1
|
Qiao C, Zhang HX, Tian XT, Zhang YJ, Li DH. Harnessing multi-omics approaches to elucidate the role of Chinese herbal compounds in chemotherapy-induced gastrointestinal damage. World J Gastrointest Oncol 2025; 17:101500. [DOI: 10.4251/wjgo.v17.i2.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
In this editorial, we discuss the findings reported by Wang et al in the latest issue of the World Journal of Gastrointestinal Oncology. Various research methodologies, including microbiome analysis, assert that the Tzu-Chi Cancer-Antagonizing and Life-Protecting II Decoction of Chinese herbal compounds mitigates inflammatory responses by inhibiting the NF-κB signaling pathway. This action helps maintain the dynamic equilibrium of the intestinal microecology and lessens chemotherapy-induced gastrointestinal damage. The efficacy of these compounds is intimately linked to the composition of intestinal microbes. These compounds regulate intestinal microecology by virtue of their specific compatibility and effectiveness, thereby enhancing the overall therapeutic outcomes of cancer chemotherapy. Nonetheless, the exact mechanisms underlying these effects warrant further investigation. Multi-omics technologies offer a systematic approach to elucidate the mechanisms and effectiveness of Chinese herbal compounds in vivo. This manuscript reviews the application of multi-omics technologies to Chinese herbal compounds and explores their potential role in modulating the gastrointestinal microenvironment following cancer chemotherapy, thus providing a theoretical foundation for their continued use in adjunct cancer treatment.
Collapse
Affiliation(s)
- Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Hao-Xiang Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiao-Tong Tian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Yan-Jing Zhang
- Department of Oncology I, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Shijiazhuang 050000, Hebei Province, China
| | - De-Hui Li
- Department of Oncology II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
2
|
Zhang X, Cui Y, Zhang Z, Huang X, Zhang X, Hu X, Li T, Li S. Effects of hawthorn pectin and its oligomers on gut microbiota and metabolites in high-fat diet mice. Food Funct 2025. [PMID: 39807952 DOI: 10.1039/d4fo04686b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD). HP and POS both improved weight gain, dyslipidemia, and glucose homeostasis caused by HFD, and increased serum GLP-1 levels. Meanwhile, the increased expression of Gcg and Pcsk1 genes in the ileum of the treatment group further confirmed this result. In addition, HP and POS reduced certain opportunistic pathogens, while restoring the richness and diversity of the gut microbiota. Meanwhile, HP and POS can improve intestinal barrier dysfunction by increasing the claudin-1, occludin, ZO-1, and MUC2 genes. Furthermore, fecal metabolomics suggests that POS may enhance linoleic acid synthesis and improve lipid metabolism by upregulating 9,10-DHOME ((12Z)-9,10-dihydroxyoctadec-12-enoic acid), while HP cannot. Overall, the research results indicate that both HP and POS can improve the weight phenotype changes, gut microbiota disruption, and metabolites changes caused by HFD. Particularly, POS has a better effect than HP, and there are differences in the improvement effect of POS with different DP, among which POS with DP 5 has the most significant improvement effect. This discovery enhances a deeper comprehension of the biological activity of different POS, providing an important basis for further optimizing the application of POS as a functional food.
Collapse
Affiliation(s)
- Xiushan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Yanmin Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Zuoyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Xin Huang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Xiaowei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110161, China.
| |
Collapse
|
3
|
Liu YF, Liu YY, Xiao Y, Huang WJ, Sun RX, Hu J, Fu XZ, Tian CX, Fu Q, Zhao JX. Shenlian Decoction Ameliorates LPS-Related Inflammation in db/db Mice: Coupling Network Pharmacology With Experimental Verification. J Diabetes Res 2025; 2025:3823051. [PMID: 39810933 PMCID: PMC11729506 DOI: 10.1155/jdr/3823051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Shenlian (SL) decoction, a renowned traditional Chinese formula for diabetes mellitus, has also been employed to treat intestinal disorders. Previous studies have demonstrated the efficacy of SL decoction in regulating blood glucose and intestinal bacteria. Nevertheless, further analysis is required to elucidate the mechanistic link between SL decoction-mediated improvement of intestinal function and treatment of Type 2 diabetes mellitus (T2DM). Methods: Firstly, the active ingredients of SL decoction were sourced from the Traditional Chinese Medicine System Pharmacology (TCMSP) database, with putative targets of active ingredients being predicted using the same database. Secondly, the Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were employed to screen the aforementioned targets that act on T2DM, and protein-protein interaction (PPI) networks were constructed in accordance with the results. Thirdly, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), which resulted in a comprehensive analysis of the association between SL decoction for the treatment of T2DM and the modulation of intestinal functions. Finally, the effect of the SL decoction on predicted lipopolysaccharide (LPS)-related targets, as well as intestinal function markers, was validated through in vivo experimentation. Results: A total of 36 active ingredients and 145 potential targets of SL decoction were predicted. GO enrichment analysis indicated that the principal biological processes by which the SL decoction acted against T2DM were responses to LPSs, while KEGG enrichment analysis identified the nuclear factor kappa B (NF-κB) signaling pathway and toll-like receptor signaling pathway as the key pathways involved. The in vivo experiments showed that SL decoction improved glycolipid metabolism indexes, inflammatory factor levels, and LPS levels in db/db mice. The immunohistochemical results demonstrated that the SL decoction restored the expression of Occludin, Claudin-1, and ZO-1 in the intestine and inhibited the expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MYD88), and NF-κB in both the intestine and pancreas. Furthermore, it may influence the levels of short-chain fatty acids (SCFAs) in feces. Conclusions: This research investigated the multigene pharmacological mechanism of SL decoction against T2DM using network pharmacology and in vivo experiments. SL decoction treatment of T2DM may reverse inflammation by inhibiting LPS-related pathway activation and improving intestinal function.
Collapse
Affiliation(s)
- Yi-fan Liu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan-yuan Liu
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yao Xiao
- Nephropathy Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-jun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rui-xi Sun
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Hu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-zhe Fu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chu-xiao Tian
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-xi Zhao
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Han S, Luo Y, Hu Z, Li X, Zhou Y, Luo F. Tumor Microenvironment Targeted by Polysaccharides in Cancer Prevention: Expanding Roles of Gut Microbiota and Metabolites. Mol Nutr Food Res 2025:e202400750. [PMID: 39757562 DOI: 10.1002/mnfr.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Since the development of immune checkpoint inhibitors (ICIs), immunotherapy has been widely used as a novel cancer treatment. However, the efficacy of tumor immunotherapy is largely dependent on the tumor microenvironment (TME). The high degree of heterogeneity within TME remains a major obstacle to acquire satisfactory therapeutic. Emerging studies suggest that gut microbiota is becoming an important regulator of TME. Polysaccharides as tumor immunotherapeutic agents or immune adjuvants not only exhibit antitumor activity by targeting gut microbiota, but also expand their role in the tumor immunotherapy by remodeling TME. To date, the mechanism by which polysaccharides targeting TME for tumor prevention via gut microbiota has not been deeply investigated. In this review, recent advances in the regulation of TME by polysaccharides through gut microbiota were systematically outlined, and the challenges and possible solutions in the clinical application of TME-targeted polysaccharides were discussed. Exploring the relationship between polysaccharides and TME from the perspective of gut microbiota may provide new ideas for the application of polysaccharides in tumor immunotherapy. This is a new area with major challenges that deserve further exploration.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
- College of Tea and Food, Wuyi University, Wuyishan, Fujian, China
| | - Yi Luo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xinhua Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
5
|
Liang Z, Gao X, Jing C, Yuan T, Zhang L, Yin Y, Ou J, Li X, Qi W, Zhao D, Su H, Zhang H. Protective effect of ginseng extract and total ginsenosides on hematopoietic stem cell damage by inhibiting cell apoptosis and regulating the intestinal microflora. Int J Mol Med 2025; 55:14. [PMID: 39513620 PMCID: PMC11573321 DOI: 10.3892/ijmm.2024.5455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Ginseng may improve the myelosuppression and intestinal microbiota disorder induced by cyclophosphamide (CY); however, the effect of ginseng components on hematopoietic stem cell (HSC) damage remains largely unexplored. The present study aimed to assess the protective effect of ginseng extract (GE), total ginsenosides (TG) and total polysaccharides (TP) from ginseng on the intestinal microflora and HSCs of model mice. In the present study, a mouse model of HSC damage induced by CY was constructed, intestinal microflora of fecal samples were sequenced using the 16S ribosomal RNA (rRNA) sequencing techniques, the differentially expressed genes (DEGs) of HSCs were analyzed using high‑throughput RNA‑sequencing, cell apoptosis and erythroid differentiation were detected using flow cytometry and the blood cell parameters were analyzed using a hematology analyzer. Analysis of the 16S rRNA in fecal samples showed that GE, TG and TP improved an imbalanced intestinal microflora, where the relative abundance of Lactobacillus intestinalis had a positive correlation with ginsenosides content. Specifically, TP significantly increased the expression of low‑abundance microflora. Transcriptomic analysis results revealed 2,250, 3,432 and 261 DEGs in the GE, TG and TP groups compared with those in the Model group, respectively. In the expression analysis of DEGs, both TG and GE were found to markedly increase the expression levels of Klf4, Hhex, Pbx1, Kmt2a, Mecom, Zc3h12a, Zbtb16, Lilr4b, Flt3 and Klf13. Furthermore, TG inhibited the apoptosis of HSCs by increasing the expression levels of Bcl2 and Mcl1, whilst decreasing the expression of Bax. By contrast, GE inhibited the apoptosis of HSCs by reducing the expression of Bax and Bad. Regarding erythroid differentiation and blood cell parameters, GE was found to significantly increase the expression of TER‑119. In addition, GE and TG improved all blood cell parameters, including the count of white blood cells, neutrophils (NEUT), lymphocytes (LYMPH), red blood cells (RBC), hemoglobin (HGB) and reticulocyte and platelets (PLT), whereas TP could only improve the counts of LYMPH, RBC, HGB and PLT. The improvement effect of GE and TG on WBC, NEUT and Ret was superior to TP. In conclusion, TG may protect the hematopoiesis function of HSCs in a CY‑induced mouse model of HSC damage, followed by GE. However, TP did not appear to improve HSC damage. Ginsenosides may therefore be considered essential ingredients in GE when protecting HSCs against damage. GE and TG exerted their protective effects on HSCs by inhibiting the apoptosis of HSCs whilst improving the imbalance of intestinal microflora.
Collapse
Affiliation(s)
- Zuguo Liang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiang Gao
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Tongyi Yuan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yifei Yin
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Jianze Ou
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| |
Collapse
|
6
|
Sun J, Wang Z, Yan X, Zhao Y, Tan L, Miao X, Zhao R, Huo W, Chen L, Li Q, Liu Q, Wang C, Guo G. Indole-3-acetic acid enhances ruminal microbiota for aflatoxin B1 removal in vitro fermentation. Front Vet Sci 2024; 11:1450241. [PMID: 39758608 PMCID: PMC11695288 DOI: 10.3389/fvets.2024.1450241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Aflatoxin B1 (AFB1) has been recognized as a serious health risk for ruminant animals. From a molecular perspective, indole-3-acid (IAA) possesses the potential to enhance the removal of AFB1 by rumen microbiota. Therefore, this study aims to investigate the impact of different concentrations of IAA on the removal of AFB1 by rumen microbiota using an in vitro technique. Experiment 1: interaction between AFB1 and rumen fermentation. Experiment 2: The study used a randomized design with five IAA levels (0, 15, 150, 1,500, and 7,500 mg/kg) to examine the effect of IAA on AFB1 removal and its impact on rumen fermentation. The results showed: (1) the content of AFB1 gradually decreased, removal rate of up to 75.73% after 24 h. AFB1 exposure altered the rumen fermentation pattern, with significantly decreased in the acetic acid/propionic acid ratio (p < 0.05). It significantly reduced the relative proportions of R. amylophilus, P. ruminicola, and F. succinogenes (p < 0.05). (2) As the content of IAA increased, AFB1 exposure decreased. A total of 15 and 150 mg/kg IAA significantly mitigated the negative impact of AFB1 on key rumen bacteria (R. amylophilus, P. ruminicola and F. succinogenes), increased acetate levels and acetate/propionate ratio (p < 0.05). However, 1,500 mg/kg IAA lowered levels of propionate and isovalerate, adversely affected enzyme activities (pectinase, xylan and Carboxymethyl-cellulase) and relative proportions of microbiota (R. flavefaciens, P. ruminicola and F. succinogenes). In conclusion, IAA significantly removed AFB1, and in the range of 150 mg/kg of IAA reduced the negative effects of AFB1 on in vitro fermentation characteristics and fermentation end-products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Gui WY, Yin JG, Liao JC, Luo HZ, You Q, Gong JH, Xiang J, Zou JD, Li CY. Integrated analysis of metabolome, lipidome, and gut microbiome reveals the immunomodulation of Astragali radix in healthy human subjects. Chin Med 2024; 19:174. [PMID: 39702294 DOI: 10.1186/s13020-024-01045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND As a typical medicinal food homology species, Chinese herbal medicine Astragali radix (AR) has been widely used to regulate the human immune system worldwide. However, the human immunomodulation of AR and its corresponding mechanisms remain unclear. METHODS First, following a fortnight successive AR administration, the changes in immune cytokines and immune cells from 20 healthy human subjects were used as immune indicators to characterize the immunomodulatory effects of AR. Subsequently, ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) based lipidomics and metabolomics analysis was performed on human serum, urine, and feces samples to investigate the changes in metabolic profiles. Then, 16S rRNA gene sequencing of feces samples was adopted for the changes of human gut microbiota. Finally, correlation analysis was conducted on the gut microbiome, metabolome/lipidome data, and immune indicators. RESULTS AR displayed good safety in clinical use and posed a minor impact on gut microbiota major genera, global metabolic profiles, and immune cells. Meanwhile, AR could significantly up-regulate anti-inflammatory cytokines, down-regulate serum creatinine and pro-inflammatory cytokines, promote the anabolism of arginine, glycerolipid, sphingolipid, and purine, and the catabolism of phenylalanine and glycerophospholipid. Moreover, these AR-induced changes were closely correlated with significantly decreased Granulicatella, slightly higher Bifidobacterium, Ruminococcus, and Subdoligranulum, and slightly lower Blautia. CONCLUSION The study clearly demonstrated that AR could modulate the human immune, by modifying the metabolism of amino acids, lipids, and purines in a microbiota-related way. Trial registration ChiCTR, ChiCTR2100054765. Registered 26 December 2021-Prospectively registered, https://www.chictr.org.cn/historyversionpub.html?regno=ChiCTR2100054765.
Collapse
Affiliation(s)
- Wan-Yu Gui
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jun-Gang Yin
- Center of Good Clinical Practice, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jian-Cheng Liao
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Hui-Zhi Luo
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Qing You
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jia-Hui Gong
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jie Xiang
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Jian-Dong Zou
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China
| | - Chang-Yin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
8
|
Yang Q, Wang Z, Liu M, Gan L. Causal Relationship Between Gut Microbiota and Leukemia: Future Perspectives. Oncol Ther 2024; 12:663-683. [PMID: 39217582 PMCID: PMC11573970 DOI: 10.1007/s40487-024-00300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis in the human gastrointestinal tract. Numerous studies have shown a strong association between the gut microbiota and the emergence and progression of various diseases. Leukemia is one of the most common hematologic malignancies. Although standardized protocols and expert consensus have been developed for routine diagnosis and treatment, limitations remain due to individual differences. Nevertheless, a large number of studies have established a link between the gut microbiota and leukemia, with disturbances in the gut microbiota directly or indirectly affecting the development of leukemia. However, the causal relationship between the two remains unclear, and studying and exploring the causal relationship may open up entirely new avenues and protocols for use in the prevention and/or treatment of leukemia, offering new insights into diagnosis and treatment. In this review, the intricate relationship between the gut microbiota and leukemia is explored in depth, including causal associations, metabolite effects, therapeutic applications, and complications. Based on the characteristics of the gut microbiota, the future applications and prospects of gut microbiota are discussed to provide useful information for clinical treatment of leukemia.
Collapse
Affiliation(s)
- Qiang Yang
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China
| | - Zexin Wang
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China.
| | - Miao Liu
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China
| | - Lingling Gan
- Mianyang Central Hospital, Fucheng District, Mianyang City, 621000, Sichuan Province, China
| |
Collapse
|
9
|
Zhu M, Yang L, Kong S, Bai Y, Zhao B. Lacticaseibacillus rhamnosus LRa05 alleviates cyclophosphamide-induced immunosuppression and intestinal microbiota disorder in mice. J Food Sci 2024; 89:10003-10017. [PMID: 39592250 DOI: 10.1111/1750-3841.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Probiotics play a crucial role in regulating the gut microbiota and enhancing immune response. Oral administration of probiotics modulates intestinal microbiota composition and immune homeostasis. In this study, we investigated the immunoregulatory effect of Lacticaseibacillus rhamnosus LRa05 on cyclophosphamide (CTX)-induced immunosuppressive mice. The results showed that oral administration of LRa05 reduced weight loss, restored immune organ indices, and maintained the structural integrity of the intestinal tissue in CTX-treated mice. Moreover, oral administration of LRa05 exhibited immune-modulating properties by promoting the secretion of cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-10, and secretory immunoglobulin A) in serum. Moreover, the analysis of 16S rRNA amplicon sequencing revealed that LRa05 increased gut microbiota diversity and regulated its composition. In detail, LRa05 intervention restored the Firmicutes/Bacteroidota ratio and significantly increased the relative abundance of Lachnospiraceae_NK4A136_group, Oscillibacter, Alloprevotella, Parasutterella, and Roseburia in immunocompromised mice. Conversely, the abundances of Helicobacter, Bacteroides, and unclassified_Desulfovibrionaceae were significantly decreased after administration of LRa05. Based on these findings, orally administered LRa05 could effectively maintain intestinal microbiota homeostasis and regulate immunity, suggesting the potential of L. rhamnosus LRa05 as a candidate probiotic strain in the application of dietary supplement. PRACTICAL APPLICATION: Supplement with L. rhamnosus LRa05 can improve immunity, regulate gut microbiota and promote body health.
Collapse
Affiliation(s)
- Mingming Zhu
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Lvzhu Yang
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Sufen Kong
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
| | - Yuyuan Bai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhao
- Wuhan Wecare Probiotic Research Institute, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Ma H, Mueed A, Ma Y, Ibrahim M, Su L, Wang Q. Fecal Microbiota Transplantation Activity of Floccularia luteovirens Polysaccharides and Their Protective Effect on Cyclophosphamide-Induced Immunosuppression and Intestinal Injury in Mice. Foods 2024; 13:3881. [PMID: 39682952 DOI: 10.3390/foods13233881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Floccularia luteovirens polysaccharides (FLP1s) have potential biological activities. Our previous study showed that FLP1s positively regulated gut immunity and microbiota. However, it is still unclear whether FLP1s mediate gut microbiota in immunosuppressed mice. This research aims to explore the relationship between FLP1-mediated gut microbes and intestinal immunity in immunosuppressed mice through fecal microbiota transplantation (FMT). The results demonstrated that FLP1s exhibited prebiotic and anti-immunosuppressive effects on CTX-induced immunosuppressed mice. FFLP1 treatment (microbiota transplantation from the fecal sample) remarkably elevated the production of sIgA and secretion of the anti-inflammatory cytokines IL-4, TNF-α, and IFN-γ in the intestine of CTX-treated mice, inducing activation of the MAPK pathway. Moreover, FFLP1s mitigated oxidative stress by activating the Nrf2/Keap1 signaling pathway and strengthened the intestinal barrier function by upregulating the expression level of tight junction proteins (occludin, claudin-1, MUC-2, and ZO-1). Furthermore, FFPL1s restored gut dysbiosis in CTX-treated immunosuppressed mice by increasing the abundance of Alloprevotella, Lachnospiraceae, and Bacteroides. They also modified the composition of fecal metabolites, leading to enhanced regulation of lipolysis in adipocytes, the cGMP-PKG pathway, the Rap1 signaling pathway, and ovarian steroidogenesis, as indicated by KEGG pathway analysis. These findings indicate that FLP1s could modulate the response of the intestinal immune system through regulation of the gut microbiota, thus promoting immune activation in CTX-treated immunosuppressed mice. FLP1s can serve as a natural protective agent against CTX-induced immune injury.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanxu Ma
- Jilin Sericulture Science Research Institute, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
11
|
Bu Y, Liu Y, Zhu L, Gan X, Jiang S, Zhang X, Dilixiati M, Bai M, Zeng J, Shi S, Li T, Li B, Wang S, Wang H. Recent Advances in Polysaccharides Derived from the Genus Panax: Preparation Strategies, Structural Profiles, Functional Properties and Structure-Activity Relationships. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26074-26097. [PMID: 39546627 DOI: 10.1021/acs.jafc.4c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Plants from the Panax genus have significant medicinal and nutritional benefits. Many Panax species are traditionally used in Chinese medicine and have gained popularity as food and health products because of their tonic effects and high safety. Their key bioactive components include polysaccharides, which are hydrophilic biomolecules that have demonstrated significant potential in the food and pharmaceutical industries because of their multiple health-promoting qualities, such as immunomodulatory, antitumor, antiaging, blood glucose and blood lipid regulation, antiviral, hepatoprotective, and gastrointestinal protective properties. Additionally, polysaccharides are abundant in health products made from the genus Panax, such as energy drinks and herbal teas. However, compared with more extensively studied components, such as ginsenosides and saponins, polysaccharides from the genus Panax (GPPs) have been the subject of relatively limited research. This review provides a comprehensive overview of the extraction and purification technology, structural characteristics, biological activities, applications, and structure-activity relationships of GPPs. Ultimately, this information establishes a theoretical foundation for the further development and application of GPPs in nutrition and medicine.
Collapse
Affiliation(s)
- Yingxuan Bu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yupeng Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lingyan Zhu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xiaona Gan
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shenggui Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, P. R. China
| | - Xiaoyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Munisa Dilixiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P. R. China
| | - Muwei Bai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jiani Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Tingzhao Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Bo Li
- Amway (Shanghai) Innovation & Science Co., Ltd., 720 Cailun Road, Shanghai 201203, P. R. China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
12
|
Jin X, Wu Z, Chen H, Liu W, Gu F, Li J. Extraction and Identification of Polysaccharide from Lentinus edodes and Its Effect on Immunosuppression and Intestinal Barrier Injury Induced by Cyclophosphamide. Int J Mol Sci 2024; 25:12432. [PMID: 39596497 PMCID: PMC11594469 DOI: 10.3390/ijms252212432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Lentinus edodes serves as a significant source of both medicine and food, with its key component, lentinan (LNT), recognized as an effective immunomodulator. However, the mechanisms by which it regulates immune and intestinal functions under conditions of immunosuppression remain unclear. This study aims to investigate the components of lentinan and examine its potential effects on countering cyclophosphamide (CP)-induced immunosuppression, intestinal barrier damage, and dysregulation of gut microbiota. In this study, the effects of LNT were evaluated by serological indicators, histopathological changes in ileum, tight-junction-related protein expression, cytokine expression levels, and gut microbiota 16S rRNA gene sequencing. We found that LNT was effective in mitigating the abnormalities in body weight, immune organ index, and serum levels of IL-6, IL-2, IFN-γ, and IgG in mice induced by CP (p < 0.05). Furthermore, LNT demonstrated the ability to alleviate intestinal barrier damage induced by CP by increasing the mRNA levels of TNF-α, IL-1β, IFN-γ, Occludin, and ZO-1 (p < 0.05). Additionally, 16S rRNA gene sequencing revealed that LNT also normalized the disrupted abundance of Firmicutes, Proteobacteria, and Bacteroidets caused by CP. This restoration brought the gut microbiota back to normal levels and increased the abundance of certain tumor-inhibiting bacteria, such as Alistipes. Overall, lentinan demonstrated the ability to reverse the immunosuppressive effects induced by cyclophosphamide and modulate gut microbiota to restore a healthy microbial balance.
Collapse
Affiliation(s)
- Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
- Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150030, China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Weiqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Fuhua Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (X.J.); (Z.W.); (H.C.); (W.L.); (F.G.)
| |
Collapse
|
13
|
Zhang Z, Yang Y, Zhang Y, Xie G. Co-frequency or contrary? The effects of Qiwei Baizhu Powder and its bioactive compounds on mucosa-associated microbiota of mice with antibiotic-associated diarrhea. Front Cell Infect Microbiol 2024; 14:1483048. [PMID: 39529635 PMCID: PMC11551125 DOI: 10.3389/fcimb.2024.1483048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Qiwei Baizhu Powder (QWBZP) has been proven effective in treating antibiotic-associated diarrhea (AAD), and the mechanism is associated with regulating the gut microbiota. However, the role of the bioactive compounds of QWBZP in regulating the gut microbiota is still unclear. In this study, 24 mice were divided into a normal control group (N), a model group (R), a QWBZP decoction group (TW), and a QWBZP-TG group (TG). AAD mouse models were established by mixed antibiotic administration. After modeling, mice in the TW group and TG group were treated with QWBZP decoction and QWBZP-TG, respectively. Mice in the N group and R group were gavaged with sterile water. 16S rRNA gene sequencing was used to investigate the changes of mucosa-associated microbiota (MAM) in the small intestine of mice. Moreover, the levels of diamine oxidase (DAO), D-Lactate, secretory immunoglobulin A (sIgA), interleukin 6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α) were detected using enzyme-linked immunosorbent assay (ELISA) kits. The results showed that QWBZP-TG significantly altered the diversity, structure, and abundance of MAM in the AAD mice. QWBZP-TG exerted a stronger suppression effect on Escherichia and Clostridium compared with QWBZP decoction. Meanwhile, QWBZP-TG downregulated the abundance of Lactobacillus, which elicited an opposite effect to QWBZP decoction. Prevotella was the signature bacteria that responded to the QWBZP-TG intervention. Furthermore, both QWBZP decoction and QWBZP-TG decreased the levels of DAO, D-Lactate, sIgA, IL-6, and TNF-α in the AAD mice. The role of glycosides is to help QWBZP ameliorate diarrhea symptoms by inhibiting the proliferation of diarrhea-associated bacteria, reducing inflammation and regulating immunity.
Collapse
|
14
|
Zhao Y, Zhang Z, Tang A, Zeng Z, Zheng W, Luo Y, Huang Y, Dai X, Lu W, Fan L, Shen L. Cow Placenta Extract Ameliorates Cyclophosphamide-Induced Intestinal Damage by Enhancing the Intestinal Barrier, Improving Immune Function, and Restoring Intestinal Microbiota. Vet Sci 2024; 11:505. [PMID: 39453097 PMCID: PMC11512425 DOI: 10.3390/vetsci11100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Immunosuppression undermines intestinal barrier integrity. Cow placenta extract (CPE) primarily consists of active peptides with immunomodulatory and antioxidant effects. This study aimed to examine the preventive effect of CPE against intestinal damage induced by cyclophosphamide (Cy) in immunosuppressed mice. Thirty-six mice were randomly allocated into three groups: control group (C), model group (M), and treatment group (CPE). The mice in the CPE group were provided with 1500 mg/kg/day of CPE via gavage. In the last 3 days, mice in the groups M and CPE received intraperitoneal injections of 80 mg/kg/day of Cy. The results showed that CPE improved intestinal barrier function by decreasing serum d-Lactate (D-LA) levels and diamine oxidase (DAO) activity, while elevating the relative expression of Occludin, zonula occludens-1 (ZO-1), and mucin-2 (MUC-2) mRNA. Additionally, CPE improved the immune organ index and elevated the levels of secretory immunoglobulin A (sIgA), superoxide dismutase (SOD), interleukin-1beta (IL-1β), interleukin-4 (IL-4), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in the intestine, thereby enhancing intestinal mucosal immune function. Furthermore, CPE improved the diversity of intestinal microbiota and increased the abundance of Candidatus_Saccharimonas, Psychrobacter, and Enterorhabdus, which promoted the proper functioning of the intestines. These findings suggest that CPE effectively ameliorates Cy-induced intestinal damage by enhancing the intestinal barrier, improving immune function, and restoring intestinal microbiota.
Collapse
Affiliation(s)
- Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Anguo Tang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| | - Xinyi Dai
- Party School of the Communist Party of China Yaan Municipal Committee, Yaan 625014, China;
| | - Wei Lu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China;
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (Z.Z.); (A.T.); (Z.Z.); (W.Z.); (Y.L.); (Y.H.)
| |
Collapse
|
15
|
Chi Z, Zhang M, Fu B, Wang X, Yang H, Fang X, Li Z, Teng T, Shi B. Branched Short-Chain Fatty Acid-Rich Fermented Protein Food Improves the Growth and Intestinal Health by Regulating Gut Microbiota and Metabolites in Young Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21594-21609. [PMID: 39303156 DOI: 10.1021/acs.jafc.4c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The diet in early life is essential for the growth and intestinal health later in life. However, beneficial effects of a diet enriched in branched short-chain fatty acids (BSCFAs) for infants are ambiguous. This study aimed to develop a novel fermented protein food, enriched with BSCFAs and assess the effects of dry and wet ferment products on young pig development, nutrient absorption, intestinal barrier function, and gut microbiota and metabolites. A total of 18 young pigs were randomly assigned to three groups. The dry corn gluten-wheat bran mixture (DFCGW) and wet corn gluten-wheat bran mixture (WFCGW) were utilized as replacements for 10% soybean meal in the basal diet. Our results exhibited that the WFCGW diet significantly increased the growth performance of young pigs, enhanced the expression of tight junction proteins, and regulated associated cytokines expression in the colonic mucosa. Simultaneously, the WFCGW diet led to elevated levels of colonic isobutyric and isovaleric acid, as well as the activation of GPR41 and GPR109A. Furthermore, more potential probiotics including Lactobacillus, Megasphaera, and Lachnospiraceae_ND3007_group were enriched in the WFCGW group and positively associated with the beneficial metabolites such as 5-hydroxyindole-3-acetic acid. Differential metabolite KEGG pathway analysis suggested that WFCGW might exert gut health benefits by modulating tryptophan metabolism. In addition, the WFCGW diet significantly increased ghrelin concentrations in serum and hypothalamus and promoted the appetite of young pigs by activating hypothalamic NPY/AGRP neurons. This study extends the knowledge of BSCFAs and provides a reference for the fermented food application in the infant diet.
Collapse
Affiliation(s)
- Zihan Chi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mengqi Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Botao Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Chen X, Wu S, Tao X, He F, Shen M. Sulfated Chinese yam polysaccharide exert anti-inflammatory potential via MAPK/NF-κB signaling pathways in a co-culture system and LPS-induced acute inflammatory mice model. J Food Sci 2024; 89:6720-6732. [PMID: 39269279 DOI: 10.1111/1750-3841.17319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
Our previous study has demonstrated that sulfated Chinese yam polysaccharide (SCYP) can improve immunomodulatory activity in Raw 264.7 cells. However, its anti-inflammatory is little known. In this study, the anti-inflammatory effects of SCYP were systematically investigated via the Lipopolysaccharides (LPS)-induced Raw264.7 cell model, Caco-2/Raw264.7 co-culture system, and acute inflammation mice model. The results suggested SCYP promoted the cell proliferation and have no toxicity in Raw264.7 and Caco-2 cells at the concentration of 200 µg/mL. Moreover, when treated with SCYP, the production of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) reduced significantly in Raw264.7 via the MAPK/NF-κB pathway. In the Caco-2/Raw264.7 co-cultured system, SCYP could regulate inflammation reaction by improving intestinal barrier, which might prevent systemic inflammation. Further, systemic inflammation was alleviated by SCYP in LPS-induced acute inflammation mice through MAPK/NF-κB pathway. PRACTICAL APPLICATION: These results supported that SCYP may be used as an anti-inflammation agent in the functional food field.
Collapse
Affiliation(s)
- Xianxiang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shihua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Xin Tao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Fengxia He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Zhou T, Zhang Y, Li Z, Lu C, Zhao H. Research progress of traditional Chinese medicine on the treatment of diarrhea by regulating intestinal microbiota and its metabolites based on renal-intestinal axis. Front Cell Infect Microbiol 2024; 14:1483550. [PMID: 39397865 PMCID: PMC11466940 DOI: 10.3389/fcimb.2024.1483550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Intestinal microbiota and its metabolites are involved in many physiological processes of the human body and play a vital role in maintaining human health. The occurrence of kidney disease can cause intestinal microbiota imbalance, resulting in diarrhea. The change of intestinal microbiota and its metabolites content can aggravate renal function injury, which has a bidirectional regulating effect. The theory of renal-intestinal axis further clarified that the impaired renal function is related to the imbalance of intestinal microorganisms, and the impaired intestinal barrier is related to the accumulation of toxin products. Because of its unique therapeutic advantages, Traditional Chinese Medicine can treat diarrhea by enhancing the growth of beneficial bacteria, inhibiting pathogenic bacteria and immune regulation, and slow down the continuous deterioration of kidney disease. This paper focuses on the relationship between intestinal microbiota and its metabolites and diarrhea, the influence of Traditional Chinese Medicine on intestinal microbiota in the treatment of diarrhea, and the role of intestinal microbiota and its metabolites in the renal-intestinal axis. It provides a theoretical basis for Traditional Chinese Medicine to regulate intestinal microbiota and its metabolites based on the renal-intestinal axis theory to treat nephrology-induced diarrhea, and also provides a new idea and method for Traitional Chinese Medicine to treat nephrology-induced diarrhea.
Collapse
Affiliation(s)
- Tong Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yifan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Zhaoyuan Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chunfeng Lu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Medical, Huzhou University, Huzhou, Zhejiang, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
18
|
Rong X, Shen C, Shu Q. Interplay between traditional Chinese medicine polysaccharides and gut microbiota: The elusive "polysaccharides-bond-bacteria-enzyme" equation. Phytother Res 2024; 38:4695-4715. [PMID: 39120443 DOI: 10.1002/ptr.8284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Polysaccharides are one of the most important components of traditional Chinese medicine (TCM) and have been extensively studied for their immunomodulatory properties. The functions and effects of TCM polysaccharides are closely related to the gut microbiota, making the study of their interaction a hot topic in the field of TCM metabolism. This review follows two main inquiries: first, how the gut microbiota breaks down TCM polysaccharides to produce bioactive metabolites; and second, how TCM polysaccharides reshape the gut microbiota as a carbon source. Understanding the interaction mechanism involves a challenging equation of the structural association of TCM polysaccharides with the metabolic activities of the microbiota. This review has meticulously searched, partially organized literature spanning the past decade, that delves into the interaction mechanism between TCM polysaccharides and gut microbiota. It also gives an overview of the complex factors of the elusive "polysaccharides-bond-bacteria-enzyme" equation: the complexity of polysaccharide structures, the diversity of glycosidic bond types, the communal nature of metabolizing microbiota, the enzymes involved in functional degradation by microbiota, and the hierarchical roles of polysaccharide utilization locus and gram-positive PULs. Finally, this review aims to facilitate discussion among peers in the field of TCM microbiota and offers prospects for research in related fields, paving the way for pharmacological studies on TCM polysaccharides and gut microbiota therapeutics, and providing a reference point for further clinical research.
Collapse
Affiliation(s)
- XinQian Rong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - CanTing Shen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - QingLong Shu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
19
|
Liang L, Liu X, Shao J, Shen J, Yao Y, Huang X, Cai G, Guo Y, Gong J. Identification of Potential α-Glucosidase Inhibitors from American Ginseng Processed Products by UHPLC-Q-Orbitrap/MS and Molecular Docking. FOOD BIOPHYS 2024; 19:688-700. [DOI: 10.1007/s11483-024-09860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 01/03/2025]
|
20
|
Hu K, Wang H, Wang H, Li T, Liu L, Zhang H, Li Z, Wang S, Han L. Lipid discovered in American ginseng alleviates doxorubicin-induced cardiotoxicity by inhibiting cardiomyocyte ferroptosis. Fitoterapia 2024; 177:106097. [PMID: 38945490 DOI: 10.1016/j.fitote.2024.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Doxorubicin (Dox)-induced cardiotoxicity (DIC) has limited its clinical application. It is crucial to discover more effective substances to treat DIC. In this study, a zebrafish model is used to evaluate the inhibition of DIC in the lipids in American ginseng (AGL) compared with the lipids in soybeans (SOL) and in egg yolks (YOL). A lipidomics approach based on Q Exactive LC-MS/MS is employed to monitor, identify, and analyze the lipid composition of three lipid samples. The H9c2 cell was used to investigate the key lipid in AGL for its effect mechanism in alleviating DIC. The results showed that AGL alleviated DIC on zebrafish by increasing the stroke volume, heart rate, and fractional shortening compared to SOL and YOL. A total of 216 differential lipids were identified among the three types of lipids using lipidomics. Besides, a fatty acid with 18 carbons and four double bonds, FA (18:4) was the dominant proportion in AGL and possessed the highest variable importance of projection (VIP) value. FA (18:4) also showed significant bioactivity to alleviate DIC in zebrafish. Furthermore, FA (18:4) reduced the ferric ions and reactive oxygen species (ROS) accumulation, increased GPX4 expression, and relieved mitochondrial damage to inhibit Dox-induced ferroptosis in H9c2 cells. Therefore, the composition characteristic and anti-DIC effect of AGL were revealed; FA (18,4) was identified for the first time to be a novel active component of AGL against DIC by inhibiting ferroptosis. These results provide a new understanding of AG-derived bioactive lipids and their potential benefits for heart health.
Collapse
Affiliation(s)
- Kaiqing Hu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Huan Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Haiyang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Taiping Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Lu Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Haiyan Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China.
| |
Collapse
|
21
|
Dilixiati Y, Aipire A, Song M, Nijat D, Wubuli A, Cao Q, Li J. The Potential Role of Plant Polysaccharides in Treatment of Ulcerative Colitis. Pharmaceutics 2024; 16:1073. [PMID: 39204418 PMCID: PMC11360206 DOI: 10.3390/pharmaceutics16081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Ulcerative colitis (UC) results in inflammation and ulceration of the colon and the rectum's inner lining. The application of herbal therapy in UC is increasing worldwide. As natural macromolecular compounds, polysaccharides have a significant role in the treatment of UC due to advantages of better biodegradation, good biocompatibility, immunomodulatory activity, and low reactogenicity. Therefore, polysaccharide drug formulation is becoming a potential candidate for UC treatment. In this review, we summarize the etiology and pathogenesis of UC and the therapeutic effects of polysaccharides on UC, such as regulating the expression of cytokines and tight junction proteins and modulating the balance of immune cells and intestinal microbiota. Polysaccharides can also serve as drug delivery carriers to enhance drug targeting and reduce side effects. This review provides a theoretical basis for applying natural plant polysaccharides in the prevention and treatment of UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (Y.D.); (A.A.); (M.S.); (D.N.); (A.W.); (Q.C.)
| |
Collapse
|
22
|
Bai Y, Cai G, Guo N, Huang X, Gong J, Liu S, Guo Y, Wang W. UHPLC-HRMS based saponins profiling of three morphological regions in American ginseng ( Panax quinquefolium L.) and their correlation with the antioxidant activity. Food Sci Biotechnol 2024; 33:1685-1696. [PMID: 38623439 PMCID: PMC11016038 DOI: 10.1007/s10068-023-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 04/17/2024] Open
Abstract
American ginseng (Panax quinquefolium L.) is used as tonic plant and high-grade nourishment. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was established for identifying the chemical constituent in three morphological regions of American ginseng, including main root (MR), rhizome (RH) and lateral root (LR). The 63 saponins was identified in different morphological regions of 10 American ginseng samples. The chemical maker compounds in corresponding morphological region, while the major compounds of MR (malonyl-ginsenoside Rb1, ginsenoside Rd, Rs2 and pseudo-RC1), LR (stipuleanoside R2, ginsenoside Re and malonyl-ginsenoside Rc), and RH (malonyl-ginsenoside Rd, Rb3, and chikusetsu saponin II) were discovered. Correlation analysis showed that 11 compounds were positively correlated with the antioxidant activity of American ginseng. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01453-4.
Collapse
Affiliation(s)
- Yuxin Bai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Guangzhi Cai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Na Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Yunlong Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Wei Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 China
| |
Collapse
|
23
|
Chen Z, Chen J, Wang L, Wang W, Zheng J, Wu S, Sun Y, Pan Y, Li S, Liu M, Cai Z. Effects of Three Kinds of Carbohydrate Pharmaceutical Excipients-Fructose, Lactose and Arabic Gum on Intestinal Absorption of Gastrodin through Glucose Transport Pathway in Rats. Pharm Res 2024; 41:1201-1216. [PMID: 38834905 DOI: 10.1007/s11095-024-03720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Some glucoside drugs can be transported via intestinal glucose transporters (IGTs), and the presence of carbohydrate excipients in pharmaceutical formulations may influence the absorption of them. This study, using gastrodin as probe drug, aimed to explore the effects of fructose, lactose, and arabic gum on intestinal drug absorption mediated by the glucose transport pathway. METHODS The influence of fructose, lactose, and arabic gum on gastrodin absorption was assessed via pharmacokinetic experiments and single-pass intestinal perfusion. The expression of sodium-dependent glucose transporter 1 (SGLT1) and sodium-independent glucose transporter 2 (GLUT2) was quantified via RT‒qPCR and western blotting. Alterations in rat intestinal permeability were evaluated through H&E staining, RT‒qPCR, and immunohistochemistry. RESULTS Fructose reduced the area under the curve (AUC) and peak concentration (Cmax) of gastrodin by 42.7% and 63.71%, respectively (P < 0.05), and decreased the effective permeability coefficient (Peff) in the duodenum and jejunum by 58.1% and 49.2%, respectively (P < 0.05). SGLT1 and GLUT2 expression and intestinal permeability remained unchanged. Lactose enhanced the AUC and Cmax of gastrodin by 31.5% and 65.8%, respectively (P < 0.05), and increased the Peff in the duodenum and jejunum by 33.7% and 26.1%, respectively (P < 0.05). SGLT1 and GLUT2 levels did not significantly differ, intestinal permeability increased. Arabic gum had no notable effect on pharmacokinetic parameters, SGLT1 or GLUT2 expression, or intestinal permeability. CONCLUSION Fructose, lactose, and arabic gum differentially affect intestinal drug absorption through the glucose transport pathway. Fructose competitively inhibited drug absorption, while lactose may enhance absorption by increasing intestinal permeability. Arabic gum had no significant influence.
Collapse
Affiliation(s)
- Zhenzhen Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiasheng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liyang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wentao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaqi Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shiqiong Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yinzhu Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuru Pan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sai Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| |
Collapse
|
24
|
Lu DD, Yuan L, Wang ZZ, Zhao JJ, Du YH, Ning N, Chen GQ, Huang SC, Yang Y, Zhang Z, Nan Y. To explore the mechanism of Yigong San anti-gastric cancer and immune regulation. World J Gastrointest Oncol 2024; 16:1965-1994. [PMID: 38764819 PMCID: PMC11099436 DOI: 10.4251/wjgo.v16.i5.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Yigong San (YGS) is a representative prescription for the treatment of digestive disorders, which has been used in clinic for more than 1000 years. However, the mechanism of its anti-gastric cancer and regulate immunity are still remains unclear. AIM To explore the mechanism of YGS anti-gastric cancer and immune regulation. METHODS Firstly, collect the active ingredients and targets of YGS, and the differentially expressed genes of gastric cancer. Secondly, constructed a protein-protein interaction network between the targets of drugs and diseases, and screened hub genes. Then the clinical relevance, mutation and repair, tumor microenvironment and drug sensitivity of the hub gene were analyzed. Finally, molecular docking was used to verify the binding ability of YGS active ingredient and hub genes. RESULTS Firstly, obtained 55 common targets of gastric cancer and YGS. The Kyoto Encyclopedia of Genes and Genomes screened the microtubule-associated protein kinase signaling axis as the key pathway and IL6, EGFR, MMP2, MMP9 and TGFB1 as the hub genes. The 5 hub genes were involved in gastric carcinogenesis, staging, typing and prognosis, and their mutations promote gastric cancer progression. Finally, molecular docking results confirmed that the components of YGS can effectively bind to therapeutic targets. CONCLUSION YGS has the effect of anti-gastric cancer and immune regulation.
Collapse
Affiliation(s)
- Dou-Dou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Zhao-Zhao Wang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Jun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yu-Hua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Qing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Shi-Cong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
25
|
Chen L, Jiang Q, Yao S, Jiang C, Lu H, Hu W, Yu S, Li M, Feng Y, Tan CP, Xiang X, Shen G. Sciadonic acid ameliorates cyclophosphamide-induced immunosuppression by modulating the immune response and altering the gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3902-3912. [PMID: 38264943 DOI: 10.1002/jsfa.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome. RESULTS The present study investigated the influence of sciadonic acid (SA) on Cy-induced immunosuppression in mice. The results showed that SA gavage significantly alleviated Cy-induced immune damage by improving the immune system organ index, immune response and oxidative stress. Moreover, SA restored intestinal morphology, improved villus integrity and activated the nuclear factor κB signaling pathway, stimulated cytokine production, and reduced serum lipopolysaccharide (LPS) levels. Furthermore, gut microbiota analysis indicated that SA increased t beneficial bacteria (Alistipes, Lachnospiraceae_NK4A136_group, Rikenella and Odoribacter) and decreased pathogenic bacteria (norank-f-Oscillospiraceae, Ruminococcus and Desulfovibrio) to maintain intestinal homeostasis. CONCLUSION The present study provided new insights into the SA regulation of intestinal flora to enhance immune responses. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qihong Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shiwei Yao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofang Yu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mingqian Li
- Zhejiang Provincial Key Laboratory of Cancer Prevention and Treatment Technology of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yongcai Feng
- Zhuji Lvkang Biotechnology Co., Ltd, Shaoxing, China
| | - Chin Ping Tan
- Zhuji Lvkang Biotechnology Co., Ltd, Shaoxing, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
26
|
Bullard BM, McDonald SJ, Cardaci TD, VanderVeen BN, Mohammed AD, Kubinak JL, Pierre JF, Chatzistamou I, Fan D, Hofseth LJ, Murphy EA. Panaxynol improves crypt and mucosal architecture, suppresses colitis-enriched microbes, and alters the immune response to mitigate colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G591-G606. [PMID: 38469632 PMCID: PMC11376977 DOI: 10.1152/ajpgi.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.
Collapse
Affiliation(s)
- Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Sierra J McDonald
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Ahmed D Mohammed
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
27
|
Zhao L, Zhang T, Zhang K. Pharmacological effects of ginseng and ginsenosides on intestinal inflammation and the immune system. Front Immunol 2024; 15:1353614. [PMID: 38698858 PMCID: PMC11064651 DOI: 10.3389/fimmu.2024.1353614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Intestinal inflammatory imbalance and immune dysfunction may lead to a spectrum of intestinal diseases, such as inflammatory bowel disease (IBD) and gastrointestinal tumors. As the king of herbs, ginseng has exerted a wide range of pharmacological effects in various diseases. Especially, it has been shown that ginseng and ginsenosides have strong immunomodulatory and anti-inflammatory abilities in intestinal system. In this review, we summarized how ginseng and various extracts influence intestinal inflammation and immune function, including regulating the immune balance, modulating the expression of inflammatory mediators and cytokines, promoting intestinal mucosal wound healing, preventing colitis-associated colorectal cancer, recovering gut microbiota and metabolism imbalance, alleviating antibiotic-induced diarrhea, and relieving the symptoms of irritable bowel syndrome. In addition, the specific experimental methods and key control mechanisms are also briefly described.
Collapse
Affiliation(s)
| | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Cheng M, Shi Y, Cheng Y, Hu H, Liu S, Xu Y, He L, Hu S, Lu Y, Chen F, Li J, Si H. Mulberry leaf polysaccharide improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora, enhancing immune regulation and antioxidant capacity. Front Microbiol 2024; 15:1382639. [PMID: 38577686 PMCID: PMC10991686 DOI: 10.3389/fmicb.2024.1382639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1β, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.
Collapse
Affiliation(s)
- Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yongbin Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Fengmin Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Jiang Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, China
| |
Collapse
|
29
|
Tian L, Gao R, Cai Y, Chen J, Dong H, Chen S, Yang Z, Wang Y, Huang L, Xu Z. A systematic review of ginsenoside biosynthesis, spatiotemporal distribution, and response to biotic and abiotic factors in American ginseng. Food Funct 2024; 15:2343-2365. [PMID: 38323507 DOI: 10.1039/d3fo03434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.
Collapse
Affiliation(s)
- Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Ranran Gao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Yuxiang Cai
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Junxian Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Hongmei Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, 100700, China
| | - Zaichang Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150006, China.
| |
Collapse
|
30
|
Hu H, Sun W, Zhang L, Zhang Y, Kuang T, Qu D, Lian S, Hu S, Cheng M, Xu Y, Liu S, Qian Y, Lu Y, He L, Cheng Y, Si H. Carboxymethylated Abrus cantoniensis polysaccharide prevents CTX-induced immunosuppression and intestinal damage by regulating intestinal flora and butyric acid content. Int J Biol Macromol 2024; 261:129590. [PMID: 38266859 DOI: 10.1016/j.ijbiomac.2024.129590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.
Collapse
Affiliation(s)
- Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Tiantian Kuang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Dongshuai Qu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shuaitao Lian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yajing Qian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
31
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
32
|
Li Y, Li J, Jia D, Gao S, Guo Y, Liu J, Wang J, Guan G, Luo J, Yin H, Xiao S, Li Y. The Microbial Tryptophan Metabolite Contributes to the Remission of Salmonella typhimurium Infection in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:57-68. [PMID: 38019127 DOI: 10.4049/jimmunol.2300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/03/2023] [Indexed: 11/30/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) causes severe foodborne diseases. Interestingly, gut microbial tryptophan (Trp) metabolism plays a pivotal role in such infections by a yet unknown mechanism. This study aimed to explore the impact of Trp metabolism on S. Tm infection and the possible mechanisms involved. S. Tm-infected C57BL6/J mice were used to demonstrate the therapeutic benefits of the Bacillus velezensis JT3-1 (B. velezensis/JT3-1) strain or its cell-free supernatant in enhancing Trp metabolism. Targeted Trp metabolomic analyses indicated the predominance of indole-3-lactic acid (ILA), an indole derivative and ligand for aryl hydrocarbon receptor (AHR). Based on the 16S amplicon sequencing and correlation analysis of metabolites, we found that B. velezensis supported the relative abundance of Lactobacillus and Ligilactobacillus in mouse gut and showed positive correlations with ILA levels. Moreover, AHR and its downstream genes (especially IL-22) significantly increased in mouse colons after B. velezensis or cell-free supernatant treatment, suggesting the importance of AHR pathway activation. In addition, ILA was found to stimulate primary mouse macrophages to secrete IL-22, which was antagonized by CH-223191. Furthermore, ILA could protect mice from S. Tm infection by increasing IL-22 in Ahr+/- mice, but not in Ahr-/- mice. Finally, Trp-rich feeding showed amelioration of S. Tm infection in mice, and the effect depended on gut microbiota. Taken together, these results suggest that B. velezensis-associated ILA contributes to protecting mice against S. Tm infection by activating the AHR/IL-22 pathway. This study provides insights into the involvement of microbiota-derived Trp catabolites in protecting against Salmonella infection.
Collapse
Affiliation(s)
- Yingying Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Junqi Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Jia
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yanan Guo
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia, China
| | - Junlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Youquan Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
33
|
Ma X, Wang W, Cai L, Xiao M, He F, Liu Z, Chen D, Wang Y, Shen L, Gu Y. Analysis of the microbial diversity in takin ( Budorcas taxicolor) feces. Front Microbiol 2023; 14:1303085. [PMID: 38188576 PMCID: PMC10768053 DOI: 10.3389/fmicb.2023.1303085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The intestinal tract of animals is a complex and dynamic microecosystem that is inextricably linked to the health of the host organism. Takin (Budorcas taxicolor) is a threatened species, and its gut microbiome is poorly understood. Therefore, this study aimed to analyze the microbial community structure and potential pathogens of takin. Methods Takin fecal samples were collected from five sites in a nature reserve to ensure the uniformity of sample collection, determine the effects of different geographical locations on gut microbes, and analyze the differences in microbial communities between sites. Subsequently, high-throughput 16S rDNA gene sequencing was performed to analyze the microbial diversity and potential pathogens in the gut; the findings were verified by isolating and culturing bacteria and metagenomic sequencing. Results and discussion The takin gut microflora consisted mainly of four phyla: Firmicutes (69.72%), Bacteroidota (13.55%), Proteobacteria (9.02%), and Verrucomicrobiota (3.77%), representing 96.07% of all microorganisms. The main genera were UCG-005 (20.25%), UCG-010_unclassified (12.35%), Firmicus_unclassified (4.03%), and Rumino coccsea_unclassified (3.49%), while the main species were assigned to Bacteria_unclassified. Potential pathogens were also detected, which could be used as a reference for the protection of takin. Pseudomonas presented the highest abundance at Shuichiping and may represent the main pathogen responsible for the death of takin at the site. This study provides an important reference for investigating the composition of the bacterial community in the intestine of takin.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weichen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Mei Xiao
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Fang He
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Sichuan Provincial Center for Animal Disease Prevention and Control, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Limin Shen
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
34
|
Song W, Wang Y, Li G, Xue S, Zhang G, Dang Y, Wang H. Modulating the gut microbiota is involved in the effect of low-molecular-weight Glycyrrhiza polysaccharide on immune function. Gut Microbes 2023; 15:2276814. [PMID: 37948152 PMCID: PMC10653635 DOI: 10.1080/19490976.2023.2276814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Low molecular weight (6.5 kDa) Glycyrrhiza polysaccharide (GP) exhibits good immunomodulatory activity, however, the mechanism underlying GP-mediated regulation of immunity and gut microbiota remains unclear. In this study, we aimed to reveal the mechanisms underlying GP-mediated regulation of immunity and gut microbiota using cyclophosphamide (CTX)-induced immunosuppressed and intestinal mucosal injury models. GP reversed CTX-induced intestinal structural damage and increased the number of goblet cells, CD4+, CD8+ T lymphocytes, and mucin content, particularly by maintaining the balance of helper T lymphocyte 1/helper T lymphocyte 2 (Th1/Th2). Moreover, GP alleviated immunosuppression by down-regulating extracellular regulated protein kinases/p38/nuclear factor kappa-Bp50 pathways and increasing short-chain fatty acids level and secretion of cytokines, including interferon-γ, interleukin (IL)-4, IL-2, IL-10, IL-22, and transforming growth factor-β3 and immunoglobulin (Ig) M, IgG and secretory immunoglobulin A. GP treatment increased the total species and diversity of the gut microbiota. Microbiota analysis showed that GP promoted the proliferation of beneficial bacteria, including Muribaculaceae_unclassified, Alistipes, Lachnospiraceae_NK4A136_group, Ligilactobacillus, and Clostridia_vadinBB60_group, and reduced the abundance of Proteobacteria and CTX-derived bacteria (Clostridiales_unclassified, Candidatus_Arthromitus, Firmicutes_unclassified, and Clostridium). The studies of fecal microbiota transplantation and the pseudo-aseptic model conformed that the gut microbiota is crucial in GP-mediated immunity regulation. GP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Wangdi Song
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yunyun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Gongcheng Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Shengnan Xue
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanyan Dang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, China
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, China
| |
Collapse
|
35
|
Zhao L, Sui M, Zhang T, Zhang K. The interaction between ginseng and gut microbiota. Front Nutr 2023; 10:1301468. [PMID: 38045813 PMCID: PMC10690783 DOI: 10.3389/fnut.2023.1301468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
The importance of the gut microbiota to human health is attracting increasing attention. It is also involved in ginseng metabolism, mediating the bioactive metabolites of ginsenosides. In response, ginseng, known as the king of herbs, can regulate intestinal flora, including promoting probiotics and restricting the growth of harmful bacteria. Specifically, the interactions between ginseng or ginsenosides and gastrointestinal microbiota are complex. In this review, we summarized the effects of ginseng and ginsenosides on the composition of gut microbiota and discussed the gut microbiota-mediated biotransformation of ginsenosides. In particular, their therapeutic potential and clinical application in related diseases were also summarized.
Collapse
Affiliation(s)
| | | | | | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Kang K, Deng X, Xie W, Chen J, Lin H, Chen Z. Rhodotorula mucilaginosa ZTHY2 Attenuates Cyclophosphamide-Induced Immunosuppression in Mice. Animals (Basel) 2023; 13:3376. [PMID: 37958131 PMCID: PMC10648412 DOI: 10.3390/ani13213376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Rhodotorula mucilaginosa (R. mucilaginosa) can enhance the immune and antioxidant function of the body. However, whether R. mucilaginosa has an immunoregulatory effect on cyclophosphamide (CTX)-induced immunosuppressed animals remains to be clarified. In this study, the R. mucilaginosa ZTHY2 that we isolated from the coastal waters of the South China Sea previously was prepared in order to investigate its immunoprotective effect on CTX-induced immunosuppression in mice, and the effects were compared to those of Lactobacillus acidophilus (LA) (a well-known probiotic). Seventy-two male SPF mice were divided into six groups: The C group (control); IM group (immunosuppressive model group) (+CTX); Rl, Rm, and Rh groups (+CTX+low, medium, and high concentration of R. mucilaginosa, respectively); and PC (positive control) group (+CTX+LA). After a 28-day feeding trial, blood samples were taken for biochemical and serum immunological analysis, and the thymus and spleen were collected to analyze the organ index, lymphocyte proliferation and differentiation, and antioxidant capacity. The findings showed that R. mucilaginosa ZTHY2 improved the spleen and thymus indices, effectively attenuated immune organ atrophy caused by CTX, and enhanced the proliferation of T and B lymphocytes induced by ConA and LPS. R. mucilaginosa ZTHY2 promoted the secretion of cytokines and immunoglobulins and significantly increased the contents of IL-2, IL-4, IL-6, TNF-α, IFN-γ, IgA, IgG, IgM, CD4, CD8, CD19, and CD20 in serum. The proportion of CD4+, CD8+, CD19+, and CD20+ lymphocytes in spleen, thymus, and mesenteric lymph nodes were increased. In addition, R. mucilaginosa ZTHY2 reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increased glutathione (GSH), total superoxide dismutase (SOD), and catalase (CAT) levels. Our results indicated that R. mucilaginosa ZTHY2 can significantly enhance the immune function of immunosuppressed mice, and improving antioxidant capacity thus attenuates CTX-induced immunosuppression and immune organ atrophy.
Collapse
Affiliation(s)
- Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Xinyi Deng
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Weitian Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Jinjun Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Hongying Lin
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Zhibao Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Zhanjiang 524088, China
| |
Collapse
|
37
|
Wan C, Lu R, Zhu C, Wu H, Shen G, Yang Y, Wu X, Fang B, He Y. Ginsenoside Rb1 enhanced immunity and altered the gut microflora in mice immunized by H1N1 influenza vaccine. PeerJ 2023; 11:e16226. [PMID: 37868069 PMCID: PMC10588687 DOI: 10.7717/peerj.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Background Influenza is an acute infectious respiratory disease caused by the influenza virus that seriously damages human health, and the essential way to prevent influenza is the influenza vaccine. Vaccines without adjuvants produce insufficient specific antibodies and therefore require adjuvants to boost antibody titers. Microbes and hosts are a community that needs to "promote bacteria," which could provide new value for the immune effect. Methods (1) The H1N1 influenza vaccine, in combination with Ginsenoside Rb1, was co-injected into mice intraperitoneally (I.P.). Then, immunoglobulin G and antibody subtype levels were tested by enzyme-linked immunosorbent assay (ELISA). Moreover, mice were infected with a lethal dose of the H1N1 influenza virus (A/Michigan/45/2015), and survival status was recorded for 14 days. Lung tissues were stained by hematoxylin and eosin (H&E), and ELISA detected inflammatory factor expression levels. (2) Mice were immunized with Ginsenoside Rb1 combined with quadrivalent influenza inactivated vaccine(IIV4), and then IgG levels were measured by ELISA. (3) Fresh stool was collected for fecal 16S rDNA analysis. Results Ginsenoside Rb1 boosted IgG and antibody subtypes in the H1N1 influenza vaccine, improved survival of mice after virus challenge, attenuated lung histopathological damage, and reduced inflammatory cytokines expression in IL-6 and TNF-α. The results of 16S rDNA showed that Rb1 decreased species diversity but increased species richness compared to the PBS group and increased the abundance of Akkermansiaceae and Murbaculaceae at the Family and Genus levels compared with the HA+Alum group. Conclusion Ginsenoside Rb1 has a boosting effect on the immune efficacy of the H1N1 influenza vaccine and is promising as a novel adjuvant to regulate the microecological balance and achieve an anti-infective effect.
Collapse
Affiliation(s)
- Chuanqi Wan
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Rufeng Lu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Chen Zhu
- Department of ICU, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Haibo Wu
- The First Affiliated Hospital, Zhejiang University, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, Hangzhou, Shangcheng, China
| | - Guannan Shen
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Yang Yang
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Xiaowei Wu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
- Institute of Critical Care, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Yuzhou He
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Shangcheng, China
| |
Collapse
|
38
|
Zou Y, Ding W, Wu Y, Chen T, Ruan Z. Puerarin alleviates inflammation and pathological damage in colitis mice by regulating metabolism and gut microbiota. Front Microbiol 2023; 14:1279029. [PMID: 37908541 PMCID: PMC10614640 DOI: 10.3389/fmicb.2023.1279029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Dysbiosis of gut microbiota and metabolic pathway disorders are closely related to the ulcerative colitis. Through network pharmacology, we found that puerarin is a potential ingredient that can improve the crypt deformation and inflammatory infiltration in mice, and decrease the levels of IL-1β, IL-6 and TNF-α significantly. Listeria, Alistipes and P. copri gradually became dominant bacteria in UC mice, which were positively correlated with inflammatory factors. Puerarin effectively improved dysbiosis by reducing the abundance of Alistipes, P. copri and Veillonella, and increasing the level of Desulfovibrionacea. Correlation network and metabolic function prediction analysis of the microbiota showed that they formed a tightly connected network and were widely involved in carbohydrate metabolism and amino acid metabolism. Specifically, we observed significant changes in the tryptophan metabolism pathway in DSS mice, with an increase in the abundance of Bacteroidetes and Enterobacteriaceae involved in tryptophan metabolism. However, this metabolic disorder was alleviated after puerarin treatment, including the reversal of 3-HAA levels and an increase in the abundance of Rhodobacteraceae and Halomonadaceae involved in kynurenine metabolism, as well as a significant increase in the purine metabolite guanosine. In conclusion, our study suggests that puerarin has a good therapeutic effect on UC, which is partially achieved by restoring the composition and abundance of gut microbiota and their metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Ruan
- State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University, Nanchang, China
| |
Collapse
|
39
|
Li W, Cheng F, Zhang J, Li C, Yu D, Simayijiang H, Liu H, Li S, Yan J. Changes in Gut Microbiota and Metabolites in Papillary Thyroid Carcinoma Patients Following Radioactive Iodine Therapy. Int J Gen Med 2023; 16:4453-4464. [PMID: 37808207 PMCID: PMC10557971 DOI: 10.2147/ijgm.s433433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Radioactive iodine therapy is administered through oral route, which is accumulated and absorbed in the intestine. However, its effects on the intestine remain unclear. In this study, we investigated the changes in the gut microbiota and metabolites following radioactive iodine therapy. Patients and Methods A total of 76 stool samples from the same 38 patients were collected at the start of radioactive iodine therapy and three days following the therapy. Stool microbiota and metabolites were detected using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry. Results Enterobacteriales, Enterobacteriaceae and Escherichia-Shigella were elevated in most patients (27/38) following the therapy. The levels of 2-hydroxyundec-7-enoylcarnitine were significantly lower, whereas those of 5-dehydroavenasterol, butylisopropylamine, and salsoline-1-carboxylate were higher following the therapy. The relative abundance of Escherichia-Shigella was negatively correlated with 2-hydroxyundec-7-enoylcarnitine level (r2 = -0.661, P = 0.009). Functional pathways were predicted to be involved in amino acid and lipid metabolism following the therapy. Particularly, phenylalanine, linoleic acid, sphingolipid, purine, and alpha-linolenic acid metabolism were the main metabolic pathways. Conclusion Gut microbiota was disturbed following radioactive iodine therapy, with increased Escherichia-Shigella. Processes associated with energy production seems to be impacted following the therapy, with significantly decreased 2-hydroxyundec-7-enoylcarnitine level. Meanwhile, some metabolites and functional pathways may have a positive effect on intestinal homeostasis, and may be related to the repair and promotion of gut recovery following the therapy. This study provides a basic foundation to explore how radioactive iodine affects gut microbiota and metabolites, and how gut function is regulated in response to radioactive iodine therapy.
Collapse
Affiliation(s)
- Wanting Li
- Shanxi Key Laboratory of Forensic Medicine, Shanxi Medical University, Jinzhong, People’s Republic of China
| | - Feng Cheng
- Shanxi Key Laboratory of Forensic Medicine, Shanxi Medical University, Jinzhong, People’s Republic of China
| | - Jun Zhang
- Shanxi Key Laboratory of Forensic Medicine, Shanxi Medical University, Jinzhong, People’s Republic of China
| | - Caihong Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Daijing Yu
- Shanxi Key Laboratory of Forensic Medicine, Shanxi Medical University, Jinzhong, People’s Republic of China
| | - Halimureti Simayijiang
- Shanxi Key Laboratory of Forensic Medicine, Shanxi Medical University, Jinzhong, People’s Republic of China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jiangwei Yan
- Shanxi Key Laboratory of Forensic Medicine, Shanxi Medical University, Jinzhong, People’s Republic of China
| |
Collapse
|
40
|
Zhou J, Wang M, Sun T, Zhou X, Wang J, Wang Y, Zhang R, Luo R, Yu H. Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics. Medicine (Baltimore) 2023; 102:e34843. [PMID: 37657041 PMCID: PMC10476752 DOI: 10.1097/md.0000000000034843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/28/2023] [Indexed: 09/03/2023] Open
Abstract
Ophiocordyceps sinensis is a precious Chinese traditional herb with a long medicinal history. This study used UPLC-MS metabolomics to explore and compare the metabolic profiles of the stroma (OSBSz), sclerotium (OSBSh), and mycelium (OSBS) of O sinensis to analyze their differential metabolites and identified potential active components. Then combined with network pharmacology and molecular docking to explore the mechanism of differential metabolites with anti-influenza properties. The results indicate that the stroma, sclerotium, and mycelium showed significant differences in metabolites. The key pathways for differential metabolites were butanoate metabolism, thiamin metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, and arginine biosynthesis. Protein-protein interaction analysis identified potential targets, including SRC, RHOA, HSP90AA1, VEGFA, ITGB1, PRKCA, and ITGA1, and the key protective pathways in-volved PI3K-Akt, HIF-1, influenza A, and Coronavirus disease 2019. The molecular docking results showed that the core metabolite D-(-)-glutamine has high binding affinity with SRC, RHOA, and EGFR, re-flecting the multi-component and multi-target network system of O sinensis. In short, the combination of metabonomics, network pharmacology and macromolecular docking technology provides a new way to explore the anti-influenza research of O sinensis. This is undoubtedly an important theoretical support for the clinical application of O sinensis in the future.
Collapse
Affiliation(s)
- Jinna Zhou
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
- College of Science, Tibet University, Lhasa, China
| | - Mu Wang
- Plant Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Tao Sun
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Xiaorong Zhou
- Department of Pharmacy, Sanming First Hospital, Affiliated Hospital of Fujian Medical University, Sanming, China
| | - Jinhu Wang
- College of Science, Tibet University, Lhasa, China
| | - Yao Wang
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Ran Zhang
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Run Luo
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| | - Hong Yu
- College of Ecology and Environment Sciences, Yunnan University, Kunming, China
| |
Collapse
|
41
|
Shan J, Liu S, Liu H, Yuan J, Lin J. Mechanism of Qingchang Suppository on repairing the intestinal mucosal barrier in ulcerative colitis. Front Pharmacol 2023; 14:1221849. [PMID: 37675045 PMCID: PMC10478270 DOI: 10.3389/fphar.2023.1221849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, and the outcomes of conventional therapies of UC, including 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are not satisfied with patients and physicians with regard to adverse reactions and financial burden. The abnormality of the intestinal mucosal barrier in the pathogenesis of UC was verified. Qingchang Suppository (QCS) is an herbal preparation and is effective in treating ulcerative proctitis. The mechanism of QCS and its active ingredients have not been concluded especially in mucosal healing. This review elucidated the potential mechanism of QCS from the intestinal mucosal barrier perspective to help exploring future QCS research directions.
Collapse
Affiliation(s)
- Jingyi Shan
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyue Liu
- Department of Intensive Care Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Zhang H, Sun Y, Fan M, Zhang Y, Liang Z, Zhang L, Gao X, He X, Li X, Zhao D, Sagratini G, Su H, Qi W. Prevention effect of total ginsenosides and ginseng extract from Panax ginseng on cyclophosphamide-induced immunosuppression in mice. Phytother Res 2023; 37:3583-3601. [PMID: 37070654 DOI: 10.1002/ptr.7836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/19/2023]
Abstract
Oral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty-two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG-014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Yue Sun
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Meiling Fan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Zuguo Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Xiang Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinzhu He
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | | | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
43
|
Zhang H, Sun Y, Fan M, Zhang Y, Liang Z, Zhang L, Gao X, He X, Li X, Zhao D, Sagratini G, Su H, Qi W. Prevention effect of total ginsenosides and ginseng extract from Panax ginseng on cyclophosphamide‐induced immunosuppression in mice. Phytother Res 2023; 37:3583-3601. [DOI: doi.org/10.1002/ptr.7836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/01/2023] [Indexed: 07/02/2024]
Abstract
AbstractOral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty‐two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG‐014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.
Collapse
Affiliation(s)
- He Zhang
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Yue Sun
- School of Pharmacy University of Camerino Camerino Italy
| | - Meiling Fan
- Research Center of Traditional Chinese Medicine The Affiliated Hospital to Changchun University of Chinese Medicine Changchun China
| | - Yuyao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Zuguo Liang
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Lancao Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Xiang Gao
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Xinzhu He
- College of Pharmacy Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | | | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| | - Wenxiu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine; Northeast Asia Research Institute of Traditional Chinese Medicine Changchun China
| |
Collapse
|
44
|
Niu Y, Liu W, Fan X, Wen D, Wu D, Wang H, Liu Z, Li B. Beyond cellulose: pharmaceutical potential for bioactive plant polysaccharides in treating disease and gut dysbiosis. Front Microbiol 2023; 14:1183130. [PMID: 37293228 PMCID: PMC10244522 DOI: 10.3389/fmicb.2023.1183130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Polysaccharides derived from plants, algae, or fungi serve as the major components of some human diets. Polysaccharides have been shown to exhibit diverse biological activities in improving human health, and have also been proposed to function as potent modulators of gut microbiota composition, thus playing a bi-directional regulatory role in host health. Here, we review a variety of polysaccharide structures potentially linked to biological functions, and cover current research progress in characterizing their pharmaceutical effects in various disease models, including antioxidant, anticoagulant, anti-inflammatory, immunomodulatory, hypoglycemic, and antimicrobial activities. We also highlight the effects of polysaccharides on modulating gut microbiota via enrichment for beneficial taxa and suppression of potential pathogens, leading to increased microbial expression of carbohydrate-active enzymes and enhanced short chain fatty acid production. This review also discusses polysaccharide-mediated improvements in gut function by influencing interleukin and hormone secretion in host intestinal epithelial cells.
Collapse
Affiliation(s)
- Yuanlin Niu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Dongxu Wen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Dan Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hongzhuang Wang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
45
|
Zhang S, Ding C, Liu X, Zhao Y, Ding Q, Sun S, Zhang J, Yang J, Liu W, Li W. Research Progress on Extraction, Isolation, Structural Analysis and Biological Activity of Polysaccharides from Panax Genus. Molecules 2023; 28:molecules28093733. [PMID: 37175143 PMCID: PMC10179830 DOI: 10.3390/molecules28093733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The panax genus is a widely used medicinal plant with good biological activity. As one of the main active components of the Panax genus, polysaccharides have various pharmacological effects. This review summarizes the latest research reports on ginseng, American ginseng, and Panax notoginseng polysaccharides and compares the differences in extraction, isolation and purification, structural characteristics, and biological activities. The current research mainly focuses on ginseng polysaccharides, and the process of extraction, isolation, and structure analysis of each polysaccharide is roughly the same. Modern pharmacological studies have shown that these polysaccharides have antioxidants, antitumor, immunomodulatory, antidiabetic, intestinal protection, skin repair, and other biological activities. This review provides new insights into the differences between the three kinds of ginseng polysaccharides which will help to further study the medicinal value of ginseng in traditional Chinese medicine.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
46
|
Zhang C, Hu Y, Yuan Y, Guo J, Li H, Li Q, Liu S. Liposome-embedded SOD attenuated DSS-induced ulcerative colitis in mice by ameliorating oxidative stress and intestinal barrier dysfunction. Food Funct 2023; 14:4392-4405. [PMID: 37092895 DOI: 10.1039/d2fo03312g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Oxidative stress is generally considered inseparable from the development and exacerbation of ulcerative colitis (UC). Therefore, reducing oxidative stress has become a possible way to alleviate UC. In this study, the therapeutic effects of different doses of liposome-embedded superoxide dismutase (L-SOD) on mice with DSS-induced UC were systematically investigated. The results showed that L-SOD significantly attenuated the signs of colitis in mice, including colonic shortening, diarrhoea, bloody stools, and histopathological changes. L-SOD ameliorated DSS-induced oxidative damage, increased SOD, catalase (CAT), and glutathione (GSH) activities, and decreased malondialdehyde (MDA) levels. In addition, L-SOD ameliorated the inflammatory response by inhibiting the expression of myeloperoxidase (MPO) and pro-inflammatory cytokines and protected barrier function by promoting the expression of the tight junction proteins occludin and ZO-1 in the colon. Importantly, the results demonstrated a bell-shaped distribution of therapeutic effects relative to the administered dose, with an optimal dose of 150 000 U kg-1. These results indicate that L-SOD has great potential as an ingredient in functional foods for the prevention and mitigation of UC.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Yujia Hu
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Yi Yuan
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Jingke Guo
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
- Department of Food and Biological Engineering, Zhicheng College, Fuzhou University, Fuzhou 350002, China
| | - Henian Li
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Qiaoling Li
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Shutao Liu
- Institute of Biotechnology, Fuzhou University, Fuzhou 350108, China.
- Department of Food and Biological Engineering, Zhicheng College, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
47
|
Sun Y, Liu X, Fu X, Xu W, Guo Q, Zhang Y. Discrepancy Study of the Chemical Constituents of Panax Ginseng from Different Growth Environments with UPLC-MS-Based Metabolomics Strategy. Molecules 2023; 28:molecules28072928. [PMID: 37049688 PMCID: PMC10095802 DOI: 10.3390/molecules28072928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Panax ginseng (P. ginseng), the dried root and rhizome of P. ginseng C. A. Meyer, is widely used in many fields as dietary supplements and medicine. To characterize the chemical constituents in P. ginseng cultivated in different growth environments, a UPLC-TOF-MS method was established for qualitative analysis. Four hundred and eight ginsenosides, including 81 new compounds, were characterized in P. ginseng from different regions. Among the detected compounds, 361 ginsenosides were recognized in P. ginseng cultivated in the region of Monsoon Climate of Medium Latitudes, possessing the largest amount of ginsenosides in all samples. Furthermore, 41 ginsenosides in 12 batches of P. ginsengs were quantified with a UPLC-MRM-MS method, and P. ginsengs from different regions were distinguished via chemometric analysis. This study showed that the different environments have a greater influence on P. ginseng, which laid a foundation for further quality control of the herb.
Collapse
Affiliation(s)
- Yizheng Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaojie Fu
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingmei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Youbo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
48
|
Huo R, Wang M, Wei X, Qiu Y. Research Progress on Anti-Inflammatory Mechanisms of Black Ginseng. Chem Biodivers 2023; 20:e202200846. [PMID: 36789670 DOI: 10.1002/cbdv.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.
Collapse
Affiliation(s)
- Ran Huo
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengyuan Wang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xu Wei
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ye Qiu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
49
|
Ma W, Li W, Yu S, Bian H, Wang Y, Jin Y, Zhang Z, Ma Q, Huang L. Immunomodulatory effects of complex probiotics on the immuno-suppressed mice induced by cyclophosphamide. Front Microbiol 2023; 14:1055197. [PMID: 36778877 PMCID: PMC9911820 DOI: 10.3389/fmicb.2023.1055197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Previous studies have reported the beneficial effects of Bifidobacterium animalis subsp. lactis XLTG11, Lacticaseibacillus casei Zhang, and Lactiplantibacillus plantarum P8, respectively. However, studies on the immunomodulatory enhancing effects of three complex probiotics have not been conducted. The aim of our study is to investigate the immunomodulatory effects of complex probiotics effect on the immunosuppressed mice induced by cyclophosphamide (CTX). Methods An immunocompromised mouse model was established by intraperitoneal injection of cyclophosphamide, which was gavage of different doses of complex probiotics and levamisole hydrochloride. The splenic and thymic indices, intestinal barrier, leukocyte and lymphocyte counts, percentage of splenic lymphocyte subpopulations, cytokine levels, and gut microbiota were determined. Results Results showed that the complex probiotics significantly elevated the spleen and thymus indices, increased the villi and crypt depth and the goblet cells. The leukocyte and lymphocyte counts and the percentage of splenic lymphocyte subpopulations in the CTX-treated mice were significantly elevated by the complex probiotics. In addition, the cytokines (IL-6, IL-10, IL-1β, and IFN-γ) were significantly increased after complex probiotic treatment. The complex probiotics restored the gut microbiota structure to the pattern of the control group by reducing the ratio of Firmicutes/Bacteroidetes and enhancing the relative abundances of specific microbiota that produced short-chain fatty acids. Discussion This study provides theoretical support for the immunity-enhancing function of the complex probiotics as well as a pharmacological basis for its further development and utilization.
Collapse
|
50
|
Zhou YD, Liang FX, Tian HR, Luo D, Wang YY, Yang SR. Mechanisms of gut microbiota-immune-host interaction on glucose regulation in type 2 diabetes. Front Microbiol 2023; 14:1121695. [PMID: 36891383 PMCID: PMC9986296 DOI: 10.3389/fmicb.2023.1121695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Intestinal absorption of food is one of the sources of glucose. Insulin resistance and impaired glucose tolerance caused by lifestyle and diet are the precursors of type 2 diabetes. Patients with type 2 diabetes have trouble controlling their blood sugar levels. For long-term health, strict glycemic management is necessary. Although it is thought to be well correlated with metabolic diseases like obesity, insulin resistance, and diabetes, its molecular mechanism is still not completely understood. Disturbed microbiota triggers the gut immune response to reshape the gut homeostasis. This interaction not only maintains the dynamic changes of intestinal flora, but also preserves the integrity of the intestinal barrier. Meanwhile, the microbiota establishes a systemic multiorgan dialog on the gut-brain and gut-liver axes, intestinal absorption of a high-fat diet affects the host's feeding preference and systemic metabolism. Intervention in the gut microbiota can combat the decreased glucose tolerance and insulin sensitivity linked to metabolic diseases both centrally and peripherally. Moreover, the pharmacokinetics of oral hypoglycemic medications are also influenced by gut microbiota. The accumulation of drugs in the gut microbiota not only affects the drug efficacy, but also changes the composition and function of them, thus may help to explain individual therapeutic variances in pharmacological efficacy. Regulating gut microbiota through healthy dietary patterns or supplementing pro/prebiotics can provide guidance for lifestyle interventions in people with poor glycemic control. Traditional Chinese medicine can also be used as complementary medicine to effectively regulate intestinal homeostasis. Intestinal microbiota is becoming a new target against metabolic diseases, so more evidence is needed to elucidate the intricate microbiota-immune-host relationship, and explore the therapeutic potential of targeting intestinal microbiota.
Collapse
Affiliation(s)
- Yu-Dian Zhou
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Feng-Xia Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Hao-Ran Tian
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Dan Luo
- Department of Respiratory Wuhan No.1 Hospital, Wuhan, Hebei, China
| | - Ya-Yuan Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| | - Shu-Rui Yang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hebei, China
| |
Collapse
|