 2022; 23:e202100625. [PMID: 35315190 PMCID: PMC9359671 DOI: 10.1002/cbic.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Kong X, Li Y, Perez-Miller S, Luo G, Liao Q, Wu X, Liang S, Tang C, Khanna R, Liu Z. The small molecule compound C65780 alleviates pain by stabilizing voltage-gated sodium channels in the inactivated and slowly-recovering state. Neuropharmacology 2022; 212:109057. [DOI: 10.1016/j.neuropharm.2022.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
19
|
Mehrotra S, Pierce ML, Cao Z, Jabba SV, Gerwick WH, Murray TF. Antillatoxin-Stimulated Neurite Outgrowth Involves the Brain-Derived Neurotrophic Factor (BDNF) - Tropomyosin Related Kinase B (TrkB) Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:562-571. [PMID: 35239341 PMCID: PMC9245549 DOI: 10.1021/acs.jnatprod.1c01001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Voltage-gated sodium channel (VGSC) activators promote neurite outgrowth by augmenting intracellular Na+ concentration ([Na+]i) and upregulating N-methyl-d-aspartate receptor (NMDAR) function. NMDAR activation stimulates calcium (Ca2+) influx and increases brain-derived neurotrophic factor (BDNF) release and activation of tropomyosin receptor kinase B (TrkB) signaling. The BDNF-TrkB pathway has been implicated in activity-dependent neuronal development. We have previously shown that antillatoxin (ATX), a novel lipopeptide isolated from the cyanobacterium Moorea producens, is a VGSC activator that produces an elevation of [Na+]i. Here we address the effect of ATX on the synthesis and release of BDNF and determine the signaling mechanisms by which ATX enhances neurite outgrowth in immature cerebrocortical neurons. ATX treatment produced a concentration-dependent release of BDNF. Acute treatment with ATX also resulted in increased synthesis of BDNF. ATX stimulation of neurite outgrowth was prevented by pretreatment with a TrkB inhibitor or transfection with a dominant-negative Trk-B. The ATX activation of TrkB and Akt was blocked by both a NMDAR antagonist (MK-801) and a VGSC blocker (tetrodotoxin). These results suggest that VGSC activators such as the structurally novel ATX may represent a new pharmacological strategy to promote neuronal plasticity through a NMDAR-BDNF-TrkB-dependent mechanism.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Omeros, 201 Elliott Ave. West, Seattle, Washington 98119, United States
| | - Marsha L Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois 60515, United States
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Sairam V Jabba
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - William H Gerwick
- Center for Marine Biotech and Biomedicine, Scripps Institute of Oceanography, University of California at San Diego, San Diego, California 92093-0212, United States
| | - Thomas F Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| |
Collapse
|
20
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
21
|
Angsutararux P, Zhu W, Voelker TL, Silva JR. Molecular Pathology of Sodium Channel Beta-Subunit Variants. Front Pharmacol 2021; 12:761275. [PMID: 34867379 PMCID: PMC8640220 DOI: 10.3389/fphar.2021.761275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated Na+ channel regulates the initiation and propagation of the action potential in excitable cells. The major cardiac isoform NaV1.5, encoded by SCN5A, comprises a monomer with four homologous repeats (I-IV) that each contain a voltage sensing domain (VSD) and pore domain. In native myocytes, NaV1.5 forms a macromolecular complex with NaVβ subunits and other regulatory proteins within the myocyte membrane to maintain normal cardiac function. Disturbance of the NaV complex may manifest as deadly cardiac arrhythmias. Although SCN5A has long been identified as a gene associated with familial atrial fibrillation (AF) and Brugada Syndrome (BrS), other genetic contributors remain poorly understood. Emerging evidence suggests that mutations in the non-covalently interacting NaVβ1 and NaVβ3 are linked to both AF and BrS. Here, we investigated the molecular pathologies of 8 variants in NaVβ1 and NaVβ3. Our results reveal that NaVβ1 and NaVβ3 variants contribute to AF and BrS disease phenotypes by modulating both NaV1.5 expression and gating properties. Most AF-linked variants in the NaVβ1 subunit do not alter the gating kinetics of the sodium channel, but rather modify the channel expression. In contrast, AF-related NaVβ3 variants directly affect channel gating, altering voltage-dependent activation and the time course of recovery from inactivation via the modulation of VSD activation.
Collapse
Affiliation(s)
- Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Taylor L Voelker
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
22
|
Nevin ST, Lawrence N, Nicke A, Lewis RJ, Adams DJ. Functional modulation of the human voltage-gated sodium channel Na V1.8 by auxiliary β subunits. Channels (Austin) 2021; 15:79-93. [PMID: 33315536 PMCID: PMC7781643 DOI: 10.1080/19336950.2020.1860399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
The voltage-gated sodium channel Nav1.8 mediates the tetrodotoxin-resistant (TTX-R) Na+ current in nociceptive primary sensory neurons, which has an important role in the transmission of painful stimuli. Here, we describe the functional modulation of the human Nav1.8 α-subunit in Xenopus oocytes by auxiliary β subunits. We found that the β3 subunit down-regulated the maximal Na+ current amplitude and decelerated recovery from inactivation of hNav1.8, whereas the β1 and β2 subunits had no such effects. The specific regulation of Nav1.8 by the β3 subunit constitutes a potential novel regulatory mechanism of the TTX-R Na+ current in primary sensory neurons with potential implications in chronic pain states. In particular, neuropathic pain states are characterized by a down-regulation of Nav1.8 accompanied by increased expression of the β3 subunit. Our results suggest that these two phenomena may be correlated, and that increased levels of the β3 subunit may directly contribute to the down-regulation of Nav1.8. To determine which domain of the β3 subunit is responsible for the specific regulation of hNav1.8, we created chimeras of the β1 and β3 subunits and co-expressed them with the hNav1.8 α-subunit in Xenopus oocytes. The intracellular domain of the β3 subunit was shown to be responsible for the down-regulation of maximal Nav1.8 current amplitudes. In contrast, the extracellular domain mediated the effect of the β3 subunit on hNav1.8 recovery kinetics.
Collapse
Affiliation(s)
- S. T. Nevin
- School of Biomedical Sciences and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - N. Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - A. Nicke
- School of Biomedical Sciences and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - R. J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - D. J. Adams
- School of Biomedical Sciences and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia
| |
Collapse
|
23
|
Quattrocolo G, Dunville K, Nigro MJ. Resurgent Sodium Current in Neurons of the Cerebral Cortex. Front Cell Neurosci 2021; 15:760610. [PMID: 34658797 PMCID: PMC8517112 DOI: 10.3389/fncel.2021.760610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
In the late ’90, Dr. Indira Raman, at the time a postdoctoral fellow with Dr. Bruce Bean, at Harvard University, identified a new type of sodium current, flowing through the channels that reopens when the membrane is repolarized. This current, called “resurgent Sodium current,” was originally identified in cerebellar Purkinje neurons and has now been confirmed in around 20 different neuronal types. Since moving to Northwestern University in 1999 to establish her own research group, Dr. Raman has dedicated great efforts in identifying the mechanisms supporting the resurgent Sodium current and how its biophysical properties shape the firing of the different cell types. Her work has impacted greatly the field of cellular neurophysiology, from basic research to translation neuroscience. In fact, alterations in the resurgent sodium currents have been observed in several neuropathologies, from Huntington’s disease to epilepsy. In this Perspective we will focus on the current knowledge on the expression and function of the resurgent Sodium current in neurons of the cerebral cortex and hippocampus. We will also briefly highlight the role of Dr. Raman’s as teacher and mentor, not only for her pupils, but for the whole scientific community.
Collapse
Affiliation(s)
- Giulia Quattrocolo
- Center for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Keagan Dunville
- Center for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano José Nigro
- Center for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
24
|
Doray A, Lemoine R, Severin M, Chadet S, Lopez-Charcas O, Héraud A, Baron C, Besson P, Monteil A, Pedersen SF, Roger S. The Voltage-Gated Sodium Channel Beta4 Subunit Maintains Epithelial Phenotype in Mammary Cells. Cells 2021; 10:1624. [PMID: 34209614 PMCID: PMC8304757 DOI: 10.3390/cells10071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The SCN4B gene, coding for the NaVβ4 subunit of voltage-gated sodium channels, was recently found to be expressed in normal epithelial cells and down-regulated in several cancers. However, its function in normal epithelial cells has not been characterized. In this study, we demonstrated that reducing NaVβ4 expression in MCF10A non-cancer mammary epithelial cells generated important morphological changes observed both in two-dimensional cultures and in three-dimensional cysts. Most notably, the loss of NaVβ4 induced a complete loss of epithelial organisation in cysts and increased proteolytic activity towards the extracellular matrix. Loss of epithelial morphology was associated with an increased degradation of β-catenin, reduced E-cadherin expression and induction of mesenchymal markers N-cadherin, vimentin, and α-SMA expression. Overall, our results suggest that Navβ4 may participate in the maintenance of the epithelial phenotype in mammary cells and that its downregulation might be a determining step in early carcinogenesis.
Collapse
Affiliation(s)
- Adélaïde Doray
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Roxane Lemoine
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (S.F.P.)
| | - Stéphanie Chadet
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Osbaldo Lopez-Charcas
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Audrey Héraud
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Christophe Baron
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Pierre Besson
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS UMR 5203, INSERM U1191, 34094 Montpellier, France;
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (S.F.P.)
| | - Sébastien Roger
- Transplantation, Immunologie et Inflammation T2I-EA 4245, Université de Tours, 37044 Tours, France; (A.D.); (R.L.); (S.C.); (O.L.-C.); (A.H.); (C.B.); (P.B.)
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
25
|
Al-Ward H, Liu CY, Liu N, Shaher F, Al-Nusaif M, Mao J, Xu H. Voltage-Gated Sodium Channel β1 Gene: An Overview. Hum Hered 2021; 85:101-109. [PMID: 34038903 DOI: 10.1159/000516388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Voltage-gated sodium channels are protein complexes composed of 2 subunits, namely, pore-forming α- and regulatory β-subunits. A β-subunit consists of 5 proteins encoded by 4 genes (i.e., SCN1B-SCN4B). SUMMARY β1-Subunits regulate sodium ion channel functions, including gating properties, subcellular localization, and kinetics. Key Message: Sodium channel β1- and its variant β1B-subunits are encoded by SCN1B. These variants are associated with many human diseases, such as epilepsy, Brugada syndrome, Dravet syndrome, and cancers. On the basis of previous research, we aimed to provide an overview of the structure, expression, and involvement of SCN1B in physiological processes and focused on its role in diseases.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Chun-Yang Liu
- Department of Biochemistry and Molecular Biology, Ankang University School of Medicine, Ankang, China
| | - Ning Liu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Fahmi Shaher
- Department of Pathophysiology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Murad Al-Nusaif
- Department of Neurology, Dalian Medical University, Dalian, China
| | - Jing Mao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| |
Collapse
|
26
|
Chemometric Models of Differential Amino Acids at the Na vα and Na vβ Interface of Mammalian Sodium Channel Isoforms. Molecules 2020; 25:molecules25153551. [PMID: 32756517 PMCID: PMC7435598 DOI: 10.3390/molecules25153551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: voltage-gated sodium channels (Navs) are integral membrane proteins that allow the sodium ion flux into the excitable cells and initiate the action potential. They comprise an α (Navα) subunit that forms the channel pore and are coupled to one or more auxiliary β (Navβ) subunits that modulate the gating to a variable extent. (2) Methods: after performing homology in silico modeling for all nine isoforms (Nav1.1α to Nav1.9α), the Navα and Navβ protein-protein interaction (PPI) was analyzed chemometrically based on the primary and secondary structures as well as topological or spatial mapping. (3) Results: our findings reveal a unique isoform-specific correspondence between certain segments of the extracellular loops of the Navα subunits. Precisely, loop S5 in domain I forms part of the PPI and assists Navβ1 or Navβ3 on all nine mammalian isoforms. The implied molecular movements resemble macroscopic springs, all of which explains published voltage sensor effects on sodium channel fast inactivation in gating. (4) Conclusions: currently, the specific functions exerted by the Navβ1 or Navβ3 subunits on the modulation of Navα gating remain unknown. Our work determined functional interaction in the extracellular domains on theoretical grounds and we propose a schematic model of the gating mechanism of fast channel sodium current inactivation by educated guessing.
Collapse
|
27
|
Salvage SC, Huang CLH, Jackson AP. Cell-Adhesion Properties of β-Subunits in the Regulation of Cardiomyocyte Sodium Channels. Biomolecules 2020; 10:biom10070989. [PMID: 32630316 PMCID: PMC7407995 DOI: 10.3390/biom10070989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory β-subunits (β1–4) bind to the Nav channel α-subunits. Previous work has emphasised the β-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on β-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the β-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between β1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.
Collapse
Affiliation(s)
- Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| |
Collapse
|
28
|
The Sodium Channel B4-Subunits are Dysregulated in Temporal Lobe Epilepsy Drug-Resistant Patients. Int J Mol Sci 2020; 21:ijms21082955. [PMID: 32331418 PMCID: PMC7216270 DOI: 10.3390/ijms21082955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of partial epilepsy referred for surgery due to antiepileptic drug (AED) resistance. A common molecular target for many of these drugs is the voltage-gated sodium channel (VGSC). The VGSC consists of four domains of pore-forming α-subunits and two auxiliary β-subunits, several of which have been well studied in epileptic conditions. However, despite the β4-subunits' role having been reported in some neurological conditions, there is little research investigating its potential significance in epilepsy. Therefore, the purpose of this work was to assess the role of SCN4β in epilepsy by using a combination of molecular and bioinformatics approaches. We first demonstrated that there was a reduction in the relative expression of SCN4B in the drug-resistant TLE patients compared to non-epileptic control specimens, both at the mRNA and protein levels. By analyzing a co-expression network in the neighborhood of SCN4B we then discovered a linkage between the expression of this gene and K+ channels activated by Ca2+, or K+ two-pore domain channels. Our approach also inferred several potential effector functions linked to variation in the expression of SCN4B. These observations support the hypothesis that SCN4B is a key factor in AED-resistant TLE, which could help direct both the drug selection of TLE treatments and the development of future AEDs.
Collapse
|
29
|
Mason ER, Cummins TR. Differential Inhibition of Human Nav1.2 Resurgent and Persistent Sodium Currents by Cannabidiol and GS967. Int J Mol Sci 2020; 21:ijms21072454. [PMID: 32244818 PMCID: PMC7177867 DOI: 10.3390/ijms21072454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Many epilepsy patients are refractory to conventional antiepileptic drugs. Resurgent and persistent currents can be enhanced by epilepsy mutations in the Nav1.2 channel, but conventional antiepileptic drugs inhibit normal transient currents through these channels, along with aberrant resurgent and persistent currents that are enhanced by Nav1.2 epilepsy mutations. Pharmacotherapies that specifically target aberrant resurgent and/or persistent currents would likely have fewer unwanted side effects and be effective in many patients with refractory epilepsy. This study investigated the effects of cannbidiol (CBD) and GS967 (each at 1 μM) on transient, resurgent, and persistent currents in human embryonic kidney (HEK) cells stably expressing wild-type hNav1.2 channels. We found that CBD preferentially inhibits resurgent currents over transient currents in this paradigm; and that GS967 preferentially inhibits persistent currents over transient currents. Therefore, CBD and GS967 may represent a new class of more targeted and effective antiepileptic drugs.
Collapse
Affiliation(s)
- Emily R. Mason
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IUPUI campus, Indianapolis, IN 46202, USA
- Correspondence:
| | - Theodore R. Cummins
- Department of Biology, Purdue School of Science, IUPUI campus, Indianapolis, IN 46202, USA;
| |
Collapse
|
30
|
Glass WG, Duncan AL, Biggin PC. Computational Investigation of Voltage-Gated Sodium Channel β3 Subunit Dynamics. Front Mol Biosci 2020; 7:40. [PMID: 32266288 PMCID: PMC7103644 DOI: 10.3389/fmolb.2020.00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/19/2020] [Indexed: 01/23/2023] Open
Abstract
Voltage-gated sodium (Na v ) channels form the basis for the initiation of the action potential in excitable cells by allowing sodium ions to pass through the cell membrane. The Na v channel α subunit is known to function both with and without associated β subunits. There is increasing evidence that these β subunits have multiple roles that include not only influencing the voltage-dependent gating but also the ability to alter the spatial distribution of the pore-forming α subunit. Recent structural data has shown possible ways in which β1 subunits may interact with the α subunit. However, the position of the β1 subunit would not be compatible with a previous trimer structure of the β3 subunit. Furthermore, little is currently known about the dynamic behavior of the β subunits both as individual monomers and as higher order oligomers. Here, we use multiscale molecular dynamics simulations to assess the dynamics of the β3, and the closely related, β1 subunit. These findings reveal the spatio-temporal dynamics of β subunits and should provide a useful framework for interpreting future low-resolution experiments such as atomic force microscopy.
Collapse
Affiliation(s)
| | | | - Philip C. Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
White HV, Brown ST, Bozza TC, Raman IM. Effects of FGF14 and Na Vβ4 deletion on transient and resurgent Na current in cerebellar Purkinje neurons. J Gen Physiol 2019; 151:1300-1318. [PMID: 31558566 PMCID: PMC6829560 DOI: 10.1085/jgp.201912390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated Na channels of Purkinje cells are specialized to maintain high availability during high-frequency repetitive firing. They enter fast-inactivated states relatively slowly and undergo a voltage-dependent open-channel block by an intracellular protein (or proteins) that prevents stable fast inactivation and generates resurgent Na current. These properties depend on the pore-forming α subunits, as well as modulatory subunits within the Na channel complex. The identity of the factors responsible for open-channel block remains a question. Here we investigate the effects of genetic mutation of two Na channel auxiliary subunits highly expressed in Purkinje cells, NaVβ4 and FGF14, on modulating Na channel blocked as well as inactivated states. We find that although both NaVβ4 and the FGF14 splice variant FGF14-1a contain sequences that can generate resurgent-like currents when applied to Na channels in peptide form, deletion of either protein, or both proteins simultaneously, does not eliminate resurgent current in acutely dissociated Purkinje cell bodies. Loss of FGF14 expression does, however, reduce resurgent current amplitude and leads to an acceleration and stabilization of inactivation that is not reversed by application of the site-3 toxin, anemone toxin II (ATX). Tetrodotoxin (TTX) sensitivity is higher for resurgent than transient components of Na current, and loss of FGF14 preferentially affects a highly TTX-sensitive subset of Purkinje α subunits. The data suggest that NaV1.6 channels, which are known to generate the majority of Purkinje cell resurgent current, bind TTX with high affinity and are modulated by FGF14 to facilitate open-channel block.
Collapse
Affiliation(s)
- Hayley V White
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Spencer T Brown
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Thomas C Bozza
- Department of Neurobiology, Northwestern University, Evanston, IL.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, IL .,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL
| |
Collapse
|
32
|
Lee J, Kim S, Kim HM, Kim HJ, Yu FH. NaV1.6 and NaV1.7 channels are major endogenous voltage-gated sodium channels in ND7/23 cells. PLoS One 2019; 14:e0221156. [PMID: 31419255 PMCID: PMC6697327 DOI: 10.1371/journal.pone.0221156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
ND7/23 cells are gaining traction as a host model to express peripheral sodium channels such as NaV1.8 and NaV1.9 that have been difficult to express in widely utilized heterologous cells, like CHO and HEK293. Use of ND7/23 as a model cell to characterize the properties of sodium channels requires clear understanding of the endogenous ion channels. To define the nature of the background sodium currents in ND7/23 cells, we aimed to comprehensively profile the voltage-gated sodium channel subunits by endpoint and quantitative reverse transcription-PCR and by whole-cell patch clamp electrophysiology. We found that untransfected ND7/23 cells express endogenous peak sodium currents that average -2.12nA (n = 15) and with kinetics typical of fast sodium currents having activation and inactivation completed within few milliseconds. Furthermore, sodium currents were reduced to virtually nil upon exposure to 100nM tetrodotoxin, indicating that ND7/23 cells have essentially null background for tetrodotoxin-resistant (TTX-R) currents. qRT-PCR profiling indicated a major expression of TTX-sensitive (TTX-S) NaV1.6 and NaV1.7 at similar levels and very low expression of TTX-R NaV1.9 transcripts. There was no expression of TTX-R NaV1.8 in ND7/23 cells. There was low expression of NaV1.1, NaV1.2, NaV1.3 and no expression of cardiac or skeletal muscle sodium channels. As for the sodium channel auxiliary subunits, β1 and β3 subunits were expressed, but not the β2 and β4 subunits that covalently associate with the α-subunits. In addition, our results also showed that only the mouse forms of NaV1.6, NaV1.7 and NaV1.9 sodium channels were expressed in ND7/23 cells that was originally generated as a hybridoma of rat embryonic DRG and mouse neuroblastoma cell-line. By molecular profiling of auxiliary β- and principal α-subunits of the voltage gated sodium channel complex, our results define the background sodium channels expressed in ND7/23 cells, and confirm their utility for detailed functional studies of emerging pain channelopathies ascribed to mutations of the TTX-R sodium channels of sensory neurons.
Collapse
Affiliation(s)
- Jisoo Lee
- Department of Pharmacology and Dental Therapeutics, Program in Neurobiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Shinae Kim
- Department of Pharmacology and Dental Therapeutics, Program in Neurobiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hye-mi Kim
- Department of Pharmacology and Dental Therapeutics, Program in Neurobiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Hyun Jeong Kim
- Department of Dental Anesthesiology, Program in Neurobiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Frank H. Yu
- Department of Pharmacology and Dental Therapeutics, Program in Neurobiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
33
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
34
|
Blednov YA, Bajo M, Roberts AJ, Da Costa AJ, Black M, Edmunds S, Mayfield J, Roberto M, Homanics GE, Lasek AW, Hitzemann RJ, Harris RA. Scn4b regulates the hypnotic effects of ethanol and other sedative drugs. GENES BRAIN AND BEHAVIOR 2019; 18:e12562. [PMID: 30817077 PMCID: PMC6612599 DOI: 10.1111/gbb.12562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/28/2022]
Abstract
The voltage-gated sodium channel subunit β4 (SCN4B) regulates neuronal activity by modulating channel gating and has been implicated in ethanol consumption in rodent models and human alcoholics. However, the functional role for Scn4b in ethanol-mediated behaviors is unknown. We determined if genetic global knockout (KO) or targeted knockdown of Scn4b in the central nucleus of the amygdala (CeA) altered ethanol drinking or related behaviors. We used four different ethanol consumption procedures (continuous and intermittent two-bottle choice (2BC), drinking-in-the dark and chronic intermittent ethanol vapor) and found that male and female Scn4b KO mice did not differ from their wild-type (WT) littermates in ethanol consumption in any of the tests. Knockdown of Scn4b mRNA in the CeA also did not alter 2BC ethanol drinking. However, Scn4b KO mice showed longer duration of the loss of righting reflex induced by ethanol, gaboxadol, pentobarbital and ketamine. KO mice showed slower recovery to basal levels of handling-induced convulsions after ethanol injection, which is consistent with the increased sedative effects observed in these mice. However, Scn4b KO mice did not differ in the severity of acute ethanol withdrawal. Acoustic startle responses, ethanol-induced hypothermia and clearance of blood ethanol also did not differ between the genotypes. There were also no functional differences in the membrane properties or excitability of CeA neurons from Scn4b KO and WT mice. Although we found no evidence that Scn4b regulates ethanol consumption in mice, it was involved in the acute hypnotic effects of ethanol and other sedatives.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Amanda J Roberts
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Adriana J Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Stephanie Edmunds
- Department of Behavioral Neuroscience, Oregon Health & Science University, Oregon, Portland
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Gregg E Homanics
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amy W Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Robert J Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Oregon, Portland
| | - Robert A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
35
|
Sanchez-Sandoval AL, Gomora JC. Contribution of voltage-gated sodium channel β-subunits to cervical cancer cells metastatic behavior. Cancer Cell Int 2019; 19:35. [PMID: 30814913 PMCID: PMC6377746 DOI: 10.1186/s12935-019-0757-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 01/23/2023] Open
Abstract
Background Voltage-gated sodium (NaV) channels are heteromeric proteins consisting of a single pore forming α-subunit associated with one or two auxiliary β-subunits. These channels are classically known for being responsible of action potential generation and propagation in excitable cells; but lately they have been reported as widely expressed and regulated in several human cancer types. We have previously demonstrated the overexpression of NaV1.6 channel in cervical cancer (CeCa) biopsies and primary cultures, and its contribution to cell migration and invasiveness. Here, we investigated the expression of NaV channels β-subunits (NaVβs) in the CeCa cell lines HeLa, SiHa and CaSki, and determined their contribution to cell proliferation, migration and invasiveness. Methods We assessed the expression of NaVβs in CeCa cell lines by performing RT-PCR and western blotting experiments. We also evaluated CeCa cell lines proliferation, migration, and invasion by in vitro assays, both in basal conditions and after inducing changes in NaVβs levels by transfecting specific cDNAs or siRNAs. The potential role of NaVβs in modulating the expression of NaV α-subunits in the plasma membrane of CeCa cells was examined by the patch-clamp whole-cell technique. Furthermore, we investigated the role of NaVβ1 on cell cycle in SiHa cells by flow cytometry. Results We found that the four NaVβs are expressed in the three CeCa cell lines, even in the absence of functional NaV α-subunit expression in the plasma membrane. Functional in vitro assays showed differential roles for NaVβ1 and NaVβ4, the latter as a cell invasiveness repressor and the former as a migration abolisher in CeCa cells. In silico analysis of NaVβ4 expression in cervical tissues corroborated the downregulation of this protein expression in CeCa vs normal cervix, supporting the evidence of NaVβ4’s role as a cell invasiveness repressor. Conclusions Our results contribute to the recent conception about NaVβs as multifunctional proteins involved in cell processes like ion channel regulation, cell adhesion and motility, and even in metastatic cell behaviors. These non-canonical functions of NaVβs are independent of the presence of functional NaV α-subunits in the plasma membrane and might represent a new therapeutic target for the treatment of cervical cancer. Electronic supplementary material The online version of this article (10.1186/s12935-019-0757-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| |
Collapse
|
36
|
Pan X, Li Z, Huang X, Huang G, Gao S, Shen H, Liu L, Lei J, Yan N. Molecular basis for pore blockade of human Na + channel Na v1.2 by the μ-conotoxin KIIIA. Science 2019; 363:1309-1313. [PMID: 30765605 DOI: 10.1126/science.aaw2999] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
The voltage-gated sodium channel Nav1.2 is responsible for the initiation and propagation of action potentials in the central nervous system. We report the cryo-electron microscopy structure of human Nav1.2 bound to a peptidic pore blocker, the μ-conotoxin KIIIA, in the presence of an auxiliary subunit, β2, to an overall resolution of 3.0 angstroms. The immunoglobulin domain of β2 interacts with the shoulder of the pore domain through a disulfide bond. The 16-residue KIIIA interacts with the extracellular segments in repeats I to III, placing Lys7 at the entrance to the selectivity filter. Many interacting residues are specific to Nav1.2, revealing a molecular basis for KIIIA specificity. The structure establishes a framework for the rational design of subtype-specific blockers for Nav channels.
Collapse
Affiliation(s)
- Xiaojing Pan
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoshuang Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuai Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lei Liu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Liu Z, Wadsworth P, Singh AK, Chen H, Wang P, Folorunso O, Scaduto P, Ali SR, Laezza F, Zhou J. Identification of peptidomimetics as novel chemical probes modulating fibroblast growth factor 14 (FGF14) and voltage-gated sodium channel 1.6 (Nav1.6) protein-protein interactions. Bioorg Med Chem Lett 2018; 29:413-419. [PMID: 30587448 DOI: 10.1016/j.bmcl.2018.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022]
Abstract
The voltage-gated sodium (Nav) channel is the molecular determinant of action potential in neurons. Protein-protein interactions (PPI) between the intracellular Nav1.6 C-tail and its regulatory protein fibroblast growth factor 14 (FGF14) provide an ideal and largely untapped opportunity for development of neurochemical probes. Based on a previously identified peptide FLPK, mapped to the FGF14:FGF14 PPI interface, we have designed and synthesized a series of peptidomimetics with the intent of increasing clogP values and improving cell permeability relative to the parental lead peptide. In-cell screening using the split-luciferase complementation (LCA) assay identified ZL0177 (13) as the most potent inhibitor of the FGF14:Nav1.6 channel complex assembly with an apparent IC50 of 11 μM. Whole-cell patch-clamp recordings demonstrated that ZL0177 significantly reduced Nav1.6-mediated transient current density and induced a depolarizing shift of the channel voltage-dependence of activation. Docking studies revealed strong interactions between ZL0177 and Nav1.6, mediated by hydrogen bonds, cation-π interactions and hydrophobic contacts. All together these results suggest that ZL0177 retains some key features of FGF14-dependent modulation of Nav1.6 currents. Overall, ZL0177 provides a chemical scaffold for developing Nav channel modulators as pharmacological probes with therapeutic potential of interest for a broad range of CNS and PNS disorders.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Paul Wadsworth
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Aditya K Singh
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Haiying Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Oluwarotimi Folorunso
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Pietro Scaduto
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Syed R Ali
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States.
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd, Galveston, Galveston, TX 77555, United States.
| |
Collapse
|
38
|
Ransdell JL, Nerbonne JM. Voltage-gated sodium currents in cerebellar Purkinje neurons: functional and molecular diversity. Cell Mol Life Sci 2018; 75:3495-3505. [PMID: 29982847 PMCID: PMC6123253 DOI: 10.1007/s00018-018-2868-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Abstract
Purkinje neurons, the sole output of the cerebellar cortex, deliver GABA-mediated inhibition to the deep cerebellar nuclei. To subserve this critical function, Purkinje neurons fire repetitively, and at high frequencies, features that have been linked to the unique properties of the voltage-gated sodium (Nav) channels expressed. In addition to the rapidly activating and inactivating, or transient, component of the Nav current (INaT) present in many types of central and peripheral neurons, Purkinje neurons, also expresses persistent (INaP) and resurgent (INaR) Nav currents. Considerable progress has been made in detailing the biophysical properties and identifying the molecular determinants of these discrete Nav current components, as well as defining their roles in the regulation of Purkinje neuron excitability. Here, we review this important work and highlight the remaining questions about the molecular mechanisms controlling the expression and the functioning of Nav currents in Purkinje neurons. We also discuss the impact of the dynamic regulation of Nav currents on the functioning of individual Purkinje neurons and cerebellar circuits.
Collapse
Affiliation(s)
- Joseph L Ransdell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, Box 8086, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, Box 8086, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
39
|
Baroni D, Picco C, Moran O. A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the voltage-dependent sodium channel. Hum Mutat 2018; 39:1402-1415. [PMID: 29992740 DOI: 10.1002/humu.23589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These integral membrane proteins are composed of a pore-forming α-subunit, and one or more auxiliary β subunits. Mutation p.Asp25Asn (D25N; c.73G > A) of the β1 subunit, coded by the gene SCN1B, has been reported in a patient with generalized epilepsy with febrile seizure plus type 1 (GEFS+). In human embryonic kidney 293 (HEK) cells, the heterologous coexpression of D25N-β1 subunit with Nav1.2, Nav1.4, and Nav1.5 α subunits, representative of brain, skeletal muscle, and heart voltage gated sodium channels, determines a reduced sodium channel functional expression and a negative shift of the activation and inactivation steady state curves. The D25N mutation of the β1 subunit causes a maturation (glycosylation) defect of the protein, leading to a reduced targeting to the plasma membrane. Also the β1-dependent gating properties of the sodium channels are abolished by the mutation, suggesting that D25N is no more able to interact with the α subunit. Our work underscores the role played by the β1 subunit, highlighting how a defective interaction between the sodium channel constituents could lead to a disabling pathological condition, and opens the possibility to design a mutation-specific GEFS+ treatment based on protein maturation.
Collapse
|
40
|
Körner J, Meents J, Machtens J, Lampert A. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress. J Physiol 2018; 596:2433-2445. [PMID: 29659026 PMCID: PMC6002208 DOI: 10.1113/jp275905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/06/2018] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. ABSTRACT Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be modified by interfering with the extracellular end of segment 6 of domain IV. Thus, our data suggest that physiological gating of Nav1.7 may be protected against mechanical stress in a living organism by assembly with the β1 subunit.
Collapse
Affiliation(s)
- Jannis Körner
- Institute of PhysiologyRWTH Aachen UniversityPauwelsstrasse 30Aachen52074Germany
- Institute of Complex Systems, Zelluläre Biophysik (ICS‐4) and JARA‐HPCForschungszentrum JülichJülichGermany
| | - Jannis Meents
- Institute of PhysiologyRWTH Aachen UniversityPauwelsstrasse 30Aachen52074Germany
| | - Jan‐Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS‐4) and JARA‐HPCForschungszentrum JülichJülichGermany
| | - Angelika Lampert
- Institute of PhysiologyRWTH Aachen UniversityPauwelsstrasse 30Aachen52074Germany
| |
Collapse
|
41
|
Molinarolo S, Lee S, Leisle L, Lueck JD, Granata D, Carnevale V, Ahern CA. Cross-kingdom auxiliary subunit modulation of a voltage-gated sodium channel. J Biol Chem 2018; 293:4981-4992. [PMID: 29371400 PMCID: PMC5892571 DOI: 10.1074/jbc.ra117.000852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/17/2018] [Indexed: 02/04/2023] Open
Abstract
Voltage-gated, sodium ion-selective channels (NaV) generate electrical signals contributing to the upstroke of the action potential in animals. NaVs are also found in bacteria and are members of a larger family of tetrameric voltage-gated channels that includes CaVs, KVs, and NaVs. Prokaryotic NaVs likely emerged from a homotetrameric Ca2+-selective voltage-gated progenerator, and later developed Na+ selectivity independently. The NaV signaling complex in eukaryotes contains auxiliary proteins, termed beta (β) subunits, which are potent modulators of the expression profiles and voltage-gated properties of the NaV pore, but it is unknown whether they can functionally interact with prokaryotic NaV channels. Herein, we report that the eukaryotic NaVβ1-subunit isoform interacts with and enhances the surface expression as well as the voltage-dependent gating properties of the bacterial NaV, NaChBac in Xenopus oocytes. A phylogenetic analysis of the β-subunit gene family proteins confirms that these proteins appeared roughly 420 million years ago and that they have no clear homologues in bacterial phyla. However, a comparison between eukaryotic and bacterial NaV structures highlighted the presence of a conserved fold, which could support interactions with the β-subunit. Our electrophysiological, biochemical, structural, and bioinformatics results suggests that the prerequisites for β-subunit regulation are an evolutionarily stable and intrinsic property of some voltage-gated channels.
Collapse
Affiliation(s)
- Steven Molinarolo
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Sora Lee
- the Weill Cornell Medical College, Cornell University, New York, New York 10065, and
| | - Lilia Leisle
- the Weill Cornell Medical College, Cornell University, New York, New York 10065, and
| | - John D Lueck
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Daniele Granata
- the Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122
| | - Vincenzo Carnevale
- the Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122
| | - Christopher A Ahern
- From the Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242,
| |
Collapse
|
42
|
Yang F, Liu S, Zhang Y, Qin C, Xu L, Li W, Cao Z, Li W, Wu Y. Expression of recombinant α-toxin BmKM9 from scorpion Buthus martensii Karsch and its functional characterization on sodium channels. Peptides 2018; 99:153-160. [PMID: 28986244 DOI: 10.1016/j.peptides.2017.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022]
Abstract
Scorpion toxins are invaluable pharmacological tools for studying ion channels and potential drugs for channelopathies. The long-chain toxins from scorpion venom with four disulfide bridges exhibit their unusual bioactivity or biotoxicity by acting on the sodium channels. However, the functional properties of most toxins are still unclear due to their tiny amounts in crude venom and their challenging production by chemical and gene engineering techniques. Here, we expressed one of the long-chain α-toxins, BmKM9, found in the venom of the scorpion Buthus martensii Karsch and characterized its pharmacological properties on sodium channels. Unlike previous toxin production, the recombinant BmKM9 (rBmKM9) possessed no additional amino acid residues such as the His-tag and thrombin cleavage site. The refolded toxin could inhibit the inactivation of rNav1.4, hNav1.5 and hNav1.7 sodium channels. Dose-response experiments were further conducted on these channels. The calculated EC50 values were 131.7±6.6nM for rNav1.4, 454.2±50.1nM for hNav1.5 and 30.9±10.3μM for hNav1.7. The channel activation experiments indicated that the rBmKM9 toxin could shift the activation curves of rNav1.4 and hNav1.5 channels toward a more negative direction and present the typical features of a β-toxin. However, instead of the same activation property on sodium channels, the rBmKM9 toxin could result in different inactivation shift capabilities on rNav1.4 and hNav1.5 channels. The V1/2 values of the steady-state inactivation were altered to be more positive for rNav1.4 and more negative for hNav1.5. Moreover, the recovery of the hNav1.5 channel from inactivation was more significantly delayed than that of the rNav1.4 channel by exposure to rBmKM9. Together, these findings highlighted that the rBmKM9 toxin presents the pharmacological properties of both α- and β-toxins, which would increase the challenge to the classical classification of scorpion toxins. Furthermore, the expression method and functional information on sodium channels would promote the potential application of toxins and contribute to further channel structural and functional studies.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shuang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yaoyun Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenhu Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lingna Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhua Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Biodrug Research Center, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
43
|
Abstract
Voltage-gated sodium (Na+) channels are expressed in virtually all electrically excitable tissues and are essential for muscle contraction and the conduction of impulses within the peripheral and central nervous systems. Genetic disorders that disrupt the function of these channels produce an array of Na+ channelopathies resulting in neuronal impairment, chronic pain, neuromuscular pathologies, and cardiac arrhythmias. Because of their importance to the conduction of electrical signals, Na+ channels are the target of a wide variety of local anesthetic, antiarrhythmic, anticonvulsant, and antidepressant drugs. The voltage-gated family of Na+ channels is composed of α-subunits that encode for the voltage sensor domains and the Na+-selective permeation pore. In vivo, Na+ channel α-subunits are associated with one or more accessory β-subunits (β1-β4) that regulate gating properties, trafficking, and cell-surface expression of the channels. The permeation pore of Na+ channels is divided in two parts: the outer mouth of the pore is the site of the ion selectivity filter, while the inner cytoplasmic pore serves as the channel activation gate. The cytoplasmic lining of the permeation pore is formed by the S6 segments that include highly conserved aromatic amino acids important for drug binding. These residues are believed to undergo voltage-dependent conformational changes that alter drug binding as the channels cycle through the closed, open, and inactivated states. The purpose of this chapter is to broadly review the mechanisms of Na+ channel gating and the models used to describe drug binding and Na+ channel inhibition.
Collapse
Affiliation(s)
- M E O'Leary
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - M Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, QC, Canada.
- Department of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
44
|
Na V Channels: Assaying Biosynthesis, Trafficking, Function. Methods Mol Biol 2017. [PMID: 29264805 DOI: 10.1007/978-1-4939-7553-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Integral to the cell surface is channels, pumps, and exchanger proteins that facilitate the movement of ions across the membrane. Ion channels facilitate the passive movement of ions down an electrochemical gradient. Ion pumps actively use energy to actively translocate ions, often against concentration or voltage gradients, while ion exchangers utilize energy to couple the transport of different ion species such that one ion moves down its gradient and the released free energy is used to drive the movement of a different ion against its electrochemical gradient. Some ion pumps and exchangers may be electrogenic, i.e., the ion transport they support is not electrically neutral and generates a current. Functions of these pore-forming membrane proteins include the establishment of membrane potentials, gating of ions flows across the cell membrane to elicit action potentials and other electrical signals, as well as the regulation of cell volumes. The major forms of ion channels include voltage-, ligand-, and signal-gated channels. In this review, we describe mammalian voltage dependent Na (NaV) channels.
Collapse
|
45
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
46
|
Mangold KE, Brumback BD, Angsutararux P, Voelker TL, Zhu W, Kang PW, Moreno JD, Silva JR. Mechanisms and models of cardiac sodium channel inactivation. Channels (Austin) 2017; 11:517-533. [PMID: 28837385 PMCID: PMC5786193 DOI: 10.1080/19336950.2017.1369637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022] Open
Abstract
Shortly after cardiac Na+ channels activate and initiate the action potential, inactivation ensues within milliseconds, attenuating the peak Na+ current, INa, and allowing the cell membrane to repolarize. A very limited number of Na+ channels that do not inactivate carry a persistent INa, or late INa. While late INa is only a small fraction of peak magnitude, it significantly prolongs ventricular action potential duration, which predisposes patients to arrhythmia. Here, we review our current understanding of inactivation mechanisms, their regulation, and how they have been modeled computationally. Based on this body of work, we conclude that inactivation and its connection to late INa would be best modeled with a "feet-on-the-door" approach where multiple channel components participate in determining inactivation and late INa. This model reflects experimental findings showing that perturbation of many channel locations can destabilize inactivation and cause pathological late INa.
Collapse
Affiliation(s)
- Kathryn E. Mangold
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brittany D. Brumback
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Paweorn Angsutararux
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Taylor L. Voelker
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan D. Moreno
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
47
|
Hull JM, Isom LL. Voltage-gated sodium channel β subunits: The power outside the pore in brain development and disease. Neuropharmacology 2017; 132:43-57. [PMID: 28927993 DOI: 10.1016/j.neuropharm.2017.09.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
Voltage gated sodium channels (VGSCs) were first identified in terms of their role in the upstroke of the action potential. The underlying proteins were later identified as saxitoxin and scorpion toxin receptors consisting of α and β subunits. We now know that VGSCs are heterotrimeric complexes consisting of a single pore forming α subunit joined by two β subunits; a noncovalently linked β1 or β3 and a covalently linked β2 or β4 subunit. VGSC α subunits contain all the machinery necessary for channel cell surface expression, ion conduction, voltage sensing, gating, and inactivation, in one central, polytopic, transmembrane protein. VGSC β subunits are more than simple accessories to α subunits. In the more than two decades since the original cloning of β1, our knowledge of their roles in physiology and pathophysiology has expanded immensely. VGSC β subunits are multifunctional. They confer unique gating mechanisms, regulate cellular excitability, affect brain development, confer distinct channel pharmacology, and have functions that are independent of the α subunits. The vast array of functions of these proteins stems from their special station in the channelome: being the only known constituents that are cell adhesion and intra/extracellular signaling molecules in addition to being part of channel complexes. This functional trifecta and how it goes awry demonstrates the power outside the pore in ion channel signaling complexes, broadening the term channelopathy beyond defects in ion conduction. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Jacob M Hull
- Neuroscience Program and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lori L Isom
- Neuroscience Program and Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
48
|
Zhu W, Voelker TL, Varga Z, Schubert AR, Nerbonne JM, Silva JR. Mechanisms of noncovalent β subunit regulation of Na V channel gating. J Gen Physiol 2017; 149:813-831. [PMID: 28720590 PMCID: PMC5560778 DOI: 10.1085/jgp.201711802] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022] Open
Abstract
Voltage-gated NaV channels are modulated by two different noncovalent accessory subunits: β1 and β3. Zhu et al. present data showing that β1 and β3 cause distinct effects on channel gating because they interact with NaV channels at different locations. β3 regulates the voltage sensor in domain III, whereas β1 regulates the one in domain IV. Voltage-gated Na+ (NaV) channels comprise a macromolecular complex whose components tailor channel function. Key components are the non-covalently bound β1 and β3 subunits that regulate channel gating, expression, and pharmacology. Here, we probe the molecular basis of this regulation by applying voltage clamp fluorometry to measure how the β subunits affect the conformational dynamics of the cardiac NaV channel (NaV1.5) voltage-sensing domains (VSDs). The pore-forming NaV1.5 α subunit contains four domains (DI–DIV), each with a VSD. Our results show that β1 regulates NaV1.5 by modulating the DIV-VSD, whereas β3 alters channel kinetics mainly through DIII-VSD interaction. Introduction of a quenching tryptophan into the extracellular region of the β3 transmembrane segment inverted the DIII-VSD fluorescence. Additionally, a fluorophore tethered to β3 at the same position produced voltage-dependent fluorescence dynamics strongly resembling those of the DIII-VSD. Together, these results provide compelling evidence that β3 binds proximally to the DIII-VSD. Molecular-level differences in β1 and β3 interaction with the α subunit lead to distinct activation and inactivation recovery kinetics, significantly affecting NaV channel regulation of cell excitability.
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Taylor L Voelker
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Angela R Schubert
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO.,Department of Internal Medicine, Washington University in St. Louis, St. Louis, MO
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
49
|
Yan Z, Zhou Q, Wang L, Wu J, Zhao Y, Huang G, Peng W, Shen H, Lei J, Yan N. Structure of the Na v1.4-β1 Complex from Electric Eel. Cell 2017; 170:470-482.e11. [PMID: 28735751 DOI: 10.1016/j.cell.2017.06.039] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/26/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
Voltage-gated sodium (Nav) channels initiate and propagate action potentials. Here, we present the cryo-EM structure of EeNav1.4, the Nav channel from electric eel, in complex with the β1 subunit at 4.0 Å resolution. The immunoglobulin domain of β1 docks onto the extracellular L5I and L6IV loops of EeNav1.4 via extensive polar interactions, and the single transmembrane helix interacts with the third voltage-sensing domain (VSDIII). The VSDs exhibit "up" conformations, while the intracellular gate of the pore domain is kept open by a digitonin-like molecule. Structural comparison with closed NavPaS shows that the outward transfer of gating charges is coupled to the iris-like pore domain dilation through intricate force transmissions involving multiple channel segments. The IFM fast inactivation motif on the III-IV linker is plugged into the corner enclosed by the outer S4-S5 and inner S6 segments in repeats III and IV, suggesting a potential allosteric blocking mechanism for fast inactivation.
Collapse
Affiliation(s)
- Zhen Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiang Zhou
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lin Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianping Wu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanyu Zhao
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Gaoxingyu Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Peng
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huaizong Shen
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
50
|
Dulsat G, Palomeras S, Cortada E, Riuró H, Brugada R, Vergés M. Trafficking and localisation to the plasma membrane of Nav1.5 promoted by the β2 subunit is defective due to a β2 mutation associated with Brugada syndrome. Biol Cell 2017; 109:273-291. [DOI: 10.1111/boc.201600085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/14/2017] [Accepted: 05/31/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Gemma Dulsat
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Sonia Palomeras
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Eric Cortada
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Helena Riuró
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
| | - Ramon Brugada
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
- Medical Sciences Department; University of Girona Medical School; Girona 17003 Spain
| | - Marcel Vergés
- Cardiovascular Genetics Group; Girona Biomedical Research Institute (IDIBGI); Salt Girona 17190 Spain
- Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV); ISCIII Madrid 28029 Spain
- Medical Sciences Department; University of Girona Medical School; Girona 17003 Spain
| |
Collapse
|