1
|
Minigulov N, Boranbayev K, Bekbossynova A, Gadilgereyeva B, Filchakova O. Structural proteins of human coronaviruses: what makes them different? Front Cell Infect Microbiol 2024; 14:1458383. [PMID: 39711780 PMCID: PMC11659265 DOI: 10.3389/fcimb.2024.1458383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 12/24/2024] Open
Abstract
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E. The viruses differ in their pathogenicity. SARS-CoV, MERS-CoV, and SARS-CoV-2 are capable to spread rapidly and cause epidemic, while HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E cause mild respiratory disease. The difference in the viral behavior is due to structural and functional differences. All seven human coronaviruses possess four structural proteins: spike, envelope, membrane, and nucleocapsid. Spike protein with its receptor binding domain is crucial for the entry to the host cell, where different receptors on the host cell are recruited by different viruses. Envelope protein plays important role in viral assembly, and following cellular entry, contributes to immune response. Membrane protein is an abundant viral protein, contributing to the assembly and pathogenicity of the virus. Nucleocapsid protein encompasses the viral RNA into ribonucleocapsid, playing important role in viral replication. The present review provides detailed summary of structural and functional characteristics of structural proteins from seven human coronaviruses, and could serve as a practical reference when pathogenic human coronaviruses are compared, and novel treatments are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev
University, Astana, Kazakhstan
| |
Collapse
|
2
|
Triantafilou K, Szomolay B, Shepherd MW, Ramanjulu J, Triantafilou M. STING Orchestrates EV-D68 Replication and Immunometabolism within Viral-Induced Replication Organelles. Viruses 2024; 16:1541. [PMID: 39459875 PMCID: PMC11512225 DOI: 10.3390/v16101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Some respiratory viruses, such as Human Rhinovirus, SARS-CoV-2, and Enterovirus D-68 (EV-D68), share the feature of hijacking host lipids in order to generate specialised replication organelles (ROs) with unique lipid compositions to enable viral replication. We have recently uncovered a novel non-canonical function of the stimulator of interferon genes (STING) pathway, as a critical factor in the formation of ROs in response to HRV infection. The STING pathway is the main DNA virus sensing system of the innate immune system controlling the type I IFN machinery. Although it is well-characterised as part of the DNA sensor machinery, the STING function in RNA viral infections is largely unexplored. In the current study, we investigated whether other RO-forming RNA viruses, such as EV-D68 and SARS-CoV-2, can also utilise STING for their replication. Using genetic and pharmacological inhibition, we demonstrate that STING is hijacked by these viruses and is utilised as part of the viral replication machinery. STING also co-localises with glycolytic enzymes needed to fuel the energy for replication. The inhibition of STING leads to the modulation of glucose metabolism in EV-D68-infected cells, suggesting that it might also manipulate immunometabolism. Therefore, for RO-generating RNA viruses, STING seems to have non-canonical functions in membrane lipid re-modelling, and the formation of replication vesicles, as well as immunometabolism.
Collapse
Affiliation(s)
- Kathy Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Mark William Shepherd
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Joshi Ramanjulu
- Immunology Research Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Martha Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| |
Collapse
|
3
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi AN, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. Cell Rep 2024; 43:114530. [PMID: 39058596 DOI: 10.1016/j.celrep.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts are limited by a poor understanding of antibody responses elicited by infection. Here, we analyze S-directed antibody responses in plasma collected from MERS-CoV-infected individuals. We observe that binding and neutralizing antibodies peak 1-6 weeks after symptom onset/hospitalization, persist for at least 6 months, and neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the receptor-binding domain (RBD), account for most plasma neutralizing activity. Antigenic site mapping reveals that plasma antibodies frequently target RBD epitopes, whereas targeting of S2 subunit epitopes is rare. Our data reveal the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA; Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Kyung Hee University, Seoul, South Korea
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Focosi D, Maggi F. Avian Influenza Virus A(H5Nx) and Prepandemic Candidate Vaccines: State of the Art. Int J Mol Sci 2024; 25:8550. [PMID: 39126117 PMCID: PMC11312817 DOI: 10.3390/ijms25158550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Avian influenza virus has been long considered the main threat for a future pandemic. Among the possible avian influenza virus subtypes, A(H5N1) clade 2.3.4.4b is becoming enzootic in mammals, representing an alarming step towards a pandemic. In particular, genotype B3.13 has recently caused an outbreak in US dairy cattle. Since pandemic preparedness is largely based on the availability of prepandemic candidate vaccine viruses, in this review we will summarize the current status of the enzootics, and challenges for H5 vaccine manufacturing and delivery.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
5
|
Franchini M, Focosi D. Monoclonal Antibodies and Hyperimmune Immunoglobulins in the Next Pandemic. Curr Top Microbiol Immunol 2024. [PMID: 38877202 DOI: 10.1007/82_2024_274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Pandemics are highly unpredictable events that are generally caused by novel viruses. There is a high likelihood that such novel pathogens belong to entirely novel viral families for which no targeted small-molecule antivirals exist. In addition, small-molecule antivirals often have pharmacokinetic properties that make them contraindicated for the frail patients who are often the most susceptible to a novel virus. Passive immunotherapies-available from the first convalescent patients-can then play a key role in controlling pandemics. Convalescent plasma is immediately available, but if manufacturers have fast platforms to generate marketable drugs, other forms of passive antibody treatment can be produced. In this chapter, we will review the technological platforms for generating monoclonal antibodies and hyperimmune immunoglobulins, the current experience on their use for treatment of COVID-19, and the pipeline for pandemic candidates.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
6
|
Al-Tawfiq JA. Developments in treatment for middle east respiratory syndrome coronavirus (MERS-CoV). Expert Rev Respir Med 2024; 18:295-307. [PMID: 38881206 DOI: 10.1080/17476348.2024.2369714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION An important respiratory pathogen that has led to multiple hospital outbreaks both inside and outside of the Arabian Peninsula is the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Given the elevated case fatality rate, there exists a pressing requirement for efficacious therapeutic agents. AREAS COVERED This is an updated review of the developments in MERS treatment approaches. Using databases like PubMed, Embase, Cochrane, Scopus, and Google Scholar, a thorough search was carried out utilizing keywords like 'MERS,' 'MERS-CoV,' and 'Middle East respiratory syndrome' in conjunction with 'treatment' or 'therapy' from Jan 2012 to Feb 2024. EXPERT OPINION MERS-CoV is a highly pathogenic respiratory infection that emerged in 2012 and continues to pose a significant public health threat. Despite ongoing efforts to control the spread of MERS-CoV, there is currently no specific antiviral treatment available. While many agents have been tested both in vivo and in vitro, none of them have been thoroughly examined in extensive clinical trials. Only case reports, case series, or cohort studies have been made available as clinical studies. However, there is a limited number of randomized-controlled trials. Because cases are irregular and sporadic, conducting a large prospective randomized trials for establishing an efficacious treatment might be difficult.
Collapse
Affiliation(s)
- Jaffar A Al-Tawfiq
- Speciality Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Infectious Disease Division, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi A, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.586409. [PMID: 38617298 PMCID: PMC11014493 DOI: 10.1101/2024.03.31.586409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Middle-East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Most vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts, however, are limited by a poor understanding of antibody responses elicited by infection along with their durability, fine specificity and contribution of distinct S antigenic sites to neutralization. To address this knowledge gap, we analyzed S-directed binding and neutralizing antibody titers in plasma collected from individuals infected with MERS-CoV in 2017-2019 (prior to the COVID-19 pandemic). We observed that binding and neutralizing antibodies peak 1 to 6 weeks after symptom onset/hospitalization, persist for at least 6 months, and broadly neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the RBD, account for most plasma neutralizing activity. Antigenic site mapping revealed that polyclonal plasma antibodies frequently target RBD epitopes, particularly a site exposed irrespective of the S trimer conformation, whereas targeting of S2 subunit epitopes is rare, similar to SARS-CoV-2. Our data reveal in unprecedented details the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Kyung Hee University, Seoul, South Korea
| | - Abeer Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
9
|
Zech F, Jung C, Jacob T, Kirchhoff F. Causes and Consequences of Coronavirus Spike Protein Variability. Viruses 2024; 16:177. [PMID: 38399953 PMCID: PMC10892391 DOI: 10.3390/v16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.
Collapse
Affiliation(s)
- Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
10
|
Shu H, Wen Z, Li N, Zhang Z, Ceesay BM, Peng Y, Zhou N, Wang DW. COVID-19 and Cardiovascular Diseases: From Cellular Mechanisms to Clinical Manifestations. Aging Dis 2023; 14:2071-2088. [PMID: 37199573 PMCID: PMC10676802 DOI: 10.14336/ad.2023.0314] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), quickly spread worldwide and led to over 581 million confirmed cases and over 6 million deaths as 1 August 2022. The binding of the viral surface spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor is the primary mechanism of SARS-CoV-2 infection. Not only highly expressed in the lung, ACE2 is also widely distributed in the heart, mainly in cardiomyocytes and pericytes. The strong association between COVID-19 and cardiovascular disease (CVD) has been demonstrated by increased clinical evidence. Preexisting CVD risk factors, including obesity, hypertension, and diabetes etc., increase susceptibility to COVID-19. In turn, COVID-19 exacerbates the progression of CVD, including myocardial damage, arrhythmia, acute myocarditis, heart failure, and thromboembolism. Moreover, cardiovascular risks post recovery and the vaccination-associated cardiovascular problems have become increasingly evident. To demonstrate the association between COVID-19 and CVD, this review detailly illustrated the impact of COVID-19 on different cells (cardiomyocytes, pericytes, endothelial cells, and fibroblasts) in myocardial tissue and provides an overview of the clinical manifestations of cardiovascular involvements in the pandemic. Finally, the issues related to myocardial injury post recovery, as well as vaccination-induced CVD, has also been emphasized.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zixuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Bala Musa Ceesay
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
11
|
Wang Q, Noettger S, Xie Q, Pastorio C, Seidel A, Müller JA, Jung C, Jacob T, Sparrer KMJ, Zech F, Kirchhoff F. Determinants of species-specific utilization of ACE2 by human and animal coronaviruses. Commun Biol 2023; 6:1051. [PMID: 37848611 PMCID: PMC10582019 DOI: 10.1038/s42003-023-05436-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Utilization of human ACE2 allowed several bat coronaviruses (CoVs), including the causative agent of COVID-19, to infect humans directly or via intermediate hosts. However, the determinants of species-specific differences in ACE2 usage and the frequency of the ability of animal CoVs to use human ACE2 are poorly understood. Here we applied VSV pseudoviruses to analyze the ability of Spike proteins from 26 human or animal CoVs to use ACE2 receptors across nine reservoir, potential intermediate and human hosts. We show that SARS-CoV-2 Omicron variants evolved towards more efficient ACE2 usage but mutation of R493Q in BA.4/5 and XBB Spike proteins disrupts utilization of ACE2 from Greater horseshoe bats. Variations in ACE2 residues 31, 41 and 354 govern species-specific differences in usage by coronaviral Spike proteins. Mutation of T403R allows the RaTG13 bat CoV Spike to efficiently use all ACE2 orthologs for viral entry. Sera from COVID-19 vaccinated individuals neutralize the Spike proteins of various bat Sarbecoviruses. Our results define determinants of ACE2 receptor usage of diverse CoVs and suggest that COVID-19 vaccination may protect against future zoonoses of bat coronaviruses.
Collapse
Affiliation(s)
- Qingxing Wang
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Qinya Xie
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Chiara Pastorio
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Institute of Virology, Philipps University Marburg, 35043, Marburg, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081, Ulm, Germany
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The coronavirus disease 2019 pandemic demonstrated broad utility of pathogen sequencing with rapid methodological progress alongside global distribution of sequencing infrastructure. This review considers implications for now moving clinical metagenomics into routine service, with respiratory metagenomics as the exemplar use-case. RECENT FINDINGS Respiratory metagenomic workflows have completed proof-of-concept, providing organism identification and many genotypic antimicrobial resistance determinants from clinical samples in <6 h. This enables rapid escalation or de-escalation of empiric therapy for patient benefit and reducing selection of antimicrobial resistance, with genomic-typing available in the same time-frame. Attention is now focussed on demonstrating clinical, health-economic, accreditation, and regulatory requirements. More fundamentally, pathogen sequencing challenges the traditional culture-orientated time frame of microbiology laboratories, which through automation and centralisation risks becoming increasingly separated from the clinical setting. It presents an alternative future where infection experts are brought together around a single genetic output in an acute timeframe, aligning the microbiology target operating model with the wider human genomic and digital strategy. SUMMARY Pathogen sequencing is a transformational proposition for microbiology laboratories and their infectious diseases, infection control, and public health partners. Healthcare systems that link output from routine clinical metagenomic sequencing, with pandemic and antimicrobial resistance surveillance, will create valuable tools for protecting their population against future infectious diseases threats.
Collapse
Affiliation(s)
- Jonathan D Edgeworth
- Department of Infectious Diseases, Guy's & St Thomas' NHS Foundation Trust & Department of Infectious Diseases, Kings College London, UK
| |
Collapse
|
13
|
Rahman S, Ullah S, Shinwari ZK, Ali M. Bats-associated beta-coronavirus detection and characterization: First report from Pakistan. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 108:105399. [PMID: 36584905 PMCID: PMC9793958 DOI: 10.1016/j.meegid.2022.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Bats remains as reservoirs for highly contagious and pathogenic viral families including the Coronaviridae, Filoviridae, Paramyxoviruses, and Rhabdoviridae. Spill over of viral species (SARS-CoV, MERS-CoV & SARS-CoV2) from bats (as a possible potential reservoirs) have recently caused worst outbreaks. Early detection of viral species of pandemic potential in bats is of great importance. We detected beta coronaviruses in the studied bats population (positive samples from Rousettus leschenaultia) and performed the evolutionary analysis, amino acid sequence alignment, and analysed the 3-Dimentional protein structure. We detected the coronaviruses for the first time in bats from Pakistan. Our analysis based on RdRp partial gene sequencing suggest that the studied viral strains are closely related to MERS-CoV-like viruses as they exhibit close structure similarities (with few substitutions) and also observed a substitution in highly conserved SDD in the palm subdomain of motif C to ADD, when compared with earlier reported viral strains. It could be concluded from our study that coronaviruses are circulating among the bat's population in Pakistan. Based on the current findings, we suggest large scale screening procedures of bat virome across the country to detect potential pathogenic viral species.
Collapse
Affiliation(s)
- Sidra Rahman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Oman.
| | | | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
14
|
Honrubia JM, Gutierrez-Álvarez J, Sanz-Bravo A, González-Miranda E, Muñoz-Santos D, Castaño-Rodriguez C, Wang L, Villarejo-Torres M, Ripoll-Gómez J, Esteban A, Fernandez-Delgado R, Sánchez-Cordón PJ, Oliveros JC, Perlman S, McCray PB, Sola I, Enjuanes L. SARS-CoV-2-Mediated Lung Edema and Replication Are Diminished by Cystic Fibrosis Transmembrane Conductance Regulator Modulators. mBio 2023; 14:e0313622. [PMID: 36625656 PMCID: PMC9973274 DOI: 10.1128/mbio.03136-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) of genera α, β, γ, and δ encode proteins that have a PDZ-binding motif (PBM) consisting of the last four residues of the envelope (E) protein (PBM core). PBMs may bind over 400 cellular proteins containing PDZ domains (an acronym formed by the combination of the first letter of the names of the three first proteins where this domain was identified), making them relevant for the control of cell function. Three highly pathogenic human CoVs have been identified to date: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. The PBMs of the three CoVs were virulence factors. SARS-CoV mutants in which the E protein PBM core was replaced by the E protein PBM core from virulent or attenuated CoVs were constructed. These mutants showed a gradient of virulence, depending on whether the alternative PBM core introduced was derived from a virulent or an attenuated CoV. Gene expression patterns in the lungs of mice infected with SARS-CoVs encoding each of the different PBMs were analyzed by RNA sequencing of infected lung tissues. E protein PBM of SARS-CoV and SARS-CoV-2 dysregulated gene expression related to ion transport and cell homeostasis. Decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) mRNA, essential for alveolar edema resolution, was shown. Reduced CFTR mRNA levels were associated with edema accumulation in the alveoli of mice infected with SARS-CoV and SARS-CoV-2. Compounds that increased CFTR expression and activity, significantly reduced SARS-CoV-2 growth in cultured cells and protected against mouse infection, suggesting that E protein virulence is mediated by a decreased CFTR expression. IMPORTANCE Three highly pathogenic human CoVs have been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2. The E protein PBMs of these three CoVs were virulence factors. Gene expression patterns associated with the different PBM motifs in the lungs of infected mice were analyzed by deep sequencing. E protein PBM motif of SARS-CoV and SARS-CoV-2 dysregulated the expression of genes related to ion transport and cell homeostasis. A decrease in the mRNA expression of the cystic fibrosis transmembrane conductance regulator (CFTR), which is essential for edema resolution, was observed. The reduction of CFTR mRNA levels was associated with edema accumulation in the lungs of mice infected with SARS-CoV-2. Compounds that increased the expression and activity of CFTR drastically reduced the production of SARS-CoV-2 and protected against its infection in a mice model. These results allowed the identification of cellular targets for the selection of antivirals.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Javier Gutierrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Alejandro Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ezequiel González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Li Wang
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Esteban
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Infectious Diseases and Global Health, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Veterinary Pathology Department, Animal Health Research Center (CISA), National Institute of Research, Agricultural and Food Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, CNB-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Pappajohn Biomedical Institute, The University of Iowa, Iowa City, Iowa, USA
- Center for Gene Therapy, The University of Iowa, Iowa City, Iowa, USA
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
15
|
Jones A, Zhang D, Massey SE, Deigin Y, Nemzer LR, Quay SC. Discovery of a novel merbecovirus DNA clone contaminating agricultural rice sequencing datasets from Wuhan, China. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528210. [PMID: 36865340 PMCID: PMC9979991 DOI: 10.1101/2023.02.12.528210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
HKU4-related coronaviruses are a group of betacoronaviruses belonging to the same merbecovirus subgenus as Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV), which causes severe respiratory illness in humans with a mortality rate of over 30%. The high genetic similarity between HKU4-related coronaviruses and MERS-CoV makes them an attractive subject of research for modeling potential zoonotic spillover scenarios. In this study, we identify a novel coronavirus contaminating agricultural rice RNA sequencing datasets from Wuhan, China. The datasets were generated by the Huazhong Agricultural University in early 2020. We were able to assemble the complete viral genome sequence, which revealed that it is a novel HKU4-related merbecovirus. The assembled genome is 98.38% identical to the closest known full genome sequence, Tylonycteris pachypus bat isolate BtTp-GX2012. Using in silico modeling, we identified that the novel HKU4-related coronavirus spike protein likely binds to human dipeptidyl peptidase 4 (DPP4), the receptor used by MERS-CoV. We further identified that the novel HKU4-related coronavirus genome has been inserted into a bacterial artificial chromosome in a format consistent with previously published coronavirus infectious clones. Additionally, we have found a near complete read coverage of the spike gene of the MERS-CoV reference strain HCoV-EMC/2012, and identify the likely presence of a HKU4-related-MERS chimera in the datasets. Our findings contribute to the knowledge of HKU4-related coronaviruses and document the use of a previously unpublished HKU4 reverse genetics system in apparent MERS-CoV related gain-of-function research. Our study also emphasizes the importance of improved biosafety protocols in sequencing centers and coronavirus research facilities.
Collapse
|
16
|
Mori M, Quaglio D, Calcaterra A, Ghirga F, Sorrentino L, Cammarone S, Fracella M, D’Auria A, Frasca F, Criscuolo E, Clementi N, Mancini N, Botta B, Antonelli G, Pierangeli A, Scagnolari C. Natural Flavonoid Derivatives Have Pan-Coronavirus Antiviral Activity. Microorganisms 2023; 11:microorganisms11020314. [PMID: 36838279 PMCID: PMC9960971 DOI: 10.3390/microorganisms11020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The SARS-CoV-2 protease (3CLpro) is one of the key targets for the development of efficacious drugs for COVID-19 treatment due to its essential role in the life cycle of the virus and exhibits high conservation among coronaviruses. Recent studies have shown that flavonoids, which are small natural molecules, have antiviral activity against coronaviruses (CoVs), including SARS-CoV-2. In this study, we identified the docking sites and binding affinity of several natural compounds, similar to flavonoids, and investigated their inhibitory activity towards 3CLpro enzymatic activity. The selected compounds were then tested in vitro for their cytotoxicity, for antiviral activity against SARS-CoV-2, and the replication of other coronaviruses in different cell lines. Our results showed that Baicalein (100 μg/mL) exerted strong 3CLpro activity inhibition (>90%), whereas Hispidulin and Morin displayed partial inhibition. Moreover, Baicalein, up to 25 μg/mL, hindered >50% of SARS-CoV-2 replication in Vero E6 cultures. Lastly, Baicalein displayed antiviral activity against alphacoronavirus (Feline-CoV) and betacoronavirus (Bovine-CoV and HCoV-OC43) in the cell lines. Our study confirmed the antiviral activity of Baicalein against SARS-CoV-2 and demonstrated clear evidence of its pan-coronaviral activity.
Collapse
Affiliation(s)
- Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Cammarone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Criscuolo
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Bruno Botta
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
DNA Oligonucleotides as Antivirals and Vaccine Constituents against SARS Coronaviruses: A Prospective Tool for Immune System Tuning. Int J Mol Sci 2023; 24:ijms24021553. [PMID: 36675069 PMCID: PMC9862924 DOI: 10.3390/ijms24021553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The SARS-CoV-2 pandemic has demonstrated the need to create highly effective antivirals and vaccines against various RNA viruses, including SARS coronaviruses. This paper provides a short review of innovative strategies in the development of antivirals and vaccines against SARS coronaviruses, with a focus on antisense antivirals, oligonucleotide adjuvants in vaccines, and oligonucleotide vaccines. Well-developed viral genomic databases create new opportunities for the development of innovative vaccines and antivirals using a post-genomic platform. The most effective vaccines against SARS coronaviruses are those able to form highly effective memory cells for both humoral and cellular immunity. The most effective antivirals need to efficiently stop viral replication without side effects. Oligonucleotide antivirals and vaccines can resist the rapidly changing genomic sequences of SARS coronaviruses using conserved regions of their genomes to generate a long-term immune response. Oligonucleotides have been used as excellent adjuvants for decades, and increasing data show that oligonucleotides could serve as antisense antivirals and antigens in vaccine formulations, becoming a prospective tool for immune system tuning.
Collapse
|
18
|
Drews SJ, O’Brien SF. Lessons Learned from the COVID-19 Pandemic and How Blood Operators Can Prepare for the Next Pandemic. Viruses 2022; 14:2126. [PMID: 36298680 PMCID: PMC9608827 DOI: 10.3390/v14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Humans interact with virus-infected animal hosts, travel globally, and maintain social networks that allow for novel viruses to emerge and develop pandemic potential. There are key lessons-learned from the coronavirus diseases 2019 (COVID-19) pandemic that blood operators can apply to the next pandemic. Warning signals to the COVID-19 pandemic included outbreaks of Severe acute respiratory syndrome-related coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome-related coronavirus (MERS-CoV) in the prior two decades. It will be critical to quickly determine whether there is a risk of blood-borne transmission of a new pandemic virus. Prior to the next pandemic blood operators should be prepared for changes in activities, policies, and procedures at all levels of the organization. Blood operators can utilize "Plan-Do-Study-Act" cycles spanning from: vigilance for emerging viruses, surveillance activities and studies, operational continuity, donor engagement and trust, and laboratory testing if required. Occupational health and donor safety issues will be key areas of focus even if the next pandemic virus is not transfusion transmitted. Blood operators may also be requested to engage in new activities such as the development of therapeutics or supporting public health surveillance activities. Activities such as scenario development, tabletop exercises, and drills will allow blood operators to prepare for the unknowns of the next pandemic.
Collapse
Affiliation(s)
- Steven J. Drews
- Canadian Blood Services, Microbiology, Donation and Policy Studies, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
- Division of Applied and Diagnostic Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sheila F. O’Brien
- Epidemiology and Surveillance, Donation Policy and Studies, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
19
|
Kandeel M, Al-Mubarak AIA. Camel viral diseases: Current diagnostic, therapeutic, and preventive strategies. Front Vet Sci 2022; 9:915475. [PMID: 36032287 PMCID: PMC9403476 DOI: 10.3389/fvets.2022.915475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Many pathogenic viruses infect camels, generally regarded as especially hardy livestock because of their ability to thrive in harsh and arid conditions. Transmission of these viruses has been facilitated by the commercialization of camel milk and meat and their byproducts, and vaccines are needed to prevent viruses from spreading. There is a paucity of information on the effectiveness of viral immunizations in camels, even though numerous studies have looked into the topic. More research is needed to create effective vaccines and treatments for camels. Because Camels are carriers of coronavirus, capable of producing a powerful immune response to recurrent coronavirus infections. As a result, camels may be a suitable model for viral vaccine trials since vaccines are simple to create and can prevent viral infection transfer from animals to humans. In this review, we present available data on the diagnostic, therapeutic, and preventative strategies for the following viral diseases in camels, most of which result in significant economic loss: camelpox, Rift Valley fever, peste des petits ruminants, bovine viral diarrhea, bluetongue, rotavirus, Middle East respiratory syndrome, and COVID-19. Although suitable vaccines have been developed for controlling viral infections and perhaps interrupting the transmission of the virus from the affected animals to blood-feeding vectors, there is a paucity of information on the effectiveness of viral immunizations in camels and more research is needed. Recent therapeutic trials that include specific antivirals or supportive care have helped manage viral infections.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- *Correspondence: Mahmoud Kandeel
| | - Abdullah I. A. Al-Mubarak
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Saudi Arabia
| |
Collapse
|
20
|
Loibner M, Barach P, Wolfgruber S, Langner C, Stangl V, Rieger J, Föderl-Höbenreich E, Hardt M, Kicker E, Groiss S, Zacharias M, Wurm P, Gorkiewicz G, Regitnig P, Zatloukal K. Resilience and Protection of Health Care and Research Laboratory Workers During the SARS-CoV-2 Pandemic: Analysis and Case Study From an Austrian High Security Laboratory. Front Psychol 2022; 13:901244. [PMID: 35936273 PMCID: PMC9353000 DOI: 10.3389/fpsyg.2022.901244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the interdependency of healthcare systems and research organizations on manufacturers and suppliers of personnel protective equipment (PPE) and the need for well-trained personnel who can react quickly to changing working conditions. Reports on challenges faced by research laboratory workers (RLWs) are rare in contrast to the lived experience of hospital health care workers. We report on experiences gained by RLWs (e.g., molecular scientists, pathologists, autopsy assistants) who significantly contributed to combating the pandemic under particularly challenging conditions due to increased workload, sickness and interrupted PPE supply chains. RLWs perform a broad spectrum of work with SARS-CoV-2 such as autopsies, establishment of virus cultures and infection models, development and verification of diagnostics, performance of virus inactivation assays to investigate various antiviral agents including vaccines and evaluation of decontamination technologies in high containment biological laboratories (HCBL). Performance of autopsies and laboratory work increased substantially during the pandemic and thus led to highly demanding working conditions with working shifts of more than eight hours working in PPE that stressed individual limits and also the ergonomic and safety limits of PPE. We provide detailed insights into the challenges of the stressful daily laboratory routine since the pandemic began, lessons learned, and suggest solutions for better safety based on a case study of a newly established HCBL (i.e., BSL-3 laboratory) designed for autopsies and research laboratory work. Reduced personal risk, increased resilience, and stress resistance can be achieved by improved PPE components, better training, redundant safety measures, inculcating a culture of safety, and excellent teamwork.
Collapse
Affiliation(s)
- Martina Loibner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Paul Barach
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- College of Population Health, Thomas Jefferson University, Philadelphia, PA, United States
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Stella Wolfgruber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Langner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Verena Stangl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Julia Rieger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Melina Hardt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Eva Kicker
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Groiss
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Martin Zacharias
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philipp Wurm
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| |
Collapse
|
21
|
Condé L, Allatif O, Ohlmann T, de Breyne S. Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF. Viruses 2022; 14:1505. [PMID: 35891485 PMCID: PMC9322171 DOI: 10.3390/v14071505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 infection generates up to nine different sub-genomic mRNAs (sgRNAs), in addition to the genomic RNA (gRNA). The 5'UTR of each viral mRNA shares the first 75 nucleotides (nt.) at their 5'end, called the leader, but differentiates by a variable sequence (0 to 190 nt. long) that follows the leader. As a result, each viral mRNA has its own specific 5'UTR in term of length, RNA structure, uORF and Kozak context; each one of these characteristics could affect mRNA expression. In this study, we have measured and compared translational efficiency of each of the ten viral transcripts. Our data show that most of them are very efficiently translated in all translational systems tested. Surprisingly, the gRNA 5'UTR, which is the longest and the most structured, was also the most efficient to initiate translation. This property is conserved in the 5'UTR of SARS-CoV-1 but not in MERS-CoV strain, mainly due to the regulation imposed by the uORF. Interestingly, the translation initiation mechanism on the SARS-CoV-2 gRNA 5'UTR requires the cap structure and the components of the eIF4F complex but showed no dependence in the presence of the poly(A) tail in vitro. Our data strongly suggest that translation initiation on SARS-CoV-2 mRNAs occurs via an unusual cap-dependent mechanism.
Collapse
Affiliation(s)
| | | | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| | - Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, (Team Ohlmann), Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.C.); (O.A.)
| |
Collapse
|
22
|
Fan C, Wu Y, Rui X, Yang Y, Ling C, Liu S, Liu S, Wang Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct Target Ther 2022; 7:220. [PMID: 35798699 PMCID: PMC9261903 DOI: 10.1038/s41392-022-01087-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is the most consequential pandemic of this century. Since the outbreak in late 2019, animal models have been playing crucial roles in aiding the rapid development of vaccines/drugs for prevention and therapy, as well as understanding the pathogenesis of SARS-CoV-2 infection and immune responses of hosts. However, the current animal models have some deficits and there is an urgent need for novel models to evaluate the virulence of variants of concerns (VOC), antibody-dependent enhancement (ADE), and various comorbidities of COVID-19. This review summarizes the clinical features of COVID-19 in different populations, and the characteristics of the major animal models of SARS-CoV-2, including those naturally susceptible animals, such as non-human primates, Syrian hamster, ferret, minks, poultry, livestock, and mouse models sensitized by genetically modified, AAV/adenoviral transduced, mouse-adapted strain of SARS-CoV-2, and by engraftment of human tissues or cells. Since understanding the host receptors and proteases is essential for designing advanced genetically modified animal models, successful studies on receptors and proteases are also reviewed. Several improved alternatives for future mouse models are proposed, including the reselection of alternative receptor genes or multiple gene combinations, the use of transgenic or knock-in method, and different strains for establishing the next generation of genetically modified mice.
Collapse
Affiliation(s)
- Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Yong Wu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Xiong Rui
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yuansong Yang
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Chen Ling
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
- College of Life Sciences, Northwest University; Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, 710069, China
| | - Susu Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Shunan Liu
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), National Rodent Laboratory Animal Resources Center, Beijing, 102629, China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| |
Collapse
|
23
|
Yao W, Tan L, Liu L. Visualization and analysis of mapping knowledge domains for coronavirus research. Medicine (Baltimore) 2022; 101:e29508. [PMID: 35758392 PMCID: PMC9276283 DOI: 10.1097/md.0000000000029508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In recent years, many countries around the world have been threatened by COVs. The aim of this study was to better grasp developments and trends in research on coronavirus around the world and to promote theoretical research into their prevention and control. METHODS Research on coronavirus was reviewed and analyzed using bibliometrics based on a total of 4860 publications collected from the Web of Science Core Collection database. Yearly quantitative distribution of literature, country/region distribution, organization distribution, main source journal distribution, subject category distribution, research knowledge bases, and research hotspots and frontiers were all analyzed, and CiteSpace and VOSviewer were used to plot knowledge domain maps, Excel was used to plot keyword strategy diagram. RESULTS Coronavirus research could be roughly divided into 4 stages: preliminary development stage (before 2000), rapid growth stage (2000-2005), slow decline stage (2006-2011) and sustained growth stage (since 2012). America had taken the leading position in this field. The study of COVs involves many subject categories, mainly includes virology, veterinary sciences, biology, and immunology. At present, the key words in the field of coronavirus research were mainly divided into 6 major hot clusters, namely, the introduction and structure analysis of coronavirus, the research on the outbreak source and transmission of coronavirus, the research on the infection pathway of coronavirus in human body, the research on the pathogenesis of coronavirus, the research on the diagnosis and symptoms of coronavirus infection, and the research on the treatment of coronavirus. CONCLUSION Coronavirus, which occurs all over the world, often causes huge casualties and economic losses, and poses a serious threat to the safe and stable operation of the social and economic system. Objective literature review and analysis can help scholars in related fields to deepen their overall understanding. And, there are several key issues that should be further explored in future research.
Collapse
Affiliation(s)
- Weizhi Yao
- School of Economics and Management, Southeast University, Nanjing, China
| | - Ling Tan
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Liang Liu
- School of Economics and Management, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Luan B, Huynh T. Crystal-structures-guided design of fragment-based drugs for inhibiting the main protease of SARS-CoV-2. Proteins 2022; 90:1081-1089. [PMID: 34636446 PMCID: PMC8661981 DOI: 10.1002/prot.26260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/29/2023]
Abstract
Since the beginning of the COVID-19 pandemic, scientists across the globe are racing to find a cure for the highly contagious infectious disease caused by the SARS-CoV-2 virus. Despite many promising ongoing progress, there are currently no FDA approved drug to treat infected patients. Recently, the crowdsourcing of drug discovery for inhibiting the main protease (Mpro) of SARS-CoV-2 have yielded a plenty of drug fragments resolved inside the active site of Mpro via the crystallography method. Following the principle of fragment-based drug design (FBDD), we are motivated to design a potent drug candidate (named B19) by merging three fragments JFM, U0P, and HWH. Through extensive all-atom molecular dynamics simulation and molecular docking, we found that B19 among all designed ones is most stable inside the Mpro's active site and the binding free energy of B19 is comparable to or even a little better than that of a native protein ligand processed by Mpro. Our promising results suggest that B19 and its derivatives can potentially be efficacious drug candidates for COVID-19.
Collapse
Affiliation(s)
- Binquan Luan
- Computational Biological CenterIBM Thomas J. Watson ResearchNew YorkNew YorkUSA
| | - Tien Huynh
- Computational Biological CenterIBM Thomas J. Watson ResearchNew YorkNew YorkUSA
| |
Collapse
|
25
|
Eriani G, Martin F. Viral and cellular translation during SARS‐CoV‐2 infection. FEBS Open Bio 2022; 12:1584-1601. [PMID: 35429230 PMCID: PMC9110871 DOI: 10.1002/2211-5463.13413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
SARS‐CoV‐2 is a betacoronavirus that emerged in China in December 2019 and which is the causative agent of the Covid‐19 pandemic. This enveloped virus contains a large positive‐sense single‐stranded RNA genome. In this review, we summarize the current knowledge on the molecular mechanisms for the translation of both viral transcripts and cellular messenger RNAs. Non‐structural proteins are encoded by the genomic RNA and are produced in the early steps of infection. In contrast, the structural proteins are produced from subgenomic RNAs that are translated in the late phase of the infectious program. Non‐structural protein 1 (NSP1) is a key molecule that regulates both viral and cellular translation. In addition, NSP1 interferes with multiple steps of the interferon I pathway and thereby blocks host antiviral responses. Therefore, NSP1 is a drug target of choice for the development of antiviral therapies.
Collapse
Affiliation(s)
- Gilbert Eriani
- Université de Strasbourg Institut de Biologie Moléculaire et Cellulaire Architecture et Réactivité de l’ARN CNRS UPR9002 2, allée Konrad Roentgen F‐67084 Strasbourg France
| | - Franck Martin
- Université de Strasbourg Institut de Biologie Moléculaire et Cellulaire Architecture et Réactivité de l’ARN CNRS UPR9002 2, allée Konrad Roentgen F‐67084 Strasbourg France
| |
Collapse
|
26
|
Inhibition of the IFN-α JAK/STAT Pathway by MERS-CoV and SARS-CoV-1 Proteins in Human Epithelial Cells. Viruses 2022; 14:v14040667. [PMID: 35458397 PMCID: PMC9032603 DOI: 10.3390/v14040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Coronaviruses (CoVs) have caused several global outbreaks with relatively high mortality rates, including Middle East Respiratory Syndrome coronavirus (MERS)-CoV, which emerged in 2012, and Severe Acute Respiratory Syndrome (SARS)-CoV-1, which appeared in 2002. The recent emergence of SARS-CoV-2 highlights the need for immediate and greater understanding of the immune evasion mechanisms used by CoVs. Interferon (IFN)-α is the body's natural antiviral agent, but its Janus kinase/signal transducer and activators of transcription (JAK/STAT) signalling pathway is often antagonized by viruses, thereby preventing the upregulation of essential IFN stimulated genes (ISGs). Therapeutic IFN-α has disappointingly weak clinical responses in MERS-CoV and SARS-CoV-1 infected patients, indicating that these CoVs inhibit the IFN-α JAK/STAT pathway. Here we show that in lung alveolar A549 epithelial cells expression of MERS-CoV-nsp2 and SARS-CoV-1-nsp14, but not MERS-CoV-nsp5, increased basal levels of total and phosphorylated STAT1 & STAT2 protein, but reduced IFN-α-mediated phosphorylation of STAT1-3 and induction of MxA. While MERS-CoV-nsp2 and SARS-CoV-1-nsp14 similarly increased basal levels of STAT1 and STAT2 in bronchial BEAS-2B epithelial cells, unlike in A549 cells, they did not enhance basal pSTAT1 nor pSTAT2. However, both viral proteins reduced IFN-α-mediated induction of pSTAT1-3 and ISGs (MxA, ISG15 and PKR) in BEAS-2B cells. Furthermore, even though IFN-α-mediated induction of pSTAT1-3 was not affected by MERS-CoV-nsp5 expression in BEAS-2B cells, downstream ISG induction was reduced, revealing that MERS-CoV-nsp5 may use an alternative mechanism to reduce antiviral ISG induction in this cell line. Indeed, we subsequently discovered that all three viral proteins inhibited STAT1 nuclear translocation in BEAS-2B cells, unveiling another layer of inhibition by which these viral proteins suppress responses to Type 1 IFNs. While these observations highlight cell line-specific differences in the immune evasion effects of MERS-CoV and SARS-CoV-1 proteins, they also demonstrate the broad spectrum of immune evasion strategies these deadly coronaviruses use to stunt antiviral responses to Type IFN.
Collapse
|
27
|
Liu HY, Gu H, Qu H, Bao W, Li Y, Cai D. Aberrant Cholesterol Metabolic Genes Regulation in a Negative Feedback Loop Induced by an Alphacoronavirus. Front Nutr 2022; 9:870680. [PMID: 35369058 PMCID: PMC8973467 DOI: 10.3389/fnut.2022.870680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/10/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes acute inflammation and severe diarrhea in newborn piglets with a high mortality rate. Given that cholesterol is required for coronavirus infection in vitro, the role of endogenous cholesterol metabolism in regulating coronavirus infection and the mechanism behind it ought to be elucidated. In this study, we found that the levels of cholesterol and bile acids were both elevated in the livers of PEDV-infected piglets compared to those of the control group. Consistently, in the livers of PEDV-infected piglets, the expression of key genes involved in cholesterol metabolism was significantly increased. Transcriptomic analysis indicated that the cholesterol homeostasis pathway was among the most enriched pathways in the livers of PEDV-infected piglets. Unexpectedly, the expression of key genes in the cholesterol metabolic pathway was downregulated at the messenger RNA (mRNA) level, but upregulated at the protein level. While the primary transcriptional factors (TFs) of cholesterol metabolism, including SREBP2 and FXR, were upregulated at both mRNA and protein levels in response to PEDV infection. Further Chromatin Immunoprecipitation Quantitative Real-time PCR (ChIP-qPCR) analysis demonstrated that the binding of these TFs to the locus of key genes in the cholesterol metabolic pathway was remarkably inhibited by PEDV infection. It was also observed that the occupancies of histone H3K27ac and H3K4me1, at the locus of the cholesterol metabolic genes HMGCR and HMGCS1, in the livers of PEDV-infected piglets, were suppressed. Together, the PEDV triggers an aberrant regulation of cholesterol metabolic genes via epigenetic inhibition of SREBP2/FXR-mediated transcription, which provides a novel antiviral target against PEDV and other coronaviruses.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Huan Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yanhua Li
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Demin Cai
| |
Collapse
|
28
|
Immunogenic Epitope-Based Vaccine Prediction from Surface Glycoprotein of MERS-CoV by Deploying Immunoinformatics Approach. Int J Pept Res Ther 2022; 28:77. [PMID: 35313444 PMCID: PMC8924944 DOI: 10.1007/s10989-022-10382-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has caused a high mortality rate since its emergence in 2012 in the Middle East. Currently, no effective drug or vaccine is available for MERS-CoV. Supportive care and prevention are the only ways to manage infection. In this study, we identified an epitope-based vaccine that could be an optimal solution for the prevention of MERS-CoV infection. By deploying an immunoinformatics approach, we predicted a subunit vaccine based on the surface glycoprotein (S protein) of MERS-CoV. For this purpose, the proteome of the MERS-CoV spike protein was obtained from the NCBI GenBank database. Then, it was subjected to a check for allergenicity using the Allergen FP v.1.0 tool. The Vaxijen v.2.0 tool was used to conduct antigenicity tests for binding with major histocompatibility complex class I and II molecules. The solidity of the predicted epitope-allele docked complex was evaluated by a molecular dynamics simulation. After docking a total of eight epitopes from the MERS-CoV S protein, further analyses predicted their non-toxicity and therapeutic immunogenic properties. These epitopes have potential utility as vaccine candidates against MERS-CoV, to be validated by wet-lab testing.
Collapse
|
29
|
Soares GF, Almeida OM, Menezes JWM, Kozlov SSA, Rodrigues JJPC. Air–Oxygen Blenders for Mechanical Ventilators: A Literature Review. SENSORS 2022; 22:s22062182. [PMID: 35336353 PMCID: PMC8954851 DOI: 10.3390/s22062182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023]
Abstract
Respiratory diseases are one of the most common causes of death in the world and this recent COVID-19 pandemic is a key example. Problems such as infections, in general, affect many people and depending on the form of transmission they can spread throughout the world and weaken thousands of people. Two examples are severe acute respiratory syndrome and the recent coronavirus disease. These diseases have mild and severe forms, in which patients gravely affected need ventilatory support. The equipment that serves as a basis for operation of the mechanical ventilator is the air–oxygen blender, responsible for carrying out the air–oxygen mixture in the proper proportions ensuring constant supply. New blender models are described in the literature together with applications of control techniques, such as Proportional, Integrative and Derivative (PID); Fuzzy; and Adaptive. The results obtained from the literature show a significant improvement in patient care when using automatic controls instead of manual adjustment, increasing the safety and accuracy of the treatment. This study presents a deep review of the state of the art in air–oxygen benders, identifies the most relevant characteristics, performs a comparison study considering the most relevant available solutions, and identifies open research directions in the topic.
Collapse
Affiliation(s)
- Gabryel F. Soares
- Department of Electrical Engineering, Universidade Federal do Piauí, Teresina 64049-550, Brazil; (G.F.S.); (O.M.A.)
| | - Otacílio M. Almeida
- Department of Electrical Engineering, Universidade Federal do Piauí, Teresina 64049-550, Brazil; (G.F.S.); (O.M.A.)
| | - José W. M. Menezes
- Departament of Telematics, Federal Institute of Ceará, Fortaleza 60040-531, Brazil;
| | - Sergei S. A. Kozlov
- Photonics and Optoinformatics Faculty, ITMO University, 191002 St. Petersburg, Russia;
| | - Joel J. P. C. Rodrigues
- Photonics and Optoinformatics Faculty, ITMO University, 191002 St. Petersburg, Russia;
- Research, Post-Graduation, and Innovation, Senac Faculty of Ceará, Fortaleza 60160-194, Brazil
- Covilhã Delegation, Instituto de Telecomunicações, 6201-001 Covilhã, Portugal
- Correspondence:
| |
Collapse
|
30
|
Zhang D, Yang Y, Li M, Lu Y, Liu Y, Jiang J, Liu R, Liu J, Huang X, Li G, Qu J. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. ENGINEERING (BEIJING, CHINA) 2022; 10:155-166. [PMID: 33903827 PMCID: PMC8060651 DOI: 10.1016/j.eng.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st century have attracted extensive global attention. These emerging infectious diseases threaten global public health and raise urgent studies on unraveling the underlying mechanisms of their transmission from animals to humans. Although numerous works have intensively discussed the cross-species and endemic barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play synergistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion, migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize the ecological barrier that represents the combined effects of cross-species and endemic barriers for either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential factors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats into human society, including transmission routes, contact probability, contact frequency, and viral characteristics. Considering the significant impacts of human activities and global industrialization on the strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging infectious diseases, and human disturbances promote higher contact frequency and greater transmission possibility. In addition, globalization drives more transmission routes and produces new high-risk regions in city areas. This review aims to provide a new concept for and comprehensive evidence of the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks of emerging infectious diseases to public health.
Collapse
Affiliation(s)
- Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
31
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
32
|
Wang P, Ding P, Wei Q, Liu H, Liu Y, Li Q, Xing Y, Li G, Zhou E, Zhang G. Precise location of two novel linear epitopes on the receptor-binding domain surface of MERS-CoV spike protein recognized by two different monoclonal antibodies. Int J Biol Macromol 2022; 195:609-619. [PMID: 34871658 PMCID: PMC8641979 DOI: 10.1016/j.ijbiomac.2021.11.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a coronavirus which can cause severe human respiratory diseases with a fatality rate of almost 36%. In this study, we report the generation, characterization and epitope mapping of several monoclonal antibodies against the spike receptor-binding domain (RBD) of MERS-CoV. Two monoclonal antibodies (4C7 and 6E8) that can react with linearized RBD have been selected for subsequent identification of RBD mAb-binding epitopes. Two distinct novel linear epitopes, 423FTCSQIS429 and 546SPLEGGGWL554,were precisely located at the outermost surface of RBD by dot-blot hybridization and ELISAs. Multiple sequence alignment analysis showed that these two peptides were highly conserved. Alanine (A)-scanning mutagenesis demonstrated that residues 423F, 428I, and 429S are the crucial residues for the linear epitope 423FTCSQIS429 while residues 548L, 550G, 553W, 554L for epitope 546SPLEGGGWL554. These findings may be helpful for further understanding of the function of RBD protein and the development of subsequent diagnosis and detection methods.
Collapse
Affiliation(s)
- Pan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China,Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingmei Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunrui Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ge Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Enmin Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
33
|
Te N, Ciurkiewicz M, van den Brand JMA, Rodon J, Haverkamp AK, Vergara-Alert J, Bensaid A, Haagmans BL, Baumgartner W, Segalés J. Middle East respiratory syndrome coronavirus infection in camelids. Vet Pathol 2022; 59:546-555. [PMID: 35001773 DOI: 10.1177/03009858211069120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans.
Collapse
Affiliation(s)
- Nigeer Te
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, Spain
| |
Collapse
|
34
|
Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022; 14:78. [PMID: 35062282 PMCID: PMC8778387 DOI: 10.3390/v14010078] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) constitute a large and diverse subfamily of positive-sense single-stranded RNA viruses. They are found in many mammals and birds and have great importance for the health of humans and farm animals. The current SARS-CoV-2 pandemic, as well as many previous epidemics in humans that were of zoonotic origin, highlights the importance of studying the evolution of the entire CoV subfamily in order to understand how novel strains emerge and which molecular processes affect their adaptation, transmissibility, host/tissue tropism, and patho non-homologous genicity. In this review, we focus on studies over the last two years that reveal the impact of point mutations, insertions/deletions, and intratypic/intertypic homologous and non-homologous recombination events on the evolution of CoVs. We discuss whether the next generations of CoV vaccines should be directed against other CoV proteins in addition to or instead of spike. Based on the observed patterns of molecular evolution for the entire subfamily, we discuss five scenarios for the future evolutionary path of SARS-CoV-2 and the COVID-19 pandemic. Finally, within this evolutionary context, we discuss the recently emerged Omicron (B.1.1.529) VoC.
Collapse
Affiliation(s)
- Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Eleni Tryfonopoulou
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
35
|
Abstract
The arrival of the most recent coronavirus in 2019, SARS-CoV-2, caught the entire world by surprise, and as a result has caused more anguish due to its rapid spread and serious health consequences for the elderly and those with underlying health conditions, and its ability to generate variants of ever increasing contagiousness. But this was not the first coronavirus to infect humans. This chapter explores the history of this virus family, the emergence of the first serious infection in 2003–04 (SARS-CoV), and the related virus MERS in 2012, and the possible origins of SARS-CoV-2. The lessons of those two outbreaks that never developed into pandemics may not all have been learnt by the world health leaders of today. Nevertheless, the rapidity of vaccine development and the conventional health measure introduced during 2020, not always in good time, has almost certainly led to lower morbidities and mortalities that would otherwise have been the case. This chapter will inevitably be out of date by time this book goes to press. Nevertheless, it is to be hoped that the origin of SARS-CoV-2 will eventually be established, but sadly not without the cooperation of the major countries having the resources to carry out such complex investigations. If such a cooperation did happen, maybe future pandemics of this will be more controllable, and even never progress beyond local outbreaks.
Collapse
|
36
|
Comparison of experimental MERS-CoV infection acquired by three individual routes of infection in the common marmoset. J Virol 2021; 96:e0173921. [PMID: 34908447 PMCID: PMC8865480 DOI: 10.1128/jvi.01739-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two strains of Middle East respiratory syndrome coronavirus (MERS-CoV), England 1 and Erasmus Medical Centre/2012 (EMC/2012), were used to challenge common marmosets (Callithrix jacchus) by three routes of infection: aerosol, oral, and intranasal. Animals challenged by the intranasal and aerosol routes presented with mild, transient disease, while those challenged by the oral route presented with a subclinical immunological response. Animals challenged with MERS-CoV strain EMC/2012 by the aerosol route responded with primary and/or secondary pyrexia. Marmosets had minimal to mild multifocal interstitial pneumonia, with the greatest relative severity being observed in animals challenged by the aerosol route. Viable virus was isolated from the host in throat swabs and lung tissue. The transient disease described is consistent with a successful host response and was characterized by the upregulation of macrophage and neutrophil function observed in all animals at the time of euthanasia. IMPORTANCE Middle East respiratory syndrome is caused by a human coronavirus, MERS-CoV, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Humans typically exhibit fever, cough, shortness of breath, gastrointestinal issues, and breathing difficulties, which can lead to pneumonia and/or renal complications. This emerging disease resulted in the first human lethal cases in 2012 and has a case fatality rate of approximately 36%. Consequently, there is a need for medical countermeasures and appropriate animal models for their assessment. This work has demonstrated the requirement for higher concentrations of virus to cause overt disease. Challenge by the aerosol, intranasal, and oral routes resulted in no or mild disease, but all animals had an immunological response. This shows that an appropriate early immunological response is able to control the disease.
Collapse
|
37
|
Henao-Kaffure L, Peñaloza G. A critical perspective on pandemics and epidemics: building a bridge between public health and science education. CULTURAL STUDIES OF SCIENCE EDUCATION 2021; 16:1029-1045. [PMID: 34849176 PMCID: PMC8619648 DOI: 10.1007/s11422-021-10074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This academic position paper focuses on building a bridge between public health and science education in order to recognize the relationships between science and society-politics, economics, and ideology-in a pandemic context. To do this, we first present the contemporary dispute between the ways of understanding and explaining public health problems in light of a historical-territorial critical perspective; then, we show the configuration process of the formal and hegemonic concept of pandemic that has taken place over the period of the pandemics of the 1918 flu and the 2019 coronavirus disease; later, we give way to a historical-territorial understanding of the genesis of the 2002 and 2012 epidemics in relation to the coronavirus in the twenty-first century; and lastly, we indicate the key points from the historical-territorial critical perspective of public health that science education can use in order to contribute to a critical and reflective understanding of epidemics and pandemics. In this framework, "configuration process" is a category we propose and use in order to explain that specific events such as epidemics and pandemics are interwoven in a social, historical-territorial, trajectory of world power relations.
Collapse
Affiliation(s)
- Liliana Henao-Kaffure
- Grupo de Estudios Sociohistóricos de la Salud y la Protección Social, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gonzalo Peñaloza
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Monterrey, México
| |
Collapse
|
38
|
Modeling coronavirus spike protein dynamics: implications for immunogenicity and immune escape. Biophys J 2021; 120:5592-5618. [PMID: 34767789 PMCID: PMC8577870 DOI: 10.1016/j.bpj.2021.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
The ongoing COVID-19 pandemic is a global public health emergency requiring urgent development of efficacious vaccines. While concentrated research efforts have focused primarily on antibody-based vaccines that neutralize SARS-CoV-2, and several first-generation vaccines have either been approved or received emergency use authorization, it is forecasted that COVID-19 will become an endemic disease requiring updated second-generation vaccines. The SARS-CoV-2 surface spike (S) glycoprotein represents a prime target for vaccine development because antibodies that block viral attachment and entry, i.e., neutralizing antibodies, bind almost exclusively to the receptor-binding domain. Here, we develop computational models for a large subset of S proteins associated with SARS-CoV-2, implemented through coarse-grained elastic network models and normal mode analysis. We then analyze local protein domain dynamics of the S protein systems and their thermal stability to characterize structural and dynamical variability among them. These results are compared against existing experimental data and used to elucidate the impact and mechanisms of SARS-CoV-2 S protein mutations and their associated antibody binding behavior. We construct a SARS-CoV-2 antigenic map and offer predictions about the neutralization capabilities of antibody and S mutant combinations based on protein dynamic signatures. We then compare SARS-CoV-2 S protein dynamics to SARS-CoV and MERS-CoV S proteins to investigate differing antibody binding and cellular fusion mechanisms that may explain the high transmissibility of SARS-CoV-2. The outbreaks associated with SARS-CoV, MERS-CoV, and SARS-CoV-2 over the last two decades suggest that the threat presented by coronaviruses is ever-changing and long term. Our results provide insights into the dynamics-driven mechanisms of immunogenicity associated with coronavirus S proteins and present a new, to our knowledge, approach to characterize and screen potential mutant candidates for immunogen design, as well as to characterize emerging natural variants that may escape vaccine-induced antibody responses.
Collapse
|
39
|
Zandi M, Hosseini P, Soltani S, Rasooli A, Moghadami M, Nasimzadeh S, Behnezhad F. The role of lipids in the pathophysiology of coronavirus infections. Osong Public Health Res Perspect 2021; 12:278-285. [PMID: 34719219 PMCID: PMC8561023 DOI: 10.24171/j.phrp.2021.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses, which have been known to cause diseases in animals since the 1930s, utilize cellular components during their replication cycle. Lipids play important roles in viral infection, as coronaviruses target cellular lipids and lipid metabolism to modify their host cells to become an optimal environment for viral replication. Therefore, lipids can be considered as potential targets for the development of antiviral agents. This review provides an overview of the roles of cellular lipids in different stages of the life cycle of coronaviruses.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Rasooli
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Mona Moghadami
- Department of Medical Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sepideh Nasimzadeh
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Genetic Insights into the Middle East Respiratory Syndrome Coronavirus Infection among Saudi People. Vaccines (Basel) 2021; 9:vaccines9101193. [PMID: 34696302 PMCID: PMC8539242 DOI: 10.3390/vaccines9101193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Middle East respiratory syndrome coronavirus (MERS-CoV) was isolated for the first time in Saudi Arabia from a patient suffering from atypical pneumonia. The Saudi Genome database was built by King Abdulaziz Medical City via the next-generation sequencing of 7000 candidates. METHOD A large list of point mutations were reported in the region of the dipeptidyl peptidase 4 (DPP4) gene. The DPP4 amino acid residues correlated to MERS-CoV entry and the site of activity of DPP4 inhibitors was investigated. We retrieved the SNPs (Single-Nucleotide Polymorphism) with a variation frequency of >0.05. RESULTS SNP 2:162,890,175 and SNP 2:162,891,848 in the intronic region were located within 50 bp of amino acid residues responsible for MERS-CoV entry, amino acids 259-296 and 205-258, respectively. The variation frequency of SNP 2:162,890,175 was 2321 out of 2379 screened individuals. Moreover, mutation of SNP 2:162,891,848, which is located near amino acid residues E205 and E206 (crucial for the activity of DPP4 inhibitors), occurred in 76 out of 2379 screened individuals. CONCLUSIONS Our study shows high variation frequency in the DPP4 region reported in the Saudi Genome database. The identified SNPs are of high significance for MERS-CoV infection in better understanding disease pathogenesis.
Collapse
|
41
|
Yuan S, Balaji S, Lomakin IB, Xiong Y. Coronavirus Nsp1: Immune Response Suppression and Protein Expression Inhibition. Front Microbiol 2021; 12:752214. [PMID: 34659188 PMCID: PMC8512706 DOI: 10.3389/fmicb.2021.752214] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
Coronaviruses have brought severe challenges to public health all over the world in the past 20years. SARS-CoV-2, the causative agent of the COVID-19 pandemic that has led to millions of deaths, belongs to the genus beta-coronavirus. Alpha- and beta-coronaviruses encode a unique protein, nonstructural protein 1 (Nsp1) that both suppresses host immune responses and reduces global gene expression levels in the host cells. As a key pathogenicity factor of coronaviruses, Nsp1 redirects the host translation machinery to increase synthesis of viral proteins. Through multiple mechanisms, coronaviruses impede host protein expression through Nsp1, while escaping inhibition to allow the translation of viral RNA. In this review, we discuss current data about suppression of the immune responses and inhibition of protein synthesis induced by coronavirus Nsp1, as well as the prospect of live-attenuated vaccine development with virulence-attenuated viruses with mutations in Nsp1.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Shravani Balaji
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
42
|
Gupta P, Singh MP, Goyal K, Tripti P, Ansari MI, Obli Rajendran V, Dhama K, Malik YS. Bats and viruses: a death-defying friendship. Virusdisease 2021; 32:467-479. [PMID: 34518804 PMCID: PMC8426161 DOI: 10.1007/s13337-021-00716-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/19/2021] [Indexed: 01/10/2023] Open
Abstract
Bats have a primeval evolutionary origin and have adopted various survival methods. They have played a central role in the emergence of various viral diseases. The sustenance of a plethora of virus species inside them has been an earnest area of study. This review explains how the evolution of viruses in bats has been linked to their metabolic pathways, flight abilities, reproductive abilities and colonization behaviors. The utilization of host immune response by DNA and RNA viruses is a commencement of the understanding of differences in the impact of viral infection in bats from other mammals. Rabies virus and other lyssa viruses have had long documented history as bat viruses. While many others like Ebola virus, Nipah virus, Hantavirus, SARS-CoV, MERS-CoV and other new emerging viruses like Sosuga virus, Menangle and Tioman virus are now being studied extensively for their transmission in new hosts. The ongoing pandemic SARS-CoV-2 virus has also been implicated to be originated from bats. Certain factors have been linked to spillover events while the scope of entitlement of other conditions in the spread of diseases from bats still exists. However, certain physiological and ecological parameters have been linked to specific transmission patterns, and more definite proofs are awaited for establishing these connections.
Collapse
Affiliation(s)
- Parakriti Gupta
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mini P. Singh
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kapil Goyal
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pande Tripti
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Mohd Ikram Ansari
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh 226026 India
| | - Vinodhkumar Obli Rajendran
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243 122 India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, Punjab 141 004 India
| |
Collapse
|
43
|
Abstract
Bats are a key reservoir of coronaviruses (CoVs), including the agent of the severe acute respiratory syndrome, SARS-CoV-2, responsible for the recent deadly viral pneumonia pandemic. However, understanding how bats can harbor several microorganisms without developing illnesses is still a matter under discussion. Viruses and other pathogens are often studied as stand-alone entities, despite that, in nature, they mostly live in multispecies associations called biofilms-both externally and within the host. Microorganisms in biofilms are enclosed by an extracellular matrix that confers protection and improves survival. Previous studies have shown that viruses can secondarily colonize preexisting biofilms, and viral biofilms have also been described. In this review, we raise the perspective that CoVs can persistently infect bats due to their association with biofilm structures. This phenomenon potentially provides an optimal environment for nonpathogenic and well-adapted viruses to interact with the host, as well as for viral recombination. Biofilms can also enhance virion viability in extracellular environments, such as on fomites and in aquatic sediments, allowing viral persistence and dissemination. Moreover, understanding the biofilm lifestyle of CoVs in reservoirs might contribute to explaining several burning questions as to persistence and transmissibility of highly pathogenic emerging CoVs.
Collapse
Affiliation(s)
- Rafael Gomes Von Borowski
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR) UMR6290, Rennes, France
| | - Danielle Silva Trentin
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
44
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused significant morbidity and mortality on a global scale. The etiologic agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), initiates host cell entry when its spike protein (S) binds to its receptor, angiotensin-converting enzyme 2 (ACE2). In airway epithelia, the spike protein is cleaved by the cell surface protease TMPRSS2, facilitating membrane fusion and entry at the cell surface. This dependence on TMPRSS2 and related proteases suggests that protease inhibitors might limit SARS-CoV-2 infection in the respiratory tract. Here, we tested two serine protease inhibitors, camostat mesylate and nafamostat mesylate, for their ability to inhibit entry of SARS-CoV-2 and that of a second pathogenic coronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). Both camostat and nafamostat reduced infection in primary human airway epithelia and in the Calu-3 2B4 cell line, with nafamostat exhibiting greater potency. We then assessed whether nafamostat was protective against SARS-CoV-2 in vivo using two mouse models. In mice sensitized to SARS-CoV-2 infection by transduction with human ACE2, intranasal nafamostat treatment prior to or shortly after SARS-CoV-2 infection significantly reduced weight loss and lung tissue titers. Similarly, prophylactic intranasal treatment with nafamostat reduced weight loss, viral burden, and mortality in K18-hACE2 transgenic mice. These findings establish nafamostat as a candidate for the prevention or treatment of SARS-CoV-2 infection and disease pathogenesis.
Collapse
|
45
|
Cuong HQ, Hai ND, Linh HT, Hieu NT, Anh NH, Ton T, Dong TC, Thao VT, Tuoi DTH, Tuan ND, Loan HTK, Long NT, Thang CM, Thao NTT, Lan PT. The Production of Standardized Samples with Known Concentrations for Severe Acute Respiratory Syndrome Coronavirus 2 RT-qPCR Testing Validation for Developing Countries in the Period of the Pandemic Era. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5516344. [PMID: 34368349 PMCID: PMC8337105 DOI: 10.1155/2021/5516344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of pneumonia spreading around the world, leading to serious threats to public health and attracting enormous attention. There is an urgent need for sensitive diagnostic testing implementation to control and manage SARS-CoV-2 in public health laboratories. The quantitative reverse transcription PCR (RT-qPCR) assay is the gold standard method, but the sensitivity and specificity of SARS-CoV-2 testing are dependent on a number of factors. METHODS We synthesized RNA based on the genes published to estimate the concentration of inactivated virus samples in a biosafety level 3 laboratory. The limit of detection (LOD), linearity, accuracy, and precision were evaluated according to the bioanalytical method validation guidelines. RESULTS We found that the LOD reached around 3 copies/reaction. Furthermore, intra-assay precision, accuracy, and linearity met the accepted criterion with an RSD for copies of less than 25%, and linear regression met the accepted R 2 of 0.98. CONCLUSIONS We suggest that synthesized RNA based on the database of the NCBI gene bank for estimating the concentration of inactivated virus samples provides a potential opportunity for reliable testing to diagnose coronavirus disease 2019 (COVID-19) as well as limit the spread of the disease. This method may be relatively quick and inexpensive, and it may be useful for developing countries during the pandemic era. In the long term, it is also applicable for evaluation, verification, validation, and external quality assessment.
Collapse
Affiliation(s)
- Hoang Quoc Cuong
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Nguyen Duc Hai
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Hoang Thuy Linh
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Nguyen Trung Hieu
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Nguyen Hoang Anh
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Tran Ton
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Tran Cat Dong
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Vu Thanh Thao
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Do Thi Hong Tuoi
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Nguyen Duc Tuan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Huynh Thi Kim Loan
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Long
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Cao Minh Thang
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Nguyen Thi Thanh Thao
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| | - Phan Trong Lan
- Microbiology and Immunology Department, Planning Division, Medical Testing and Calibration Centers, Medical Analysis Department, Pasteur Institute in Ho Chi Minh City, Vietnam
| |
Collapse
|
46
|
Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep 2021; 11:15431. [PMID: 34326355 PMCID: PMC8322212 DOI: 10.1038/s41598-021-92176-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 01/26/2023] Open
Abstract
Currently, no approved vaccine is available against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease. The spike glycoprotein is typically considered a suitable target for MERS-CoV vaccine candidates. A computational strategy can be used to design an antigenic vaccine against a pathogen. Therefore, we used immunoinformatics and computational approaches to design a multi-epitope vaccine that targets the spike glycoprotein of MERS-CoV. After using numerous immunoinformatics tools and applying several immune filters, a poly-epitope vaccine was constructed comprising cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon-gamma (IFN-γ)-inducing epitopes. In addition, various physicochemical, allergenic, and antigenic profiles were evaluated to confirm the immunogenicity and safety of the vaccine. Molecular interactions, binding affinities, and the thermodynamic stability of the vaccine were examined through molecular docking and dynamic simulation approaches, during which we identified a stable and strong interaction with Toll-like receptors (TLRs). In silico immune simulations were performed to assess the immune-response triggering capabilities of the vaccine. This computational analysis suggested that the proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat viral infections; however, experimental evaluations remain necessary to verify the exact safety and immunogenicity profile of this vaccine.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Md Oliullah Rafi
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Mst Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Faculty of Medicine, WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6505, Bangladesh.
| |
Collapse
|
47
|
IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun 2021; 12:4584. [PMID: 34321474 PMCID: PMC8319209 DOI: 10.1038/s41467-021-24817-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches. IFITM proteins can inhibit several viruses, but effects on SARS-CoV-2 infection are not well understood. Here, the authors show that endogenous IFITMs support SARS-CoV-2 infection in different in vitro models by binding spike and enhancing virus entry.
Collapse
|
48
|
Ropa J, Trinh T, Aljoufi A, Broxmeyer HE. Consequences of coronavirus infections for primitive and mature hematopoietic cells: new insights and why it matters. Curr Opin Hematol 2021; 28:231-242. [PMID: 33656463 PMCID: PMC8269959 DOI: 10.1097/moh.0000000000000645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In recent history there have been three outbreaks of betacoronavirus infections in humans, with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; causing Coronavirus disease 2019 [COVID-19]) outbreak leading to over two million deaths, with a rapidly rising death toll. Much remains unknown about host cells and tissues affected by coronavirus infections, including the hematopoietic system. Here, we discuss the recent findings examining effects that coronavirus infection or exposure has on hematopoietic cells and the clinical implications for these effects. RECENT FINDINGS Recent studies have centered on SARS-CoV-2, demonstrating that hematopoietic stem and progenitor cells and mature immune cells may be susceptible to infection and are impacted functionally by exposure to SARS-CoV-2 Spike protein. These findings have important implications regarding hematologic complications arising from COVID-19 and other coronavirus-induced disease, which we discuss here. SUMMARY Infection with coronaviruses sometimes leads to hematologic complications in patients, and these hematologic complications are associated with poorer prognosis. These hematologic complications may be caused by coronavirus direct infection or impact on primitive hematopoietic cells or mature immune cells, by indirect effects on these cells, or by a combination thereof. It is important to understand how hematologic complications arise in order to seek new treatments to improve patient outcomes.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
49
|
Berruga-Fernández T, Robesyn E, Korhonen T, Penttinen P, Jansa JM. Risk Assessment for the Transmission of Middle East Respiratory Syndrome Coronavirus (MERS-Cov) on Aircraft: A Systematic Review. Epidemiol Infect 2021; 149:1-51. [PMID: 34108058 PMCID: PMC8220025 DOI: 10.1017/s095026882100131x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/08/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes a potentially fatal respiratory disease. Although it is most common in the Arabian Peninsula, it has been exported to 17 countries outside the Middle East, mostly through air travel. The Risk Assessment Guidelines for Infectious Diseases transmitted on Aircraft (RAGIDA) advise authorities on measures to take when an infected individual travelled by air. The aim of this systematic review was to gather all available information on documented MERS-CoV cases that had travelled by air, to update RAGIDA. The databases used were PubMed, Embase, Scopus and Global Index Medicus; Google was searched for grey literature and hand searching was performed on the EU Early Warning and Response System and the WHO Disease Outbreak News. Forty-seven records were identified, describing 21 cases of MERS that had travelled on 31 flights. Contact tracing was performed for 17 cases. Most countries traced passengers sitting in the same row and the two rows in front and behind the case. Only one country decided to trace all passengers and crew. No cases of in-flight transmission were observed; thus, considering the resources it requires, a conservative approach may be appropriate when contact tracing passengers and crew where a case of MERS has travelled by air.
Collapse
Affiliation(s)
- T. Berruga-Fernández
- Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - E. Robesyn
- Emergency Preparedness and Response Support, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - T. Korhonen
- Emerging, Food- and Vector-Borne Diseases, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - P. Penttinen
- Vaccine Preventable Diseases and Immunisation, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - J. M. Jansa
- Emergency Preparedness and Response Support, European Centre for Disease Prevention and Control, Stockholm, Sweden
| |
Collapse
|
50
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|