1
|
Godebo TR, Stoner H, Kodsup P, Jeuland M. Metals in Honey from Bees as a Proxy of Environmental Contamination in the United States. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125221. [PMID: 39481519 DOI: 10.1016/j.envpol.2024.125221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
This is the first large bio-surveillance study examining the contents and geographic variation of metals of public health concern-arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), and cobalt (Co)-in honey samples collected across the United States. Metal concentrations were measured using ICP-MS, and the spatial distribution pattern of these contaminants was evaluated using statistical and GIS tools. The mean (highest) values (in μg/kg) were 3.8 (170) for As, 8.0 (451) for Pb, and 0.75 (8.1) for Cd. These values, as well as the mean (highest) concentrations of 29.5 (516) for Ni, 14.3 (166) for Co, and 19.6 (11) for Cr, were markedly lower than global averages reported in other countries. The study identified distinct geographic patterns of honey contamination; particularly high As levels were found in northwestern states, while high Co was measured in the southeast. Health risk calculations based on the hazard quotient (HQ) and hazard index (HI) were below 1 for a daily tablespoon (21g) of honey consumption, indicating no adverse health concerns for children and adults, and all samples fell below the 1.0x10-6 threshold for carcinogenic risk. The variation in metal concentrations found in samples from different states may reflect the influence of air, water, or soil pollution, as well as differential accumulation across plant species, and the distinct geographic clustering of As and Co warrants further investigation to determine the sources of these metals and to assess public health risks, particularly for As, a well-known carcinogen. In sum, this initial study provides baseline values of metal concentrations in honey that can be useful for monitoring future pollution trends, identifying target areas where reductions of emissions or remediation efforts are most critical, and facilitating discovery research in environmental exposure and health sciences.
Collapse
Affiliation(s)
- Tewodros Rango Godebo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Hannah Stoner
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Pornpimol Kodsup
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Marc Jeuland
- Sanford School of Public Policy and Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
2
|
Divya D, Ramanjaneyulu M, Nandhagopal M, Srinivasan V, Thennarasu S. A fluorescent chemosensor for selective detection of chromium (III) ions in environmentally and biologically relevant samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124286. [PMID: 38663135 DOI: 10.1016/j.saa.2024.124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/15/2024]
Abstract
A simple single step one pot multicomponent reaction was performed to synthesize N-(tert-butyl)-2-(furan-2-yl)imidazo[1,2-a]pyridine-3-amine (TBFIPA). The synthesized TBFIPA was subjected to library of cations to study its ability for selective and sensitive detection of specific metal ions. Selective detection of chromium ions by TBFIPA were found from the significant hypsochromic shift (335 nm → 285 nm) in the UV-Visible spectra. The fluorescent TBFIPA displays complete quenching of fluorescence under UV lamp (365 nm) only in the presence of chromium without the interference of common metal ions. Binding constant (ka) obtained from Benesi-Hildebrand plot is 0.21 × 105 M-1, limit of detection (LOD) and limit of quantification (LOQ) of TBFIPA toward Cr3+ ions are 4.70 × 10-7 M and 1.56 × 10-7 M, respectively. The mechanism proposed during complex formation were supported by stoichiometric Job continuous variation plot, 1H NMR titration and ESI-MS spectroscopic data. All the experimental confirmation for complex formation were corroborated with theoretical DFT studies optimized using RB3LYP/6-31G(d) basis set. The selectivity and sensitivity of TBFIPA toward Cr3+ ions are found suitable to design a user-friendly silica based portable test kit. Alongside, TBFIPA was successfully utilized for imaging onion epidermal cells. Furthermore, the results obtained for biological, environmental, and industrial samples provided solid evidence to estimate chromium ions using TBFIPA in these real samples.
Collapse
Affiliation(s)
- Dhakshinamurthy Divya
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India; Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Mala Ramanjaneyulu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Manivannan Nandhagopal
- Saveetha Medical College and Hospital, Institute of Medical and Technical Science, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Venkatesan Srinivasan
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India
| | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India.
| |
Collapse
|
3
|
Andleeb S, Naseer A, Liaqat I, Sirajuddin M, Utami M, Alarifi S, Ahamed A, Chang SW, Ravindran B. Assessment of growth, reproduction, and vermi-remediation potentials of Eisenia fetida on heavy metal exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:290. [PMID: 38976075 DOI: 10.1007/s10653-024-02055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Heavy metal pollution is a significant environmental concern with detrimental effects on ecosystems and human health, and traditional remediation methods may be costly, energy-intensive, or have limited effectiveness. The current study aims were to investigate the impact of heavy metal toxicity in Eisenia fetida, the growth, reproductive outcomes, and their role in soil remediation. Various concentrations (ranging from 0 to 640 mg per kg of soil) of each heavy metal were incorporated into artificially prepared soil, and vermi-remediation was conducted over a period of 60 days. The study examined the effects of heavy metals on the growth and reproductive capabilities of E. fetida, as well as their impact on the organism through techniques such as FTIR, histology, and comet assay. Atomic absorption spectrometry demonstrated a significant (P < 0.000) reduction in heavy metal concentrations in the soil as a result of E. fetida activity. The order of heavy metal accumulation by E. fetida was found to be Cr > Cd > Pb. Histological analysis revealed a consistent decline in the organism's body condition with increasing concentrations of heavy metals. However, comet assay results indicated that the tested levels of heavy metals did not induce DNA damage in E. fetida. FTIR analysis revealed various functional group peaks, including N-H and O-H groups, CH2 asymmetric stretching, amide I and amide II, C-H bend, carboxylate group, C-H stretch, C-O stretching of sulfoxides, carbohydrates/polysaccharides, disulfide groups, and nitro compounds, with minor shifts indicating the binding or accumulation of heavy metals within E. fetida. Despite heavy metal exposure, no significant detrimental effects were observed, highlighting the potential of E. fetida for sustainable soil remediation. Vermi-remediation with E. fetida represents a novel, sustainable, and cutting-edge technology in environmental cleanup. This study found that E. fetida can serve as a natural and sustainable method for remediating heavy metal-contaminated soils, promising a healthier future for soil.
Collapse
Affiliation(s)
- Saiqa Andleeb
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Muzaffarabad, 13100, Pakistan.
| | - Anum Naseer
- Microbial Biotechnology and Vermi-Technology Laboratory, Department of Zoology, University of Azad Jammu and Kashmir, King Abdullah Campus, Muzaffarabad, 13100, Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology, Bannu, KPK, Pakistan
| | - Maisari Utami
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-gu, Suwon, Gyeonggi-do, 16227, Republic of Korea.
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India.
| |
Collapse
|
4
|
Ali HM, Karataş F, Özer D, Saydam S. Element and Water-Soluble Vitamins Profile of Rhus coriaria L. (Sumac) Grown in Different Regions. Biol Trace Elem Res 2024; 202:3293-3302. [PMID: 37776395 DOI: 10.1007/s12011-023-03890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
In this study, the amounts of some elements and water-soluble vitamins in Rhus coriaria L. (Sumac) samples grown in different regions were analyzed by ICP-OES and HPLC, respectively. The maximum amount of Na, K, Mg, and P was determined in the sumac samples of Kadana, Sheladize, Maraş, and Derishke regions, respectively. The richest regions in terms of trace elements such as Zn, Cu, Fe, Se, Mn, Cr, Mo, Ni, and B were Charput, Derishke, Ranya, Charput, Ranya, Derishke, Elazığ, Derishke, and Kadana, respectively. The highest amount of As, Cd, Pb, and Hg in sumac samples were determined in Kadana, Kadana, Trawanish, and Charput regions, respectively, while the lowest amounts were determined in Maraş, Sheladize, Elazig, and Trawanish regions sumac samples. Since target hazard coefficient (THQ) and total target hazard coefficient (TTHQ) values calculated for minor, toxic and heavy metals investigated in sumac samples are well below one; therefore, they do not pose a health risk. From the result obtained, sumac is a good food additive spice in terms of water-soluble vitamins except ascorbic acid. The amounts of ascorbic acid, thiamine, riboflavin, nicotine amide, nicotinic acid, pantothenic acid, pyridoxine, folic acid, and cyanocobalamin in sumac samples varied between 78.90-36.57, 173.57-61.11, 518.4-182.3, 314.0-105.6, 1292.1-788.7, 779.2-301.7, 385.8-133.4, 826.2-473.1, and 192.6-73.9 µg/g dw, respectively. Differences in the amount of elements and water-soluble vitamins among sumac samples from different regions may be due to geographical and ecological reasons.
Collapse
Affiliation(s)
- Haval Mohammed Ali
- Chemistry Department, College of Science, University of Duhok, Duhok, Iraq
| | - Fikret Karataş
- Faculty of Science, Department of Chemistry, Fırat University, Elazig, Turkey.
| | - Dursun Özer
- Department of Chemical Engineering, Faculty of Engineering, Firat University, 23119, Elazig, Turkey
| | - Sinan Saydam
- Faculty of Science, Department of Chemistry, Fırat University, Elazig, Turkey
| |
Collapse
|
5
|
Stewart DI, Vasconcelos EJR, Burke IT, Baker A. Metagenomes from microbial populations beneath a chromium waste tip give insight into the mechanism of Cr (VI) reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172507. [PMID: 38657818 DOI: 10.1016/j.scitotenv.2024.172507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Dumped Chromium Ore Processing Residue (COPR) at legacy sites poses a threat to health through leaching of toxic Cr(VI) into groundwater. Previous work implicates microbial activity in reducing Cr(VI) to less mobile and toxic Cr(III), but the mechanism has not been explored. To address this question a combined metagenomic and geochemical study was undertaken. Soil samples from below the COPR waste were used to establish anaerobic microcosms which were challenged with Cr(VI), with or without acetate as an electron donor, and incubated for 70 days. Cr was rapidly reduced in both systems, which also reduced nitrate, nitrite then sulfate, but this sequence was accelerated in the acetate amended microcosms. 16S rRNA gene sequencing revealed that the original soil sample was diverse but both microcosm systems became less diverse by the end of the experiment. A high proportion of 16S rRNA gene reads and metagenome-assembled genomes (MAGs) with high completeness could not be taxonomically classified, highlighting the distinctiveness of these alkaline Cr impacted systems. Examination of the coding capacity revealed widespread capability for metal tolerance and Fe uptake and storage, and both populations possessed metabolic capability to degrade a wide range of organic molecules. The relative abundance of genes for fatty acid degradation was 4× higher in the unamended compared to the acetate amended system, whereas the capacity for dissimilatory sulfate metabolism was 3× higher in the acetate amended system. We demonstrate that naturally occurring in situ bacterial populations have the metabolic capability to couple acetate oxidation to sequential reduction of electron acceptors which can reduce Cr(VI) to less mobile and toxic Cr(III), and that microbially produced sulfide may be important in reductive precipitation of chromate. This capability could be harnessed to create a Cr(VI) trap-zone beneath COPR tips without the need to disturb the waste.
Collapse
Affiliation(s)
- Douglas I Stewart
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | | | - Ian T Burke
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
| | - Alison Baker
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Zhong Q, Pan X, Chen Y, Lian Q, Gao J, Xu Y, Wang J, Shi Z, Cheng H. Prosthetic Metals: Release, Metabolism and Toxicity. Int J Nanomedicine 2024; 19:5245-5267. [PMID: 38855732 PMCID: PMC11162637 DOI: 10.2147/ijn.s459255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The development of metallic joint prostheses has been ongoing for more than a century alongside advancements in hip and knee arthroplasty. Among the materials utilized, the Cobalt-Chromium-Molybdenum (Co-Cr-Mo) and Titanium-Aluminum-Vanadium (Ti-Al-V) alloys are predominant in joint prosthesis construction, predominantly due to their commendable biocompatibility, mechanical strength, and corrosion resistance. Nonetheless, over time, the physical wear, electrochemical corrosion, and inflammation induced by these alloys that occur post-implantation can cause the release of various metallic components. The released metals can then flow and metabolize in vivo, subsequently causing potential local or systemic harm. This review first details joint prosthesis development and acknowledges the release of prosthetic metals. Second, we outline the metallic concentration, biodistribution, and elimination pathways of the released prosthetic metals. Lastly, we discuss the possible organ, cellular, critical biomolecules, and significant signaling pathway toxicities and adverse effects that arise from exposure to these metals.
Collapse
Affiliation(s)
- Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xin Pan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qiang Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Gao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yixin Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jian Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhanjun Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
7
|
Wu W, Ren J, Wang J, Wang J, Yu D, Zhang Y, Zeng F, Huang B. Metalloestrogens exposure and risk of gestational diabetes mellitus: Evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 248:118321. [PMID: 38307186 DOI: 10.1016/j.envres.2024.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Metalloestrogens are metals and metalloid elements with estrogenic activity found everywhere. Their impact on human health is becoming more apparent as human activities increase. OBJECTIVE Our aim is to conduct a comprehensive systematic review and meta-analysis of observational studies exploring the correlation between metalloestrogens (specifically As, Sb, Cr, Cd, Cu, Se, Hg) and Gestational Diabetes Mellitus (GDM). METHODS PubMed, Web of Science, and Embase were searched to examine the link between metalloestrogens (As, Sb, Cr, Cd, Cu, Se, and Hg) and GDM until December 2023. Risk estimates were derived using random effects models. Subgroup analyses were conducted based on study countries, exposure sample, exposure assessment method, and detection methods. Sensitivity analyses and adjustments for publication bias were carried out to assess the strength of the findings. RESULTS Out of the 389 articles identified initially, 350 met our criteria and 33 were included in the meta-analysis, involving 141,175 subjects (9450 cases, 131,725 controls). Arsenic, antimony, and copper exposure exhibited a potential increase in GDM risk to some extent (As: OR = 1.28, 95 % CI [1.08, 1.52]; Sb: OR = 1.73, 95 % CI [1.13, 2.65]; Cu: OR = 1.29, 95 % CI [1.02, 1.63]), although there is a high degree of heterogeneity (As: Q = 52.93, p < 0.05, I2 = 64.1 %; Sb: Q = 31.40, p < 0.05, I2 = 80.9 %; Cu: Q = 21.14, p < 0.05, I2 = 71.6 %). Conversely, selenium, cadmium, chromium, and mercury exposure did not exhibit any association with the risk of GDM in our study. DISCUSSION Our research indicates that the existence of harmful metalloestrogens in the surroundings has a notable effect on the likelihood of GDM. Hence, we stress the significance of environmental elements in the development of GDM and the pressing need for relevant policies and measures.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiamei Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Deshui Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, 230092, Anhui, China.
| | - Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, Guangdong, China.
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention due to their health hazards to human cardiovascular disease. Heavy metals, including lead, cadmium, mercury, arsenic, and chromium, are found in various sources such as air, water, soil, food, and industrial products. Recent research strongly suggests a connection between cardiovascular disease and exposure to toxic heavy metals. Epidemiological, basic, and clinical studies have revealed that heavy metals can promote the production of reactive oxygen species, which can then exacerbate reactive oxygen species generation and induce inflammation, resulting in endothelial dysfunction, lipid metabolism distribution, disruption of ion homeostasis, and epigenetic changes. Over time, heavy metal exposure eventually results in an increased risk of hypertension, arrhythmia, and atherosclerosis. Strengthening public health prevention and the application of chelation or antioxidants, such as vitamins and beta-carotene, along with minerals, such as selenium and zinc, can diminish the burden of cardiovascular disease attributable to metal exposure.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| | - Tingyu Gong
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China (T.G.)
| | - Ping Liang
- Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China (Z.P., P.L.)
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (Z.P., P.L.)
| |
Collapse
|
9
|
Bawiec P, Sawicki J, Łasińska-Pracuta P, Czop M, Sowa I, Helon P, Pietrzak K, Koch W. In Vitro Evaluation of Bioavailability of Cr from Daily Food Rations and Dietary Supplements from the Polish Market. Nutrients 2024; 16:1022. [PMID: 38613055 PMCID: PMC11013223 DOI: 10.3390/nu16071022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Only some of the nutrients consumed with food are able to be absorbed from the gastrointestinal (GI) tract and enter the systemic circulation (blood). Because some elements are essential minerals for humans, their beneficial effect on the body depends significantly on their bioavailable amount (the fraction that can be absorbed and used by the organism). The term bioavailability, which is very often used to describe the part of nutrients that is able to be absorbed, is influenced by various factors of exogenous and endogenous origin. The main purpose of the study was to assess the relative bioavailability of Cr from selected dietary supplements in the presence of various types of diets, which significantly influence the level of bioavailability. The research was performed using a previously developed and optimized two-stage in vitro digestion model using cellulose dialysis tubes of food rations with the addition of pharmaceutical products. Cr was determined using the ICP-OES and GF-AAS methods, depending on its concentration in particular fractions. The determined relative bioavailability ranged between 2.97 and 3.70%. The results of the study revealed that the type of diet, the chemical form of the molecule, and the pharmaceutical form of preparations have a significant influence on the bioavailability of Cr.
Collapse
Affiliation(s)
- Piotr Bawiec
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Paulina Łasińska-Pracuta
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11 Str., 20-080 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (J.S.); (I.S.)
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Schinzla 13a Str., 27-600 Sandomierz, Poland;
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland; (P.B.); (P.Ł.-P.); (K.P.)
| |
Collapse
|
10
|
Liu K, Bai Y, Wu D, Zhang Z, Liao X, Wu H, Deng Q. Healthy lifestyle and essential metals attenuated association of polycyclic aromatic hydrocarbons with heart rate variability in coke oven workers. Int J Hyg Environ Health 2024; 256:114323. [PMID: 38237548 DOI: 10.1016/j.ijheh.2024.114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Whether adopting healthy lifestyles and maintaining moderate levels of essential metals could attenuate the reduction of heart rate variability (HRV) related to polycyclic aromatic hydrocarbons (PAHs) exposure are largely unknown. In this study, we measured urinary metals and PAHs as well as HRV, and constructed a healthy lifestyle score in 1267 coke oven workers. Linear regression models were used to explore the association of healthy lifestyle score and essential metals with HRV, and interaction analysis was performed to investigate the potential interaction between healthy lifestyle score, essential metals, and PAHs on HRV. Mean age of the participants was 41.9 years (84.5% male). Per one point higher healthy lifestyle score was associated with a 2.5% (95% CI, 1.0%-3.9%) higher standard deviation of all normal to normal intervals (SDNN), 2.1% (95% CI, 0.5%-3.6%) higher root mean square of successive differences in adjacent NN intervals (r-MSSD), 4.3% (95% CI, 0.4%-8.2%) higher low frequency, 4.4% (95% CI, 0.2%-8.5%) higher high frequency, and 4.4% (95% CI, 1.2%-7.6%) higher total power, respectively. Urinary level of chromium was positively associated with HRV indices, with the corresponding β (95% CI) (%) was 5.17 (2.84, 7.50) for SDNN, 4.29 (1.74, 6.84) for r-MSSD, 12.26 (6.08, 18.45) for low frequency, 12.61 (5.87, 19.36) for high frequency, and 11.31 (6.19, 16.43) for total power. Additionally, a significant interaction was found between healthy lifestyle score and urinary total hydroxynaphthalene on SDNN (Pinteraction = 0.04), and higher level of urinary chromium could attenuate the adverse effect of total hydroxynaphthalene level on HRV (all Pinteraction <0.05). Findings of our study suggest adopting healthy lifestyle and maintaining a relatively high level of chromium might attenuate the reduction of HRV related to total hydroxynaphthalene exposure.
Collapse
Affiliation(s)
- Kang Liu
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yansen Bai
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Degang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Zhaorui Zhang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaojing Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haimei Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Qifei Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
11
|
Costa SMB, Hallur RLS, Reyes DRA, Floriano JF, de Barros Leite Carvalhaes MA, de Carvalho Nunes HR, Sobrevia L, Valero P, Barbosa AMP, Rudge MCV. Role of dietary food intake patterns, anthropometric measures, and multiple biochemical markers in the development of pregnancy-specific urinary incontinence in gestational diabetes mellitus. Nutrition 2024; 117:112228. [PMID: 37948994 DOI: 10.1016/j.nut.2023.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVES The aim of this study was to assess maternal dietary food intake patterns, anthropometric measures, and multiple biochemical markers in women with gestational diabetes mellitus and pregnancy-specific urinary incontinence and to explore whether antedating gestational diabetes mellitus environment affects the pregnancy-specific urinary incontinence development in a cohort of pregnant women with gestational diabetes mellitus and pregnancy-specific urinary incontinence. METHODS Maternal dietary information and anthropometric measurements were collected. At 24 wk of gestation, with a fasting venipuncture sample, current blood samples for biochemical markers of hormones, vitamins, and minerals were analyzed. The groups were compared in terms of numerical variables using analysis of variance for independent samples followed by multiple comparisons. RESULTS Of the 900 pregnant women with complete data, pregnant women in the gestational diabetes mellitus pregnancy-specific urinary incontinence group had higher body mass index during pregnancy, arm circumference, and triceps skinfold than the non-gestational diabetes mellitus continent and non-gestational diabetes mellitus pregnancy-specific urinary incontinence groups, characterizing an obesogenic maternal environment. Regarding dietary food intake, significant increases in aromatic amino acids, branched-chain amino acids, dietary fiber, magnesium, zinc, and water were observed in pregnancy-specific urinary incontinence group compared with the non-gestational diabetes mellitus continent group. Serum vitamin C was reduced in the gestational diabetes mellitus pregnancy-specific urinary incontinence group compared with the non-gestational diabetes mellitus pregnancy-specific urinary incontinence group. CONCLUSIONS This study emphasizes the necessity for a comprehensive strategy for gestational diabetes mellitus women with pregnancy-specific urinary incontinence in terms of deviation in maternal adaptation trending toward obesity and maternal micronutrients deficiencies.
Collapse
Affiliation(s)
- Sarah Maria Barneze Costa
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu, Brazil
| | - Raghavendra Lakshmana Shetty Hallur
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu, Brazil; College of Biosciences and Technology, Pravara Institute of Medical Sciences (DU), Loni-413736, Rahata Taluka, Ahmednagar District, Maharashtra State, India
| | - David Rafael Abreu Reyes
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu, Brazil
| | - Juliana Ferreira Floriano
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu, Brazil
| | | | | | - Luis Sobrevia
- Botucatu Medical School, São Paulo State University, São Paulo, Brazil; Cellular and Molecular Physiology Laboratory, Division of Obstetrics and Gynecology, Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Clinical Research, Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey Institute of Technology and Higher Education, Monterrey, Mexico
| | - Paola Valero
- Botucatu Medical School, São Paulo State University, São Paulo, Brazil; Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Angélica Mércia Pascon Barbosa
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University, Marília, Brazil
| | - Marilza Cunha Vieira Rudge
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu, Brazil.
| |
Collapse
|
12
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2023:10.1007/s10895-023-03514-7. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
13
|
Zhan R, Liu L, Yang M, Ren Y, Ge Z, Shi J, Zhou K, Zhang J, Cao H, Yang L, Liu K, Sheng J, Tao F, Wang S. Associations of 10 trace element levels in the whole blood with risk of three types of obesity in the elderly. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9787-9806. [PMID: 37847362 DOI: 10.1007/s10653-023-01747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Currently, over 2 billion people worldwide suffer from obesity, which poses a serious health risk. More and more attention is being given to the effects of trace elements on obesity in recent years. Synergistic or antagonistic interactions among these elements can adversely or positively impact human health. However, epidemiological evidence on the relationship between trace element exposure levels and obesity has been inconclusive. METHODS Baseline data of 994 participants from the Cohort of Elderly Health and Environment Controllable Factors were used in the present study. ICP-MS was used to measure the concentrations of 10 trace elements in the whole blood of the older population. Binary logistic regression, restricted cubic splines (RCS) models, and Bayesian kernel machine regression (BKMR) models were employed to assess single, nonlinear, and mixed relationships between 10 trace element levels and three types of obesity based on body mass index (BMI), waist circumference (WC), and body fat percentage (BFP) in the elderly. RESULTS Based on BMI, WC and BFP, 51.8% of the included old population were defined as general overweight/obesity, 67.1% as abdominal obesity, and 36.2% as having slightly high/high BFP. After multivariable adjustment, compared with the lowest tertile, the highest tertile of blood selenium (Se) concentration was associated with an increased risk of all three types of obesity. Additionally, compared with the lowest tertile, higher tertiles of strontium (Sr) concentrations were associated with a lower risk of general overweight/obesity and having slightly high/high BFP, and the highest tertile of barium (Ba) was associated with a lower risk of having slightly high BFP, while higher tertiles of arsenic (As) concentrations were associated with an increased risk of having slightly high/high BFP, and the highest tertile of manganese (Mn) was associated with a higher risk of abdominal obesity. BKMR analyses showed a strong linear positive association between Se and three types of obesity. Higher blood levels of trace element mixture were associated with increased obesity risks in a dose-response pattern, with Se having the highest value of the posterior inclusion probability (PIP) within the mixture. CONCLUSIONS In this study, we found higher Se levels were associated with an elevated risk of obesity and high levels of Ba, Pb and Cr were associated with a decreased risk of obesity. Studies with larger samples are needed to confirm these findings.
Collapse
Affiliation(s)
- Rui Zhan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lin Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Maoyuan Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yating Ren
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhihao Ge
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jun Shi
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ke Zhou
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiebao Zhang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental, Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Wechselberger C, Messner B, Bernhard D. The Role of Trace Elements in Cardiovascular Diseases. TOXICS 2023; 11:956. [PMID: 38133357 PMCID: PMC10747024 DOI: 10.3390/toxics11120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Essential trace elements play an important role in human physiology and are associated with various functions regulating cellular metabolism. Non-essential trace elements, on the other hand, often have well-documented toxicities that are dangerous for the initiation and development of diseases due to their widespread occurrence in the environment and their accumulation in living organisms. Non-essential trace elements are therefore regarded as serious environmental hazards that are harmful to health even in low concentrations. Many representatives of these elements are present as pollutants in our environment, and many people may be exposed to significant amounts of these substances over the course of their lives. Among the most common non-essential trace elements are heavy metals, which are also associated with acute poisoning in humans. When these elements accumulate in the body over years of chronic exposure, they often cause severe health damage in a variety of tissues and organs. In this review article, the role of selected essential and non-essential trace elements and their role in the development of exemplary pathophysiological processes in the cardiovascular system will be examined in more detail.
Collapse
Affiliation(s)
- Christian Wechselberger
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Barbara Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - David Bernhard
- Division of Pathophysiology, Institute of Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
- Clinical Research Institute for Cardiovascular and Metabolic Diseases, Medical Faculty, Johannes Kepler University Linz, 4020 Linz, Austria
| |
Collapse
|
15
|
Islam MR, Akash S, Jony MH, Alam MN, Nowrin FT, Rahman MM, Rauf A, Thiruvengadam M. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol Cell Biochem 2023; 478:2141-2171. [PMID: 36637616 DOI: 10.1007/s11010-022-04638-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
A trace element, known as a minor element, is a chemical element whose concentration is very low. They are divided into essential and non-essential classes. Numerous physiological and metabolic processes in both plants and animals require essential trace elements. These essential trace elements are so directly related to the metabolic and physiologic processes of the organism that either their excess or deficiency can result in severe bodily malfunction or, in the worst situations, death. Elements can be found in nature in various forms and are essential for the body to carry out its varied functions. Trace elements are crucial for biological, chemical, and molecular cell activity. Nutritional deficits can lead to weakened immunity, increased susceptibility to oral and systemic infections, delayed physical and mental development, and lower productivity. Trace element enzymes are involved in many biological and chemical processes. These compounds act as co-factors for a number of enzymes and serve as centers for stabilizing the structures of proteins and enzymes, allowing them to mediate crucial biological processes. Some trace elements control vital biological processes by attaching to molecules on the cell membrane's receptor site or altering the structure of the membrane to prevent specific molecules from entering the cell. Some trace elements are engaged in redox reactions. Trace elements have two purposes. They are required for the regular stability of cellular structures, but when lacking, they might activate alternate routes and induce disorders. Therefore, thoroughly understanding these trace elements is essential for maintaining optimal health and preventing disease.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Maruf Hossain Jony
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Noor Alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
16
|
Basiri R, Seidu B, Cheskin LJ. Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence. Nutrients 2023; 15:3929. [PMID: 37764713 PMCID: PMC10536295 DOI: 10.3390/nu15183929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes is associated with an increased risk of mental disorders, including depression, anxiety, and cognitive decline. Mental disorders can also contribute to the development of diabetes through various mechanisms including increased stress, poor self-care behaviors, and adverse effects on glucose metabolism. Consequently, individuals suffering from either of these conditions frequently experience comorbidity with the other. Nutrition plays an important role in both diabetes and mental health disorders including depression and anxiety. Deficiencies in specific nutrients such as omega-3 fatty acids, vitamin D, B vitamins, zinc, chromium, magnesium, and selenium have been implicated in the pathogenesis of both diabetes and mental disorders. While the impact of nutrition on the progression and control of diabetes and mental disorders is broadly acknowledged, there is a notable knowledge gap concerning the implications of distinct nutrients in preventing and mitigating symptoms of both conditions when they coexist. The aim of this study was to examine the role of nutrition in improving glucose homeostasis and promoting mental well-being among individuals with diabetes. Further, we evaluated the preventive or delaying effects of key nutrients on the simultaneous manifestation of these conditions when one of them is present. Our findings indicated that the use of personalized dietary interventions and targeted nutrient supplementation can improve metabolic and mental health outcomes in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Raedeh Basiri
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
- Institute for Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Blessing Seidu
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Lawrence J. Cheskin
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
- Institute for Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Bahrampour N, Mirzababaei A, Abaj F, Hosseininasab D, Clark CCT, Mirzaei K. The association between dietary micronutrient patterns and odds of diabetic nephropathy: A case-control study. Food Sci Nutr 2023; 11:3255-3265. [PMID: 37324888 PMCID: PMC10261793 DOI: 10.1002/fsn3.3306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 04/03/2023] Open
Abstract
Uncontrolled diabetes can lead to diabetic nephropathy (DN). The aim of the study was to investigate the relationship between different dietary micronutrient patterns and risk of DN in women. This was a case-control study. One hundred and five patients had DN (defined as urinary mg of albumin per gram of creatinine ≥30 mg/g) were chosen as the case and 105 women without DN were chosen as control. Dietary intakes were assessed by a semi-quantitative food frequency questionnaire. Principal component analysis with varimax rotation was used to derive the micronutrient patterns. Patterns were divided into two groups of lower and higher than median. Logistic regression was used to discern and find the odds ratio (ORs) of DN, and its 95% confidence interval (CI) based on the micronutrient patterns in crude and adjusted model. Three patterns which were included, (1) mineral patterns such as chromium, manganese, biotin, vitamin B6, phosphorus, magnesium, selenium, copper, zinc, potassium, and iron, (2) water-soluble vitamin patterns such as vitamin B5, B2, folate, B1, B3, B12, sodium and C, and (3) fat-soluble vitamin patterns such as calcium, vitamin K, beta carotene, alpha tocopherol, alpha carotene, vitamin E, and vitamin A, were extracted. An inverse relationship was found between risk of DN and following mineral patterns and fat-soluble vitamin patterns in adjusted model (ORs = 0.51 [95% CI 0.28-0.95], p = .03) and (ORs = 0.53 [95% CI 0.29-0.98], p = .04), respectively. No relationship was seen between water-soluble vitamin patterns and risk of DN in crude and adjusted model but the significance was decreased in adjusted model. The risk of DN was 47% decreased after high adherence of fat-soluble vitamin patterns. In addition, we saw a 49% decrease of risk of DN in high adherence group of mineral patterns. The findings confirm that renal-protective dietary patterns can reduce risk of DN.
Collapse
Affiliation(s)
- Niki Bahrampour
- Department of Nutrition, Science and Research BranchIslamic Azad University (SRBIAU)TehranIran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences (TUMS)TehranIran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences (TUMS)TehranIran
| | - Dorsa Hosseininasab
- Department of Nutrition, Science and Research BranchIslamic Azad University (SRBIAU)TehranIran
| | - Cain C. T. Clark
- Centre for Intelligent HealthcareCoventry UniversityCoventryCV1 5FBUK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical Sciences (TUMS)TehranIran
| |
Collapse
|
18
|
Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 2023; 10:554-570. [PMID: 37396849 PMCID: PMC10313886 DOI: 10.1016/j.toxrep.2023.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023] Open
Abstract
Increased exposure to environmental heavy metals and metalloids and their associated toxicities has become a major threat to human health. Hence, the association of these metals and metalloids with chronic, age-related metabolic disorders has gained much interest. The underlying molecular mechanisms that mediate these effects are often complex and incompletely understood. In this review, we summarize the currently known disease-associated metabolic and signaling pathways that are altered following different heavy metals and metalloids exposure, alongside a brief summary of the mechanisms of their impacts. The main focus of this study is to explore how these affected pathways are associated with chronic multifactorial diseases including diabetes, cardiovascular diseases, cancer, neurodegeneration, inflammation, and allergic responses upon exposure to arsenic (As), cadmium (Cd), chromium (Cr), iron (Fe), mercury (Hg), nickel (Ni), and vanadium (V). Although there is considerable overlap among the different heavy metals and metalloids-affected cellular pathways, these affect distinct metabolic pathways as well. The common pathways may be explored further to find common targets for treatment of the associated pathologic conditions.
Collapse
|
19
|
Wang H, Hu L, Li H, Lai YT, Wei X, Xu X, Cao Z, Cao H, Wan Q, Chang YY, Xu A, Zhou Q, Jiang G, He ML, Sun H. Mitochondrial ATP synthase as a direct molecular target of chromium(III) to ameliorate hyperglycaemia stress. Nat Commun 2023; 14:1738. [PMID: 36977671 PMCID: PMC10050403 DOI: 10.1038/s41467-023-37351-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Chromium(III) is extensively used as a supplement for muscle development and the treatment of diabetes mellitus. However, its mode of action, essentiality, and physiological/pharmacological effects have been a subject of scientific debate for over half a century owing to the failure in identifying the molecular targets of Cr(III). Herein, by integrating fluorescence imaging with a proteomic approach, we visualized the Cr(III) proteome being mainly localized in the mitochondria, and subsequently identified and validated eight Cr(III)-binding proteins, which are predominately associated with ATP synthesis. We show that Cr(III) binds to ATP synthase at its beta subunit via the catalytic residues of Thr213/Glu242 and the nucleotide in the active site. Such a binding suppresses ATP synthase activity, leading to the activation of AMPK, improving glucose metabolism, and rescuing mitochondria from hyperglycaemia-induced fragmentation. The mode of action of Cr(III) in cells also holds true in type II diabetic male mice. Through this study, we resolve the long-standing question of how Cr(III) ameliorates hyperglycaemia stress at the molecular level, opening a new horizon for further exploration of the pharmacological effects of Cr(III).
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Ligang Hu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Yau-Tsz Lai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Xiaohan Xu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Zhenkun Cao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Huiming Cao
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, P.R. China
| | - Qianya Wan
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong, P.R. China
| | - Yuen-Yan Chang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, and State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pok Fu Lam, Hong Kong, P.R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ming-Liang He
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong, P.R. China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pok Fu Lam, Hong Kong S.A.R., P.R. China.
| |
Collapse
|
20
|
Hegde R, Hegde S, Kulkarni S, Kulkarni SS, Pandurangi A, Kariduraganavar MY, Das KK, Gai PB. Total Reflection X-ray Fluorescence Analysis of Plasma Elements in Autistic Children from India. Biol Trace Elem Res 2023; 201:644-654. [PMID: 35338449 DOI: 10.1007/s12011-022-03199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
Trace elements are essential for the human body's various physiological processes but if they are present in higher concentration, these elements turn to be toxic and cause adverse effect on physiological processes. Similarly, deficiency of these essential elements also affects physiological processes and leads to abnormal metabolic activities. There is a lot of interest in recent years to know the mystery behind the involvement of trace elements in the metabolic activities of autistic children suspecting that it may be a risk factor in the aetiology of autism. The present study aims to analyse the plasma trace elements in autistic children using the total reflection X-ray fluorescence (TXRF) technique. Plasma samples from 70 autistic children (mean age: 11.5 ± 3.1) were analysed with 70 age- and sex-matched healthy children as controls (mean age: 12 ± 2.5). TXRF analysis revealed the higher concentration of copper (1227.8 ± 17.8), chromium (7.1 ± 2.5), bromine (2695.1 ± 24) and arsenic (126.3 ± 10) and lower concentration of potassium (440.1 ± 25), iron (1039.6 ± 28), zinc (635.7 ± 21), selenium (52.3 ± 8.5), rubidium (1528.9 ± 28) and molybdenum (162,800.8 ± 14) elements in the plasma of autistic children in comparison to healthy controls. Findings of the first study from India suggest these altered concentrations in elements in autistic children over normal healthy children affect the physiological processes and metabolism. Further studies are needed to clarify the association between the altered element concentration and physiology of autism in the North Karnataka population in India.
Collapse
Affiliation(s)
- Rajat Hegde
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
- Karnataka Institute for DNA Research (KIDNAR), Dharwad, 580003, India
| | - Smita Hegde
- Karnataka Institute for DNA Research (KIDNAR), Dharwad, 580003, India
- Human Genetics Laboratory, Department of Anatomy, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
| | - Sujayendra Kulkarni
- Human Genetics Laboratory, Department of Anatomy, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
- Division of Human Genetics (Central Research Lab), S. Nijaliangappa Medical College, HSK Hospital and Research Center, Bagalkot, 587102, India
| | | | - Aditya Pandurangi
- Department of Psychiatry, Dharwad Institute of Mental Health and Neurosciences, Dharwad, 580008, India
| | | | - Kusal K Das
- Laboratory of Vascular Physiology and Medicine, Department of Physiology, Shri B.M Medical College, Hospital and Research Centre, BLDE (Deemed To Be University), Vijayapura, 586101, India
| | - Pramod B Gai
- Karnataka Institute for DNA Research (KIDNAR), Dharwad, 580003, India.
- Karnatak University Dharwad, Dharwad, 580003, India.
| |
Collapse
|
21
|
Oyedemi SO, Atanes P, Aiyegoro OA, Amoo SO, Swain SS, Persaud SJ. In vitro profiling and functional assessments of the anti-diabetic capacity of phenolic-rich extracts of Bulbine natalensis and Bulbine frutescens. Diabet Med 2023; 40:e14770. [PMID: 34919745 DOI: 10.1111/dme.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
AIMS Bulbine natalensis (BN) and Bulbine frutescens (BF) are recommended in South African traditional medicine to treat diabetes, but their modes of action are unknown. This study assessed the phenolic acid profiles, mineral composition and in vitro functional effects of BN and BF to better understand their glucose-lowering capabilities. METHODS Phenolic acid and mineral composition of BN and BF methanolic extracts were determined by HPLC and inductively coupled plasma optical emission spectroscopy respectively. Antioxidant capacity was assessed by potassium ferricyanide reducing power and 2,2-diphenyl-2-picrylhydrazyl radical scavenging assays, and inhibition of alpha-amylase, alpha-glucosidase, pancreatic lipase and DPP4 was evaluated by standard enzyme assays. The effects of BN and BF extracts on insulin secretion were investigated using static incubations of isolated mouse islets and molecular docking analysis was used to identify interactions of BN and BF with partners that could mediate stimulatory effects on insulin secretion. RESULTS Methanolic extracts of BN and BF contained high concentrations of protocatechuic and gallic acids, and high levels of Zn, Mn and Cr. The extracts inhibited alpha-glucosidase, alpha-amylase, pancreatic lipase and DPP4 activities, and they also inhibited free radical generation. Both extracts significantly potentiated glucose-stimulated insulin secretion without significantly affecting basal insulin secretion or islet cell viability. Protocatechuic acid, the most abundant phenolic acid in the extracts, showed high affinity for PKA, PKC, DPP4 and CaMK II in the docking analysis. CONCLUSIONS BN and BF have multiple beneficial effects on glucoregulatory pathways and they, or their derivatives, could be developed to treat type 2 diabetes.
Collapse
Affiliation(s)
- Sunday O Oyedemi
- Department of Diabetes, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine King's College London, London, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Patricio Atanes
- Department of Diabetes, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine King's College London, London, UK
| | - Olayinka A Aiyegoro
- Research Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Stephen O Amoo
- Agricultural Research Council - Vegetable and Ornamental Plants, Pretoria, South Africa
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, Auckland Park, South Africa
| | - Shasank S Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Shanta J Persaud
- Department of Diabetes, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine King's College London, London, UK
| |
Collapse
|
22
|
Bereksi-Reguig D, Bouchentouf S, Allali H, Adamczuk A, Kowalska G, Kowalski R. Trace Elements and Heavy Metal Contents in West Algerian Natural Honey. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:7890856. [PMID: 36619658 PMCID: PMC9822738 DOI: 10.1155/2022/7890856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Analysis of trace elements and heavy metals in honey is essential for honey quality and safety and also monitoring environmental pollution. This study aimed to evaluate the composition of thirty-seven honey samples of different botanical origins (14 multifloral and 23 unifloral) obtained from beekeepers located in the west region of Algeria. Inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS) methods were used to determine the levels of 19 elements in honey (K, Na, Ca, Mg, Mn, Cu, Fe, Zn, V, Cr, Co, As, Ru, Rh, Cd, W, Pt, Au, and Pb). Ru, Rh, Pt and, Au were not detected in any of the tested honey samples. The most abundant minerals were K, Ca, Na, and Mg ranging within 153.00-989.00 mg/kg, 33.10-502.00 mg/kg, 13.30-281.00 mg/kg, and 20.80-162.00 mg/kg, respectively. Fe, Mn, Zn, and Cu were the most abundant heavy metals while Pb, V, Cr, W, Co, and Cd were the lowest ones (<1 mg/kg) in the honey samples surveyed. Several honey types, lavender, rosemary, mild white mustard, thyme, milk thistle, carob tree, orange tree, Euphorbia, Eucalyptus, camphor, jujube tree, sage, and harmal, were studied, and the statistical analysis was carried out using principal component analysis (PCA) and hierarchical cluster analysis (HCA) techniques to evaluate the data. The results showed that the analyses of mineral content were sufficient to determine the floral origin and their variability may be related to geochemical and geographical differences. On other hand, all elements detected were at levels below safe thresholds.
Collapse
Affiliation(s)
- Dalila Bereksi-Reguig
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
| | - Salim Bouchentouf
- Doctor Tahar Moulay University of Saida Algeria, BP 138 Cité EN-NASR, Saïda 20000, Algeria
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
| | - Hocine Allali
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, P.O. Box 119, Tlemcen 13000, Algeria
| | - Agnieszka Adamczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Street, Lublin 20-950, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., Lublin 20-704, Poland
| |
Collapse
|
23
|
Investigation of health risk assessment and the effect of various irrigation water on the accumulation of toxic metals in the most widely consumed vegetables in Iran. Sci Rep 2022; 12:20806. [PMID: 36460691 PMCID: PMC9718763 DOI: 10.1038/s41598-022-25101-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
The quality of irrigation water sources can significantly affect the concentrations of heavy metals (HMs) in cultivated vegetables. This study aimed to investigate the effect of various water resources, including treated wastewater effluent (TWE), river water (RW), and well water with chemical fertilizer (WW+F), on the accumulation of heavy metals (HMs) in the three most widely consumed edible vegetables (Coriander, Radish, and Basil) in Iran. A total of 90 samples of edible vegetables, 13 samples of irrigation water, and 10 soil samples were collected to determine HMs concentrations. Iron (Fe), Zinc (Zn), Copper (Cu), Manganese (Mn), Lead (Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni,) and Arsenic (As) were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). Eventually, the Total Target Hazard Quotient (TTHQ) for the toxic metals of As, Pb, and Cd was determined. The results revealed that the TTHQ of toxic metals in vegetables was less than the allowable limits (TTHQ = 1). Also, TWE was the best irrigation water type since the HMs content of vegetables was low. By comparing the results with national and international standards, it can be concluded that the Gharasou RW for irrigation of edible vegetables was inappropriate.
Collapse
|
24
|
Gabbia D, Roverso M, Zanotto I, Colognesi M, Sayaf K, Sarcognato S, Arcidiacono D, Zaramella A, Realdon S, Ferri N, Guido M, Russo FP, Bogialli S, Carrara M, De Martin S. A Nutraceutical Formulation Containing Brown Algae Reduces Hepatic Lipid Accumulation by Modulating Lipid Metabolism and Inflammation in Experimental Models of NAFLD and NASH. Mar Drugs 2022; 20:572. [PMID: 36135761 PMCID: PMC9501409 DOI: 10.3390/md20090572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, 35131 Padova, Italy
| | - Nicola Ferri
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, 31100 Treviso, Italy
- Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
25
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
26
|
Sharma P, Parakh SK, Singh SP, Parra-Saldívar R, Kim SH, Varjani S, Tong YW. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155444. [PMID: 35461941 DOI: 10.1016/j.scitotenv.2022.155444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Contamination of the environment through toxic pollutants poses a key risk to the environment due to irreversible environmental damage(s). Industrialization and urbanization produced harmful elements such as petrochemicals, agrochemicals, pharmaceuticals, nanomaterials, and herbicides that are intentionally or unintentionally released into the water system, threatening biodiversity, the health of animals, and humans. Heavy metals (HMs) in water, for example, can exist in a variety of forms that are inclined by climate features like the presence of various types of organic matter, pH, water system hardness, transformation, and bioavailability. Biological treatment is an important tool for removing toxic contaminants from the ecosystem, and it has piqued the concern of investigators over the centuries. In situ bioremediation such as biosparging, bioventing, biostimulation, bioaugmentation, and phytoremediation and ex-situ bioremediation includes composting, land farming, biopiles, and bioreactors. In the last few years, scientific understanding of microbial relations with particular chemicals has aided in the protection of the environment. Despite intensive studies being carried out on the mitigation of toxic pollutants, there have been limited efforts performed to discuss the solutions to tackle the limitations and approaches for the remediation of heavy metals holistically. This paper summarizes the risk assessment of HMs on aquatic creatures, the environment, humans, and animals. The content of this paper highlights the principles and limitations of microbial remediation to address the technological challenges. The coming prospect and tasks of evaluating the impact of different treatment skills for pollutant remediation have been reviewed in detail. Moreover, genetically engineered microbes have emerged as powerful bioremediation capabilities with significant potential for expelling toxic elements. With appropriate examples, current challenging issues and boundaries related to the deployment of genetically engineered microbes as bioremediation on polluted soils are emphasized.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India
| | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias-Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
27
|
Bacterial biofilm mediated bioremediation of hexavalent chromium: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Algethami JS. A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr 3+/6+Ions. Crit Rev Anal Chem 2022; 54:487-507. [PMID: 35758232 DOI: 10.1080/10408347.2022.2082242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Chromium occurs in the environment primarily in two valence states, trivalent Cr3+ and hexavalent Cr6+, which have different physicochemical and biochemical properties. However, the higher concentration of Cr3+/6+ can cause various adverse effects on human health. Therefore, detecting Cr3+/6+ ions is important in various samples. Colorimetric and fluorescent chemosensors are the most powerful tools for the detection of Cr3+/6+ ions. These chemosensors have excellent bioimaging capability and significant sensitivity and selectivity. In this article, different colorimetric and fluorescent chemosensors based on organic compounds, including Schiff base, antipyrine, diarylethene, pyrene, crown ether, dansyl, pyridine, thiazole, coumarin, boradiazaindacene, rhodamine, imidazole, hydrazone, and other functional groups for detection of Cr3+/6+ ions have been reviewed, classified them according to different fluorophore and recognition mode. I hope this article will help the readers for the future design of highly effective, sensitive, and selective chemosensors for the detection and determination of Cr3+/6+ ions.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
| |
Collapse
|
29
|
Synthesis, Characterization and Applications of Schiff Base Chemosensor for Determination of Cr(III) Ions. J Fluoresc 2022; 32:1889-1898. [PMID: 35749029 DOI: 10.1007/s10895-022-02990-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/31/2022] [Indexed: 10/17/2022]
Abstract
The development of a highly sensitive, selective, and efficient sensor for the determination and detection of Cr(III) ions remains a great challenge. Recently, some fluorescent chemosensors have been developed for the recognition of Cr(III) ions. But, the main drawbacks of the reported fluorescent chemosensors are the lack of selectivity and interference of anions and other trivalent cations. Herein, we designed and synthesized a novel thiazole-based fluorescent and colorimetric Schiff base chemosensor SB2 for the detection of Cr(III) ion by chemodosimetric approach. Using different analytical techniques including UV-vis, 13C-NMR, 1H-NMR, and FT-IR analysis the chemosensor SB2 was structurally characterized. The fully characterized chemosensor SB2 was used for the spectrofluorimetric and colorimetric detection of Cr(III) ions. Interestingly, chemosensor SB2 upon interaction with various metal cations including Ni2+, Na+, Cd2+, Ag+, Mn2+, K+, Zn2+, Cu2+, Hg2+, Co2+, Pb2+, Mg2+, Sn2+, Al3+ and Cr3+ displays highly selective and sensitive fluorescent (turn-on) and colorimetric (yellow to colorless) response toward Cr(III) ions. The fluorescence and UV-vis techniques confirmed the selective hydrolysis of azomethine group (-C = N-) of Schiff base chemosensor SB2 by Cr(III) ions. As a result, the fluorescence enhancement was observed that is corresponding to 2-hydroxy-1-nepthaldehyde (fluorophore). The chemosensor SB2 exhibits high interference performance towards Cr(III) ions over other metal cations in a wide pH range. Mover, the quite low detection limit was calculated to be 0.027 µg ml-1 (0.5 µM) (3σ/slop), lower than the maximum tolerable limits of Cr(III ions (10 µM) in drinking water permitted by the United States Environmental Protection Agency (EPA). These results show that chemosensor SB2 has great potential to detect selectively Cr(III) ions in the agricultural, environmental and biological analysis system.
Collapse
|
30
|
Bai R, Wang Y, Fan J, Zhang J, Li W, Zhang Y, Hu F. Intra-regional classification of Codonopsis Radix produced in Gansu province (China) by multi-elemental analysis and chemometric tools. Sci Rep 2022; 12:8549. [PMID: 35595826 PMCID: PMC9123173 DOI: 10.1038/s41598-022-12556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Multi-elemental analysis is widely used to identify the geographical origins of plants. The purpose of this study was to explore the feasibility of combining chemometrics with multi-element analysis for classification of Codonopsis Radix from different producing regions of Gansu province (China). A total of 117 Codonopsis Radix samples from 7 counties of Gansu province were collected. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of 28 elements (39 K, 24 Mg, 44Ca, 27Al, 137Ba, 57Fe, 23Na, 88Sr, 55Mn, 66Zn, 65Cu, 85Rb, 61Ni, 53Cr, 51 V, 7Li, 208Pb, 59Co, 75As, 133Cs, 71 Ga, 77Se, 205Tl, 114Cd, 238U, 107Ag, 4Be and 202Hg). Among macro elements, 39 K showed the highest level, whereas 23Na was found to have the lowest content value. Micro elements showed the concentrations order of: 88Sr > 55Mn > 66Zn > 85Rb > 65Cu. Among trace elements, 53Cr and 61Ni showed higher content and 4Be was not detected in all samples. Intra-regions differentiation was performed by principal component analysis (PCA), cluster analysis (CA) and supervised learning algorithms such as linear discriminant analysis (LDA), k-nearest neighbors (k-NN), support vector machines (SVM), and random forests (RF). Among them, the RF model performed the best with an accuracy rate of 78.79%. Multi-elemental analysis combined with RF was a reliable method to identify the origins of Codonopsis Radix in Gansu province.
Collapse
Affiliation(s)
- Ruibin Bai
- School of Pharmacy @ the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Yanping Wang
- School of Pharmacy @ the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Jingmin Fan
- School of Pharmacy @ the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Jingjing Zhang
- School of Pharmacy @ the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Wen Li
- School of Pharmacy @ the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Yan Zhang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng, 252052, China
| | - Fangdi Hu
- School of Pharmacy @ the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Mahmoud SA, Taha M, Khaled ESH, Hassan WH, Abo El-Ela FI, Abdel-Khalek AA, Mohamed RA. Experimental and Molecular Modeling Studies on the Complexation of Chromium(III) with the Angiotensin-Converting Enzyme Inhibitor Captopril. ACS OMEGA 2022; 7:15909-15918. [PMID: 35571803 PMCID: PMC9096923 DOI: 10.1021/acsomega.2c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Captopril (CPT) is an inhibitor of angiotensin I converting enzyme, used as a medication for the treatment of people with high blood pressure, renal insufficiency, and cardiovascular diseases. It inhibits the angiogenesis process, vasoconstriction, and tumor metastasis. Some metal-captopril complexes exhibit antimicrobial activities. In the current work, the formation of the CrIII-CPT complex was studied spectrophotometrically and potentiometrically in aqueous solution. Kinetics of CrIII-CPT complex formation was spectrophotometrically studied over the pH range 3.20-4.20, at an ionic strength of 0.3 M at 30-50 °C. CrIII-CPT complex formation was potentiometrically studied at 25 °C, where ligand protonation constants and complexes' overall stability constants were calculated. UV-vis absorption spectra were executed to confirm the complex formation. Density functional theory and molecular dynamics simulation were performed to search the geometries of the CrIII-CPT complex. Atoms in molecules and interaction region indicator calculations are used to investigate intermolecular interactions for the formation of CrIII-CPT complex. The antimicrobial activity of the CPT ligand and CrIII-CPT complex on the prevention and control of environmental pathogenic bacteria, as tested on both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli) via agar disc diffusion method, assess the ability to use as an antimicrobial agent. CPT had shown good antimicrobial activity against both types of bacteria, which had increased slightly the zone of inhibition in Cr-CPT that indicates the increased efficacy due to Cr(III) antimicrobial activity via its oxidative damage to the bacterial cell wall. No previous study tested the CPT antimicrobial activity against Gram-positive ones such as S. aureus.
Collapse
Affiliation(s)
- Shimaa A Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Eman S H Khaled
- Chemistry Department, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Ahmed A Abdel-Khalek
- Chemistry Department, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Reham A Mohamed
- Chemistry Department, Faculty of Science, Beni-Suef University, 62511 Beni-Suef, Egypt
| |
Collapse
|
32
|
Bai R, Wang Y, Zhang Y, Wang Y, Han J, Wang Z, Zhou J, Hu F. Analysis and Health Risk Assessment of Potentially Toxic Elements in Three Codonopsis Radix Varieties in China. Biol Trace Elem Res 2022; 200:2475-2485. [PMID: 34383249 DOI: 10.1007/s12011-021-02806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
As a valuable medicine food homology plant, Codonopsis Radix has been widely used in China. This study aimed to analyze the content of nine potentially toxic elements in three Codonopsis Radix varieties and evaluate their health risks to the human body. In this study, a total of 147 samples were collected from five provinces in China. The content of nine potentially toxic elements (Al, Mn, Cu, Cr, Ni, As, Pb, Cd, and Hg) were determined by ICP-MS. Results showed that the average contents of Al, Mn, Cu, Cr, Ni, Pb, As, Cd, and Hg were 486.81, 30.30, 5.59, 1.38, 1.24, 0.40, 0.20, 0.16, and 0.11 mg/kg, respectively. The Codonopsis tangshen Oliv. samples from Hubei showed the highest contents of eight elements (Al, Mn, Cr, Ni, Pb, As, Cd, and Hg) among three varieties, and the highest Cu level was found in Codonopsis pilosula (Franch.) Nannf. samples from Shanxi. The content of toxic elements in three Codonopsis Radix varieties showed significant differences (p < 0.05). LDA models facilitated the identification of three Codonopsis Radix varieties with a 91.2% classification score and 89.1% prediction score. Further, when Codonopsis Radix was used as food or medicine, both the hazard quotient values for single element and the hazard index values for nine elements (0.87 for food and 0.84 for medicine) were far below one. The carcinogenic risk values for Pb in Codonopsis Radix when used as food or medicine were 1.14 × 10-6 and 5.51 × 10-8; the values for As were 4.80 × 10-5 and 4.98 × 10-6, respectively. It indicated that under the current consumption of Codonopsis Radix, the non-carcinogenic and carcinogenic risks from these potentially toxic elements were acceptable for consumers.
Collapse
Affiliation(s)
- Ruibin Bai
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Yajie Zhang
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Yan Wang
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Jiabing Han
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Zixia Wang
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Jing Zhou
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, 199 Dong-gang Road West, Lanzhou, 730000, China.
| |
Collapse
|
33
|
KORKMAZ C, AGILKAYA GŞEN, KARAYTUG S, Özcan AY. Composition and Human Health Risk Analysis of Elements in Muscle Tissues of Wild and Farmed Fish Species from Northeast Mediterranean. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Sohrabi M, Binaeizadeh MR, Iraji A, Larijani B, Saeedi M, Mahdavi M. A review on α-glucosidase inhibitory activity of first row transition metal complexes: a futuristic strategy for treatment of type 2 diabetes. RSC Adv 2022; 12:12011-12052. [PMID: 35481063 PMCID: PMC9020348 DOI: 10.1039/d2ra00067a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and has emerged as a controversial public health issue worldwide. The increasing number of patients with T2DM on one hand, and serious long-term complications of the disease such as obesity, neuropathy, and vascular disorders on the other hand, have induced a huge economic impact on society globally. In this regard, inhibition of α-glucosidase, the enzyme responsible for the hydrolysis of carbohydrates in the body has been the main therapeutic approach to the treatment of T2DM. As α-glucosidase inhibitors (α-GIs) have occupied a special position in the current research and prescription drugs are generally α-GIs, researchers have been encouraged to design and synthesize novel and efficient inhibitors. Previously, the presence of a sugar moiety seemed to be crucial for designing α-GIs since they can attach to the carbohydrate binding site of the enzyme mimicking the structure of disaccharides or oligosaccharides. However, inhibitors lacking glycosyl structures have also shown potent inhibitory activity and development of non-sugar based inhibitors is accelerating. In this respect, in vitro anti-α-glucosidase activity of metal complexes has attracted lots of attention and this paper has reviewed the inhibitory activity of first-row transition metal complexes toward α-glucosidase and discussed their probable mechanisms of action.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | | | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences Shiraz Iran
- Central Research Laboratory, Shiraz University of Medical Sciences Shiraz Iran
- Liosa Pharmed Parseh Company Shiraz Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
35
|
Ghanbari M, Amini MR, Djafarian K, Shab-Bidar S. The effects of chromium supplementation on blood pressure: a systematic review and meta-analysis of randomized clinical trials. Eur J Clin Nutr 2022; 76:340-349. [PMID: 34302131 DOI: 10.1038/s41430-021-00973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Results of studies on the effect of chromium supplementation on blood pressure (BP) are contradictory. The purpose of the current study was to carry out a meta-analysis on the effects of chromium supplementation on systolic blood pressure (SBP) and diastolic blood pressure (DBP). We conducted a systematic literature search of PubMed, SCOPUS, Cochrane Library, Web of Science, and Embase databases from inception up to July 2020 for randomized controlled trials (RCTs) that evaluate the impacts of chromium on SBP and DBP. A random-effects model was used to compute weighted mean differences (WMDs) with 95% confidence intervals (CIs). Heterogeneity was determined by I2 statistics and the Cochrane Q test. Sensitivity analysis was performed by eliminating each study one by one and recalculating the pooled effect. Ten studies comprising a total of 624 subjects were included in our meta-analysis. Chromium supplementation did not significantly change SBP (WMD: -0.642: 95% CI: (-2.15, 1.30) mmHg; p = 0.312; I2 = 12.7%) and DBP (WMD: -0.10; 95% CI: (-1.39, 1.18) mmHg; p = 0.070; I2 = 37.6%). Subgroup analysis based on dose and duration of chromium supplementation also did not significantly change the mean of SBP and DBP. The present meta-analysis of RCTs did not show the beneficial effects of chromium supplementation on BP in adults.
Collapse
Affiliation(s)
- Mahtab Ghanbari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Amini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
36
|
Trace Elements in Medicinal Plants Traditionally Used in the Treatment of Diabetes-Do They Have a Role in the Claimed Therapeutic Effect? Foods 2022; 11:foods11050667. [PMID: 35267300 PMCID: PMC8909470 DOI: 10.3390/foods11050667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Medicinal plants are often used in the treatment of diabetes mellitus, although knowledge about their mode of action and the substances responsible for their antidiabetic potential is limited. It is well known that some trace elements play a role in glucose metabolism and insulin action. Thus, a particular trace elements profile could be associated with the antidiabetic properties observed for some medicinal plants. Methods: Infusions (n = 102) prepared from commercial herbal products (n = 34) containing medicinal plants indicated for the treatment of diabetes (n = 16 different plant species) and infusions (n = 60) prepared from commercial herbal products (n = 20) containing medicinal plants without such an indication (n = 7 different plant species) were analyzed by ICP-MS for their trace elements content. Results: In both groups, results varied significantly between different medicinal plants and also between different origins (brands) of the same medicinal plant. Significant differences (p < 0.05) between the two groups were found for nine elements, including four trace elements related to glucose metabolism (Mn, B, V, and Se), but with lower median contents in the group of medicinal plants for diabetes. Conclusions: Except for some particular species (e.g., Myrtilli folium) in which the trace element Mn may play a role in its antidiabetic effect, globally, a direct association between the claimed antidiabetic properties and a specific trace element profile of the studied medicinal plants was not evident.
Collapse
|
37
|
Zhao F, Pan D, Wang N, Xia H, Zhang H, Wang S, Sun G. Effect of Chromium Supplementation on Blood Glucose and Lipid Levels in Patients with Type 2 Diabetes Mellitus: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2022; 200:516-525. [PMID: 33783683 DOI: 10.1007/s12011-021-02693-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022]
Abstract
In recent years, the prevalence and incidence of diabetes mellitus (DM) have increased sharply worldwide. In order to evaluate the effect of chromium supplementation on patients with type 2 diabetes, a meta-analysis was conducted by searching the relevant literature. Randomized controlled trials on the effects of chromium supplements on glucose metabolism or lipid profile in patients with type 2 diabetes were retrieved from multiple databases. Literature screening, quality evaluation, and data extraction were conducted according to the inclusion and exclusion criteria, and Review Manager 5.4.0 was used for data analysis. A total of 10 randomized controlled trials involving 509 patients were included, including 269 cases in the experimental group and 240 cases in the placebo control group. Statistical analysis was conducted on the glycosylated hemoglobin (HbA1c), fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) to evaluate the blood glucose and lipid levels. Meta-analysis results showed that the differences between the experimental group and the control group in only one indicator of HbA1c were statistically significant, while there were no statistically significant differences in other indicators. The use of chromium supplements can reduce the glycosylated hemoglobin of type 2 diabetic patients to a certain extent, but it cannot effectively improve the fasting blood glucose and blood lipid levels of type 2 diabetic patients.
Collapse
Affiliation(s)
- Fengyi Zhao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Niannian Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Hong Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
38
|
Jach ME, Serefko A, Ziaja M, Kieliszek M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022; 12:63. [PMID: 35050185 PMCID: PMC8780597 DOI: 10.3390/metabo12010063] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, the awareness and willingness of consumers to consume healthy food has grown significantly. In order to meet these needs, scientists are looking for innovative methods of food production, which is a source of easily digestible protein with a balanced amino acid composition. Yeast protein biomass (single cell protein, SCP) is a bioavailable product which is obtained when primarily using as a culture medium inexpensive various waste substrates including agricultural and industrial wastes. With the growing population, yeast protein seems to be an attractive alternative to traditional protein sources such as plants and meat. Moreover, yeast protein biomass also contains trace minerals and vitamins including B-group. Thus, using yeast in the production of protein provides both valuable nutrients and enhances purification of wastes. In conclusion, nutritional yeast protein biomass may be the best option for human and animal nutrition with a low environmental footprint. The rapidly evolving SCP production technology and discoveries from the world of biotechnology can make a huge difference in the future for the key improvement of hunger problems and the possibility of improving world food security. On the market of growing demand for cheap and environmentally clean SCP protein with practically unlimited scale of production, it may soon become one of the ingredients of our food. The review article presents the possibilities of protein production by yeast groups with the use of various substrates as well as the safety of yeast protein used as food.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki Street 4a, 20-093 Lublin, Poland;
| | - Maria Ziaja
- Institute of Physical Culture Studies, Medical College, University of Rzeszów, Cicha Street 2a, 35-326 Rzeszów, Poland;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159C, 02-776 Warsaw, Poland
| |
Collapse
|
39
|
Non-Centrifugal Sugar (NCS) and Health: A Review on Functional Components and Health Benefits. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Non-centrifugal sugar (NCS) is the scientific term the Food and Agriculture Organization (FAO) uses to define a solid product, produced by sugarcane juice evaporation, which is unrefined or minimally refined. NCS is referred to in various names globally, the most significant ones are whole cane sugar, panela (Latin America), jaggery (India) and kokuto (Japan). NCS contains minerals, bioactive compounds, flavonoids and phenolic acids, which have therapeutic potentials from time immemorial. Even though the bioactive property is dependent on the composition, which relies mainly on the agronomic conditions and production process, NCS possesses antioxidant and anti-inflammatory properties. Hence, substituting the consumption of refined sugar with NCS might be helpful in the control of chronic diseases generally connected to oxidative stress and inflammation. Experimental facts from in vitro and in vivo models have proven that NCS plays an essential role in weight management, maintaining insulin sensitivity and preventing neurodegenerative diseases. NCS has also shown hypoglycemic and hypolipidemic effects. This review aims to synopsize the recent literature pertaining to the benefits of NCS in human health. The NCS can be considered a nutraceutical and functional food. However, detailed and regulated studies are important to enhance the beneficial effects in human and animal interventions.
Collapse
|
40
|
Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su14010161] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heavy metals play an important role in the homeostasis of living cells. However, these elements induce several adverse environmental effects and toxicities, and therefore seriously affect living cells and organisms. In recent years, some heavy metal pollutants have been reported to cause harmful effects on crop quality, and thus affect both food security and human health. For example, chromium, cadmium, copper, lead, and mercury were detected in natural foods. Evidence suggests that these elements are environmental contaminants in natural foods. Consequently, this review highlights the risks of heavy metal contamination of the soil and food crops, and their impact on human health. The data were retrieved from different databases such as Science Direct, PubMed, Google scholar, and the Directory of Open Access Journals. Results show that vegetable and fruit crops grown in polluted soil accumulate higher levels of heavy metals than crops grown in unpolluted soil. Moreover, heavy metals in water, air, and soil can reduce the benefits of eating fruits and vegetables. A healthy diet requires a rational consumption of foods. Physical, chemical, and biological processes have been developed to reduce heavy metal concentration and bioavailability to reduce heavy metal aggregation in the ecosystem. However, mechanisms by which these heavy metals exhibit their action on human health are not well elucidated. In addition, the positive and negative effects of heavy metals are not very well established, suggesting the need for further investigation.
Collapse
|
41
|
|
42
|
Experimental and DFT studies of metal pincer complexes: An insight on structures and bonding. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ergun DD, Dursun S, Ergun S, Ozcelik D. The Association Between Trace Elements and Osmolality in Plasma and Aqueous Humor Fluid in Diabetic Rabbits. Biol Trace Elem Res 2021; 199:4154-4161. [PMID: 33409916 DOI: 10.1007/s12011-020-02538-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Trace element metabolism plays an important role in the formation of diabetes and complications of diabetes. Although trace elements changes in lenses in diabetic cataract and glaucoma formation have been investigated, there were few studies evaluating trace elements levels in plasma and aqueous humor fluid in diabetic and non-diabetic conditions. Therefore, we aimed to investigate zinc (Zn), copper (Cu), and chromium (Cr) levels in plasma and aqueous humor fluids of rabbits in the diabetic rabbit model. New Zealand male rabbits were divided into two groups as control (n = 8), and diabetes (n = 8) induced by alloxane. At the end of the experimental period, the osmolality in blood, plasma, and aqueous humor fluids from rabbits were measured by osmometer and Zn, Cu, and Cr levels in plasma and aqueous humor fluid were measured by inductively coupled plasma-optical emission spectrophotometer (ICP-OES). The osmolality in blood, plasma, and aqueous humor fluid of the diabetic group was significantly increased compared to the control group (respectively p < 0.01, p < 0.001, p < 0.001). It was analyzed that plasma Zn and Cu levels of diabetic rabbits increased significantly (respectively, p < 0.01; p < 0.001), whereas Cr level significantly decreased according to the control group (p < 0.01). It was observed that Cr and Zn levels in aqueous humor fluid in diabetes group decreased (respectively p < 0.001 and p < 0.01), and a significantly increased in Cu level (p < 0.001) compared to the control group. Related with these changes that may occur in the eye due to the measured parameters, we consider that comparative studies of these types of diabetic animal models would be useful in the evaluation of diabetes and its complications.
Collapse
Affiliation(s)
- Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Sefik Dursun
- Department of Biophysics, Medical Faculty, Uskudar University, Istanbul, Turkey
| | - Sefa Ergun
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dervis Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
44
|
Das S, Chandra Behera B, Mohapatra RK, Pradhan B, Sudarshan M, Chakraborty A, Thatoi H. Reduction of hexavalent chromium by Exiguobacterium mexicanum isolated from chromite mines soil. CHEMOSPHERE 2021; 282:131135. [PMID: 34470171 DOI: 10.1016/j.chemosphere.2021.131135] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Hexavalent chromium is a highly toxic element generated due to indiscriminate chromite mining in Sukinda, Odisha. In the present research investigation a relatively higher Cr(VI) resistant (900 mg L-1) bacterium CWB-54 was isolated from the chromite mine water. Based on the biochemical and molecular analysis the strain (CWB-54) was identified as Exiguobacterium mexicanum. When this bacterium was grown at 35 °C, 100 rpm, pH~8.0, and fructose as an electron donor, it could reduce the total hexavalent chromium (100 mg L-1) supplemented in the medium within 33 h of incubation period. Though experiment was carried out to study the effect of Mn, Ni, Cd, Hg and Zn on Cr(VI) reduction by the strain E. mexicanum it has been observed that in the presence of Cd and Hg, Cr(VI) reduction drastically decreased. Characterization of Cr(VI) reduced product by SEM-EDX and TEM analysis revealed intracellular and extracellular Cr(III) deposition in the bacterium, which is assumed to be Cr(OH)3 precipitate in nanometric size. But the extracellular chromate reductase enzyme production is found to be negligible as compared to the intracellular enzyme production. The increased concentration of Cr(VI) above (1000 mg L-1) also showed the genotoxic effect on the DNA. Several reports have been published on Exiguobacterium sp. on different scientific aspect but the current report on the reduction of toxic Cr(VI) by a new species E. mexicanum is a novel one which established the potentiality of this microorganism for a broad area of application.
Collapse
Affiliation(s)
- Sasmita Das
- Department of Biotechnology, Academy of Management and Information Technology-Khordha, 752057, Odisha, India
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, 751003, Odisha, India.
| | - Ranjan Kumar Mohapatra
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, Odisha, India
| | - Biswaranjan Pradhan
- S. K. Dash Center of Excellence of Biosciences and Engineering & Technology, Indian Institute of Technology, Bhubaneswar, 752050, India
| | - Mathummal Sudarshan
- UGC-DAE-CSR, Kolkata Center, Bidhan Nagar, Kolkata, 700098, West Bengal, India
| | | | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Sriram Chandra Vihar, Takatpur, Baripada, 757003, Odisha, India.
| |
Collapse
|
45
|
Witkowska D, Słowik J, Chilicka K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021; 26:molecules26196060. [PMID: 34641604 PMCID: PMC8511997 DOI: 10.3390/molecules26196060] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Heavy metals enter the human body through the gastrointestinal tract, skin, or via inhalation. Toxic metals have proven to be a major threat to human health, mostly because of their ability to cause membrane and DNA damage, and to perturb protein function and enzyme activity. These metals disturb native proteins’ functions by binding to free thiols or other functional groups, catalyzing the oxidation of amino acid side chains, perturbing protein folding, and/or displacing essential metal ions in enzymes. The review shows the physiological and biochemical effects of selected toxic metals interactions with proteins and enzymes. As environmental contamination by heavy metals is one of the most significant global problems, some detoxification strategies are also mentioned.
Collapse
|
46
|
Chromium picolinate balances the metabolic and clinical markers in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled trial. Eur J Gastroenterol Hepatol 2021; 33:1298-1306. [PMID: 32804855 DOI: 10.1097/meg.0000000000001830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is a complicated disease and is considered as a severe global health problem affecting 30% of adults worldwide. The present study aimed to evaluate changes in oxidative stress, adipokines, liver enzyme, and body composition following treatment with chromium picolinate (CrPic) among patients with NAFLD. PARTICIPANTS AND METHODS The current randomized, double-blind, placebo-controlled study was conducted on 46 NAFLD patients with the age range of 20-65 years. Patients were randomly classified into two groups, receiving either 400 µg CrPic tablets in two divided doses of 200 µg (23 patients) or placebo (23 patients) daily for 12 weeks. The participants' body composition and biochemical parameters were evaluated at the baseline and after 12 weeks. RESULTS Serum levels of liver enzymes reduced significantly only in the CrPic group (P < 0.05 for all), but not between the groups after the intervention. Besides, there were significant differences between the study groups regarding body weight and body fat mass, total antioxidant capacity, superoxide dismutase, malondialdehyde, leptin, and adiponectin post-intervention (P = 0.017, P = 0.032, P = 0.003, P = 0.023, P = 0.012, P = 0.003, and P = 0.042, respectively). However, glutathione peroxidase and resistin levels did not differ significantly between groups (P = 0.127 and P = 0.688, respectively). DISCUSSION AND CONCLUSION This study showed that consuming 400 µg/day of CrPic for 12 weeks in patients with NAFLD causes a significant change in leptin, adiponectin, oxidative stress (expect glutathione peroxidase), and body weight, compared to baseline. Nevertheless, it does not affect liver enzymes. Therefore, the CrPic supplementation may improve adipokines, some anthropometric indices, and oxidative stress in patients with NAFLD.
Collapse
|
47
|
Gao Y, Li X, Huang Y, Chen J, Qiu M. Bitter Melon and Diabetes Mellitus. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Xian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Yanjie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
48
|
Nicolucci A, Rossi MC, Petrelli M. Effectiveness of Ascophyllum nodosum and Fucus vesiculosus on Metabolic Syndrome Components: A Real-World, Observational Study. J Diabetes Res 2021; 2021:3389316. [PMID: 34631894 PMCID: PMC8497120 DOI: 10.1155/2021/3389316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/15/2021] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Gdue is a nutraceutical obtained from the association of two marine algae, Ascophyllum nodosum and Fucus vesiculosus, in addition to chromium picolinate, which could be useful for the treatment of dysglycemia, overweight, and the other components of the metabolic syndrome. The aim of the study was to assess the real-world effectiveness and safety of Gdue when administered to subjects with one or more components of the metabolic syndrome. METHODS A longitudinal, retrospective, observational study, conducted among primary care physicians, nutritionists, and specialists from various disciplines. The impact of 180 days of administration of Gdue was assessed on body weight, waist circumference, fasting blood glucose, HbA1c, lipid profile, and blood pressure levels. The likelihood of experiencing a first major cardiovascular event over ten years was estimated using Italian risk charts. General linear models for repeated measures were applied to assess changes in the parameters of interest during the follow-up. Results are expressed as estimated marginal means with their 95% confidence interval. RESULTS Overall, 505 patients were enrolled by 282 physicians. After 6 months of treatment with Gdue, body weight was reduced on average by 7.3 kg (-8.0; -6.6), waist circumference by 7.5 cm (-8.2; -6.8), fasting blood glucose by 16.3 mg/dL (-17.8; -14.7), HbA1c by 0.55% (-0.62; -0.49), systolic and diastolic blood pressure by 7.1 mmHg (-8.3; -6.0) and 4.2 mmHg (-5.0; -3.5), respectively, LDL cholesterol by 18.2 mg/dL (-21.2; -15.3), and triglycerides by 39 mg/dL (-45; -32). HDL cholesterol was significantly increased by 2.9 mg/dL (0.7; 5.0). The 10-year risk of cardiovascular events significantly decreased by 1.8%, corresponding to a relative risk reduction of 27.7%. CONCLUSION Our real-world study shows that 6 months of treatment with Gdue have an impact on all the components of the metabolic syndrome, thus offering the potential for decreasing the cardiovascular risk associated with metabolic syndrome.
Collapse
Affiliation(s)
- Antonio Nicolucci
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - Maria Chiara Rossi
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
| | - Massimiliano Petrelli
- Clinic of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria “Ospedali Riuniti di Ancona”, Ancona, Italy
| |
Collapse
|
49
|
Li X, He S, Zhou J, Yu X, Li L, Liu Y, Li W. Cr (VI) induces abnormalities in glucose and lipid metabolism through ROS/Nrf2 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112320. [PMID: 33991932 DOI: 10.1016/j.ecoenv.2021.112320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The hexavalent form of chromium, Cr (VI), has been associated with various diseases in humans. In this study, we examined the mechanisms underlying the effect of Cr (VI) on glucose and lipid metabolism in vivo and in vitro. We found that Cr (VI) induced abnormal liver function, increased fasting blood glucose (FBG), as well as glucose and insulin intolerance in mice. Furthermore, Cr (VI) decreased glucose-6-phosphate (G6P) level and glucose transporter-2 (GLUT2) expression, increased the levels of triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), reduced high-density lipoprotein-cholesterol (HDL-C), and increased sterol regulatory element-binding proteins 1 (SREBP1) and fat synthase (FAS) in vitro and in vivo. Moreover, Cr (VI) promoted intracellular ROS production in vitro, and induced reduction of antioxidant enzyme level and Nrf2/HO-1 expression in vitro and in vivo. Also, N-acetyl cysteine (NAC, effective antioxidant and free radical scavenger) pretreatment inhibited the production of intracellular ROS, significantly suppressed Cr (VI)-induced oxidative stress, lipid accumulation, decreased G6P and GLUT2, and improved impaired glucose tolerance and glucose and insulin intolerance caused by Cr (VI) in mice. Dh404 activated expression of Nrf2 decreased ROS level, increased HO-1 expression, ameliorated activity of the antioxidant enzyme, inhibited Cr (VI) increase of SREBP1, FAS level, and reduction of G6P and GLUT2. To sum up, these data suggest that dysregulation of ROS/Nrf2/HO-1 has an important role in Cr (VI)-induced glucose/lipid metabolic disorder.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Shengwen He
- Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Jian Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Weifang Medical College, Weifang, China
| | - Xiaoli Yu
- Department of Health Inspection and Quarantine, School of Public Health, Weifang Medical College, Weifang, China
| | - Lanhua Li
- Department of Epidemiology, School of Public Health, Weifang Medical College, Weifang, China
| | - Yumei Liu
- Public Health Demonstration Center, School of Public Health, Weifang Medical College, Weifang, China
| | - Wanwei Li
- Department of Environmental Hygiene, School of Public Health, Weifang Medical College, Weifang, China.
| |
Collapse
|
50
|
Sundar S, Roy PD, Chokkalingam L, Ramasamy N. Evaluation of metals and trace elements in sediments of Kanyakumari beach (southernmost India) and their possible impact on coastal aquifers. MARINE POLLUTION BULLETIN 2021; 169:112527. [PMID: 34051519 DOI: 10.1016/j.marpolbul.2021.112527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/14/2021] [Accepted: 05/17/2021] [Indexed: 05/12/2023]
Abstract
Beach sediments of Kanyakumari at the southernmost India were evaluated for metals and trace elements and to assess their possible impact on coastal ecosystems. Positive correlations (except for Cd and Sr) between them indicated metamorphic lithologies and heavy mineral deposits as possible sources. Significant-extremely high enrichment and very high contamination of Th, Zr, Mo, Ti and U reflected the presence of different heavy minerals. The geo-accumulation index, however, mirrored their variable abundances at different sites. Association of Cd with P suggested the influence of anthropogenic solid waste from fishing industry. It might have caused >41-fold enrichment of Cd and the Fe- Mn-oxides possibly acted as scavengers for 13-fold enrichment of As compared to UCC. Concentrations of Zn and Cr between ERL and ERM in 13% and 93% of the samples, and Ni > ERM in 87% of sediments suggest their bioavailability to seawater with a potential risk for coastal aquifers.
Collapse
Affiliation(s)
- Sajimol Sundar
- Department of Remote Sensing, Bharathidasan University, Tiruchirappalli 620023, India.
| | - Priyadarsi D Roy
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacan, Ciudad de México C.P. 04510, Mexico.
| | | | - Nagarajan Ramasamy
- Department of Applied Geology, School of Engineering and Science, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| |
Collapse
|