1
|
Klein K, Kollmann S, Hiesinger A, List J, Kendler J, Klampfl T, Rhandawa M, Trifinopoulos J, Maurer B, Grausenburger R, Betram CA, Moriggl R, Rülicke T, Mullighan CG, Witalisz-Siepracka A, Walter W, Hoermann G, Sexl V, Gotthardt D. A lineage-specific STAT5BN642H mouse model to study NK-cell leukemia. Blood 2024; 143:2474-2489. [PMID: 38498036 PMCID: PMC11208297 DOI: 10.1182/blood.2023022655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.
Collapse
Affiliation(s)
- Klara Klein
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sebastian Kollmann
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angela Hiesinger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia List
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thorsten Klampfl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mehak Rhandawa
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Grausenburger
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christof A. Betram
- Department for Biological Sciences and Pathobiology, Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Department for Biological Sciences and Pathobiology, Animal Breeding and Genetics, Unit for Functional Cancer Genomics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department for Biological Sciences and Pathobiology and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charles G. Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN
| | - Agnieszka Witalisz-Siepracka
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | - Veronika Sexl
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Dagmar Gotthardt
- Department for Biological Sciences and Pathobiology, Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
2
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
3
|
Page L, Younge N, Freemark M. Hormonal Determinants of Growth and Weight Gain in the Human Fetus and Preterm Infant. Nutrients 2023; 15:4041. [PMID: 37764824 PMCID: PMC10537367 DOI: 10.3390/nu15184041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The factors controlling linear growth and weight gain in the human fetus and newborn infant are poorly understood. We review here the changes in linear growth, weight gain, lean body mass, and fat mass during mid- and late gestation and the early postnatal period in the context of changes in the secretion and action of maternal, placental, fetal, and neonatal hormones, growth factors, and adipocytokines. We assess the effects of hormonal determinants on placental nutrient delivery and the impact of preterm delivery on hormone expression and postnatal growth and metabolic function. We then discuss the effects of various maternal disorders and nutritional and pharmacologic interventions on fetal and perinatal hormone and growth factor production, growth, and fat deposition and consider important unresolved questions in the field.
Collapse
Affiliation(s)
- Laura Page
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Noelle Younge
- Neonatology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Michael Freemark
- Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC 27710, USA;
- The Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Muthuvel G, Al Remeithi SS, Foley C, Dauber A, Hwa V, Backeljauw P. Recombinant Human Insulin-Like Growth Factor-1 Treatment of Severe Growth Failure in Three Siblings with STAT5B Deficiency. Horm Res Paediatr 2023; 97:195-202. [PMID: 37586336 DOI: 10.1159/000531491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/24/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION Patients with homozygous recessive mutations in STAT5B have severe progressive postnatal growth failure and insulin-like growth factor-I (IGF-I) deficiency associated with immunodeficiency and increased risk of autoimmune and pulmonary conditions. This report describes the efficacy and safety of recombinant human IGF-1 (rhIGF-1) in treating severe growth failure due to STAT5B deficiency. CASE PRESENTATION Three siblings (P1, 4.4 year-old female; P2, 2.3 year-old male; and P3, 7 month-old female) with severe short stature (height SDS [HtSDS] -6.5, -4.9, -5.3, respectively) were referred to the Center for Growth Disorders at Cincinnati Children's Hospital Medical Center. All three had a homozygous mutation (p.Trp631*) in STAT5B. Baseline IGF-I was 14.7, 14.1, and 10.8 ng/mL, respectively (all < -2.5 SDS for age and sex), and IGFBP-3 was 796, 603, and 475 ng/mL, respectively (all < -3 SDS for age and sex). The siblings were started on rhIGF-1 at 40 μg/kg/dose twice daily subcutaneously (SQ), gradually increased to 110-120 μg/kg/dose SQ twice daily as tolerated. HtSDS and height velocity (HV) were monitored over time. RESULTS Six years of growth data was utilized to quantify growth response in the two older siblings and 5 years of data in the youngest. Pre-treatment HVs were, respectively, 3.0 (P1), 3.0 (P2), and 5.2 (P3) cm/year. With rhIGF-1 therapy, HVs increased to 5.2-6.0, 4.8-7.1, and 5.5-7.4 cm/year, respectively, in the first 3 years of treatment, before they decreased to 4.7, 3.8, and 4.3 cm/year, respectively, at a COVID-19 pandemic delayed follow-up visit and with decreased treatment adherence. ΔHtSDS for P1 and P2 was +2.21 and +0.93, respectively, over 6 years, but -0.62 for P3 after 5 years and in the setting of severe local lipohypertrophy and suboptimal weight gain. P3 also experienced hypoglycemia that limited our ability to maintain target rhIGF-1 dosing. CONCLUSION The response to rhIGF-1 therapy is less than observed with rhIGF-1 therapy for patients previously described with severe primary IGF-I deficiency, including patients with documented defects in the growth hormone receptor, but may still provide patients with STAT5B deficiency with an opportunity to prevent worsening growth failure.
Collapse
Affiliation(s)
- Gajanthan Muthuvel
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sareea Salem Al Remeithi
- Division of Endocrinology, Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Corinne Foley
- Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew Dauber
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Schorr C, Krishnan MS, Capitano M. Deficits in our understanding of natural killer cell development in mouse and human. Curr Opin Hematol 2023; 30:106-116. [PMID: 37074304 PMCID: PMC10239331 DOI: 10.1097/moh.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE OF REVIEW Natural killer (NK) cells are a type of immune cell that play a crucial role in the defense against cancer and viral infections. The development and maturation of NK cells is a complex process, involving the coordination of various signaling pathways, transcription factors, and epigenetic modifications. In recent years, there has been a growing interest in studying the development of NK cells. In this review, we discuss the field's current understanding of the journey a hematopoietic stem cell takes to become a fully mature NK cell and detail the sequential steps and regulation of conventional NK leukopoiesis in both mice and humans. RECENT FINDINGS Recent studies have highlighted the significance of defining NK development stages. Several groups report differing schema to identify NK cell development and new findings demonstrate novel ways to classify NK cells. Further investigation of NK cell biology and development is needed, as multiomic analysis reveals a large diversity in NK cell development pathways. SUMMARY We provide an overview of current knowledge on the development of NK cells, including the various stages of differentiation, the regulation of development, and the maturation of NK cells in both mice and humans. A deeper understanding of NK cell development has the potential to provide insights into new therapeutic strategies for the treatment of diseases such as cancer and viral infections.
Collapse
Affiliation(s)
- Christopher Schorr
- Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Maya Shraddha Krishnan
- Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Maegan Capitano
- Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
6
|
Kobets AJ, Ahmad S, Boyke A, Oriko D, Holland R, Eisenberg R, Alavi SAN, Abbott R. STAT5b gain-of-function disease in a child with mycobacterial osteomyelitis of the skull: rare presentation of an emerging disease entity. Childs Nerv Syst 2023:10.1007/s00381-023-05997-y. [PMID: 37243811 DOI: 10.1007/s00381-023-05997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE STAT proteins play a key role in several cellular functions related to cell development, differentiation, proliferation, and survival. Persistent STAT activation due to somatic STAT5bN642H gain-of-function mutation is a rare mechanism of STAT dysregulation that results in hypereosinophilia, frequent infections, leukemias, and pulmonary diseases. Herein, we describe a case of a child with a rare early onset STAT5b gain-of-function disease treated with targeted JAK inhibition who developed a cranial Mycobacterium avium osteomyelitis. METHODS A 3-year-old male with a known STAT5b gain-of-function mutation presented with a 10-day history of a firm, immobile, non-painful cranial mycobacterium mass with dural infiltration located anterior to the coronal suture. Stepwise management finalized with complete resection of the lesion with calvarial reconstruction. A case-based literature review was performed evaluating all patients with this mutation who developed cranial disease. RESULTS The patient was symptom and lesion-free at 1 year since surgical resection and initiation of triple mycobacterial pharmacotherapy. Our literature review demonstrated the rarity of this disease, as well as other presentations of this disease in other patients. CONCLUSION Patients with STAT5b gain-of-function mutations have attenuated Th1 responses and are treated with medications, such as JAK inhibitors, which further inhibit other STAT proteins that regulate immunity against rare infectious entities, such as mycobacterium. Our case highlights the importance of considering these rare infections in patients on JAK inhibitors and with STAT protein mutations. Possessing a clear mechanistic understanding of this genetic mutation, its downstream effect, and the consequences of treatment may enhance a physician's diagnostic and clinical management of similar patients in the future.
Collapse
Affiliation(s)
- Andrew J Kobets
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA.
| | - Samuel Ahmad
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| | - Andre Boyke
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| | - David Oriko
- University of Nairobi School of Medicine, Nairobi, Kenya
| | - Ryan Holland
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| | - Rachel Eisenberg
- Department of Pediatrics, Montefiore Medical Center and the Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Rick Abbott
- Department of Neurosurgery, Montefiore Medical Center and the Albert Einstein College of Medicine, 3316 Rochambeau Ave, Bronx, NY, 10467, USA
| |
Collapse
|
7
|
Heidary S, Awasthi N, Page N, Allnutt T, Lewis RS, Liongue C, Ward AC. A zebrafish model of growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). Cell Mol Life Sci 2023; 80:109. [PMID: 36995466 PMCID: PMC10063521 DOI: 10.1007/s00018-023-04759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/03/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Signal transducer and activator of transcription (STAT) proteins act downstream of cytokine receptors to facilitate changes in gene expression that impact a range of developmental and homeostatic processes. Patients harbouring loss-of-function (LOF) STAT5B mutations exhibit postnatal growth failure due to lack of responsiveness to growth hormone as well as immune perturbation, a disorder called growth hormone insensitivity syndrome with immune dysregulation 1 (GHISID1). This study aimed to generate a zebrafish model of this disease by targeting the stat5.1 gene using CRISPR/Cas9 and characterising the effects on growth and immunity. The zebrafish Stat5.1 mutants were smaller, but exhibited increased adiposity, with concomitant dysregulation of growth and lipid metabolism genes. The mutants also displayed impaired lymphopoiesis with reduced T cells throughout the lifespan, along with broader disruption of the lymphoid compartment in adulthood, including evidence of T cell activation. Collectively, these findings confirm that zebrafish Stat5.1 mutants mimic the clinical impacts of human STAT5B LOF mutations, establishing them as a model of GHISID1.
Collapse
Affiliation(s)
- Somayyeh Heidary
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Nagendra Awasthi
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Nicole Page
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Theo Allnutt
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
| | - Rowena S Lewis
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia
- IMPACT, Deakin University, Geelong, VIC, 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.
- IMPACT, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
8
|
Mastromauro C, Giannini C, Chiarelli F. Short stature related to Growth Hormone Insensitivity (GHI) in childhood. Front Endocrinol (Lausanne) 2023; 14:1141039. [PMID: 37008935 PMCID: PMC10050683 DOI: 10.3389/fendo.2023.1141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Linear growth during childhood is the result of the synergic contribution of different factors. The best growth determinant system during each period of life is represented by the growth hormone-insulin-like growth factor axis (GH-IGF), even if several other factors are involved in normal growth. Within the broad spectrum of growth disorders, an increased importance has been placed on growth hormone insensitivity (GHI). GHI was reported for the first time by Laron as a syndrome characterized by short stature due to GH receptor (GHR) mutation. To date, it is recognized that GHI represents a wide diagnostic category, including a broad spectrum of defects. The peculiar characteristic of GHI is the low IGF-1 levels associated with normal or elevated GH levels and the lack of IGF-1 response after GH administration. Recombinant IGF-1 preparations may be used in the treatment of these patients.
Collapse
Affiliation(s)
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Advanced Studies and Technology – CAST (ex CesSI-MeT), University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Advanced Studies and Technology – CAST (ex CesSI-MeT), University of Chieti, Chieti, Italy
| |
Collapse
|
9
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
10
|
Yin M, Wang J, Zhang J, Wang W, Lu W, Xu F, Ma X, Lyu S, Chen L, Zhang L, Dong Z, Xiao Y. Transcription analyses of differentially expressed mRNAs, lncRNAs, circRNAs, and miRNAs in the growth plate of rats with glucocorticoid-induced growth retardation. PeerJ 2023; 11:e14603. [PMID: 36684670 PMCID: PMC9851049 DOI: 10.7717/peerj.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Glucocorticoids (GCs) are commonly used to treat autoimmune diseases and malignancies in children and adolescents. Growth retardation is a common adverse effect of GC treatment in pediatric patients. Accumulating evidence indicates that non-coding RNAs (ncRNAs) are involved in the pathogenesis of glucocorticoid-induced growth retardation (GIGR), but the roles of specific ncRNAs in growth remain largely unknown. Methods In this study, 2-week-old male Sprague-Dawley rats had been treated with 2 mg/kg/d of dexamethasone for 7 or 14 days, after which the growth plate tissues were collected for high-throughput RNA sequencing to identify differentially expressed mRNAs, lncRNAs, circRNAs, and miRNAs in GIGR rats. Results Transcriptomic analysis identified 1,718 mRNAs, 896 lncRNAs, 60 circRNAs, and 72 miRNAs with different expression levels in the 7d group. In the 14d group, 1,515 mRNAs, 880 lncRNAs, 46 circRNAs, and 55 miRNAs with differential expression were identified. Four mRNAs and four miRNAs that may be closely associated with the development of GIGR were further validated by real-time quantitative fluorescence PCR. Function enrichment analysis indicated that the PI3K-Akt signaling pathway, NF-kappa B signaling pathway, and TGF-β signaling pathway participated in the development of the GIGR. Moreover, the constructed ceRNA networks suggested that several miRNAs (including miR-140-3p and miR-127-3p) might play an important role in the pathogenesis of GIGR. Conclusions These results provide new insights and important clues for exploring the molecular mechanisms underlying GIGR.
Collapse
Affiliation(s)
- Mingyue Yin
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juanjuan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China,Department of Pediatrics, Liqun Hospital, Putuo District, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Sheng Lyu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lidan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Catli G, Gao W, Foley C, Özyilmaz B, Edeer N, Diniz G, Losekoot M, van Doorn J, Dauber A, Dundar BN, Wit JM, Hwa V. Atypical STAT5B deficiency, severe short stature and mild immunodeficiency associated with a novel homozygous STAT5B Variant. Mol Cell Endocrinol 2023; 559:111799. [PMID: 36265659 DOI: 10.1016/j.mce.2022.111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022]
Abstract
STAT5B deficiency, a rare autosomal recessive disorder characterized by severe growth hormone insensitivity (GHI) and immunodeficiency, can manifest as fatal pulmonary complications. We describe atypical STAT5B deficiency associated with a novel homozygous frame-shift STAT5B variant [c.1453delG, p.(Asp485Thrfs*29)] identified in a young 17.6 yr old female subject who had severe postnatal growth impairment, biochemistries typical of GHI, an immune profile notable for hypergammaglobulinaemia and elevated B lymphocytes, and lack of pulmonary disease. Marked elevation of serum prolactin and pathologically diagnosed eczema were evident. In reconstitution studies, the STAT5B p.(Asp485Thrfs*29) was expressed although expression was reduced compared to wild-type STAT5B and a previously identified STAT5B p.(Gln368Profs*9) variant. Both truncated STAT5B peptides could not be activated by GH, nor mobilize to the nucleus. We conclude that an intact, functional, STAT5B is essential for normal GH-mediated growth, while expressed loss-of-function STAT5B variants may alleviate severe immune and pulmonary issues normally associated with STAT5B deficiency.
Collapse
Affiliation(s)
- Gonul Catli
- Division of Paediatric Endocrinology, Department of Paediatrics, Istinye University Faculty of Medicine, Istanbul, Turkey.
| | - Wen Gao
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Berk Özyilmaz
- Department of Clinical Genetics, Tepecik Training and Research Hospital, Izmir, Turkey.
| | - Neslihan Edeer
- Department of Paediatric Immunology, Ege University Faculty of Medicine, İzmir, Turkey.
| | - Gulden Diniz
- Department of Pathology, Izmir Democracy University Medical School, Izmir, Turkey.
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Jaap van Doorn
- Department of Genetics, Section Metabolic Diagnostics, University Medical Centre Utrecht, Utrecht, the Netherlands.
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC, USA.
| | - Bumin N Dundar
- Division of Paediatric Endocrinology, Department of Paediatrics, Izmir Katip Celebi University Faculty of Medicine, Izmir, Turkey.
| | - Jan M Wit
- Division of Paediatric Endocrinology, Department of Paediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11:1110765. [PMID: 36911202 PMCID: PMC9995824 DOI: 10.3389/fbioe.2023.1110765] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.
Collapse
Affiliation(s)
- Qian Hu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qihui Bian
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Leiyun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hsuan-Shun Huang
- Department of Research, Center for Prevention and Therapy of Gynecological Cancers, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Bartolo ND, Mortimer N, Manter MA, Sanchez N, Riley M, O'Malley TT, Hooker JM. Identification and Prioritization of PET Neuroimaging Targets for Microglial Phenotypes Associated with Microglial Activity in Alzheimer's Disease. ACS Chem Neurosci 2022; 13:3641-3660. [PMID: 36473177 DOI: 10.1021/acschemneuro.2c00607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of microglial cells accompanies the progression of many neurodegenerative disorders, including Alzheimer's disease (AD). Development of molecular imaging tools specific to microglia can help elucidate the mechanism through which microglia contribute to the pathogenesis and progression of neurodegenerative disorders. Through analysis of published genetic, transcriptomic, and proteomic data sets, we identified 19 genes with microglia-specific expression that we then ranked based on association with the AD characteristics, change in expression, and potential druggability of the target. We believe that the process we used to identify and rank microglia-specific genes is broadly applicable to the identification and evaluation of targets in other disease areas and for applications beyond molecular imaging.
Collapse
Affiliation(s)
- Nicole D Bartolo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Niall Mortimer
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Mariah A Manter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Nicholas Sanchez
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Misha Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Tiernan T O'Malley
- Human Biology and Data Science, Eisai Center for Genetics Guided Dementia Discovery, 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
14
|
Pelham SJ, Caldirola MS, Avery DT, Mackie J, Rao G, Gothe F, Peters TJ, Guerin A, Neumann D, Vokurkova D, Hwa V, Zhang W, Lyu SC, Chang I, Manohar M, Nadeau KC, Gaillard MI, Bezrodnik L, Iotova V, Zwirner NW, Gutierrez M, Al-Herz W, Goodnow CC, Vargas-Hernández A, Forbes Satter LR, Hambleton S, Deenick EK, Ma CS, Tangye SG. STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 2022; 150:931-946. [PMID: 35469842 DOI: 10.1016/j.jaci.2022.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lymphocyte differentiation is regulated by coordinated actions of cytokines and signaling pathways. IL-21 activates STAT1, STAT3, and STAT5 and is fundamental for the differentiation of human B cells into memory cells and antibody-secreting cells. While STAT1 is largely nonessential and STAT3 is critical for this process, the role of STAT5 is unknown. OBJECTIVES This study sought to delineate unique roles of STAT5 in activation and differentiation of human naive and memory B cells. METHODS STAT activation was assessed by phospho-flow cytometry cell sorting. Differential gene expression was determined by RNA-sequencing and quantitative PCR. The requirement for STAT5B in B-cell and CD4+ T-cell differentiation was assessed using CRISPR-mediated STAT5B deletion from B-cell lines and investigating primary lymphocytes from individuals with germline STAT5B mutations. RESULTS IL-21 activated STAT5 and strongly induced SOCS3 in human naive, but not memory, B cells. Deletion of STAT5B in B-cell lines diminished IL-21-mediated SOCS3 induction. PBMCs from STAT5B-null individuals contained expanded populations of immunoglobulin class-switched B cells, CD21loTbet+ B cells, and follicular T helper cells. IL-21 induced greater differentiation of STAT5B-deficient B cells into plasmablasts in vitro than B cells from healthy donors, correlating with higher expression levels of transcription factors promoting plasma cell formation. CONCLUSIONS These findings reveal novel roles for STAT5B in regulating IL-21-induced human B-cell differentiation. This is achieved by inducing SOCS3 to attenuate IL-21 signaling, and BCL6 to repress class switching and plasma cell generation. Thus, STAT5B is critical for restraining IL-21-mediated B-cell differentiation. These findings provide insights into mechanisms underpinning B-cell responses during primary and subsequent antigen encounter and explain autoimmunity and dysfunctional humoral immunity in STAT5B deficiency.
Collapse
Affiliation(s)
- Simon J Pelham
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Maria Soledad Caldirola
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | | | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Florian Gothe
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - David Neumann
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Doris Vokurkova
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wenming Zhang
- Department of Surgery, Stanford University, Stanford, Calif
| | - Shu-Chen Lyu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Iris Chang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Maria Isabel Gaillard
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina; Center for Clinical Immunology, Buenos Aires, Argentina
| | - Violeta Iotova
- Department of Pediatrics, Medical University-Varna, Varna, Bulgaria; Pediatric Endocrinology, University Hospital "St Marina," Varna, Bulgaria
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental, Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mavel Gutierrez
- Rocky Mountain Hospital for Children/Presbyterian St Luke's Medical Center, Denver, Colo
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sophie Hambleton
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Great North Children's Hospital, Newcastle upon Tyne Hospitals, National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
15
|
Sex differences in white adipose tissue expansion: emerging molecular mechanisms. Clin Sci (Lond) 2021; 135:2691-2708. [PMID: 34908104 DOI: 10.1042/cs20210086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.
Collapse
|
16
|
Inborn errors of immunity manifesting as atopic disorders. J Allergy Clin Immunol 2021; 148:1130-1139. [PMID: 34428518 DOI: 10.1016/j.jaci.2021.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 01/29/2023]
Abstract
Inborn errors of immunity are traditionally best known for enhancing susceptibility to infections. However, allergic inflammation, among other types of immune dysregulation, occurs frequently in patients with inborn errors of immunity. As such, the term primary atopic disorders (PADs) was recently coined to describe the group of heritable monogenic allergic disorders. It is becoming increasingly important for clinicians to recognize that allergic diseases such as food allergy, atopic dermatitis, and allergic asthma are expressions of misdirected immunity, and in patients who present with severe, early-onset, or coexisting allergic conditions, these can be indications of an underlying PAD. Identifying monogenic allergic disease through next-generation sequencing can dramatically improve outcomes by allowing the use of precision-based therapy targeting the patient's underlying molecular defect. It is therefore imperative that clinicians recognize PADs to be able to provide informed therapeutic options and improve patient outcomes. Here, we summarize the clinical features commonly seen with each of the currently known PADs, identify clinical warning signs that warrant assessment for PADs, and lastly, discuss the benefits of timely diagnosis and management of these conditions.
Collapse
|
17
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
18
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
19
|
MiR-210-5p regulates STAT3 activation by targeting STAT5A in the differentiation of dermal fibroblasts. 3 Biotech 2021; 11:243. [PMID: 33968586 DOI: 10.1007/s13205-021-02777-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/05/2021] [Indexed: 10/21/2022] Open
Abstract
Elucidating the molecular mechanism of the microRNAs in skin fibrosis is critical for identifying a novel therapeutic strategy for hypertrophic scar (HS). In this study, it was shown that miR-210-5p is induced by TGFβ, and that overexpression of miR-210-5p promoted the differentiation of human dermal fibroblasts (HDFs) into myofibroblasts. STAT5A is required for TGFβ-induced STAT3 activity. Here, we show that miR-210-5p attenuated TGFβ-induced STAT3 signaling pathway by suppressing the expression of STAT5A. Taken together, the present study suggests that TGFβ-induced miR-210-5p reduced STAT5A expression, leading to aberrant activation of STAT3, and facilitate skin fibrosis in HDFs.
Collapse
|
20
|
Young J, Bell S, Qian Y, Hyman C, Berryman DE. Mouse models of growth hormone insensitivity. Rev Endocr Metab Disord 2021; 22:17-29. [PMID: 33037595 PMCID: PMC7979446 DOI: 10.1007/s11154-020-09600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/28/2022]
Abstract
Growth hormone (GH) induces pleiotropic effects on growth and metabolism via binding and subsequent activation of the growth hormone receptor (GHR) and its downstream signaling pathways. Growth hormone insensitivity (GHI) describes a group of disorders in which there is resistance to the action of GH and resultant insulin-like growth factor I (IGF-I) deficiency. GHI is commonly due to genetic disorders of the GH receptor causing GH receptor deficiency (e.g. Laron Syndrome (LS)), decreased activation of GHR, or defects in post-receptor signaling molecules. Genetically altered mouse lines have been invaluable to better understand the physiological impact of GHI due to the ability to do invasive and longitudinal measures of metabolism, growth, and health on a whole animal or in individual tissues/cells. In the current review, the phenotype of mouse lines with GHI will be reviewed. Mouse lines to be discussed include: 1) GHR-/- mice with a gene disruption in the GHR that results in no functional GHR throughout life, also referred to as the Laron mouse, 2) mice with temporal loss of GHR (aGHRKO) starting at 6 weeks of age, 3) mice transgenic for a GHR antagonist (GHA mice), 4) mice with GHI in select tissues or cells generated via Cre-lox or related technology, and 5) assorted mice with defects in post-receptor signaling molecules. Collectively, these mouse lines have revealed an intriguing role of GH action in health, disease, and aging.
Collapse
Affiliation(s)
- Jonathan Young
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Stephen Bell
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA
| | - Caroline Hyman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, 45701, USA.
- Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, OH, USA.
| |
Collapse
|
21
|
Hwa V, Fujimoto M, Zhu G, Gao W, Foley C, Kumbaji M, Rosenfeld RG. Genetic causes of growth hormone insensitivity beyond GHR. Rev Endocr Metab Disord 2021; 22:43-58. [PMID: 33029712 PMCID: PMC7979432 DOI: 10.1007/s11154-020-09603-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Growth hormone insensitivity (GHI) syndrome, first described in 1966, is classically associated with monogenic defects in the GH receptor (GHR) gene which result in severe post-natal growth failure as consequences of insulin-like growth factor I (IGF-I) deficiency. Over the years, recognition of other monogenic defects downstream of GHR has greatly expanded understanding of primary causes of GHI and growth retardation, with either IGF-I deficiency or IGF-I insensitivity as clinical outcomes. Mutations in IGF1 and signaling component STAT5B disrupt IGF-I production, while defects in IGFALS and PAPPA2, disrupt transport and release of circulating IGF-I, respectively, affecting bioavailability of the growth-promoting IGF-I. Defects in IGF1R, cognate cell-surface receptor for IGF-I, disrupt not only IGF-I actions, but actions of the related IGF-II peptides. The importance of IGF-II for normal developmental growth is emphasized with recent identification of defects in the maternally imprinted IGF2 gene. Current application of next-generation genomic sequencing has expedited the pace of identifying new molecular defects in known genes or in new genes, thereby expanding the spectrum of GH and IGF insensitivity. This review discusses insights gained and future directions from patient-based molecular and functional studies.
Collapse
Affiliation(s)
- Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Masanobu Fujimoto
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Gaohui Zhu
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 40014, China
| | - Wen Gao
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Corinne Foley
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Meenasri Kumbaji
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
22
|
Ben-Skowronek I. IPEX Syndrome: Genetics and Treatment Options. Genes (Basel) 2021; 12:323. [PMID: 33668198 PMCID: PMC7995986 DOI: 10.3390/genes12030323] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
(1) Background: IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome characterizes a complex autoimmune reaction beginning in the perinatal period, caused by a dysfunction of the transcription factor forkhead box P3 (FOXP3). (2) Objectives: Studies have shown the clinical, immunological, and molecular heterogeneity of patients with IPEX syndrome. The symptoms, treatment, and survival were closely connected to the genotype of the IPEX syndrome. Recognition of the kind of mutation is important for the diagnostics of IPEX syndrome in newborns and young infants, as well as in prenatal screening. The method of choice for treatment is hematopoietic stem cell transplantation and immunosuppressive therapy. In children, supportive therapy for refractory diarrhea is very important, as well as replacement therapy of diabetes mellitus type 1 (DMT1) and other endocrinopathies. In the future, genetic engineering methods may be of use in the successful treatment of IPEX syndrome. (3) Conclusions: The genetic defects determine a diagnostic approach and prognosis, making the knowledge of the genetics of IPEX syndrome fundamental to introducing novel treatment methods.
Collapse
MESH Headings
- Allografts
- Animals
- Diabetes Mellitus, Type 1/congenital
- Diabetes Mellitus, Type 1/diagnosis
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Diarrhea/diagnosis
- Diarrhea/genetics
- Diarrhea/metabolism
- Diarrhea/therapy
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Genetic Diseases, X-Linked/diagnosis
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/therapy
- Hematopoietic Stem Cell Transplantation
- Humans
- Immune System Diseases/congenital
- Immune System Diseases/diagnosis
- Immune System Diseases/genetics
- Immune System Diseases/metabolism
- Immune System Diseases/therapy
- Infant
- Infant, Newborn
- Male
- Mutation
Collapse
Affiliation(s)
- Iwona Ben-Skowronek
- Department of Pediatric Endocrinology and Diabetology, Medical University, 20-093 Lublin, Poland
| |
Collapse
|
23
|
Montazersaheb S, Fathi E, Farahzadi R. Cytokines and signaling pathways involved in differentiation potential of hematopoietic stem cells towards natural killer cells. Tissue Cell 2021; 70:101501. [PMID: 33578272 DOI: 10.1016/j.tice.2021.101501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
NK cells are innate immune cells derived from common lymphoid progenitor and are developed primarily in the bone marrow. These cells respond to stress signals, inflammatory cytokines, and cancerous cells through the secretion of active immune mediators. Previous studies revealed that NK cells can be used as an essential cell in the defense against cancers. According to the literature, a set of cytokines and factors play a crucial role during differentiation of NK cells. In other words, developmental events of NK cells are regulated through multiple critical cytokines, including interleukins (ILs), kit ligand, fms-like tyrosine kinase three ligand, transforming growth factor-β, and typical γ chain family of cytokines. Among previously investigated ILs, IL-2, IL-3, IL-7, and IL-15 are the most important. In addition to ILs, transcription factors and MicroRNAs are involved in NK cell development. In this review study, after presenting a brief description of developmental stages and production of the NK cells, the factors and signaling pathways involved in differentiation of NK cells were discussed.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Westerberg J, Tideholm E, Piersiala K, Drakskog C, Kumlien Georén S, Mäki-Torkko E, Cardell LO. JAK/STAT Dysregulation With SOCS1 Overexpression in Acquired Cholesteatoma-Adjacent Mucosa. Otol Neurotol 2021; 42:e94-e100. [PMID: 33201080 DOI: 10.1097/mao.0000000000002850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
IMPORTANCE Surgery remains the gold standard in cholesteatoma treatment. However, the rate of recurrence is significant and the development of new nonsurgical treatment alternatives is warranted. One of the possible molecular pathways to target is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. OBJECTIVE To investigate the JAK/STAT pathway in the middle ear mucosa in patients with acquired cholesteatoma compared with middle ear mucosa from healthy controls. DESIGN Case-control study. SETTING Linköping University Hospital, Sweden, and Karolinska Institutet, Stockholm, Sweden. Sampling period: February 2011 to December 2016. PARTICIPANTS Middle ear mucosa from 26 patients with acquired cholesteatoma undergoing tympanoplasty and mastoidectomy, and 27 healthy controls undergoing translabyrinthine surgery for vestibular schwannoma or cochlear implantation was investigated. MAIN OUTCOMES/MEASURES The expression of Interleukin-7 receptor alpha, JAK1, JAK2, JAK3, STAT5A, STAT5B, and suppressor of cytokine signaling-1 (SOCS1) were quantified using quantitative polymerase chain reaction. In addition, expression level of cyclin D2, transforming growth factor beta 1, thymic stromal lymphopoietin, CD3, and CD19 was evaluated. RESULTS In cholesteatoma-adjacent mucosa, SOCS1 was significantly upregulated (p= 0.0003) compared with healthy controls, whereas STAT5B was significantly downregulated (p = 0.0006). The expression of JAK1, JAK2, JAK3, and STAT5A did not differ significantly between groups. CONCLUSIONS AND RELEVANCE To the best of our knowledge, this is the first article reporting dysregulation of the JAK/STAT pathway in cholesteatoma-adjacent mucosa. The main finding is that important players of the aforementioned pathway are significantly altered, namely SOCS1 is upregulated and STAT5B is downregulated compared with healthy controls.
Collapse
Affiliation(s)
- Johanna Westerberg
- Department of Biomedical and Clinical Sciences, Division of Sensory Organs and Communication, Linköping University, Region Östergötland, Sweden
| | - Ellen Tideholm
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
| | - Krzysztof Piersiala
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
- Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Drakskog
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
| | - Elina Mäki-Torkko
- Department of Biomedical and Clinical Sciences, Division of Sensory Organs and Communication, Linköping University, Region Östergötland, Sweden
- Audiological Research Center, Faculty of Medicine and Health, Örebro university, Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm
- Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Hwa V. Human growth disorders associated with impaired GH action: Defects in STAT5B and JAK2. Mol Cell Endocrinol 2021; 519:111063. [PMID: 33122102 PMCID: PMC7736371 DOI: 10.1016/j.mce.2020.111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Growth hormone (GH) promotes postnatal human growth primarily by regulating insulin-like growth factor (IGF)-I production through activation of the GH receptor (GHR)-JAK2-signal transducer and activator of transcription (STAT)-5B signaling pathway. Inactivating STAT5B mutations, both autosomal recessive (AR) and dominant-negative (DN), are causal of a spectrum of GH insensitivity (GHI) syndrome, IGF-I deficiency and postnatal growth failure. Only AR STAT5B defects, however, confer additional characteristics of immune dysfunction which can manifest as chronic, potentially fatal, pulmonary disease. Somatic activating STAT5B and JAK2 mutations are associated with a plethora of immune abnormalities but appear not to impact human linear growth. In this review, molecular defects associated with STAT5B deficiency is highlighted and insights towards understanding human growth and immunity is emphasized.
Collapse
Affiliation(s)
- Vivian Hwa
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, United States.
| |
Collapse
|
26
|
Foley CL, Al Remeithi SS, Towe CT, Dauber A, Backeljauw PF, Tyzinski L, Kumar AR, Hwa V. Developmental Adaptive Immune Defects Associated with STAT5B Deficiency in Three Young Siblings. J Clin Immunol 2021; 41:136-146. [PMID: 33090292 PMCID: PMC7854992 DOI: 10.1007/s10875-020-00884-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
Patients with rare homozygous mutations in signal transducer and activator of transcription 5B (STAT5B) develop immunodeficiency resulting in chronic eczema, chronic infections, autoimmunity, and chronic lung disease. STAT5B-deficient patients are typically diagnosed in the teenage years, limiting our understanding of the development of associated phenotypic immune abnormalities. We report the first detailed chronological account of post-natal immune dysfunction associated with STAT5B deficiency in humans. Annual immunophenotyping of three siblings carrying a novel homozygous nonsense mutation in STAT5B was carried out over 4 years between the ages of 7 months to 8 years. All three siblings demonstrated consistent B cell hyperactivity including elevated IgE levels and autoantibody production, associated with diagnoses of atopy and autoimmunity. Total T cell levels in each sibling remained normal, with regulatory T cells decreasing in the oldest sibling. Interestingly, a skewing toward memory T cells was identified, with the greatest changes in CD8+ effector memory T cells. These results suggest an importance of STAT5B in B cell function and naïve versus memory T cell survival. Progressive dysregulation of FOXP3+ regulatory T cells and CD8+ memory T cell subsets reveal a crucial role of STAT5B in T cell homeostasis. The early diagnosis and focused immune evaluations of these three young STAT5B-deficient siblings support an important role of STAT5B in adaptive immune development and function.
Collapse
Affiliation(s)
- Corinne L Foley
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sareea S Al Remeithi
- Division of Endocrinology, Department of PediatricsSheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Christopher T Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Philippe F Backeljauw
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Tyzinski
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashish R Kumar
- Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Consonni F, Favre C, Gambineri E. IL-2 Signaling Axis Defects: How Many Faces? Front Pediatr 2021; 9:669298. [PMID: 34277517 PMCID: PMC8282996 DOI: 10.3389/fped.2021.669298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
CD25, Signal transducer and activator of transcription 5B (STAT5B) and Forkhead box P3 (FOXP3) are critical mediators of Interleukin-2 (IL-2) signaling pathway in regulatory T cells (Tregs). CD25 (i.e., IL-2 Receptor α) binds with high affinity to IL-2, activating STAT5B-mediated signaling that eventually results in transcription of FOXP3, a master regulator of Treg function. Consequently, loss-of-function mutations in these proteins give rise to Treg disorders (i.e., Tregopathies) that clinically result in multiorgan autoimmunity. Immunodysregulation, Polyendocrinopathy Enteropathy X-linked (IPEX), due to mutations in FOXP3, has historically been the prototype of Tregopathies. This review describes current knowledge about defects in CD25, STAT5B, and FOXP3, highlighting that these disorders both share a common biological background and display comparable clinical features. However, specific phenotypes are associated with each of these syndromes, while certain laboratory findings could be helpful tools for clinicians, in order to achieve a prompt genetic diagnosis. Current treatment strategies will be outlined, keeping an eye on gene editing, an interesting therapeutic perspective that could definitely change the natural history of these disorders.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
28
|
Chen CB, Tahboub F, Plesec T, Kay M, Radhakrishnan K. A Review of Autoimmune Enteropathy and Its Associated Syndromes. Dig Dis Sci 2020; 65:3079-3090. [PMID: 32833153 DOI: 10.1007/s10620-020-06540-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023]
Abstract
Autoimmune enteropathy is an extremely rare condition characterized by an abnormal intestinal immune response which typically manifests within the first 6 months of life as severe, intractable diarrhea that does not respond to dietary modification. Affected individuals frequently present with other signs of autoimmunity. The diagnosis is made based on a characteristic combination of clinical symptoms, laboratory studies, and histological features on small bowel biopsy. Autoimmune enteropathy is associated with a number of other conditions and syndromes, most notably immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome and autoimmune polyglandular syndrome type 1 (APS-1). Diagnosis and treatment is challenging, and further research is needed to better understand the pathogenesis, disease progression, and long-term outcomes of these conditions.
Collapse
Affiliation(s)
- Charles B Chen
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA.
| | - Farah Tahboub
- The University of Jordan School of Medicine, Queen Rania St 212, Amman, Jordan
| | - Thomas Plesec
- Department of Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Marsha Kay
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Kadakkal Radhakrishnan
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| |
Collapse
|
29
|
[Genetically modified regulatory T cells: therapeutic concepts and regulatory aspects]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1403-1411. [PMID: 33067665 PMCID: PMC7647973 DOI: 10.1007/s00103-020-03230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022]
Abstract
Adoptive T‑Zelltherapien sind neuartige Konzepte zur Behandlung verschiedener Krankheiten. CAR-T-Zellen sind dabei als Letztlinientherapie für fortgeschrittene B‑Zelllymphome und die B‑Zellleukämie etabliert und zugelassen. TCR-basierte T‑Zellen als Behandlungsoption verschiedener hämatologischer und solider Tumoren befinden sich in der klinischen Entwicklung. Genetisch modifizierte regulatorische T‑Zellen stehen dagegen noch am Anfang ihrer klinischen Entwicklung zur Induktion von Immuntoleranz in einer Vielzahl von Anwendungsgebieten. In diesem Artikel wird zunächst ein Überblick über die Funktion der regulatorischen T‑Zellen für die Induktion der Immuntoleranz sowie über ihre Rolle im Pathomechanismus bestimmter Immunerkrankungen gegeben und der aktuelle Stand der klinischen Entwicklungen von therapeutischen Ansätzen auf Basis genetisch modifizierter regulatorischer T‑Zellen zusammengefasst. Im Weiteren werden die regulatorisch-wissenschaftlichen Anforderungen und Herausforderungen hinsichtlich Herstellung und Qualitätskontrolle sowie nichtklinischer und klinischer Testung genetisch modifizierter regulatorischer T‑Zellen als Arzneimittel für neuartige Therapien diskutiert.
Collapse
|
30
|
Razmara E, Azimi H, Bitaraf A, Daneshmand MA, Galehdari M, Dokhanchi M, Esmaeilzadeh‐Gharehdaghi E, Garshasbi M. Whole-exome sequencing identified a novel variant in an Iranian patient affected by pycnodysostosis. Mol Genet Genomic Med 2020; 8:e1118. [PMID: 31944631 PMCID: PMC7057126 DOI: 10.1002/mgg3.1118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/15/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) has emerged as a successful diagnostic tool in molecular genetics laboratories worldwide. In this study, we aimed to find the potential genetic cause of skeletal disease, a heterogeneous disease, revealing the obvious short stature phenotype. In an Iranian family, we used solo-WES in a suspected patient to decipher the potential genetic cause(s). METHODS A comprehensive clinical and genotyping examination was applied to suspect the disease of the patient. The solo clinical WES was exploited, and the derived data were filtered according to the standard pipelines. In order to validate the WES finding, the region harboring the candidate variant in the CTSK gene was amplified from genomic DNA and sequenced directly by Sanger sequencing. RESULTS Sequence analysis revealed a rare novel nonsense variant, p.(Trp320*); c.905G>A, in the CTSK gene (NM_000396.3). In silico analysis shed light on the contribution of the variant to the pathogenicity of pycnodysostosis. This variant was confirmed by Sanger sequencing and further clinical examinations of the patient confirmed the disease. CONCLUSION The present study shows a rare variant of the CTSK gene, which inherited as autosomal recessive, in an Iranian male patient with pycnodysostosis. Taken together, the novel nonsense CTSK variant meets the criteria of being likely pathogenic according to the American College of Medical Genetics and Genomics-the Association for Molecular Pathology (ACMG-AMP) variant interpretation guidelines.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVICAustralia
| | | | - Amirreza Bitaraf
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Mohammad Galehdari
- Department of BiologyFaculty of SciencesNorth Tehran BranchIslamic Azad UniversityTehranIran
| | - Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Masoud Garshasbi
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
31
|
Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62:106-122. [PMID: 32014647 DOI: 10.1016/j.coi.2020.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Infections with any of the nine human herpes viruses (HHV) can be asymptomatic or life-threatening. The study of patients with severe diseases caused by HHVs, in the absence of overt acquired immunodeficiency, has led to the discovery or diagnosis of various inborn errors of immunity. The related inborn errors of adaptive immunity disrupt α/β T-cell rather than B-cell immunity. Affected patients typically develop HHV infections in the context of other infectious diseases. However, this is not always the case, as illustrated by inborn errors of SAP-dependent T-cell immunity to EBV-infected B cells. The related inborn errors of innate immunity disrupt leukocytes other than T and B cells, non-hematopoietic cells, or both. Patients typically develop only a single type of infection due to HHV, although, again, this is not always the case, as illustrated by inborn errors of TLR3 immunity resulting in HSV1 encephalitis in some patients and influenza pneumonitis in others. Most severe HHV infections in otherwise healthy patients remains unexplained. The forward human genetic dissection of isolated and syndromic HHV-driven illnesses will establish the molecular and cellular basis of protective immunity to HHVs, paving the way for novel diagnosis and management strategies.
Collapse
|
32
|
Carneiro-Sampaio M, Moreira-Filho CA, Bando SY, Demengeot J, Coutinho A. Intrauterine IPEX. Front Pediatr 2020; 8:599283. [PMID: 33330291 PMCID: PMC7714920 DOI: 10.3389/fped.2020.599283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 01/18/2023] Open
Abstract
IPEX is one of the few Inborn Errors of Immunity that may manifest in the fetal period, and its intrauterine forms certainly represent the earliest human autoimmune diseases. Here, we review the clinical, histopathologic, and genetic findings from 21 individuals in 11 unrelated families, with nine different mutations, described as cases of intrauterine IPEX. Recurrent male fetal death (multigenerational in five families) due to hydrops in the midsemester of pregnancy was the commonest presentation (13/21). Noteworthy, in the affected families, there were only fetal- or perinatal-onset cases, with no affected individuals presenting milder forms with later-life manifestation. Most alive births were preterm (5/6). Skin desquamation and intrauterine growth restriction were observed in part of the cases. Fetal ultrasonography showed hyperechoic bowel or dilated bowel loops in the five cases with available imaging data. Histopathology showed multi-visceral infiltrates with T lymphocytes and other cells, including eosinophils, the pancreas being affected in most of the cases (11/21) and as early as at 18 weeks of gestational age. Regarding the nine FOXP3 mutations found in these cases, six determine protein truncation and three predictably impair protein function. Having found distinct presentations for the same FOXP3 mutation in different families, we resorted to the mouse system and showed that the scurfy mutation also shows divergent severity of phenotype and age of death in C57BL/6 and BALB/c backgrounds. We also reviewed age-of-onset data from other monogenic Tregopathies leading to IPEX-like phenotypes. In monogenic IPEX-like syndromes, the intrauterine onset was only observed in two kindreds with IL2RB mutations, with two stillbirths and two premature neonates who did not survive. In conclusion, intrauterine IPEX cases seem to constitute a particular IPEX subgroup, certainly with the most severe clinical presentation, although no strict mutation-phenotype correlations could be drawn for these cases.
Collapse
Affiliation(s)
- Magda Carneiro-Sampaio
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Yumi Bando
- Laboratory of Medical Investigation (LIM-36, HCFMUSP), Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
33
|
Scheinecker C, Göschl L, Bonelli M. Treg cells in health and autoimmune diseases: New insights from single cell analysis. J Autoimmun 2019; 110:102376. [PMID: 31862128 DOI: 10.1016/j.jaut.2019.102376] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases, such as Systemic Lupus Erythematosus (SLE) or Rheumatoid Arthritis (RA) are characterized by the breakdown of immunological tolerance. Defects of regulatory T cells have been described among the various mechanisms, that are important for the development of autoimmune diseases, due to their critical role as regulators of peripheral immune tolerance and homeostasis. Initially T suppressor cells have been described as one population of peripheral T cells. Based on new technological advances a new understanding of the heterogeneity of different Treg cell populations in the lymphoid and non-lymphoid tissue has evolved over the last years. While initially Foxp3 has been defined as the main master regulator of Treg cells, we have learned that Treg cells from various tissue can be identified by a specific transcriptomic and epigenetic signature. Epigenetic mechanisms allow Treg cell stability, but we have also learned that certain Treg subsets are plastic and can under specific circumstances even enhance autoimmunity and inflammatory processes. Quantitative and functional defects of Treg cells have been observed in a variety of autoimmune diseases. Due to our understanding of the nature of this cell population, Treg cells have been a target of new Treg based therapies, such as low-dose IL-2. In addition, ongoing clinical trials aim to test safety and efficacy of transferred, in vitro expanded Treg cells in patients with autoimmune diseases and transplant patients.
Collapse
Affiliation(s)
- Clemens Scheinecker
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Lisa Göschl
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - Michael Bonelli
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Human diseases caused by impaired signal transducer and activator of transcription and Janus kinase signaling. Curr Opin Pediatr 2019; 31:843-850. [PMID: 31693596 DOI: 10.1097/mop.0000000000000841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The Janus kinase (JAK) and signal transducer of activation (STAT) pathway plays a key role in the immune system. It is employed by diverse cytokines, interferons, growth factors and related molecules. Mutations in JAK/STAT pathway have been implicated in human disease. Here we review JAK/STAT biology and diseases associated with mutations in this pathway. RECENT FINDINGS Over the past 10 years, many mutations in JAK/STAT pathway has been discovered. These disorders have provided insights to human immunology. SUMMARY In this review, we summarize the biology of each STAT and JAK as well as discuss the human disease that results from somatic or germline mutations to include typical presentation, immunological parameters and treatment.
Collapse
|
35
|
Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front Immunol 2019; 10:2590. [PMID: 31781102 PMCID: PMC6861185 DOI: 10.3389/fimmu.2019.02590] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow from hematopoietic stem cells (HSCs) that differentiate through common lymphoid progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action of multiple cytokines is crucial for NK cell development and maturation. Many of these cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway. We here review the current knowledge about these cytokines and the downstream signaling involved in the development and maturation of conventional NK cells and their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential for therapeutic application.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
36
|
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel) 2019; 11:E1726. [PMID: 31690038 PMCID: PMC6895831 DOI: 10.3390/cancers11111726] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A's and STAT5B's individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.
Collapse
Affiliation(s)
- Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Judith Pickem
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
37
|
Genetics on early onset inflammatory bowel disease: An update. Genes Dis 2019; 7:93-106. [PMID: 32181280 PMCID: PMC7063406 DOI: 10.1016/j.gendis.2019.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is more common in adults than in children. Onset of IBD before 17 years of age is referred as pediatric onset IBD and is further categorized as very early onset IBD (VEO-IBD) for children who are diagnosed before 6 years of age, infantile IBD who had the disease before 2 years of age and neonatal onset IBD for children less than 28 days of life. Children presenting with early onset disease may have a monogenic basis. Knowledge and awareness of the clinical manifestations facilitates early evaluation and diagnosis. Next generation sequencing is helpful in making the genetic diagnosis. Treatment of childhood IBD is difficult; targeted therapies and hematopoietic stem cell transplantation form the mainstay. In this review we aim to summarize the genetic defects associated with IBD phenotype. We describe genetic location and functions of various genetic defect associated with VEO-IBD with their key clinical manifestations. We also provide clinical clues to suspect these conditions and approaches to the diagnosis of these disorders and suitable treatment options.
Collapse
|
38
|
Human signal transducer and activator of transcription 5b (STAT5b) mutation causes dysregulated human natural killer cell maturation and impaired lytic function. J Allergy Clin Immunol 2019; 145:345-357.e9. [PMID: 31600547 DOI: 10.1016/j.jaci.2019.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Patients with signal transducer and activator of transcription 5b (STAT5b) deficiency have impairment in T-cell homeostasis and natural killer (NK) cells which leads to autoimmunity, recurrent infections, and combined immune deficiency. OBJECTIVE In this study we characterized the NK cell defect in STAT5b-deficient human NK cells, as well as Stat5b-/- mice. METHODS We used multiparametric flow cytometry, functional NK cell assays, microscopy, and a Stat5b-/- mouse model to elucidate the effect of impaired and/or absent STAT5b on NK cell development and function. RESULTS This alteration generated a nonfunctional CD56bright NK cell subset characterized by low cytokine production. The CD56dim NK cell subset had decreased expression of perforin and CD16 and a greater frequency of cells expressing markers of immature NK cells. We observed low NK cell numbers and impaired NK cell maturation, suggesting that STAT5b is involved in terminal NK cell maturation in Stat5b-/- mice. Furthermore, human STAT5b-deficient NK cells had low cytolytic capacity, and fixed-cell microscopy showed poor convergence of lytic granules. This was accompanied by decreased expression of costimulatory and activating receptors. Interestingly, granule convergence and cytolytic function were restored after IL-2 stimulation. CONCLUSIONS Our results show that in addition to the impaired terminal maturation of NK cells, human STAT5b mutation leads to impairments in early activation events in NK cell lytic synapse formation. Our data provide further insight into NK cell defects caused by STAT5b deficiency.
Collapse
|
39
|
Cepika AM, Sato Y, Liu JMH, Uyeda MJ, Bacchetta R, Roncarolo MG. Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. J Allergy Clin Immunol 2019; 142:1679-1695. [PMID: 30527062 DOI: 10.1016/j.jaci.2018.10.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
Monogenic diseases of the immune system, also known as inborn errors of immunity, are caused by single-gene mutations resulting in immune deficiency and dysregulation. More than 350 diseases have been described to date, and the number is rapidly expanding, with increasing availability of next-generation sequencing facilitating the diagnosis. The spectrum of immune dysregulation is wide, encompassing deficiencies in humoral, cellular, innate, and adaptive immunity; phagocytosis; and the complement system, which lead to autoinflammation and autoimmunity. Multiorgan autoimmunity is a dominant symptom when genetic mutations lead to defects in molecules essential for the development, survival, and/or function of regulatory T (Treg) cells. Studies of "Tregopathies" are providing critical mechanistic information on Treg cell biology, the role of Treg cell-associated molecules, and regulation of peripheral tolerance in human subjects. The pathogenic immune networks underlying these diseases need to be dissected to apply and develop immunomodulatory treatments and design curative treatments using cell and gene therapy. Here we review the pathogenetic mechanisms, clinical presentation, diagnosis, and current and future treatments of major known Tregopathies caused by mutations in FOXP3, CD25, cytotoxic T lymphocyte-associated antigen 4 (CTLA4), LPS-responsive and beige-like anchor protein (LRBA), and BTB domain and CNC homolog 2 (BACH2) and gain-of-function mutations in signal transducer and activator of transcription 3 (STAT3). We also discuss deficiencies in genes encoding STAT5b and IL-10 or IL-10 receptor as potential Tregopathies.
Collapse
Affiliation(s)
- Alma-Martina Cepika
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Yohei Sato
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Jeffrey Mao-Hwa Liu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Molly Javier Uyeda
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, Calif.
| |
Collapse
|
40
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
41
|
Fernandez IZ, Baxter RM, Garcia-Perez JE, Vendrame E, Ranganath T, Kong DS, Lundquist K, Nguyen T, Ogolla S, Black J, Galambos C, Gumbart JC, Dawany N, Kelsen JR, de Zoeten EF, Quinones R, Eissa H, Verneris MR, Sullivan KE, Rochford R, Blish CA, Kedl RM, Dutmer CM, Hsieh EWY. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med 2019; 216:1255-1267. [PMID: 31040184 PMCID: PMC6547857 DOI: 10.1084/jem.20182015] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/24/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A novel homozygous mutation in human IL2RB results in decreased IL-2Rβ protein expression and dysregulated IL-2/15 signaling. This hypomorphic mutation leads to decreased regulatory T cell frequency and an abnormal NK cell compartment, with clinical manifestations of autoimmunity and susceptibility to CMV. The pleiotropic actions of interleukin-2 (IL-2) are essential for regulation of immune responses and maintenance of immune tolerance. The IL-2 receptor (IL-2R) is composed of IL-2Rα, IL-2Rβ, and IL-2Rγ subunits, with defects in IL-2Rα and IL-2Rγ and their downstream signaling effectors resulting in known primary immunodeficiency disorders. Here, we report the first human defect in IL-2Rβ, occurring in two infant siblings with a homozygous IL2RB mutation in the WSXWS motif, manifesting as multisystem autoimmunity and susceptibility to CMV infection. The hypomorphic mutation results in diminished IL-2Rβ surface expression and dysregulated IL-2/15 signaling, with an anticipated reduction in regulatory T cells. However, in contrast to the IL-2Rβ−/− animal model, which lacks NK cells, these siblings demonstrate an expansion of NK cells, particularly the CD56bright subset, and a lack of terminally differentiated NK cells. Thus, the early-onset autoimmunity and immunodeficiency are linked to functional deficits arising from altered IL-2Rβ expression and signaling in T and NK cells.
Collapse
Affiliation(s)
- Isabel Z Fernandez
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Ryan M Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Josselyn E Garcia-Perez
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Elena Vendrame
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Thanmayi Ranganath
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daniel S Kong
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - Tom Nguyen
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO
| | - Sidney Ogolla
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Jennifer Black
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA
| | - Noor Dawany
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Judith R Kelsen
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edwin F de Zoeten
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine, Digestive Health Institute, Children's Hospital Colorado, Aurora, CO
| | - Ralph Quinones
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Hesham Eissa
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Michael R Verneris
- Department of Pediatrics, Division of Hematology/Oncology and Blood and Marrow Transplantation, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Kathleen E Sullivan
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA.,Immunology Program, School of Medicine, Stanford University, Stanford, CA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Cullen M Dutmer
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO .,Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
42
|
Göschl L, Scheinecker C, Bonelli M. Treg cells in autoimmunity: from identification to Treg-based therapies. Semin Immunopathol 2019; 41:301-314. [PMID: 30953162 DOI: 10.1007/s00281-019-00741-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
Abstract
Regulatory (Treg) cells are key regulators of inflammation and important for immune tolerance and homeostasis. A major progress has been made in the identification and classification of Treg cells. Due to technological advances, we have gained deep insights in the epigenetic regulation of Treg cells. The use of fate reporter mice allowed addressing the functional consequences of loss of Foxp3 expression. Depending on the environment Treg cells gain effector functions upon loss of Foxp3 expression. However, the traditional view that Treg cells become necessarily pathogenic by gaining effector functions was challenged by recent findings and supports the notion of Treg cell lineage plasticity. Treg cell stability is also a major issue for Treg cell therapies. Clinical trials are designed to use polyclonal Treg cells as therapeutic tools. Here, we summarize the role of Treg cells in selected autoimmune diseases and recent advances in the field of Treg targeted therapies.
Collapse
Affiliation(s)
- Lisa Göschl
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Clemens Scheinecker
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Michael Bonelli
- Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
43
|
Storr HL, Chatterjee S, Metherell LA, Foley C, Rosenfeld RG, Backeljauw PF, Dauber A, Savage MO, Hwa V. Nonclassical GH Insensitivity: Characterization of Mild Abnormalities of GH Action. Endocr Rev 2019; 40:476-505. [PMID: 30265312 PMCID: PMC6607971 DOI: 10.1210/er.2018-00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
GH insensitivity (GHI) presents in childhood with growth failure and in its severe form is associated with extreme short stature and dysmorphic and metabolic abnormalities. In recent years, the clinical, biochemical, and genetic characteristics of GHI and other overlapping short stature syndromes have rapidly expanded. This can be attributed to advancing genetic techniques and a greater awareness of this group of disorders. We review this important spectrum of defects, which present with phenotypes at the milder end of the GHI continuum. We discuss their clinical, biochemical, and genetic characteristics. The objective of this review is to clarify the definition, identification, and investigation of this clinically relevant group of growth defects. We also review the therapeutic challenges of mild GHI.
Collapse
Affiliation(s)
- Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Sumana Chatterjee
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Corinne Foley
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ron G Rosenfeld
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon
| | - Philippe F Backeljauw
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Vivian Hwa
- Division of Endocrinology, Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
44
|
Abbas AK, Trotta E, R Simeonov D, Marson A, Bluestone JA. Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol 2019; 3:3/25/eaat1482. [PMID: 29980618 DOI: 10.1126/sciimmunol.aat1482] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Interleukin-2 (IL-2), the first cytokine that was molecularly cloned, was shown to be a T cell growth factor essential for the proliferation of T cells and the generation of effector and memory cells. On the basis of this activity, the earliest therapeutic application of IL-2 was to boost immune responses in cancer patients. Therefore, it was a surprise that genetic deletion of the cytokine or its receptor led not only to the expected immune deficiency but also to systemic autoimmunity and lymphoproliferation. Subsequent studies established that IL-2 is essential for the maintenance of Foxp3+ regulatory T cells (Treg cells), and in its absence, there is a profound deficiency of Treg cells and resulting autoimmunity. We now know that IL-2 promotes the generation, survival, and functional activity of Treg cells and thus has dual and opposing functions: maintaining Treg cells to control immune responses and stimulating conventional T cells to promote immune responses. It is well documented that certain IL-2 conformations result in selective targeting of Treg cells by increasing reliance on CD25 binding while compromising CD122 binding. Recent therapeutic strategies have emerged to use IL-2, monoclonal antibodies to IL-2, or IL-2 variants to boost Treg cell numbers and function to treat autoimmune diseases while dealing with the continuing challenges to minimize the generation of effector and memory cells, natural killer cells, and other innate lymphoid populations.
Collapse
Affiliation(s)
- Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Eleonora Trotta
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
Vargas-Hernández A, Forbes LR. JAK/STAT proteins and their biological impact on NK cell development and function. Mol Immunol 2019; 115:21-30. [PMID: 30704805 DOI: 10.1016/j.molimm.2018.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023]
Abstract
NK cells are important early effectors in the innate immune response to a variety of viral infections and for elimination of tumor cells. The JAK/STAT signaling cascade is critical for NK cell development, maturation, survival, and proliferation, therefore, it is important to understand the role of this pathway in NK cell biology. Many cytokines can activate multiple JAK/STAT protein family members, creating a severe phenotype when mutations impair their function or expression. Here we discuss the impact of defective JAK/STAT signaling pathways on NK cell development, activation and cytotoxicity.
Collapse
Affiliation(s)
- Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, TX, USA
| | - Lisa R Forbes
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, Houston, TX, USA.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Natural killer cells are innate lymphoid cells (ILCs) that play critical roles in human host defense and are especially useful in combating viral pathogens and malignancy. RECENT FINDINGS The NK cell deficiency (NKD) is particularly underscored in patients with a congenital immunodeficiency in which NK cell development or function is affected. The classical NK cell deficiency (cNKD) is a result of absent or a profound decrease in the number of circulating NK cells. In contrast, functional NKD (fNKD) is characterized by abnormal NK cell function but with normal number of NK cells. The combined immune deficiencies with significant impact on NK cells are not considered classical or functional NK cell deficiencies. In these disorders, the impairment of NK cells represents an important aspect of the overall immunodeficiency. In turn, this leads to improved insights on the NK cell development and function. Here, we detail the NK cell biology based upon recent natural killer cell defects described in combined immune deficiencies.
Collapse
|
47
|
Acres MJ, Gothe F, Grainger A, Skelton AJ, Swan DJ, Willet JDP, Leech S, Galcheva S, Iotova V, Hambleton S, Engelhardt KR. Signal transducer and activator of transcription 5B deficiency due to a novel missense mutation in the coiled-coil domain. J Allergy Clin Immunol 2019; 143:413-416.e4. [PMID: 30205186 PMCID: PMC6320259 DOI: 10.1016/j.jaci.2018.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Meghan J Acres
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Florian Gothe
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pediatrics, Dr von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Angela Grainger
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew J Skelton
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David J Swan
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph D P Willet
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzy Leech
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Sonya Galcheva
- Department of Pediatrics, Medical University - Varna, Pediatric Endocrinology, University Hospital "St Marina", Varna, Bulgaria
| | - Violeta Iotova
- Department of Pediatrics, Medical University - Varna, Pediatric Endocrinology, University Hospital "St Marina", Varna, Bulgaria
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
48
|
Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 2018; 17:823-844. [DOI: 10.1038/nrd.2018.148] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Complete Resolution of Lymphoid Interstitial Pneumonia in a Patient With Juvenile Myelomonocytic Leukemia Treated With Allogeneic Bone Marrow Transplant: Killing 2 Birds With 1 Stone. J Pediatr Hematol Oncol 2018; 40:e315-e318. [PMID: 29023302 DOI: 10.1097/mph.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lymphoid interstitial pneumonia (LIP) is a rare disease characterized by benign reactive polyclonal proliferation of bronchus-associated lymphoid tissue after exposure to inhaled or circulating antigen(s), leading to a disease symptomatology similar to idiopathic interstitial pneumonia. Its association with diseases that are caused due to immune dysregulation (autoimmune diseases, congenital/acquired immunodeficiency, and allogeneic bone marrow transplant) and response to immunomodulatory/suppressive medications suggests an immunologic pathophysiology. Although LIP has been reported in association with lymphoproliferative diseases like Castleman disease, it has never been described in patients with leukemia. We report the first case of LIP in a patient with juvenile myelomonocytic leukemia (JMML) who was found to have a novel germline mutation of unknown significance in additional sex combs-like-1 (ASXL1) gene and a pathogenic somatic mutation of protein tyrosine phosphatase, nonreceptor type 11 (PTPN11) gene at diagnosis. The patient underwent a matched unrelated bone marrow transplant for JMML with complete resolution of JMML and LIP with no recurrence to date. We also emphasize the importance of considering LIP in differential diagnosis of pulmonary lesions seen in conjunction with hematologic malignancies and distinguishing it from malignant infiltration of the lung.
Collapse
|
50
|
Frutoso M, Morisseau S, Tamzalit F, Quéméner A, Meghnem D, Leray I, Jacques Y, Mortier E. Emergence of NK Cell Hyporesponsiveness after Two IL-15 Stimulation Cycles. THE JOURNAL OF IMMUNOLOGY 2018; 201:493-506. [PMID: 29848756 DOI: 10.4049/jimmunol.1800086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
IL-15 is a cytokine playing a crucial role in the function of immune cells, including NK and CD8 T cells. In this study, we demonstrated that in vivo, in mice, IL-15-prestimulated NK cells were no longer able to respond to a second cycle of IL-15 stimulation. This was illustrated by defects in cell maturation, proliferation, and activation, seemingly linked to the environment surrounding NK cells but not related to the presence of CD4 regulatory T cells, TGF-β, or IL-10. Moreover, NK cells from immunodeficient mice could respond to two cycles of IL-15 stimulation, whereas an adoptive transfer of CD44+CD8+ cells impaired their responsiveness to the second cycle. Conversely, in immunocompetent mice, NK cell responsiveness to a second IL-15 stimulation was restored by the depletion of CD8+ cells. These biological findings refine our understanding of the complex mode of action of NK cells in vivo, and they should be taken into consideration for IL-15-based therapy.
Collapse
Affiliation(s)
- Marie Frutoso
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Sébastien Morisseau
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and.,Centre Hospitalier Universitaire, 44000 Nantes, France
| | - Fella Tamzalit
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Agnès Quéméner
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Dihia Meghnem
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Isabelle Leray
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Yannick Jacques
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| | - Erwan Mortier
- Centre de Recherche en Cancérologie et Immunologie Nantes-Angers, CNRS, INSERM, Université de Nantes, 44007 Nantes, France; and
| |
Collapse
|