1
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
2
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
3
|
Chuzeville L, Aissani A, Manisekaran A, Fleming Y, Grysan P, Contal S, Chary A, Duday D, Couture O, Anand R, Thomann JS. Size and phase preservation of amorphous calcium carbonate nanoparticles in aqueous media using different types of lignin for contrast-enhanced ultrasound imaging. J Colloid Interface Sci 2024; 658:584-596. [PMID: 38134667 DOI: 10.1016/j.jcis.2023.12.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
HYPOTHESIS Calcium carbonate (CaCO3) nanoparticles could have great potential for contrast-enhanced ultrasound imaging (CEUS) due to their gas-generating properties and sensitivity to physiological conditions. However, the use of nano CaCO3 for biomedical applications requires the assistance of stabilizers to control the size and avoid the fast dissolution/recrystallization of the particles when exposed to aqueous conditions. EXPERIMENTS Herein, we report the stabilization of nano CaCO3 using lignin, and synthesized core-shell amorphous CaCO3-lignin nanoparticles (LigCC NPs) with a diameter below 100 nm. We have then investigated the echogenicity of the LigCC NPs by monitoring the consequent generation of contrast in vitro for 90 min in linear and non-linear B-mode imaging. FINDINGS This research explores how lignin type and structure affect stabilization efficiency, lignin structuration around CaCO3 cores, and particle echogenicity. Interestingly, by employing lignin as the stabilizer, it becomes possible to maintain the echogenic properties of CaCO3, whereas the use of lipid coatings prevents the production of signal generation in ultrasound imaging. This work opens new avenue for CEUS imaging of the vascular and extravascular space using CaCO3, as it highlights the potential to generate contrast for extended durations at physiological pH by utilizing the amorphous phase of CaCO3.
Collapse
Affiliation(s)
- Lauriane Chuzeville
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg; University of Luxembourg, Department of Physics & Materials Science, 162a Avenue de la Faïencerie, 1511 Luxembourg city, Luxembourg
| | - Abderrahmane Aissani
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, 15 rue de l'école de médecine, 75006 Paris, France
| | - Ahilan Manisekaran
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg; University of Luxembourg, Department of Physics & Materials Science, 162a Avenue de la Faïencerie, 1511 Luxembourg city, Luxembourg
| | - Yves Fleming
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Patrick Grysan
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Servane Contal
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Aline Chary
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - David Duday
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Olivier Couture
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, 15 rue de l'école de médecine, 75006 Paris, France
| | - Resmi Anand
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg
| | - Jean-Sébastien Thomann
- Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology, 5 Avenue des Hauts Fourneaux, Esch/Alzette L-4362, Luxembourg.
| |
Collapse
|
4
|
van der Vlies AJ, Yamane S, Hasegawa U. Recent advance in self-assembled polymeric nanomedicines for gaseous signaling molecule delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1934. [PMID: 37904284 DOI: 10.1002/wnan.1934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 11/01/2023]
Abstract
Gaseous signaling molecules such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2 S) have recently been recognized as essential signal mediators that regulate diverse physiological and pathological processes in the human body. With the evolution of gaseous signaling molecule biology, their therapeutic applications have attracted growing attention. One of the challenges in translational research of gaseous signaling molecules is the lack of efficient and safe delivery systems. To tackle this issue, researchers developed a library of gas donors, which are low molecular weight compounds that can release gaseous signaling molecules upon decomposition under physiological conditions. Despite the significant efforts to control gaseous signaling molecule release from gas donors, the therapeutic potential of gaseous signaling molecules cannot be fully explored due to their unfavorable pharmacokinetics and toxic side effects. Recently, the use of nanoparticle-based gas donors, especially self-assembled polymeric gas donors, have emerged as a promising approach. In this review, we describe the development of conventional small gas donors and the challenges in their therapeutic applications. We then illustrate the concepts and critical aspects for designing self-assembled polymeric gas donors and discuss the advantages of this approach in gasotransmistter delivery. We also highlight recent efforts to develop the delivery systems for those molecules based on self-assembled polymeric nanostructures. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- André J van der Vlies
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Setsuko Yamane
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- National Institute of Technology, Numazu College, Shizuoka, Japan
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev 2023; 42:601-627. [PMID: 36826760 PMCID: PMC10584728 DOI: 10.1007/s10555-023-10086-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Every sixth person in the world dies due to cancer, making it the second leading severe cause of death after cardiovascular diseases. According to WHO, cancer claimed nearly 10 million deaths in 2020. The most common types of cancers reported have been breast (lung, colon and rectum, prostate cases), skin (non-melanoma) and stomach. In addition to surgery, the most widely used traditional types of anti-cancer treatment are radio- and chemotherapy. However, these do not distinguish between normal and malignant cells. Additional treatment methods have evolved over time for early detection and targeted therapy of cancer. However, each method has its limitations and the associated treatment costs are quite high with adverse effects on the quality of life of patients. Use of individual atoms or a cluster of atoms (nanoparticles) can cause a paradigm shift by virtue of providing point of sight sensing and diagnosis of cancer. Nanoparticles (1-100 nm in size) are 1000 times smaller in size than the human cell and endowed with safer relocation capability to attack mechanically and chemically at a precise location which is one avenue that can be used to destroy cancer cells precisely. This review summarises the extant understanding and the work done in this area to pave the way for physicians to accelerate the use of hybrid mode of treatments by leveraging the use of various nanoparticles.
Collapse
Affiliation(s)
- Jaya Verma
- School of Engineering, London South Bank University, London, SE10AA UK
| | - Caaisha Warsame
- School of Engineering, London South Bank University, London, SE10AA UK
| | | | | | - Eiman Aleem
- School of Applied Sciences, Division of Human Sciences, Cancer Biology and Therapy Research Group, London South Bank University, London, SE10AA UK
| | - Saurav Goel
- School of Engineering, London South Bank University, London, SE10AA UK
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007 India
| |
Collapse
|
6
|
Winuprasith T, Koirala P, McClements DJ, Khomein P. Emulsion Technology in Nuclear Medicine: Targeted Radionuclide Therapies, Radiosensitizers, and Imaging Agents. Int J Nanomedicine 2023; 18:4449-4470. [PMID: 37555189 PMCID: PMC10406121 DOI: 10.2147/ijn.s416737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Radiopharmaceuticals serve as a major part of nuclear medicine contributing to both diagnosis and treatment of several diseases, especially cancers. Currently, most radiopharmaceuticals are based on small molecules with targeting ability. However, some concerns over their stability or non-specific interactions leading to off-target localization are among the major challenges that need to be overcome. Emulsion technology has great potential for the fabrication of carrier systems for radiopharmaceuticals. It can be used to create particles with different compositions, structures, sizes, and surface characteristics from a wide range of generally recognized as safe (GRAS) materials, which allows their functionality to be tuned for specific applications. In particular, it is possible to carry out surface modifications to introduce targeting and stealth properties, as well as to control the particle dimensions to manipulate diffusion and penetration properties. Moreover, emulsion preparation methods are usually simple, economic, robust, and scalable, which makes them suitable for medical applications. In this review, we highlight the potential of emulsion technology in nuclear medicine for developing targeted radionuclide therapies, for use as radiosensitizers, and for application in radiotracer delivery in gamma imaging techniques.
Collapse
Affiliation(s)
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Piyachai Khomein
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Taylor J, Sharp A, Rannard SP, Arrowsmith S, McDonald TO. Nanomedicine strategies to improve therapeutic agents for the prevention and treatment of preterm birth and future directions. NANOSCALE ADVANCES 2023; 5:1870-1889. [PMID: 36998665 PMCID: PMC10044983 DOI: 10.1039/d2na00834c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 06/19/2023]
Abstract
The World Health Organisation (WHO) estimates 15 million babies worldwide are born preterm each year, with 1 million infant mortalities and long-term morbidity in survivors. Whilst the past 40 years have provided some understanding in the causes of preterm birth, along with development of a range of therapeutic options, notably prophylactic use of progesterone or uterine contraction suppressants (tocolytics), the number of preterm births continues to rise. Existing therapeutics used to control uterine contractions are restricted in their clinical use due to pharmacological drawbacks such as poor potency, transfer of drugs to the fetus across the placenta and maternal side effects from activity in other maternal systems. This review focuses on addressing the urgent need for the development of alternative therapeutic systems with improved efficacy and safety for the treatment of preterm birth. We discuss the application of nanomedicine as a viable opportunity to engineer pre-existing tocolytic agents and progestogens into nanoformulations, to improve their efficacy and address current drawbacks to their use. We review different nanomedicines including liposomes, lipid-based carriers, polymers and nanosuspensions highlighting where possible, where these technologies have already been exploited e.g. liposomes, and their significance in improving the properties of pre-existing therapeutic agents within the field of obstetrics. We also highlight where active pharmaceutical agents (APIs) with tocolytic properties have been used for other clinical indications and how these could inform the design of future therapeutics or be repurposed to diversify their application such as for use in preterm birth. Finally we outline and discuss the future challenges.
Collapse
Affiliation(s)
- Jessica Taylor
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Andrew Sharp
- Harris-Wellbeing Preterm Birth Research Centre, Department of Women's and Children's Health, Liverpool Women's Hospital, University of Liverpool Crown Street Liverpool L8 7SS UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
| | - Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Department of Materials, Henry Royce Institute, The University of Manchester Manchester M13 9PL UK
| |
Collapse
|
8
|
Kumar P, Kim SH, Yadav S, Jo SH, Yoo S, Park SH, Lim KT. Redox-Responsive Core-Cross-Linked Micelles of Miktoarm Poly(ethylene oxide)- b-poly(furfuryl methacrylate) for Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12719-12734. [PMID: 36848457 DOI: 10.1021/acsami.2c21152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physiological instability of nanocarriers, premature drug leakage during blood circulation, and associated severe side effects cause compromised therapeutic efficacy, which have significantly hampered the progress of nanomedicines. The cross-linking of nanocarriers while keeping the effectiveness of their degradation at the targeted site to release the drug has emerged as a potent strategy to overcome these flaws. Herein, we have designed novel (poly(ethylene oxide))2-b-poly(furfuryl methacrylate) ((PEO2K)2-b-PFMAnk) miktoarm amphiphilic block copolymers by coupling alkyne-functionalized PEO (PEO2K-C≡H) and diazide-functionalized poly(furfuryl methacrylate) ((N3)2-PFMAnk) via click chemistry. (PEO2K)2-b-PFMAnk self-assembled to form nanosized micelles (mikUCL) with hydrodynamic radii in the range of 25∼33 nm. The hydrophobic core of mikUCL was cross-linked by a disulfide-containing cross-linker using the Diels-Alder reaction to avoid unwanted leakage and burst release of a payload. As expected, the resulting core-cross-linked (PEO2K)2-b-PFMAnk micelles (mikCCL) exhibited superior stability under a normal physiological environment and were de-cross-linked to rapidly release doxorubicin (DOX) upon exposure to a reduction environment. The micelles were compatible with HEK-293 normal cells, while DOX-loaded micelles (mikUCL/DOX and mikCCL/DOX) induced high antitumor activity in HeLa and HT-29 cells. mikCCL/DOX preferentially accumulated at the tumor site and was more efficacious than free DOX and mikUCL/DOX for tumor inhibition in HT-29 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Display Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sonyabapu Yadav
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sung-Han Jo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seong Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, South Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
9
|
Xu L, Luo Z, Liu Q, Wang C, Zhou F, Zhou M. Metal-polyphenol polymer modified polydopamine for chemo-photothermal therapy. Front Chem 2023; 11:1124448. [PMID: 36762199 PMCID: PMC9902594 DOI: 10.3389/fchem.2023.1124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Chemotherapy combined with photothermal therapy (PTT) is a new way to improve the curative effect of cancer treatment. Here, we developed a multifunctional nanoparticle, namely PTX@mPDA@Fe-GA with the loading of a chemotherapeutic drug paclitaxel (PTX) for targeted and synergistic chemotherapy/photothermal therapy in lung cancer. Fe-gallic acid (Fe-GA) was coated on the surface of mesoporous polydopamine (mPDA) nanoparticles, and then the PTX was placed in the mesopores. The drug release of the loaded PTX exhibited pH- and thermal-dual responsive manner. Both mPDA and Fe-GA have high photothermal conversion ability and play a role in photothermal therapy. In addition, the results revealed that mPDA@Fe-GA had excellent biocompatibility and low hemolysis rate. The PTX-loaded mPDA@Fe-GA not only has excellent killing effect on lung cancer cells (A549) in vitro, but also can significantly suppress the growth of A549 subcutaneous tumor in nude mice. In a nutshell, the developed multifunctional nanoparticles integrate photothermal therapy and efficient chemotherapeutic drug delivery, providing new therapeutic ideas in the fight against lung cancer.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhibing Luo
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chuancui Wang
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China,*Correspondence: Fei Zhou, ; Min Zhou,
| | - Min Zhou
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China,*Correspondence: Fei Zhou, ; Min Zhou,
| |
Collapse
|
10
|
Slezak AJ, Mansurov A, Raczy MM, Chang K, Alpar AT, Lauterbach AL, Wallace RP, Weathered RK, Medellin JE, Battistella C, Gray LT, Marchell TM, Gomes S, Swartz MA, Hubbell JA. Tumor Cell-Surface Binding of Immune Stimulating Polymeric Glyco-Adjuvant via Cysteine-Reactive Pyridyl Disulfide Promotes Antitumor Immunity. ACS CENTRAL SCIENCE 2022; 8:1435-1446. [PMID: 36313164 PMCID: PMC9615125 DOI: 10.1021/acscentsci.2c00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 06/10/2023]
Abstract
Immune stimulating agents like Toll-like receptor 7 (TLR7) agonists induce potent antitumor immunity but are limited in their therapeutic window due to off-target immune activation. Here, we developed a polymeric delivery platform that binds excess unpaired cysteines on tumor cell surfaces and debris to adjuvant tumor neoantigens as an in situ vaccine. The metabolic and enzymatic dysregulation in the tumor microenvironment produces these exofacial free thiols, which can undergo efficient disulfide exchange with thiol-reactive pyridyl disulfide moieties upon intratumoral injection. These functional monomers are incorporated into a copolymer with pendant mannose groups and TLR7 agonists to target both antigen and adjuvant to antigen presenting cells. When tethered in the tumor, the polymeric glyco-adjuvant induces a robust antitumor response and prolongs survival of tumor-bearing mice, including in checkpoint-resistant B16F10 melanoma. The construct additionally reduces systemic toxicity associated with clinically relevant small molecule TLR7 agonists.
Collapse
Affiliation(s)
- Anna J. Slezak
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Aslan Mansurov
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Michal M. Raczy
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Kevin Chang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Aaron T. Alpar
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Abigail L. Lauterbach
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Rachel P. Wallace
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Rachel K. Weathered
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Jorge E.G. Medellin
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Claudia Battistella
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Laura T. Gray
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Tiffany M. Marchell
- Committee
on Immunology, University of Chicago, Chicago, Illinois 60637, United States
| | - Suzana Gomes
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Melody A. Swartz
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Committee
on Immunology, University of Chicago, Chicago, Illinois 60637, United States
- Ben
May Department for Cancer Research, University
of Chicago, Chicago, Illinois 60637, United
States
- Committee
on Cancer Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Committee
on Immunology, University of Chicago, Chicago, Illinois 60637, United States
- Committee
on Cancer Biology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Kumeria T, Wang J, Kim B, Park JH, Zuidema JM, Klempner M, Cavacini L, Wang Y, Sailor MJ. Enteric Polymer-Coated Porous Silicon Nanoparticles for Site-Specific Oral Delivery of IgA Antibody. ACS Biomater Sci Eng 2022; 8:4140-4152. [PMID: 36210772 PMCID: PMC10036216 DOI: 10.1021/acsbiomaterials.0c01313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Porous silicon (pSi) nanoparticles are loaded with Immunoglobulin A-2 (IgA2) antibodies, and the assembly is coated with pH-responsive polymers on the basis of the Eudragit family of enteric polymers (L100, S100, and L30-D55). The temporal release of the protein from the nanocomposite formulations is quantified following an in vitro protocol simulating oral delivery: incubation in simulated gastric fluid (SGF; at pH 1.2) for 2 h, followed by a fasting state simulated intestinal fluid (FasSIF; at pH 6.8) or phosphate buffer solution (PBS; at pH 7.4). The nanocomposite formulations display a negligible release in SGF, while more than 50% of the loaded IgA2 is released in solutions at a pH of 6.8 (FasSIF) or 7.4 (PBS). Between 21 and 44% of the released IgA2 retains its functional activity. A capsule-based system is also evaluated, where the IgA2-loaded particles are packed into a gelatin capsule and the capsule is coated with either EudragitL100 or EudragitS100 polymer for a targeted release in the small intestine or the colon, respectively. The capsule-based formulations outperform polymer-coated nanoparticles in vitro, preserving 45-54% of the activity of the released protein.
Collapse
Affiliation(s)
- Tushar Kumeria
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
- School of Materials Science and Engineering, University of New South Wales-Sydney, Sydney, NSW 2052, Australia
| | - Joanna Wang
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Ji-Ho Park
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea
| | - Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Mark Klempner
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Lisa Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Yang Wang
- MassBiologics of the University of Massachusetts Medical School, Boston, Massachusetts 02126, United States
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| |
Collapse
|
12
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
13
|
Papachristou M, Priftakis D, Xanthopoulos S, Datseris I, Bouziotis P. Biodistribution of intravenous [ 99mTc]Tc-phytate in mouse models of chemically and foreign-body induced sterile inflammation. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2022; 12:91-98. [PMID: 35874295 PMCID: PMC9301090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
When injected intravenously, [99mTc]Tc-phytate forms particles in the nanometer range. This size can favor its extravasation into tumor and inflammation through pores of the vasculature. The aim of this work is the evaluation of the use of [99mTc]Tc-phytate to assess sterile inflammation in mouse models. Biodistribution studies of [99mTc]Tc-phytate were performed in two groups of male Swiss Albino mice. Sterile inflammation was induced after intramuscular injection of turpentine in the first group (chemically induced sterile inflammation model) and after implantation of sterile metal bolts in the second group (foreign-body induced sterile inflammation model). [99mTc]Tc-phytate was intravenously injected after the development of inflammation in both groups and ex vivo biodistribution of the radiolabelled complex followed at different time-points. Biodistribution was expressed as percent injected dose per gram (%ID/g). Target-to-background ratios were also recorded. For the chemically induced sterile inflammation model, ex vivo biodistribution evaluation measurements revealed a pronounced uptake in the inflamed muscle when compared to uptake in the control/non-inflamed muscle. Moreover, as expected, there is a high uptake in the liver and spleen. For the foreign-body induced sterile inflammation model, a significantly higher uptake was observed in the inflamed muscle post [99mTc]Tc-phytate injection, both for the 24 hours post-bolt implantation and for the 7 days post-bolt implantation groups. The nanoparticle properties of [99mTc]Tc-phytate are potentially useful in the imaging of different types of sterile inflammation with translational potential clinical SPECT (single photon emission computed tomography) imaging applications in humans.
Collapse
Affiliation(s)
- Maria Papachristou
- Nuclear Medicine and PET/CT Department, General Hospital of Athens “Evaggelismos”Athens, Greece
| | - Dimitrios Priftakis
- Institute of Nuclear Medicine, University College London HospitalLondon, United Kingdom
| | - Stavros Xanthopoulos
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”Athens, Greece
| | - Ioannis Datseris
- Nuclear Medicine and PET/CT Department, General Hospital of Athens “Evaggelismos”Athens, Greece
| | - Penelope Bouziotis
- Radiochemical Studies Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”Athens, Greece
| |
Collapse
|
14
|
Song Y, Li M, Song N, Liu X, Wu G, Zhou H, Long J, Shi L, Yu Z. Self-Amplifying Assembly of Peptides in Macrophages for Enhanced Inflammatory Treatment. J Am Chem Soc 2022; 144:6907-6917. [PMID: 35388694 DOI: 10.1021/jacs.2c01323] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzyme-regulated in situ self-assembly of peptides represents one versatile strategy in the creation of theranostic agents, which, however, is limited by the strong dependence on enzyme overexpression. Herein, we reported the self-amplifying assembly of peptides precisely in macrophages associated with enzyme expression for improving the anti-inflammatory efficacy of conventional drugs. The self-amplifying assembling system was created via coassembling an enzyme-responsive peptide with its derivative functionalized with a protein ligand. Reduction of the peptides by the enzyme NAD(P)H quinone dehydrogenase 1 (NQO1) led to the formation of nanofibers with high affinity to the protein, thereby facilitating NQO1 expression. The improved NQO1 level conversely promoted the assembly of the peptides into nanofibers, thus establishing an amplifying relationship between the peptide assembly and the NQO1 expression in macrophages. Utilization of the amplifying assembling system as vehicles for drug dexamethasone allowed for its passive targeting delivery to acute injured lungs. Both in vitro and in vivo studies confirmed the capability of the self-amplifying assembling system to enhance the anti-inflammatory efficacy of dexamethasone via simultaneous alleviation of the reactive oxygen species side effect and downregulation of proinflammatory cytokines. Our findings demonstrate the manipulation of the assembly of peptides in living cells with a regular enzyme level via a self-amplification process, thus providing a unique strategy for the creation of supramolecular theranostic agents in living cells.
Collapse
Affiliation(s)
- Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingming Li
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangyao Wu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Singh E, Osmani RAM, Banerjee R, Abu Lila AS, Moin A, Almansour K, Arab HH, Alotaibi HF, Khafagy ES. Poly ε-Caprolactone Nanoparticles for Sustained Intra-Articular Immune Modulation in Adjuvant-Induced Arthritis Rodent Model. Pharmaceutics 2022; 14:519. [PMID: 35335895 PMCID: PMC8953799 DOI: 10.3390/pharmaceutics14030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder with synovitis and articular pathology as its primary expositions. Leflunomide (Lfd) is an anti-rheumatic drug that is effective in the treatment of RA, but displays severe side effects upon prolonged systemic administration. Local therapy might represent a promising strategy to treat rheumatoid arthritis without eliciting systemic adverse effects. In this study, leflunomide-loaded poly(ε-caprolactone) nanoparticles (Lfd-NPs) were prepared and assessed as a local drug delivery system capable of alleviating RA-associated inflammation. Lfd-NPs were optimized using the Quality by Design (QbD) approach, applying a 32 full factorial design. In vitro drug release from NPs was examined in simulated synovial fluid. In addition, the in vivo efficacy of Lfd-NPs was evaluated in the Adjuvant Induced Arthritis (AIA) rodent model. Sustained drug release in simulated synovial fluid was observed for up to 168 h. A gradual reduction in paw volume and knee diameter was observed over the course of treatment, indicating the regression of the disease. In addition, significant reductions in serum proinflammatory markers and cytokines, including the C-reactive protein (CRP), rheumatoid factor (RF), TNF-α, IL1-β, and IL-6, were verified upon treatment with Lfd-NPs, suggesting the modulation of immune responses at the pathological site. Most importantly, no remarkable signs of toxicity were observed in Lfd-NP-treated animals. Collectively, intra-articularly administered Lfd-NPs might represent a potential therapeutic alternative to systemically administered drugs for the treatment of rheumatoid arthritis, without eliciting systemic adverse effects.
Collapse
Affiliation(s)
- Ekta Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India;
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (K.A.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (K.A.)
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.M.); (K.A.)
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| |
Collapse
|
16
|
Ries M, Moulari B, Shetab Boushehri MA, Ali ME, Molnar D, Béduneau A, Pellequer Y, Lamprecht A. Adalimumab Decorated Nanoparticles Enhance Antibody Stability and Therapeutic Outcome in Epithelial Colitis Targeting. Pharmaceutics 2022; 14:pharmaceutics14020352. [PMID: 35214083 PMCID: PMC8879121 DOI: 10.3390/pharmaceutics14020352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract with increasing incidence worldwide. Although a deeper understanding of the underlying mechanisms of IBD has led to new therapeutic approaches, treatment options are still limited. Severe adverse events in conventional drug therapy and poor drug targeting are the main cause of early therapy failure. Nanoparticle-based targeting approaches can selectively deliver drugs to the site of inflammation and reduce the risk of side effects by decreasing systemic availability. Here, we developed a nanoparticulate platform for the delivery of the anti-TNF-α antibody adalimumab (ADA) by covalent crosslinking to the particle surface. ADA binding to nanoparticles improved the stability of ADA against proteolytic degradation in vitro and led to a significantly better therapeutic outcome in a murine colitis model. Moreover, immobilization of ADA reduced systemic exposure, which can lead to enhanced therapeutic safety. Thus, nanoparticle protein decoration constitutes a platform through which epithelial delivery of any biological of interest to the inflamed gut and hence a local treatment can be achieved.
Collapse
Affiliation(s)
- Markus Ries
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (M.R.); (M.A.S.B.); (M.E.A.)
| | - Brice Moulari
- PEPITE EA4276, University of Burgundy/Franche-Comté, 25030 Besançon, France; (B.M.); (A.B.); (Y.P.)
| | - Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (M.R.); (M.A.S.B.); (M.E.A.)
| | - Mohamed Ehab Ali
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (M.R.); (M.A.S.B.); (M.E.A.)
| | - Daniel Molnar
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany;
| | - Arnaud Béduneau
- PEPITE EA4276, University of Burgundy/Franche-Comté, 25030 Besançon, France; (B.M.); (A.B.); (Y.P.)
| | - Yann Pellequer
- PEPITE EA4276, University of Burgundy/Franche-Comté, 25030 Besançon, France; (B.M.); (A.B.); (Y.P.)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, 53121 Bonn, Germany; (M.R.); (M.A.S.B.); (M.E.A.)
- PEPITE EA4276, University of Burgundy/Franche-Comté, 25030 Besançon, France; (B.M.); (A.B.); (Y.P.)
- Correspondence: ; Tel.: +49-228-735243; Fax: +49-228-735268
| |
Collapse
|
17
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
18
|
Ranjbar S, Fatahi Y, Atyabi F. The quest for a better fight: How can nanomaterials address the current therapeutic and diagnostic obstacles in the fight against COVID-19? J Drug Deliv Sci Technol 2022; 67:102899. [PMID: 34630635 PMCID: PMC8489264 DOI: 10.1016/j.jddst.2021.102899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
The inexorable coronavirus disease 2019 (COVID-19) pandemic with around 226 million people diagnosed and approximately 4.6 million deaths, is still moving toward more frightening statistics, calling for the urgent need to explore solutions for the current challenges in therapeutic and diagnostic approaches. The challenges associated with existing therapeutics in COVID-19 include lack of in vivo stability, efficacy, and safety. Nanoparticles (NPs) can offer a handful of tools to tackle these problems by enabling efficacious and safe delivery of both virus- and host-directed therapeutics. Furthermore, they can enable maximized clinical outcome while eliminating the chance of resistance to therapy by tissue-targeting and concomitant delivery of multiple therapeutics. The promising application of NPs as vaccine platforms is reflected by the major advances in developing novel COVID-19 vaccines. Two of the most critical COVID-19 vaccines are mRNA-based vaccines delivered via NPs, making them the first FDA-approved mRNA vaccines. Besides, NPs have been deployed as simple, rapid, and precise tools for point of care disease diagnosis. Not enough said NPs can also be exploited in novel ways to expedite the drug discovery process. In light of the above, this review discusses how NPs can overcome the hurdles associated with therapeutic and diagnostic approaches against COVID-19.
Collapse
Affiliation(s)
- Sheyda Ranjbar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,Corresponding author. Faculty of Pharmacy, Tehran University of Medical Sciences Tehran, PO Box 14155-6451, 1417614411, Iran
| |
Collapse
|
19
|
Chen D, Chen Z, Wang Z, Yang Y, Jiang Y, Hu C. [Photothermal effect of nano-copper sulfide against tongue squamous cell carcinoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1843-1849. [PMID: 35012917 DOI: 10.12122/j.issn.1673-4254.2021.12.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the anti-tumor effect of BSA@CuS-PEG nanocomposites on tongue squamous cell carcinoma. METHODS Transmission electron microscopy, dynamic light scattering, Zeta potential and ultraviolet absorption spectroscopy were used to characterize the synthesized BSA@CuS-PEG nanocomposite, whose photothermal properties was assessed with near infrared Ⅱ region excitation light (1064 nm). The cytotoxicity of the nanocomposite in Cal27 and SCC9 cells was evaluated using CCK-8 assay, and its effect on cell cycle distribution was analyzed using flow cytometry. The in vivo antitumor effect of BSA@CuS-PEG was investigated in a Balb/c mouse model bearing subcutaneous Cal27 tumor xenograft. RESULTS The synthesized BSA@CuS-PEG nanocomposite showed a temperature variation (ΔT) of about 30 ℃ under near-infrared (NIR) irradiation (0.5 W/cm2), suggesting its excellent photothermal sensitivity. CCK-8 assay showed that BSA@CuS-PEG had no significant toxicity to tumor cells, but upon NIR irradiation, the nanocomposite produced a significant stronger inhibitory effect on Cal27 and SCC9 cells than free nanocomposites (P < 0.001). Cell cycle analysis showed that compared with free nanocomposites, BSA@CuS-PEG plus NIR irradiation caused more obvious cell cycle arrest at G2/M phase in tongue cancer cells (P < 0.001). In the tumor-bearing mice, BSA@CuS-PEG combined with NIR irradiation produced a significant anti-tumor effect as compared with saline treatment plus NIR irradiation (P < 0.001). CONCLUSION The BSA@CuS-PEG nanocomposite shows prominent photothermal properties and good anti-tumor effects both in vivo and in vitro, and thus provides a promising method for non-invasive early diagnosis and non-surgical treatment of primary tongue cancer.
Collapse
Affiliation(s)
- D Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - C Hu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Efficacy and safety of mitoxantrone hydrochloride liposome injection in Chinese patients with advanced breast cancer: a randomized, open-label, active-controlled, single-center, phase II clinical trial. Invest New Drugs 2021; 40:330-339. [PMID: 34633576 PMCID: PMC8993786 DOI: 10.1007/s10637-021-01182-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022]
Abstract
Purpose. This trial aimed to evaluate the efficacy and safety of mitoxantrone hydrochloride liposome injection (Lipo-MIT) in advanced breast cancer (ABC). Methods. In this randomized, open-label, active-controlled, single-center, phase II clinical trial, eligible patients were randomized in a ratio of 1:1 to receive Lipo-MIT or mitoxantrone hydrochloride injection (MIT) intravenously. The primary endpoint was objective response rate (ORR). The secondary endpoints were disease control rate (DCR), progression-free survival (PFS), and safety outcomes. Results. Sixty patients were randomized to receive Lipo-MIT or MIT. The ORR was 13.3% (95% confidence interval (CI): 3.8–30.7%) for Lipo-MIT and 6.7% (95% CI: 0.8–22.1%) for MIT. The DCR was 50% (95% CI: 31.3–68.7%) with Lipo-MIT vs. 30% (95% CI: 14.7–49.4%) with MIT. The median PFS was 1.92 months (95% CI: 1.75–3.61) for Lipo-MIT and 1.85 months (95% CI: 1.75–2.02) for MIT. The most common toxicity was myelosuppression. Lipo-MIT resulted in an incidence of 86.7% of leukopenia and 80.0% of neutropenia, which was marginally superior to MIT (96.7% and 96.7%, respectively). Lipo-MIT showed a lower incidence of cardiovascular events (13.3% vs. 20.0%) and increased cardiac troponin T (3.3% vs. 36.7%); but higher incidence of anemia (76.7% vs. 46.7%), skin hyperpigmentation (66.7% vs. 3.3%), and fever (23.3% vs. 10.0%) than MIT. Conclusions The clinical benefit parameters of Lipo-MIT and MIT were comparable. Lipo-MIT provided a different toxicity profile, which might be associated with the altered distribution of the drug. Additional study is needed to elucidate the potential benefit of Lipo-MIT in ABC. Clinical trial registration. This study is registered with ClinicalTrials.gov (No. NCT02596373) on Nov 4, 2015.
Collapse
|
21
|
Zhong Y, Qin X, Wang Y, Qu K, Luo L, Zhang K, Liu B, Obaid EAMS, Wu W, Wang G. "Plug and Play" Functionalized Erythrocyte Nanoplatform for Target Atherosclerosis Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33862-33873. [PMID: 34256560 DOI: 10.1021/acsami.1c07821] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For atherosclerosis (AS) management, a therapeutic drug intervention is the most widely used strategy. However, there are some problems such as low location specificity, high intake, and side effects. Nanomedicine can prolong the half-life of drug solubilization, reduce toxic and side effects, and improve the distribution of drug objects. Herein, to overcome the challenges, an erythrocyte-based "plug and play" nanoplatform was developed by incorporating the vascular cell adhesion molecule-1 (VCAM-1) targeting and the acid stimulus responsibility. After the function moieties conjugated with DSPE-PEG, the targeting peptide and the acid-sensitive prodrug were conveniently integrated into red blood cells' surface for enhancing target AS drug delivery and controlling local drug release. As a proof of principle, a plug and play nanoplatform with targeted drug delivery and acid-control drug release is demonstrated, achieving a marked therapeutic effect for AS.
Collapse
Affiliation(s)
- Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Boyan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Essam Abdo Mohammed Saad Obaid
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
22
|
Au MT, Shi J, Fan Y, Ni J, Wen C, Yang M. Nerve Growth Factor-Targeted Molecular Theranostics Based on Molybdenum Disulfide Nanosheet-Coated Gold Nanorods (MoS 2-AuNR) for Osteoarthritis Pain. ACS NANO 2021; 15:11711-11723. [PMID: 34196525 DOI: 10.1021/acsnano.1c02454] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Osteoarthritis (OA) is a leading cause of chronic pain in the elderly worldwide. Yet current diagnosis and therapy for OA pain are subjective and nonspecific with significant adverse effects. Here, we introduced a theranostic nanoprobe based on molybdenum disulfide nanosheet-coated gold nanorods (MoS2-AuNR) targeting never growth factor (NGF), a key player in pain sensation, for photoacoustic pain imaging and near-infrared (NIR) imaging-guided photothermal analgesic therapy. MoS2 coating significantly improved the photoacoustic and photothermal performance of AuNR. Functionalization of MoS2-AuNR nanoprobes by conjugating with NGF antibody enabled active targeting on painful OA knees in a surgical OA murine model. We observed that our functional nanoprobes accumulated in the OA knee rather than the contralateral intact one, and the amount was correlated with the severity of mechanical allodynia in our mouse model. Under imaging guidance, NIR-excited photothermal therapy could mitigate mechanical allodynia and walking imbalance behavior for both subacute and chronic stages of OA in a preclinical setting. This molecular theranostic approach enabled us to specifically localize the source of OA pain and efficiently block peripheral pain transmission.
Collapse
Affiliation(s)
- Man Ting Au
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jingyu Shi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yadi Fan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
23
|
Yang K, Reker‐Smit C, Stuart MCA, Salvati A. Effects of Protein Source on Liposome Uptake by Cells: Corona Composition and Impact of the Excess Free Proteins. Adv Healthc Mater 2021; 10:e2100370. [PMID: 34050634 PMCID: PMC11469121 DOI: 10.1002/adhm.202100370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Corona formation in biological fluids strongly affects nanomedicine interactions with cells. However, relatively less is known on additional effects from the free proteins in solution. Within this context, this study aims to gain a better understanding of nanomaterial-cell interactions in different biological fluids and, more specifically, to disentangle effects due to corona composition and those from the free proteins in solution. To this aim, the uptake of liposomes in medium with bovine and human serum are compared. Uptake efficiency in the two media differs strongly, as also corona composition. However, in contrast with similar studies on other nanomaterials, despite the very different corona, when the two corona-coated liposomes are exposed to cells in serum free medium, their uptake is comparable. Thus, in this case, the observed differences in uptake depend primarily on the presence and source of the free proteins. Similar results are obtained when testing the liposomes on different human cells, as well as in murine cells and in the presence of murine serum. Overall, these results show that the protein source affects nanomedicine uptake not only due to effects on corona composition, but also due to the presence and composition of the free proteins in solution.
Collapse
Affiliation(s)
- Keni Yang
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
- Present address:
Key Laboratory for Nano‐Bio Interface ResearchDivision of NanobiomedicineSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Catharina Reker‐Smit
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marc C. A. Stuart
- Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 74Groningen9747 AGThe Netherlands
| | - Anna Salvati
- Department of Nanomedicine and Drug TargetingGroningen Research Institute of PharmacyUniversity of GroningenA. Deusinglaan 1Groningen9713 AVThe Netherlands
| |
Collapse
|
24
|
Lima AC, Reis RL, Ferreira H, Neves NM. Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomater Sci Eng 2021; 7:3229-3241. [PMID: 34161062 DOI: 10.1021/acsbiomaterials.1c00412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation plays an essential role in arthritis development and progression. Despite the advances in the pharmaceutical field, current treatments still present low efficacy and severe side effects. Considering the high activity of the glutathione reductase (GR) enzyme in inflamed joints, a distinctive drug delivery system sensitive to the GR enzyme was designed for efficient drug delivery on arthritic diseases. A linear amphiphilic polymer composed of methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) was synthesized and the intermolecular oxidation of the thiol groups from GSHs retain the drug inside the resulting micelles. Stable polymeric micelles of 100 nm of size presented a loading capacity of dexamethasone (Dex) up to 65%. Although in physiological conditions the Dex release presented slow and sustained kinetics, in the presence of the GR enzyme, there was a burst release (stimuli-responsive properties). Biological assays demonstrated their cytocompatibility in contact with human articular chondrocytes, macrophages, and endothelial cells as well as their hemocompatibility. Importantly, in an in vitro model of inflammation, the polymeric micelles promoted a controlled drug release in the presence of GR, exhibiting a higher efficacy than the free Dex while reducing the negative effects of the drug into normal cells. In conclusion, this formulation is a promising approach to treat arthritic diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| |
Collapse
|
25
|
Assali M, Shawahna R, Alhawareen R, Najajreh H, Rabaya O, Faroun M, Zyoud A, Hilal H. Self-assembly of diclofenac prodrug into nanomicelles for enhancing the anti-inflammatory activity. RSC Adv 2021; 11:22433-22438. [PMID: 35480812 PMCID: PMC9034210 DOI: 10.1039/d1ra03804d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/19/2021] [Indexed: 12/19/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed for the treatment of various types of inflammatory conditions. Diclofenac is a very common NSAID that is utilized to relieve pain and reduce fever and, most importantly, inflammation. However, it suffers from low water solubility and a low dissolution profile. Therefore, we aim to develop a new drug delivery system based on the synthesis of amphiphilic structures that are capable of self assembling into nano-micelles which will be a water-soluble delivery system for the diclofenac. The amphiphilic structure consists of a hydrophilic moiety of triethylene glycol (TEG), polyethylene glycol PEG 400, or PEG 600 linked with the hydrophobic drug diclofenac through an ester linkage. The diclofenac derivatives were successfully synthesized as confirmed by nuclear magnetic resonance. Moreover, the formation of the micellar structure of the synthesized amphiphilic derivatives was confirmed by atomic force microscopy obtaining a spherical shape of the micelles with average diameters of 200 nm for Dic-PEG400-Dic, and 110 nm for Dic-PEG600-Dic. The critical micelle concentration has been determined as 2.7 × 10-3 mg mL-1 for Dic-PEG400-Dic, and 1 × 10-4 mg mL-1 for Dic-PEG600-Dic. The in vitro diclofenac release profile by esterase enzyme was conducted and showed almost complete conversion to free diclofenac within 35 h in the case of Dic-PEG400-Dic micelles and more than 85% of Dic-PEG600-Dic micelles. Then the anti-inflammatory activity was determined by testing the TNF-α production in LPS-stimulated Balb/c mice. Diclofenac micelles significantly suppressed TNF-α production after a 5 mg kg-1 dose was given. The developed micelles showed TNF-α inhibition up to 87.4% and 84% after 48 hours of treatment in the case of Dic-PEG400-Dic and Dic-PEG600-Dic micelles respectively in comparison to 42.3% in the case of diclofenac alone. Dic-PEG400-Dic micelles showed the most potent anti-inflammatory activity with improved TNF-α suppression through time progress. Therefore, the developed nano-micelles provide a facile synthetic approach to enhance diclofenac water solubility, improve the anti-inflammatory effect and achieve a sustained release profile to get better patient compliance.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Ramzi Shawahna
- Department of Physiology, Pharmacology, and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Raeda Alhawareen
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Haifa Najajreh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Oraib Rabaya
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Maryam Faroun
- The Nanotechnology Research Laboratory, Materials Engineering Department, Al-Quds University East Jerusalem Palestine
| | - Ahed Zyoud
- Department of Chemistry, Faculty of Science, An-Najah National University P.O. Box 7 Nablus Palestine
| | - Hikmat Hilal
- Department of Chemistry, Faculty of Science, An-Najah National University P.O. Box 7 Nablus Palestine
| |
Collapse
|
26
|
Bahman F, Pittalà V, Haider M, Greish K. Enhanced Anticancer Activity of Nanoformulation of Dasatinib against Triple-Negative Breast Cancer. J Pers Med 2021; 11:jpm11060559. [PMID: 34204015 PMCID: PMC8234460 DOI: 10.3390/jpm11060559] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer accounting for around 15% of identified breast cancer cases. TNBC lacks human epidermal growth factor receptor 2 (HER2) amplification, is hormone independent estrogen (ER) and progesterone receptors (PR) negative, and is not reactive to current targeted therapies. Existing treatment relies on chemotherapeutic treatment, but in spite of an initial response to chemotherapy, the inception of resistance and relapse is unfortunately common. Dasatinib is an approved second-generation inhibitor of multiple tyrosine kinases, and literature data strongly support its use in the management of TNBC. However, dasatinib binds to plasma proteins and undergoes extensive metabolism through oxidation and conjugation. To protect dasatinib from fast pharmacokinetic degradation and to prolong its activity, it was encapsulated on poly(styrene-co-maleic acid) (SMA) micelles. The obtained SMA-dasatinib nanoparticles (NPs) were evaluated for their physicochemical properties, in vitro antiproliferative activity in different TNBC cell lines, and in vivo anticancer activity in a syngeneic model of breast cancer. Obtained results showed that SMA-dasatinib is more potent against 4T1 TNBC tumor growth in vivo compared to free drug. This enhanced effect was ascribed to the encapsulation of the drug protecting it from a rapid metabolism. Our finding highlights the often-overlooked value of nanoformulations in protecting its cargo from degradation. Overall, results may provide an alternative therapeutic strategy for TNBC management.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Molecular Genetics, Kuwait Ministry of Health, Kuwait City 50000, Kuwait;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- Correspondence: (V.P.); (K.G.); Tel.: +39-0957-738-4269 (V.P.); +973-1723-7393 (K.G.); Fax: +973-1724-6022 (K.G.)
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 71526, Egypt
| | - Khaled Greish
- Department of Molecular Medicine and Nanomedicine Unit, Princess Al-Jawhara Center for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
- Correspondence: (V.P.); (K.G.); Tel.: +39-0957-738-4269 (V.P.); +973-1723-7393 (K.G.); Fax: +973-1724-6022 (K.G.)
| |
Collapse
|
27
|
Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev 2021; 170:238-260. [PMID: 33484737 PMCID: PMC8274479 DOI: 10.1016/j.addr.2021.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
Abstract
A grand challenge in drug delivery is providing the right dose, at the right anatomic location, for the right duration of time to maximize therapeutic efficacy while minimizing off-target toxicity and other deleterious side-effects. Two general modalities are receiving broad attention for localized drug delivery. In the first, referred to as "targeted accumulation", drugs or drug carriers are engineered to have targeting moieties that promote their accumulation at a specific tissue site from circulation. In the second, referred to as "local anchoring", drugs or drug carriers are inserted directly into the tissue site of interest where they persist for a specified duration of time. This review surveys recent advances in harnessing molecular recognition between proteins, peptides, nucleic acids, lipids, and carbohydrates to mediate targeted accumulation and local anchoring of drugs and drug carriers.
Collapse
Affiliation(s)
- Renjie Liu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ran Zuo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
28
|
Jones MA, MacCuaig WM, Frickenstein AN, Camalan S, Gurcan MN, Holter-Chakrabarty J, Morris KT, McNally MW, Booth KK, Carter S, Grizzle WE, McNally LR. Molecular Imaging of Inflammatory Disease. Biomedicines 2021; 9:152. [PMID: 33557374 PMCID: PMC7914540 DOI: 10.3390/biomedicines9020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases include a wide variety of highly prevalent conditions with high mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders. Many diseases that are not considered inflammatory per se are associated with varying levels of inflammation. Imaging of the immune system and inflammatory response is of interest as it can give insight into disease progression and severity. Clinical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) are traditionally limited to the visualization of anatomical information; then, the presence or absence of an inflammatory state must be inferred from the structural abnormalities. Improvement in available contrast agents has made it possible to obtain functional information as well as anatomical. In vivo imaging of inflammation ultimately facilitates an improved accuracy of diagnostics and monitoring of patients to allow for better patient care. Highly specific molecular imaging of inflammatory biomarkers allows for earlier diagnosis to prevent irreversible damage. Advancements in imaging instruments, targeted tracers, and contrast agents represent a rapidly growing area of preclinical research with the hopes of quick translation to the clinic.
Collapse
Affiliation(s)
- Meredith A. Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Seda Camalan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Jennifer Holter-Chakrabarty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Katherine T. Morris
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Kristina K. Booth
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Steven Carter
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
29
|
Moses AS, Demessie AA, Taratula O, Korzun T, Slayden OD, Taratula O. Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004975. [PMID: 33491876 PMCID: PMC7928207 DOI: 10.1002/smll.202004975] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/03/2020] [Indexed: 05/02/2023]
Abstract
Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.
Collapse
Affiliation(s)
- Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Olena Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tetiana Korzun
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| |
Collapse
|
30
|
Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 2021; 16:62-76. [PMID: 33613730 PMCID: PMC7878460 DOI: 10.1016/j.ajps.2020.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
There are several therapeutic approaches in type 2 diabetes mellitus (T2DM). When diet and exercise fail to control hyperglycemia, patients are forced to start therapy with antidiabetic agents. However, these drugs present several drawbacks that can affect the course of treatment. The major disadvantages of current oral modalities for the treatment of T2DM are mainly depicted in the low bioavailability and the immediate release of the drug, generating the need for an increase in frequency of dosing. In conjugation with the manifestation of adverse side effects, patient compliance to therapy is reduced. Over the past few years nanotechnology has found fertile ground in the development of novel delivery modalities that can potentially enhance anti-diabetic regimes efficacy. All efforts have been targeted towards two main vital steps: (a) to protect the drug by encapsulating it into a nano-carrier system and (b) efficiently release the drug in a gradual as well as controllable manner. However, only a limited number of studies published in the literature used in vivo techniques in order to support findings. Here we discuss the current disadvantages of modern T2DM marketed drugs, and the nanotechnology advances supported by in vivo in mouse/rat models of glucose homeostasis. The generation of drug nanocarriers may increase bioavailability, prolong release and therefore reduce dosing and thus, improve patient compliance. This novel approach might substantially improve quality of life for diabetics. Application of metal nanoformulations as indirect hypoglycemic agents is also discussed.
Collapse
Affiliation(s)
- Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Niki Karouta
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
31
|
Lan H, Zhang W, Jin K, Liu Y, Wang Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective. Drug Deliv 2020; 27:1248-1262. [PMID: 32865029 PMCID: PMC7470050 DOI: 10.1080/10717544.2020.1809559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy suppresses and destroys tumors by re-activating and sustaining the tumor-immune process, and thus improving the immune response of the body to the tumor. Immunotherapeutic strategies are showing promising results in pre-clinical and clinical trials, however, tumor microenvironment (TME) is extremely immunosuppressive. Thus, their translation from labs to clinics still faces issues. Recently, nanomaterial-based strategies have been developed to modulate the TME for robust immunotherapeutic responses. The combination of nanotechnology with immunotherapy potentiates the effectiveness of immunotherapy by increasing delivery and retention, and by reducing immunomodulation toxicity. This review aims to highlight the barriers offered by TME for hindering the efficiency of immunotherapy for cancer treatment. Next, we highlight various nano-carriers based strategies for modulating those barriers for achieving better therapeutic efficacy of cancer immunotherapy with higher safety. This review will add to the body of scientific knowledge and will be a good reference material for academia and industries.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Breast and Thyroid Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wei Zhang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ketao Jin
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuyao Liu
- Department of Colorectal Surgery, Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhen Wang
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
32
|
Herold HM, Döbl A, Wohlrab S, Humenik M, Scheibel T. Designed Spider Silk-Based Drug Carrier for Redox- or pH-Triggered Drug Release. Biomacromolecules 2020; 21:4904-4912. [PMID: 33249826 DOI: 10.1021/acs.biomac.0c01138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Targeted drug delivery and controlled drug release can be obtained using specifically designed polymers as carriers. Due to their biocompatibility and biodegradability and especially the lack of an immune response, materials made of spider silk proteins are promising candidates for use in such applications. Particles made of recombinant spider silk proteins have previously been shown to be suitable drug and gene carriers as they could readily be loaded with various drug substances or biologicals, and subsequent release was observed over a defined period of time. However, the respective substances were bound non-covalently via hydrophobic or charge-charge interactions, and hence, the release of loaded substances could not be spatio-temporally controlled. Here, we present a setup of chemically modified recombinant spider silk protein eADF4 and variants thereof, combining their well-established biocompatible properties with covalent drug binding and triggered release upon changes in the pH or redox state, respectively. The usefulness of the spider silk platform technology was shown with model substances and cytostatic drugs bound to spider silk particles or films via a pH-labile hydrazine linker as one option, and the drugs could be released from the spider silk carriers upon acidification of the environment as seen, e.g., in tumorous tissues or endo/lysosomes. Sulfhydryl-bearing spider silk variants allowed model substance release if exposed to intracellular GSH (glutathione) levels as a second coupling option. The combination of non-immunogenic, nontoxic spider silk materials as drug carriers with precisely triggerable release chemistry presents a platform technology for a wide range of applications.
Collapse
Affiliation(s)
- Heike M Herold
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany
| | - Annika Döbl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany
| | - Stefanie Wohlrab
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany
| | - Martin Humenik
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Str. 1, Bayreuth 95447, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany.,Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, Bayreuth 95440, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| |
Collapse
|
33
|
Kandil R, Xie Y, Mehta A, Merkel O. A Method for Targeted Nonviral siRNA Delivery in Cancer and Inflammatory Diseases. Methods Mol Biol 2020; 2059:155-166. [PMID: 31435920 DOI: 10.1007/978-1-4939-9798-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Small interfering RNA (siRNA)-based therapy has been subject of intense research since the discovery of RNA interference (RNAi), providing a tool to potentially silence any chosen gene. Nevertheless, efficient delivery still presents a major hurdle to translating this promising technology into medical practice. Here, we describe a straightforward method to prepare and characterize an effective delivery system consisting of low-molecular-weight polyethylenimine (PEI) and transferrin (Tf). Tf-PEI polyplexes are not only able to successfully transport and protect the sensitive nucleic acid payload from degradation but also to selectively deliver the siRNA to transferrin receptor (TfR)-overexpressing cells, playing key roles in the pathology of numerous cancer types as well as inflammatory diseases.
Collapse
Affiliation(s)
- Rima Kandil
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Aditi Mehta
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Olivia Merkel
- Department of Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
34
|
de Sá Coutinho D, Pires J, Gomes H, Raffin Pohlmann A, Stanisçuaski Guterres S, Rodrigues e Silva PM, Martins MA, Ferrarini SR, Bernardi A. Pequi ( Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 2020; 12:pharmaceutics12111075. [PMID: 33187057 PMCID: PMC7696187 DOI: 10.3390/pharmaceutics12111075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Pequi is a Brazilian fruit used in folk medicine for pulmonary diseases treatment, but its oil presents bioavailability limitations. The use of nanocarriers can overcome this limitation. We developed nanoemulsions containing pequi oil (pequi-NE) and evaluated their effects in a lipopolysaccharide (LPS)-induced lung injury model. Free pequi oil or pequi-NE (20 mg/kg) was orally administered to A/J mice 16 and 4 h prior to intranasal LPS exposure, and the analyses were performed 24 h after LPS provocation. The physicochemical results revealed that pequi-NE comprised particles with mean diameter of 174–223 nm, low polydispersity index (0.11 ± 0.01), zeta potential of −7.13 ± 0.08 mV, and pH of 5.83 ± 0.12. In vivo evaluation showed that free pequi oil pretreatment reduced the influx of inflammatory cells into bronchoalveolar fluid (BALF), while pequi-NE completely abolished leukocyte accumulation. Moreover, pequi-NE, but not free pequi oil, reduced myeloperoxidase (MPO), TNF-α, IL-1β, IL-6, MCP-1, and KC levels. Similar anti-inflammatory effects were observed when LPS-exposed animals were pre-treated with the nanoemulsion containing pequi or oleic acid. These results suggest that the use of nanoemulsions as carriers enhances the anti-inflammatory properties of oleic acid-containing pequi oil. Moreover, pequi’s beneficial effect is likely due its high levels of oleic acid.
Collapse
Affiliation(s)
- Diego de Sá Coutinho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Jader Pires
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
| | - Hyago Gomes
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, Brazil;
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil;
| | | | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Marco Aurelio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
| | - Stela Regina Ferrarini
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop 78550-728, Brazil;
- Correspondence: (S.R.F.); (A.B.)
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil; (D.d.S.C.); (H.G.); (P.M.R.eS.); (M.A.M.)
- Correspondence: (S.R.F.); (A.B.)
| |
Collapse
|
35
|
An intravenous application of magnetic nanoparticles for osteomyelitis treatment: An efficient alternative. Int J Pharm 2020; 592:119999. [PMID: 33190790 DOI: 10.1016/j.ijpharm.2020.119999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/01/2020] [Accepted: 10/17/2020] [Indexed: 01/06/2023]
Abstract
The infection of bone and bone marrow is called osteomyelitis. Treatment is difficult since antibiotics can not reach with enough concentration to the infected area. For the first time in this study, we have developed gentamicin-loaded magnetic gelatin nanoparticles (GMGNPs) for nanocarrier-mediated and magnetically targeted osteomyelitis therapy. Gelatin, genipin, and magnetite were used for preparation of that novel carrier system due to their biodegradable and biocompatible properties. Cross-linking degree of gelatin nanoparticles, concentration of magnetite nanoparticles, and adsorbed drug amount were optimized. Furthermore, nanoparticles were characterized and the drug release profile was determined. The osteomyelitis model was constituted in the proximal tibia of rats. The therapeutic potential of GMGNPs on rats was monitored via X-Ray radiography and hematological and histopathological analyses were performed. According to the results, 110.3 ± 8.2 µg gentamicin/mg GMGNPs were used, hydrodynamic size was measured as 253.7 ± 11.8 nm, and GMGNPs have controlled drug release profile. Based on in vivo and ex vivo studies, after six doses of GMGNPs treatment, abscess began to heal and the integrity of periost and bone began to reconstruct. In conclusion, it can be suggested that GMGNPs could provide efficient therapy for osteomyelitis.
Collapse
|
36
|
Abstract
Melanoma is an aggressive form of skin cancer with a very high mortality rate. Early diagnosis of the disease, the utilization of more potent pharmacological agents, and more effective drug delivery systems are essential to achieve an optimal treatment plan. The applications of nanotechnology to improve therapeutic efficacy and early diagnosis for melanoma treatment have received great interest among researchers and clinicians. In this review, we summarize the recent progress of utilizing various nanomaterials for theranostics of melanoma. The key importance of using nanomaterials for theranostics of melanoma is to improve efficacy and reduce side effects, ensuring safe implementation in clinical use. As opposed to conventional in vitro diagnostic methods, in vivo medical imaging technologies have the advantages of being a type of non-invasive, real-time monitoring. Several common nanoparticles, including ultrasmall superparamagnetic iron oxide nanoparticles, silica nanoparticles, and carbon-based nanoparticles, have been applied to deliver chemotherapeutic agents for the theranostics of melanoma. The application of nanomaterials for theranostics in molecular imaging (MRI, PET, US, OI, etc.) plays an important role in targeting drug delivery of melanoma, by monitoring the distribution site of the molecular imaging probe and the therapeutic drug in the body in real-time. Hence, it is worthwhile to anticipate the approval of these nanomaterials for theranostics in molecular imaging by the US Food and Drug Administration in clinical trials.
Collapse
|
37
|
Chinnathambi S, Tamanoi F. Recent Development to Explore the Use of Biodegradable Periodic Mesoporous Organosilica (BPMO) Nanomaterials for Cancer Therapy. Pharmaceutics 2020; 12:E890. [PMID: 32961990 PMCID: PMC7558858 DOI: 10.3390/pharmaceutics12090890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
Porous nanomaterials can be used to load various anti-cancer drugs efficiently and deliver them to a particular location in the body with minimal toxicity. Biodegradable periodic mesoporous organosilica nanoparticles (BPMOs) have recently emerged as promising candidates for disease targeting and drug delivery. They have a large functional surface and well-defined pores with a biodegradable organic group framework. Multiple biodegradation methods have been explored, such as the use of redox, pH, enzymatic activity, and light. Various drug delivery systems using BPMO have been developed. This review describes recent advances in the biomedical application of BPMOs.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan;
- Department of Microbio., Immunol. & Molec. Genet., University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Sánchez A, Mejía SP, Orozco J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020; 25:E3760. [PMID: 32824757 PMCID: PMC7464666 DOI: 10.3390/molecules25163760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Polymeric nanocarriers (PNs) have demonstrated to be a promising alternative to treat intracellular infections. They have outstanding performance in delivering antimicrobials intracellularly to reach an adequate dose level and improve their therapeutic efficacy. PNs offer opportunities for preventing unwanted drug interactions and degradation before reaching the target cell of tissue and thus decreasing the development of resistance in microorganisms. The use of PNs has the potential to reduce the dose and adverse side effects, providing better efficiency and effectiveness of therapeutic regimens, especially in drugs having high toxicity, low solubility in the physiological environment and low bioavailability. This review provides an overview of nanoparticles made of different polymeric precursors and the main methodologies to nanofabricate platforms of tuned physicochemical and morphological properties and surface chemistry for controlled release of antimicrobials in the target. It highlights the versatility of these nanosystems and their challenges and opportunities to deliver antimicrobial drugs to treat intracellular infections and mentions nanotoxicology aspects and future outlooks.
Collapse
Affiliation(s)
- Arturo Sánchez
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| | - Susana P. Mejía
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), Carrera, 72A Nº 78B–141 Medellín 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellín 050010, Colombia; (A.S.); (S.P.M.)
| |
Collapse
|
39
|
Tehrani NS, Masoumi M, Chekin F, Baei MS. Nitrogen Doped Porous Reduced Graphene Oxide Hybrid as a Nanocarrier of Imatinib Anticancer Drug. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220080157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Guo D, Shi C, Wang L, Ji X, Zhang S, Luo J. A Rationally Designed Micellar Nanocarrier for the Delivery of Hydrophilic Methotrexate in Psoriasis Treatment. ACS APPLIED BIO MATERIALS 2020; 3:4832-4846. [PMID: 34136761 DOI: 10.1021/acsabm.0c00342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methotrexate (MTX) is broadly applied in the clinic for the treatments of cancers and autoimmune diseases. Targeted delivery of MTX is attractive to improve its efficacy and reduce off-target toxicity. However, MTX encapsulation in nanoparticle is challenging due to its high water solubility. We rationally designed a well-defined telodendrimer (TD) nanocarrier based on MTX structure to sequester it in nanoparticles. Riboflavin (Rf) and positive charges groups were precisely conjugated on TD to form multivalent hydrogen bonds, π-π stacking and electrostatic interactions with MTX. A reverse micelle approach was developed to preset MTX and TD interactions in the core of micelles, which ensures the effective MTX loading upon dispersion into aqueous solution. As results, MTX loading capacity reaches over 20% (w/w) in the optimized nanocarrier with the particle size of 20-30 nm. The nanoformulations sustain the release of MTX in a controlled manner and exhibit excellent hemocompatibility. The in vitro cellular uptake of MTX was significantly improved by the nanoformulations. The potency of MTX nanoformulations is comparable to the free MTX in cytotoxicity. A psoriasis-like skin inflammation model was induced in mouse by imiquimod (IMQ) stimulation. MTX nanoformulations improved the psoriasis targeting and exhibited a superior long-lasting efficacy in reducing skin inflammation compared with the free MTX in psoriasis treatment.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Lili Wang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Shengle Zhang
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.,Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.,Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.,Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| |
Collapse
|
41
|
Bellary A, Villarreal A, Eslami R, Undseth QJ, Lec B, Defnet AM, Bagrodia N, Kandel JJ, Borden MA, Shaikh S, Chopra R, Laetsch TW, Delaney LJ, Shaw CM, Eisenbrey JR, Hernandez SL, Sirsi SR. Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting liposomal doxorubicin uptake in vivo. Theranostics 2020; 10:8143-8161. [PMID: 32724463 PMCID: PMC7381728 DOI: 10.7150/thno.45903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in infants and children, and imposes significant morbidity and mortality in this population. The aggressive chemoradiotherapy required to treat high-risk NB results in survival of less than 50%, yet is associated with significant long-term adverse effects in survivors. Boosting efficacy and reducing morbidity are therefore key goals of treatment for affected children. We hypothesize that these may be achieved by developing strategies that both focus and limit toxic therapies to the region of the tumor. One such strategy is the use of targeted image-guided drug delivery (IGDD), which is growing in popularity in personalized therapy to simultaneously improve on-target drug deposition and assess drug pharmacodynamics in individual patients. IGDD strategies can utilize a variety of imaging modalities and methods of actively targeting pharmaceutical drugs, however in vivo imaging in combination with focused ultrasound is one of the most promising approaches already being deployed for clinical applications. Over the last two decades, IGDD using focused ultrasound with "microbubble" ultrasound contrast agents (UCAs) has been increasingly explored as a method of targeting a wide variety of diseases, including cancer. This technique, known as sonopermeation, mechanically augments vascular permeability, enabling increased penetration of drugs into target tissue. However, to date, methods of monitoring the vascular bioeffects of sonopermeation in vivo are lacking. UCAs are excellent vascular probes in contrast-enhanced ultrasound (CEUS) imaging, and are thus uniquely suited for monitoring the effects of sonopermeation in tumors. Methods: To monitor the therapeutic efficacy of sonopermeation in vivo, we developed a novel system using 2D and 3D quantitative contrast-enhanced ultrasound imaging (qCEUS). 3D tumor volume and contrast enhancement was used to evaluate changes in blood volume during sonopermeation. 2D qCEUS-derived time-intensity curves (TICs) were used to assess reperfusion rates following sonopermeation therapy. Intratumoral doxorubicin (and liposome) uptake in NB was evalauted ex vivo along with associated vascular changes. Results: In this study, we demonstrate that combining focused ultrasound therapy with UCAs can significantly enhance chemotherapeutic payload to NB in an orthotopic xenograft model, by improving delivery and tumoral uptake of long-circulating liposomal doxorubicin (L-DOX) nanoparticles. qCEUS imaging suggests that changes in flow rates are highly sensitive to sonopermeation and could be used to monitor the efficacy of treatment in vivo. Additionally, initial tumor perfusion may be a good predictor of drug uptake during sonopermeation. Following sonopermeation treatment, vascular biomarkers show increased permeability due to reduced pericyte coverage and rapid onset of doxorubicin-induced apoptosis of NB cells but without damage to blood vessels. Conclusion: Our results suggest that significant L-DOX uptake can occur by increasing tumor vascular permeability with microbubble sonopermeation without otherwise damaging the vasculature, as confirmed by in vivo qCEUS imaging and ex vivo analysis. The use of qCEUS imaging to monitor sonopermeation efficiency and predict drug uptake could potentially provide real-time feedback to clinicians for determining treatment efficacy in tumors, leading to better and more efficient personalized therapies. Finally, we demonstrate how the IGDD strategy outlined in this study could be implemented in human patients using a single case study.
Collapse
Affiliation(s)
- Aditi Bellary
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Arelly Villarreal
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Rojin Eslami
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Quincy J. Undseth
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Bianca Lec
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Ann M. Defnet
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Naina Bagrodia
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Jessica J. Kandel
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Mark A. Borden
- Biomedical Engineering, Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Sumbul Shaikh
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theodore W. Laetsch
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center and Children's Health, Dallas, TX, USA
| | - Lauren J. Delaney
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Colette M. Shaw
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - John R. Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonia L. Hernandez
- Department of Surgery, University of Chicago Medical School, Chicago, IL, USA
| | - Shashank R. Sirsi
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
42
|
Dawulieti J, Sun M, Zhao Y, Shao D, Yan H, Lao YH, Hu H, Cui L, Lv X, Liu F, Chi CW, Zhang Y, Li M, Zhang M, Tian H, Chen X, Leong KW, Chen L. Treatment of severe sepsis with nanoparticulate cell-free DNA scavengers. SCIENCE ADVANCES 2020; 6:eaay7148. [PMID: 32523983 PMCID: PMC7259927 DOI: 10.1126/sciadv.aay7148] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/25/2020] [Indexed: 05/20/2023]
Abstract
Severe sepsis represents a common, expensive, and deadly health care issue with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis would help develop new therapeutic strategies against severe sepsis. In this study, we identified the crucial role of cell-free DNA (cfDNA) in the regulation of the Toll-like receptor 9-mediated proinflammatory pathway in severe sepsis progression. Hypothesizing that removing cfDNA would be beneficial for sepsis treatment, we used polyethylenimine (PEI) and synthesized PEI-functionalized, biodegradable mesoporous silica nanoparticles with different charge densities as cfDNA scavengers. These nucleic acid-binding nanoparticles (NABNs) showed superior performance compared with their nucleic acid-binding polymer counterparts on inhibition of cfDNA-induced inflammation and subsequent multiple organ injury caused by severe sepsis. Furthermore, NABNs exhibited enhanced accumulation and retention in the inflamed cecum, along with a more desirable in vivo safety profile. Together, our results revealed a key contribution of cfDNA in severe sepsis and shed a light on the development of NABN-based therapeutics for sepsis therapy, which currently remains intractable.
Collapse
Affiliation(s)
- Jianati Dawulieti
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Madi Sun
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
- Institutes of Life Sciences, National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
| | - Yawei Zhao
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Dan Shao
- Institutes of Life Sciences, National Engineering Research Center for Tissue Restoration and Reconstruction, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Huize Yan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Lianzhi Cui
- Clinical Laboratory, Jilin Cancer Hospital, Changchun 130012, China
| | - Xiaoyan Lv
- Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130021, China
| | - Feng Liu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Chun-Wei Chi
- Department of Biomedical Engineering CUNY–City College of New York, New York, NY 10031, USA
| | - Yue Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Guangdong Provincial Key Laboratory of Liver Disease, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences and School of Nursing, Jilin University, Changchun 130021, China
| |
Collapse
|
43
|
Hu Q, Huang Z, Duan Y, Fu Z, Bin Liu. Reprogramming Tumor Microenvironment with Photothermal Therapy. Bioconjug Chem 2020; 31:1268-1278. [PMID: 32271563 DOI: 10.1021/acs.bioconjchem.0c00135] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment significantly influences cancer progression and therapeutic response. Reprogramming of tumor microenvironment has emerged as a strategy to assist conventional cancer treatment. In recent years, photothermal therapy has received considerable attention owing to its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. Apart from ablating cancer cells by generating heat upon light irradiation, photothermal therapy can also affect the tumor microenvironment, such as disrupting the tumor extracellular matrix and tumor vasculature. Moreover, cancer cell death by hyperthermia could potentially activate the immune system to fight against tumor. In this topical review, we focus on the recent progress of photothermal therapy based on tumor microenvironment remodeling, aiming to better guide the design of nanoparticles for cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zemin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| |
Collapse
|
44
|
Guo X, Mei J, Jing Y, Wang S. Curcumin-Loaded Nanoparticles with Low-Intensity Focused Ultrasound-Induced Phase Transformation as Tumor-Targeted and pH-Sensitive Theranostic Nanoplatform of Ovarian Cancer. NANOSCALE RESEARCH LETTERS 2020; 15:73. [PMID: 32266591 PMCID: PMC7138896 DOI: 10.1186/s11671-020-03302-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
We have developed a simple and versatile nanoplatform using pH-sensitive ferritin nanocages co-loaded with the anticancer drug curcumin (Cur) and liquid fluorocarbon perfluorohexane (PFH) inside the core and conjugated tumor-targeting molecule FA outside the shell referred to as FA-FCP. The synthesized FA-FCP has an average particle diameter of 47 nm, with stable and favorable physicochemical properties in different media, and high biocompatibility and biosafety in vivo and in vitro. Under the conditions of low-intensity focused ultrasound (LIFU) and at pH = 5.0, FA-FCP released a large amount of drugs (53.2%) in 24 h. After 4 min of LIFU (7 W) treatment, FA-FCP provided contrast-enhanced ultrasound imaging capabilities at pH = 5.0. Due to FA receptor-mediated endocytosis, FA-FCP could efficiently enter the cells and further relocate to lysosomes. Eighteen hours after injection of FA-FCP, the tumor was stimulated by LIFU, resulting in a contrast-enhanced ultrasound image. In vivo and in vitro experiments showed that the combined use of FA-FCP and LIFU had significant tumor treatment effects. Based on the results, it was concluded that FA-FCP combined with the external LIFU and the endogenic acidic environment can have powerful theranostic functions and provide a novel type of non-invasive and integrated tumor theranostic option.
Collapse
Affiliation(s)
- Xiaoxia Guo
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610041 Sichuan China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610041 Sichuan China
| | - Yong Jing
- Department of Imaging, Eastern Hospital of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, No. 585 Honghe North Road, Longquanyi District, Chengdu, 610000 Sichuan China
| | - Shiguang Wang
- Department of Imaging, Eastern Hospital of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, No. 585 Honghe North Road, Longquanyi District, Chengdu, 610000 Sichuan China
| |
Collapse
|
45
|
Guo J, Zeng H, Chen Y. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration. Mol Pharm 2020; 17:1028-1048. [PMID: 32150417 DOI: 10.1021/acs.molpharmaceut.0c00014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jian Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huating Zeng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
46
|
Zhang Y, Ma N, Luo C, Zhu J, Bao C. Photosensitizer-loaded cell membrane biomimetic nanoparticles for enhanced tumor synergetic targeted therapy. RSC Adv 2020; 10:9378-9386. [PMID: 35497215 PMCID: PMC9050061 DOI: 10.1039/c9ra08926h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
Photodynamic therapy (PDT) has the advantages of low toxicity and specificity, but photosensitizers usually fail to accumulate efficiently at the tumor site. In this study, a new multifunctional nano-drug delivery system was exploited by a biomimetic strategy to improve the PDT effects. The self-assembled methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA) nanoparticles encapsulated with the photosensitizer chlorin e6 (Ce6) by microfluidics were employed as the nano-core, followed by coating red blood cell (RBC) membranes as the biomimetic agent to prolong the circulation time in vivo. In order to boost the therapeutic effect, doxorubicin (Dox) was preloaded into RBC nanovesicles. The cell membrane surface was modified with folic acid (FA) to further enhance the tumor targeting efficiency. The prepared biomimetic nanoparticles with a homogeneous size (70 nm) can trigger sufficient reactive oxygen species (ROS), leading to significant tumor ablation without side effects. In addition, the system had high tumor targeting efficiency, with an increase of 25% compared with no FA-modified nanoparticles. Therefore, this biomimetic multifunctional nanodrug delivery system possesses a prolonged circulation time and higher tumor targeting efficiency and can exert better tumor cytotoxicity for improved PDT due to homophilic targeting in vivo.
Collapse
Affiliation(s)
- Yunjiao Zhang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092 P. R. China
| | - Nan Ma
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092 P. R. China
| | - Congcong Luo
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092 P. R. China
| | - Jiaquan Zhu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092 P. R. China
| | - Chunrong Bao
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200092 P. R. China
| |
Collapse
|
47
|
Sorrin AJ, Ruhi MK, Ferlic NA, Karimnia V, Polacheck WJ, Celli JP, Huang HC, Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem Photobiol 2020; 96:232-259. [PMID: 31895481 PMCID: PMC7138751 DOI: 10.1111/php.13209] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors.
Collapse
Affiliation(s)
- Aaron J. Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Mustafa Kemal Ruhi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
| | - Nathaniel A. Ferlic
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Vida Karimnia
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan P. Celli
- Department of Physics, College of Science and Mathematics, University of Massachusetts at Boston, Boston, MA, 02125, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
48
|
Alkaff SA, Radhakrishnan K, Nedumaran AM, Liao P, Czarny B. Nanocarriers for Stroke Therapy: Advances and Obstacles in Translating Animal Studies. Int J Nanomedicine 2020; 15:445-464. [PMID: 32021190 PMCID: PMC6982459 DOI: 10.2147/ijn.s231853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022] Open
Abstract
The technology of drug delivery systems (DDS) has expanded into many applications, such as for treating neurological disorders. Nanoparticle DDS offer a unique strategy for targeted transport and improved outcomes of therapeutics. Stroke is likely to benefit from the emergence of this technology though clinical breakthroughs are yet to manifest. This review explores the recent advances in this field and provides insight on the trends, prospects and challenges of translating this technology to clinical application. Carriers of diverse material compositions are presented, with special focus on the surface properties and emphasis on the similarities and inconsistencies among in vivo experimental paradigms. Research attention is scattered among various nanoparticle DDS and various routes of drug administration, which expresses the lack of consistency among studies. Analysis of current literature reveals lipid- and polymer-based DDS as forerunners of DDS for stroke; however, cell membrane-derived vesicles (CMVs) possess the competitive edge due to their innate biocompatibility and superior efficacy. Conversely, inorganic and carbon-based DDS offer different functionalities as well as varied capacity for loading but suffer mainly from poor safety and general lack of investigation in this area. This review supports the existing literature by systematizing presently available data and accounting for the differences in drugs of choice, carrier types, animal models, intervention strategies and outcome parameters.
Collapse
Affiliation(s)
- Syed Abdullah Alkaff
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Krishna Radhakrishnan
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Anu Maashaa Nedumaran
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute 308433, Singapore
| | - Bertrand Czarny
- School of Materials Science and Engineering, Nanyang Technological University 639798, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University 639798, Singapore
| |
Collapse
|
49
|
Kumar A, Priyamvada S, Soni V, Anbazhagan AN, Gujral T, Gill RK, Alrefai WA, Dudeja PK, Saksena S. Angiotensin II inhibits P-glycoprotein in intestinal epithelial cells. Acta Physiol (Oxf) 2020; 228:e13332. [PMID: 31177627 PMCID: PMC6899205 DOI: 10.1111/apha.13332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
AIM P-glycoprotein (Pgp/MDR1) plays a major role in intestinal homeostasis. Decrease in Pgp function and expression has been implicated in the pathogenesis of IBD. However, inhibitory mechanisms involved in the decrease of Pgp in inflammation are not fully understood. Angiotensin II (Ang II), a peptide hormone predominantly expressed in the epithelial cells of the crypt-villus junction of the intestine, has been shown to exert pro-inflammatory effects in the gut. It is increased in IBD patients and animals with experimental colitis. Whether Ang II directly influences Pgp is not known. METHODS Pgp activity was measured as verapamil-sensitive 3 H-digoxin flux. Pgp surface expression and exocytosis were measured by cell surface biotinylation studies. Signalling pathways were elucidated by Western blot analysis and pharmacological approaches. RESULTS Ang II (10 nM) significantly inhibited Pgp activity at 60 minutes. Ang II-mediated effects on Pgp function were receptor-mediated as the Ang II receptor 1 (ATR1) antagonist, losartan, blocked Pgp inhibition. Ang II effects on Pgp activity appeared to be mediated via PI3 kinase, p38 MAPK and Akt signalling. Ang II-mediated inhibition of Pgp activity was associated with a decrease in the surface membrane expression of Pgp protein via decreased exocytosis and was found to be dependent on the Akt pathway. Short-term treatment of Ang II (2 mg/kg b.wt., 2 hours) to mice also decreased the membrane expression of Pgp protein levels in ileum and colon. CONCLUSION Our findings provide novel insights into the role of Ang II and ATR1 in decreasing Pgp expression in intestinal inflammation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Caco-2 Cells
- Dose-Response Relationship, Drug
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Intestinal Mucosa/cytology
- Mice
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Anoop Kumar
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
| | - Shubha Priyamvada
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
| | - Vikas Soni
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
| | - Arivarasu N. Anbazhagan
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
| | - Tarunmeet Gujral
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL 60612
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL 60612
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, Dept. of Medicine, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL 60612
| |
Collapse
|
50
|
Katsumata K, Ishihara J, Mansurov A, Ishihara A, Raczy MM, Yuba E, Hubbell JA. Targeting inflammatory sites through collagen affinity enhances the therapeutic efficacy of anti-inflammatory antibodies. SCIENCE ADVANCES 2019; 5:eaay1971. [PMID: 31723606 PMCID: PMC6834392 DOI: 10.1126/sciadv.aay1971] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/16/2019] [Indexed: 05/23/2023]
Abstract
Enhancing the therapeutic efficacy of drugs for inflammatory diseases is of high demand. One possible approach is targeting drugs to the extracellular matrix of the inflamed area. Here, we target collagens in the matrix, which are inaccessible in most tissues yet are exposed to the bloodstream in the inflamed area because of vascular hyperpermeability. We conferred collagen affinity to anti-tumor necrosis factor-α (α-TNF) antibody by conjugating a collagen-binding peptide (CBP) derived from the sequence of decorin. CBP-α-TNF accumulated in the inflamed paw of the arthritis model, and arthritis development was significantly suppressed by treatment with CBP-α-TNF compared with the unmodified antibody. Similarly, CBP-anti-transforming growth factor-β (α-TGF-β) accumulated in the inflamed lung of pulmonary fibrosis model and significantly suppressed pulmonary fibrosis compared with the unmodified antibody. Together, collagen affinity enables the anticytokine antibodies to target arthritis and pulmonary fibrosis accompanied by inflammation, demonstrating a clinically translational approach to treat inflammatory diseases.
Collapse
Affiliation(s)
- Kiyomitsu Katsumata
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jun Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ako Ishihara
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Michal M. Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Eiji Yuba
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Department of Applied Chemistry, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|