1
|
Semwal P, Mishra SK, Majhi B, Mishra A, Joshi H, Misra S, Misra A, Srivastava S, Chauhan PS. Bacillus australimaris protect Gloriosa superba L. against Alternaria alternata infestation. World J Microbiol Biotechnol 2024; 40:354. [PMID: 39419894 DOI: 10.1007/s11274-024-04156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Gloriosa superba L., a medicinally important plant, is often affected by leaf blight disease caused by Alternaria alternata, which compromises its productivity. This study explores the protective effects of Bacillus australimaris endophyte (NBRI GS34), demonstrating that its inoculation not only inhibits the disease but also promotes plant growth and increases the concentrations of bioactive metabolites. Co-culturing NBRI GS34 with A. alternata significantly boosts protease (30-50%) and chitinase (6-28%) activities, evidencing a synergistic interaction. Scanning electron microscopy and GC-MS analysis confirm NBRI GS34's antagonistic action and reveal antifungal compounds like undecanoic acid and benzene carboxylic acid in treatments. Greenhouse experiments show a 78% reduction in disease incidence with NBRI GS34 treatment, enhancing vegetative growth and upregulating defense-related genes. Additionally, HPLC analysis reveals increased gloriosine and colchicine concentrations by 52% and 33%, respectively. These findings suggest NBRI GS34 could serve as a sustainable fungicide alternative, enhancing the production of medically valuable compounds and highlighting its potential pharmaceutical applications.
Collapse
Affiliation(s)
- Pradeep Semwal
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Basudev Majhi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhilasha Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow- Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Ankita Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sharad Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P, 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Li G, Shi M, Wan W, Wang Z, Ji S, Yang F, Jin S, Zhang J. Maize Endophytic Plant Growth-Promoting Bacteria Peribacillus simplex Can Alleviate Plant Saline and Alkaline Stress. Int J Mol Sci 2024; 25:10870. [PMID: 39456656 PMCID: PMC11508032 DOI: 10.3390/ijms252010870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Soil salinization is currently one of the main abiotic stresses that restrict plant growth. Plant endophytic bacteria can alleviate abiotic stress. The aim of the current study was to isolate, characterize, and assess the plant growth-promoting and saline and alkaline stress-alleviating traits of Peribacillus simplex M1 (P. simplex M1) isolates from maize. One endophytic bacterial isolate, named P. simplex M1, was selected from the roots of maize grown in saline-alkali soil. The P. simplex M1 genome sequence analysis of the bacteria with a length of 5.8 Mbp includes about 700 genes that promote growth and 16 antioxidant activity genes that alleviate saline and alkaline stress. P. simplex M1 can grow below 400 mM NaHCO3 on the LB culture medium; The isolate displayed multiple plant growth-stimulating features, such as nitrogen fixation, produced indole-3-acetic acid (IAA), and siderophore production. This isolate had a positive effect on the resistance to salt of maize in addition to the growth. P. simplex M1 significantly promoted seed germination by enhancing seed vigor in maize whether under normal growth or NaHCO3 stress conditions. The seeds with NaHCO3 treatment exhibited higher reactive oxygen species (ROS) levels than the maize in P. simplex M1 inoculant on maize. P. simplex M1 can colonize the roots of maize. The P. simplex M1 inoculant plant increased chlorophyll in leaves, stimulated root and leaf growth, increased the number of lateral roots and root dry weight, increased the length and width of the blades, and dry weight of the blades. The application of inoculants can significantly reduce the content of malondialdehyde (MDA) and increase the activity of plant antioxidant enzymes (Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)), which may thereby improve maize resistance to saline and alkaline stress. Conclusion: P. simplex M1 isolate belongs to plant growth-promoting bacteria by having high nitrogen concentration, indoleacetic acid (IAA), and siderophore, and reducing the content of ROS through the antioxidant system to alleviate salt alkali stress. This study presents the potential application of P. simplex M1 as a biological inoculant to promote plant growth and mitigate the saline and alkaline effects of maize and other crops.
Collapse
Affiliation(s)
- Guoliang Li
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Miaoxin Shi
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wenhao Wan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zongying Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shangwei Ji
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Heilongjiang University, Harbin 150080, China
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Shumei Jin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jianguo Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
3
|
Joshi H, Harter K, Rohr L, Mishra SK, Chauhan PS. Elucidation of PGPR-responsive OsNAM2 regulates salt tolerance in Arabidopsis by AFP2 and SUS protein interaction. Microbiol Res 2024; 289:127890. [PMID: 39243685 DOI: 10.1016/j.micres.2024.127890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
This study investigates the molecular mechanisms underlying salt stress responses in plants, focusing on the regulatory roles of OsNAM2, a gene influenced by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens (SN13). The study examines how SN13-modulated OsNAM2 enhances salt tolerance in Arabidopsis through physiological, biochemical, and molecular analyses. Overexpression of OsNAM2, especially with SN13 inoculation, improves germination, seedling growth, root length, and biomass under high NaCl concentrations compared to wild-type plants, indicating a synergistic effect. OsNAM2 overexpression enhances relative water content, reduces electrolyte leakage and malondialdehyde accumulation, and increases proline content, suggesting better membrane integrity and stress endurance. Furthermore, SN13 and OsNAM2 overexpression modulates essential metabolic genes involved in glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, facilitating metabolic adjustments crucial for salt stress adaptation. The interaction of OsNAM2 with SUS, facilitated by SN13, suggests enhanced sucrose metabolism efficiency, providing substrates for protective responses. Additionally, OsNAM2 plays a regulatory role in the ABA signaling pathway through significant protein-protein interactions like with AFP2. This study highlights the intricate interplay between SN13-responsive OsNAM2 and key signaling pathways, suggesting strategies for enhancing crop salt tolerance through targeted genetic and microbial interventions.
Collapse
Affiliation(s)
- Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Department of Botany, University of Lucknow, Lucknow 226007, India
| | - Klaus Harter
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Leander Rohr
- The Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen 72076, Germany
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
4
|
Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, Kim SH. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses. PLANT CELL REPORTS 2024; 43:198. [PMID: 39023775 DOI: 10.1007/s00299-024-03281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
KEY MESSAGE Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, Chennai, 600077, India
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Yin X, Liu X, Wu X, Liu X, Tian Q, Luo Q, Li Y. Design, Synthesis, and 3D-QASR of 2-Ar-1,2,3-triazole Derivatives Containing Hydrazide as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12415-12424. [PMID: 38779960 DOI: 10.1021/acs.jafc.3c08951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 μg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 μg/mL) compared to the positive controls hymexazol (EC50 = 12.80 μg/mL) and tebuconazole (EC50 = 0.87 μg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 μg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.
Collapse
Affiliation(s)
- Xue Yin
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xiaofeng Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xia Wu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Xingyu Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qingqiang Tian
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yahui Li
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Ibrahim E, Ahmad AA, Abdo ES, Bakr MA, Khalil MA, Abdallah Y, Ogunyemi SO, Mohany M, Al-Rejaie SS, Shou L, Li B, Galal AA. Suppression of Root Rot Fungal Diseases in Common Beans ( Phaseolus vulgaris L.) through the Application of Biologically Synthesized Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:710. [PMID: 38668204 PMCID: PMC11053751 DOI: 10.3390/nano14080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
The biosynthesis of silver nanoparticles (AgNPs) using plant extracts has become a safe replacement for conventional chemical synthesis methods to fight plant pathogens. In this study, the antifungal activity of biosynthesized AgNPs was evaluated both in vitro and under greenhouse conditions against root rot fungi of common beans (Phaseolus vulgaris L.), including Macrophomina phaseolina, Pythium graminicola, Rhizoctonia solani, and Sclerotium rolfsii. Among the eleven biosynthesized AgNPs, those synthesized using Alhagi graecorum plant extract displayed the highest efficacy in suppressing those fungi. The findings showed that using AgNPs made with A. graecorum at a concentration of 100 μg/mL greatly slowed down the growth of mycelium for R. solani, P. graminicola, S. rolfsii, and M. phaseolina by 92.60%, 94.44%, 75.93%, and 79.63%, respectively. Additionally, the minimum inhibitory concentration (75 μg/mL) of AgNPs synthesized by A. graecorum was very effective against all of these fungi, lowering the pre-emergence damping-off, post-emergence damping-off, and disease percent and severity in vitro and greenhouse conditions. Additionally, the treatment with AgNPs led to increased root length, shoot length, fresh weight, dry weight, and vigor index of bean seedlings compared to the control group. The synthesis of nanoparticles using A. graecorum was confirmed using various physicochemical techniques, including UV spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) analysis. Collectively, the findings of this study highlight the potential of AgNPs as an effective and environmentally sustainable approach for controlling root rot fungi in beans.
Collapse
Affiliation(s)
- Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (E.I.); (S.O.O.)
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt;
| | - Abdelmonim Ali Ahmad
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia 11432, Egypt; (A.A.A.); (E.-S.A.); (Y.A.); (A.A.G.)
| | - El-Sayed Abdo
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia 11432, Egypt; (A.A.A.); (E.-S.A.); (Y.A.); (A.A.G.)
| | - Mohamed Ahmed Bakr
- Department of Self-Pollinated Vegetable Crops, Horticulture Institute, Agriculture Research Centre, Giza 12916, Egypt;
| | - Mohamed Ali Khalil
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt;
| | - Yasmine Abdallah
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia 11432, Egypt; (A.A.A.); (E.-S.A.); (Y.A.); (A.A.G.)
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (E.I.); (S.O.O.)
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou 310004, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (E.I.); (S.O.O.)
| | - Anwar A. Galal
- Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia 11432, Egypt; (A.A.A.); (E.-S.A.); (Y.A.); (A.A.G.)
| |
Collapse
|
7
|
Cruz-Barrera M, Izquierdo-García LF, Gómez-Marroquín M, Santos-Díaz A, Uribe-Gutiérrez L, Moreno-Velandia CA. Hydrogel capsules as new delivery system for Trichoderma koningiopsis Th003 to control Rhizoctonia solani in rice (Oryza sativa). World J Microbiol Biotechnol 2024; 40:108. [PMID: 38403797 PMCID: PMC10894772 DOI: 10.1007/s11274-024-03897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
The incorporation of biological control agents (BCAs) such as Trichoderma spp. in agricultural systems favors the transition towards sustainable practices of plant nutrition and diseases control. Novel bioproducts for crop management are called to guarantee sustainable antagonism activity of BCAs and increase the acceptance of the farmers. The encapsulation in polymeric matrices play a prominent role for providing an effective carrier/protector and long-lasting bioproduct. This research aimed to study the influence of biopolymer in hydrogel capsules on survival and shelf-life of T. koningiopsis. Thus, two hydrogel capsules prototypes based on alginate (P1) and amidated pectin (P2), containing conidia of T. koningiopsis Th003 were formulated. Capsules were prepared by the ionic gelation method and calcium gluconate as crosslinker. Conidia releasing under different pH values of the medium, survival of conidia in drying capsules, storage stability, and biocontrol activity against rice sheath blight (Rhizoctonia solani) were studied. P2 prototype provided up to 98% survival to Th003 in fluid bed drying, faster conidia releasing at pH 5.8, storage stability greater than 6 months at 18 °C, and up to 67% of disease reduction. However, both biopolymers facilitate the antagonistic activity against R. solani, and therefore can be incorporated in novel hydrogel capsules-based biopreparations. This work incites to develop novel biopesticides-based formulations with potential to improve the delivery process in the target site and the protection of the active ingredient from the environmental factors.
Collapse
Affiliation(s)
- Mauricio Cruz-Barrera
- Bioproducts Department, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia.
| | - Luisa Fernanda Izquierdo-García
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Magda Gómez-Marroquín
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Adriana Santos-Díaz
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Liz Uribe-Gutiérrez
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| | - Carlos Andrés Moreno-Velandia
- Agricultural Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Mosquera, Colombia
| |
Collapse
|
8
|
Sultana R, Islam SMN, Sriti N, Ahmed M, Shuvo SB, Rahman MH, Jashim AII. Sphingomonas panaciterrae PB20 increases growth, photosynthetic pigments, antioxidants, and mineral nutrient contents in spinach ( Spinacia oleracea L.). Heliyon 2024; 10:e25596. [PMID: 38356594 PMCID: PMC10865318 DOI: 10.1016/j.heliyon.2024.e25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) have been intensively investigated in agricultural crops for decades. Nevertheless, little information is available on the application of Sphingomonas spp. as a PGPR particularly in vegetables, despite of potential plant growth promoting traits of this group. This study investigated the role of Sphingomonas panaciterrae (PB20) on growth and nutritional profile of spinach applied through seed priming (SP), soil drenching (SD), foliar application (FA), and bacterial culture filtrate foliar (BCF) applications. The results showed that, depending on different methods of application, PB20 significantly increased plant height (19.57-65.65 %), fresh weight (7.26-37.41 %), total chlorophyll (71.14-192.54 %), carotenoid (67.10-211.67 %) antioxidant (55.99-207.04), vitamin C (8.1-94.6 %) and protein content (6.7-21.5 %) compared to control in the edible part of spinach. Among the mineral nutrients, root nitrogen (N) showed greater response to bacterial application (18.65%-46.15 % increase over control) than shoot nitrogen (6.70%-21.52 % increased over control). Likewise, in all methods of application, phosphorus (P) content showed significant increase over control both in root (42.79-78.48 %) and in shoot (3.57-27.0 %). Seed priming and foliar application of PB20 increased the shoot calcium (Ca) content compared to control. BCF foliar application yielded maximum magnesium (Mg), iron (Fe) and zinc (Zn) in shoot. However, seed priming resulted in maximum Fe in root. Overall, seed priming outperformed in growth, vitamin C, antioxidants, N and P uptake, while BCF foliar application resulted in better uptake of several nutrients. Multivariate analysis validated the positive association of most of the growth parameters with SP while several nutrients with FA and BCF. Based on the findings it is evident that this rhizobacteria PB20 has the potentiality to be applied as a biofertilizer to produce nutrient-enriched spinach with an improved yield. Farmers can conveniently incorporate PR20 through seed priming before planting of spinach, with additional benefits through foliar spray.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
| | - Nurjahan Sriti
- Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mysha Ahmed
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sourav Biswas Shuvo
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Habibur Rahman
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Asif Iqbal Ibne Jashim
- Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
9
|
Abbas MM, Ismael WH, Mahfouz AY, Daigham GE, Attia MS. Efficacy of endophytic bacteria as promising inducers for enhancing the immune responses in tomato plants and managing Rhizoctonia root-rot disease. Sci Rep 2024; 14:1331. [PMID: 38225343 PMCID: PMC10789748 DOI: 10.1038/s41598-023-51000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Around the world, a variety of crops, including tomatoes, suffer serious economic losses due to the Rhizoctonia root-rot disease. Herein, Bacillus velezensis, Bacillus megaterium, and Herpaspirillum huttiense isolated from strawberry (Fragaria chiloensis var. ananassa) plants were pragmatic as plant growth promotors for battling the Rhizoctonia root rot disease and bringing about defense mechanisms as well as growth promotional strategies in tomato plants. These endophytic bacteria demonstrated potent antifungal activity against R. solani in vitro along in vivo. Data explained that the isolated endophytic bacteria could produce Indole acetic acid, Gibberellic acid GA, and siderophore as well as solubilize phosphate in the soil. The consortium of (Bacillus velezensis, Bacillus megaterium, and Herpaspirillum huttiense) increased the protection % against Rhizoctonia infection by (79.4%), followed by B. velezensis by (73.52%), H. huttiense by (70.5%), and B. megaterium by (67.64%), respectively. There was an increase in soluble proteins and carbohydrates in infected plants treated with a consortium of endophytic bacteria by 30.7% and 100.2% over untreated infected plants, respectively. Applying endophytic bacteria either alone or in combination lowered the level of malondialdehyde MDA and hydrogen peroxide H2O2 and improved the activities of antioxidant enzymes in both infected and uninfected plants. Also, bacterial endophytes have distinctive reactions regarding the number and concentrations of isozymes in both infected and uninfected plants. It could be recommended the commercial usage of a mixture of targeted bacterial endophyte strains as therapeutic nutrients against Rhizoctonia root-rot disease as well as plant growth inducer.
Collapse
Affiliation(s)
- Mona M Abbas
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt
| | - Walaa H Ismael
- Soil Microbiology Department, Soil, Water and Environmental Research Institute, Agriculture Research Center, Giza, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt.
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, (Girls Branch), Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Kar S, Mishra SK, Misra S, Agarwal R, Kumar S, Chauhan PS. Endophytic Alkalotolerant Plant Growth-Promoting Bacteria Render Maize (Zea mays L.) Growth Under Alkaline Stress. Curr Microbiol 2023; 81:43. [PMID: 38117393 DOI: 10.1007/s00284-023-03557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
This study investigates the role of bacterial endophytes from extreme alkaline environments in alleviating alkaline stress and plant development. Stressful environmental factors, such as soil acidity and alkalinity/sodicity, frequently affect plant development. In the present study, alkaline-tolerant endophytic strains were isolated from three plant species Saccharum munja, Calotropis procera, and Chenopodium album, and 15 out of the total of 48 isolates were selected for further examination of their abiotic stress tolerance. Molecular analysis based on 16S rRNA gene sequencing revealed strains from Enterobacter, Acinetobacter, Stenotrophomonas, Bacillus, Lysinibacillus, and Mammaliicoccus genera. Out of 15 isolates based on their quantitative PGP traits and abiotic stress tolerance, 6 were finally selected for greenhouse experiments. Under alkaline conditions, results demonstrated that the strains from the genera Enterobacter, Bacillus, Stenotrophomonas, and Lysinibacillus had beneficial effects on maize growth. These findings suggest that using a combination of bacteria with multiple plant growth-promoting attributes could be a sustainable approach to enhance agricultural yield, even in a challenging alkaline environment. The study concludes that the application of bacterial endophytes from plants growing in extremely alkaline environments might provide other plants with similar stress-tolerance abilities. The outcome of the study provides a basis for future exploration of the mechanisms underlying endophyte-induced stress tolerance.
Collapse
Affiliation(s)
- Srishti Kar
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, 225003, India
| | - Renuka Agarwal
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Susheel Kumar
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
11
|
Zhang S, Han J, Liu N, Sun J, Chen H, Xia J, Ju H, Liu S. Botrytis cinerea hypovirulent strain △ BcSpd1 induced Panax ginseng defense. J Ginseng Res 2023; 47:773-783. [PMID: 38107400 PMCID: PMC10721459 DOI: 10.1016/j.jgr.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/19/2023] [Accepted: 08/30/2023] [Indexed: 12/19/2023] Open
Abstract
Background Gray mold, caused by Botrytis cinerea, is one of the major fungal diseases in agriculture. Biological methods are preferred over chemical fungicides to control gray mold since they are less toxic to the environment and could induce the resistance to pathogens in plants. In this work, we try to understand if ginseng defense to B. cinerea could be induced by fungal hypovirulent strain △BcSpd1. BcSpd1 encodes Zn(II)2Cys6 transcription factor which regulates fungal pathogenicity and we recently reported △BcSpd1 mutants reduced fungal virulence. Methods We performed transcriptomic analysis of the host to investigate the induced defense response of ginseng treated by B. cinerea △BcSpd1. The metabolites in ginseng flavonoids pathway were determined by UPLC-ESI-MS/MS and the antifungal activates were then performed. Results We found that △BcSpd1 enhanced the ginseng defense response when applied to healthy ginseng leaves and further changed the metabolism of flavonoids. Compared with untreated plants, the application of △BcSpd1 on ginseng leaves significantly increased the accumulation of p-coumaric acid and myricetin, which could inhibit the fungal growth. Conclusion B. cinerea △BcSpd1 could effectively induce the medicinal plant defense and is referred to as the biological control agent in ginseng disease management.
Collapse
Affiliation(s)
- Shuhan Zhang
- Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, China
| | - Junyou Han
- Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, China
| | - Ning Liu
- Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jingyuan Sun
- Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, China
| | - Huchen Chen
- Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, China
| | - Jinglin Xia
- Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, China
| | - Huiyan Ju
- Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, China
| | - Shouan Liu
- Laboratory of Tea and Medicinal Plant Pathology, Jilin University, Changchun, China
| |
Collapse
|
12
|
Umer M, Mubeen M, Shakeel Q, Ali S, Iftikhar Y, Bajwa RT, Anwar N, Rao MJ, He Y. Mycoviruses: Antagonistic Potential, Fungal Pathogenesis, and Their Interaction with Rhizoctonia solani. Microorganisms 2023; 11:2515. [PMID: 37894173 PMCID: PMC10609472 DOI: 10.3390/microorganisms11102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Mycoviruses, or fungal viruses, are prevalent in all significant fungal kingdoms and genera. These low-virulence viruses can be used as biocontrol agents to manage fungal diseases. These viruses are divided into 19 officially recognized families and 1 unclassified genus. Mycoviruses alter sexual reproduction, pigmentation, and development. Spores and fungal hypha spread mycoviruses. Isometric particles mostly encapsulate dsRNA mycoviruses. The widespread plant-pathogenic fungus Rhizoctonia solani, which has caused a rice sheath blight, has hosted many viruses with different morphologies. It causes significant crop diseases that adversely affect agriculture and the economy. Rice sheath blight threatens the 40% of the global population that relies on rice for food and nutrition. This article reviews mycovirology research on Rhizoctonia solani to demonstrate scientific advances. Mycoviruses control rice sheath blight. Hypovirulence-associated mycoviruses are needed to control R. solani since no cultivars are resistant. Mycoviruses are usually cryptic, but they can benefit the host fungus. Phytopathologists may use hypovirulent viruses as biological control agents. New tools are being developed based on host genome studies to overcome the intellectual challenge of comprehending the interactions between viruses and fungi and the practical challenge of influencing these interactions to develop biocontrol agents against significant plant pathogens.
Collapse
Affiliation(s)
- Muhammad Umer
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Qaiser Shakeel
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Sajjad Ali
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; (M.M.); (Y.I.)
| | - Rabia Tahir Bajwa
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (Q.S.); (R.T.B.)
| | - Naureen Anwar
- Department of Biology, Virtual University of Pakistan, Lahore 54000, Pakistan;
| | - Muhammad Junaid Rao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yuejun He
- Forestry College, Research Centre of Forest Ecology, Guizhou University, Guiyang 550025, China;
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Ayaz M, Li CH, Ali Q, Zhao W, Chi YK, Shafiq M, Ali F, Yu XY, Yu Q, Zhao JT, Yu JW, Qi RD, Huang WK. Bacterial and Fungal Biocontrol Agents for Plant Disease Protection: Journey from Lab to Field, Current Status, Challenges, and Global Perspectives. Molecules 2023; 28:6735. [PMID: 37764510 PMCID: PMC10537577 DOI: 10.3390/molecules28186735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Plants are constantly exposed to various phytopathogens such as fungi, Oomycetes, nematodes, bacteria, and viruses. These pathogens can significantly reduce the productivity of important crops worldwide, with annual crop yield losses ranging from 20% to 40% caused by various pathogenic diseases. While the use of chemical pesticides has been effective at controlling multiple diseases in major crops, excessive use of synthetic chemicals has detrimental effects on the environment and human health, which discourages pesticide application in the agriculture sector. As a result, researchers worldwide have shifted their focus towards alternative eco-friendly strategies to prevent plant diseases. Biocontrol of phytopathogens is a less toxic and safer method that reduces the severity of various crop diseases. A variety of biological control agents (BCAs) are available for use, but further research is needed to identify potential microbes and their natural products with a broad-spectrum antagonistic activity to control crop diseases. This review aims to highlight the importance of biocontrol strategies for managing crop diseases. Furthermore, the role of beneficial microbes in controlling plant diseases and the current status of their biocontrol mechanisms will be summarized. The review will also cover the challenges and the need for the future development of biocontrol methods to ensure efficient crop disease management for sustainable agriculture.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Cai-Hong Li
- Cotton Sciences Research Institute of Hunan, Changde 415101, China;
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Yuan-Kai Chi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Muhammad Shafiq
- Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, China;
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Xi-Yue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Qing Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Jing-Tian Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Jing-Wen Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| | - Ren-De Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230041, China; (M.A.); (W.Z.); (Y.-K.C.)
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.-Y.Y.); (Q.Y.); (J.-T.Z.); (J.-W.Y.)
| |
Collapse
|
14
|
Akhtar M, Nosheen A, Keyani R, Yasmin H, Naz R, Mumtaz S, Hassan MN. Biocontrol of Rhizoctonia solani in basmati rice by the application of Lactobacillus and Weissella spp. Sci Rep 2023; 13:13855. [PMID: 37620521 PMCID: PMC10449839 DOI: 10.1038/s41598-023-41058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Rice is a staple food crop and is a major source of employment and income in the world. However, the attack of fungal disease poses a serious threat to the crop growth and productivity and leads toward yield loses. Therefore, current study was performed to evaluate the biocontrol potential of Lactobacillus and Weissella spp. on basmati rice against Rhizoctonia solani. Agar disc method was performed to evaluate the antifungal activity of both bacteria against R. solani. Petri plate and pot experiments were conducted to evaluate the growth promotion and biocontrol potential of both bacteria in Basmati rice under R. solani stress. Results indicated that maximum antifungal activity (82%) was recorded by Lactobacillus sp. Maximum phosphate solubilization and siderophore production was recorded by Weissella sp. In petri plate experiment, maximum root length, root fresh and dry weight (36%, 40% and 13%) was recorded by Weissella sp. and maximum shoot length and shoot fresh weight (99% and 107%) by Lactobacillus sp. In pot experiment, both bacteria enhanced the growth parameters of Basmati rice including root and shoot length, fresh and dry weight as well as no. of lateral roots. Application of Weissella sp. resulted in maximum increase (332% and 134%) in chlorophyll a and b content while Lactobacillus sp. + R. solani showed maximum (42%) carotenoid contents. Lactobacillus sp. + R. solani showed maximum increase in the proline (54%) and sugar contents (100%) while Lactobacillus sp. alone showed maximum (35%) soluble protein contents. Plant defense enzymes i-e SOD (400%), POD (25%), CAT (650%), PPO (14%) and PAL (124%) were notably increased by Weissella sp. + R. solani and Lactobacillus sp + R. solani. The Lactobacillus sp showed the best results in antifungal activity against R. solani and Weissella sp. showed the best results in production of defense enzymes in basmati rice against R. solani stress and can be suggested as the potent biocontrol agents for the rice crop.
Collapse
Affiliation(s)
- Maira Akhtar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan.
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, 44000, Pakistan
| |
Collapse
|
15
|
Kashyap AS, Manzar N, Meshram S, Sharma PK. Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops- a step toward sustainable agriculture. Front Microbiol 2023; 14:1174532. [PMID: 37389335 PMCID: PMC10303155 DOI: 10.3389/fmicb.2023.1174532] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 07/01/2023] Open
Abstract
Microbial inoculants may be called magical bullets because they are small in size but have a huge impact on plant life and humans. The screening of these beneficial microbes will give us an evergreen technology to manage harmful diseases of cross-kingdom crops. The production of these crops is reducing as a result of multiple biotic factors and among them the bacterial wilt disease triggered by Ralstonia solanacearum is the most important in solanaceous crops. The examination of the diversity of bioinoculants has shown that more microbial species have biocontrol activity against soil-borne pathogens. Reduced crop output, lower yields, and greater cost of cultivation are among the major issues caused by diseases in agriculture around the world. It is universally true that soil-borne disease epidemics pose a greater threat to crops. These necessitate the use of eco-friendly microbial bioinoculants. This review article provides an overview of plant growth-promoting microorganisms bioinoculants, their various characteristics, biochemical and molecular screening insights, and modes of action and interaction. The discussion is concluded with a brief overview of potential future possibilities for the sustainable development of agriculture. This review will be useful for students and researchers to obtain existing knowledge of microbial inoculants, their activities, and their mechanisms, which will facilitate the development of environmentally friendly management strategies for cross-kingdom plant diseases.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Molecular Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Shweta Meshram
- Department of Plant Pathology, Lovely Professional University, Phagwara, Punjab, India
| | - Pawan Kumar Sharma
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
16
|
Abiodun Ajulo A, Asobia PC, Silva de Oliveira R, de Andrade Bezerra G, Rosa Gonçalves A, de Filippi MCC. Screening bacterial isolates for biocontrol of sheath blight in rice plants. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:426-435. [PMID: 37313602 DOI: 10.1080/03601234.2023.2220644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sheath blight (Rhizoctonia solani) causes significant yield losses in rice (Oryza sativa L.). Its sustainable management needs an efficient biocontrol agent. The objective was to screen bacterial isolates as an antagonist to R. solani and identify the most efficient ones as sheath blight suppressors under greenhouse conditions. Two assays (E1 and E2) were performed in a completely randomized design with three replications. E1 tested 21 bacterial isolates antagonists to R. solani in vitro. E2 was conducted under greenhouse conditions, with rice cultivar BRS Pampeira sown in plastic pots (7 kg) containing fertilized soil. Sixty old plants were inoculated with a segment of a toothpick containing fragments of R. solani, followed by spray inoculation of a bacterial suspension (108 CFU/mL). The severity of the disease was determined by calculating the relative lesion size formed on the colm. Isolates BRM32112 (Pseudomonas nitroreducens), BRM65929 (Priestia megaterium), and BRM65919 (Bacillus cereus) reduced R. solani colony radial growth by 92.8, 77.56, and 75.56%, respectively while BRM63523 (Serratia marcescens), BRM65923 and BRM65916 (P. megaterium) and BRM65919 (B. cereus) with 23.45, 23.37, 23.62, and 20.17 cm, respectively were effective at suppressing sheath blight in greenhouse, indicating their potential as a biofungicide for sheath blight suppression.
Collapse
Affiliation(s)
- Akintunde Abiodun Ajulo
- Plant Pathology and Agricultural Microbiology Laboratory at Embrapa Rice and Beans, Santo Antônio de Goiás, Goiás state, Brazil
- Graduate Program in Agronomy, Federal University of Goiás, Goiânia, Goiás state, Brazil
| | | | | | | | - Ariany Rosa Gonçalves
- Plant Pathology and Agricultural Microbiology Laboratory at Embrapa Rice and Beans, Santo Antônio de Goiás, Goiás state, Brazil
| | - Marta Cristina Corsi de Filippi
- Plant Pathology and Agricultural Microbiology Laboratory at Embrapa Rice and Beans, Santo Antônio de Goiás, Goiás state, Brazil
| |
Collapse
|
17
|
Soliman SA, Abdelhameed RE, Metwally RA. In vivo and In vitro evaluation of the antifungal activity of the PGPR Bacillus amyloliquefaciens RaSh1 (MZ945930) against Alternaria alternata with growth promotion influences on Capsicum annuum L. plants. Microb Cell Fact 2023; 22:70. [PMID: 37055827 PMCID: PMC10103514 DOI: 10.1186/s12934-023-02080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Alternaria alternata that threatens pepper production and causes major economic harm is responsible for the leaf spot/blight disease. Chemical fungicides have been widely employed; unfortunately, fungicidal resistance is a current concern. Therefore, finding new environmentally friendly biocontrol agents is a future challenge. One of these friendly solutions is the use of bacterial endophytes that have been identified as a source of bioactive compounds. The current study investigates the in vivo and in vitro fungicidal potential of Bacillus amyloliquefaciens RaSh1 (MZ945930) against pathogenic A. alternata. In vitro, the results revealed that RaSh1 exhibited strong antagonistic activity against A. alternata. In addition to this, we inoculated pepper (Capsicum annuum L.) plants with B. amyloliquefaciens RaSh1 and infected them with A. alternata. As a result of A. alternata infection, which generated the highest leaf spot disease incidence (DI), the plant's growth indices and physio-biochemical characteristics significantly decreased, according to our findings. Our results also showed the abnormal and deformed cell structure using light and electron microscopy of A. alternata-infected leaves compared with other treatments. However, DI was greatly reduced with B. amyloliquefaciens RaSh1 application (40%) compared to pepper plants infected with A. alternata (80%), and this led to the largest increases in all identified physio-biochemical parameters, including the activity of the defense-related enzymes. Moreover, inoculation of pepper plants with B. amyloliquefaciens RaSh1 decreased electrolyte leakage by 19.53% and MDA content by 38.60% as compared to A. alternata infected ones. Our results show that the endophyte B. amyloliquefaciens RaSh1 has excellent potential as a biocontrol agent and positively affects pepper plant growth.
Collapse
Affiliation(s)
- Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
18
|
Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, Alizadeh M, Priyadarshini A, Senapati A, Sarikhani MR, Panneerselvam P, Mohapatra PKD, Sushkova S, Minkina T, Keswani C. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023; 9:e13825. [PMID: 36873502 PMCID: PMC9981932 DOI: 10.1016/j.heliyon.2023.e13825] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.
Collapse
Affiliation(s)
- Bahman Khoshru
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj - 733 134, West Bengal, India
| | - Kuldeep Joshi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora-263643, Uttarakhand, India
| | - Priyanka Adhikari
- Centre for Excellence on GMP Extraction Facility (DBT, Govt. of India), National Institute of Pharmaceutical Education and Research. Guwahati-781101, Assam, India
| | | | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - Mehrdad Alizadeh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ankita Priyadarshini
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Ansuman Senapati
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Periyasamy Panneerselvam
- Crop Production Division, ICAR – National Rice Research Institute, Cuttack, 753006, Odisha, India
| | | | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| |
Collapse
|
19
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Kennedy JF. Encapsulating biocontrol bacteria with starch as a safe and edible biopolymer to alleviate plant diseases: A review. Carbohydr Polym 2023; 302:120384. [PMID: 36604062 DOI: 10.1016/j.carbpol.2022.120384] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Healthy foods with few artificial additives are in high demand among consumers. Preserving conventional pesticides, frequently used as chemicals to control phytopathogens, is challenging. Therefore, we proposed an innovative approach to protect agricultural products in this review. Biocontrol bacteria are safe alternatives with low stability and low efficiency in the free-form formulation. The encapsulation technique for covering active compounds (e.g., antimicrobials) represents a more efficient protection technology because encapsulation causes the controlled release of bioactive materials and reduces the application doses. Of the biopolymers able to form a capsule, starch exhibits several advantages, such as its ready availability, cost-effectively, edible, colorless, and tasteless. Nevertheless, the poor mechanical properties of starch can be improved with other edible biopolymers. In addition, applying formulations incorporated with more than one antimicrobial material offers synergistic effects. This review presented the starch-based capsules used to enclose antimicrobial agents as effective tools against phytopathogens.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran; Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, 7618411764 Kerman, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
20
|
Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1041413. [PMID: 36794211 PMCID: PMC9923114 DOI: 10.3389/fpls.2023.1041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.
Collapse
Affiliation(s)
- Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Saini
- Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Luan P, Yi Y, Huang Y, Cui L, Hou Z, Zhu L, Ren X, Jia S, Liu Y. Biocontrol potential and action mechanism of Bacillus amyloliquefaciens DB2 on Bipolaris sorokiniana. Front Microbiol 2023; 14:1149363. [PMID: 37125175 PMCID: PMC10135310 DOI: 10.3389/fmicb.2023.1149363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Bipolaris sorokiniana is the popular pathogenic fungi fungus which lead to common root rot and leaf spot on wheat. Generally, chemical fungicides are used to control diseases. However, the environmental pollution resulting from fungicides should not be ignored. It is important to study the mode of antagonistic action between biocontrol microbes and plant pathogens to design efficient biocontrol strategies. Results An antagonistic bacterium DB2 was isolated and identified as Bacillus amyloliquefaciens. The inhibition rate of cell-free culture filtrate (CF, 20%, v/v) of DB2 against B. sorokiniana reached 92.67%. Light microscopy and scanning electron microscopy (SEM) showed that the CF significantly altered the mycelial morphology of B. sorokiniana and disrupted cellular integrity. Fluorescence microscopy showed that culture filtrate destroyed mycelial cell membrane integrity, decreased the mitochondrial transmembrane potential, induced reactive oxygen species (ROS) accumulation, and nuclear damage which caused cell death in B. sorokiniana. Moreover, the strain exhibited considerable production of protease and amylase, and showed a significant siderophore and indole-3-acetic acid (IAA) production. In the detached leaves and potted plants control assay, B. amyloliquefacien DB2 had remarkable inhibition activity against B. sorokiniana and the pot control efficacy was 75.22%. Furthermore, DB2 suspension had a significant promotion for wheat seedlings growth. Conclusion B. amyloliquefaciens DB2 can be taken as a potential biocontrol agent to inhibit B. sorokiniana on wheat and promote wheat growth.
Collapse
Affiliation(s)
- Pengyu Luan
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
- *Correspondence: Yanjie Yi,
| | - Yifan Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Liuqing Cui
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Zhipeng Hou
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Lijuan Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Xiujuan Ren
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Shao Jia
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| | - Yang Liu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, China
| |
Collapse
|
22
|
Joshi H, Mishra SK, Prasad V, Chauhan PS. Bacillus amyloliquefaciens modulate sugar metabolism to mitigate arsenic toxicity in Oryza sativa L. var Saryu-52. CHEMOSPHERE 2023; 311:137070. [PMID: 36334743 DOI: 10.1016/j.chemosphere.2022.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In the current study, plant growth-promoting rhizobacterium Bacillus amyloliquefaciens SN13 (SN13) was evaluated for arsenic (As) toxicity amelioration potential under arsenate (AsV) and arsenite (AsIII) stress exposed to rice (Oryza sativa var Saryu-52) plants for 15 days. The PGPR-mediated alleviation of As toxicity was demonstrated by modulated measures such as proline, total soluble sugar, malondialdehyde content, enzymatic status, relative water content, and electrolytic leakage in treated rice seedlings under arsenic-stressed conditions as compared to the respective control. SN13 inoculation not only improved the agronomic traits but also modulated the micronutrient concentrations (Fe, Mo, Zn, Cu, and Co). The desirable results were obtained due to a significant decrease in the AsIII and AsV accumulation in the shoot (47 and 10 mg kg-1 dw), and the root (62 and 26 mg kg-1 dw) in B. amyloliquefaciens inoculated seedlings as compared to their uninoculated root (98 and 43 mg kg-1 dw) and shoot (57 and 12 mg kg-1 dw), respectively. Further, metabolome (GC-MS) analysis was performed to decipher the underlying PGPR-induced mechanisms under arsenic stress. A total of 67 distinct metabolites were identified, which influence the metabolic and physiological factors to modulate the As stress. The expression analysis of metabolism- and stress-responsive genes further proclaimed the involvement of SN13 through modulating the carbohydrate metabolism in rice seedlings, to enable improved growth and As stress tolerance.
Collapse
Affiliation(s)
- Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Vivek Prasad
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
23
|
Sahu PK, Jayalakshmi K, Tilgam J, Gupta A, Nagaraju Y, Kumar A, Hamid S, Singh HV, Minkina T, Rajput VD, Rajawat MVS. ROS generated from biotic stress: Effects on plants and alleviation by endophytic microbes. FRONTIERS IN PLANT SCIENCE 2022; 13:1042936. [PMID: 36352882 PMCID: PMC9638130 DOI: 10.3389/fpls.2022.1042936] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 05/26/2023]
Abstract
Aerobic living is thought to generate reactive oxygen species (ROS), which are an inevitable chemical component. They are produced exclusively in cellular compartments in aerobic metabolism involving significant energy transfer and are regarded as by-products. ROS have a significant role in plant response to pathogenic stress, but the pattern varies between necrotrophs and biotrophs. A fine-tuned systemic induction system is involved in ROS-mediated disease development in plants. In regulated concentrations, ROS act as a signaling molecule and activate different pathways to suppress the pathogens. However, an excess of these ROS is deleterious to the plant system. Along with altering cell structure, ROS cause a variety of physiological reactions in plants that lower plant yield. ROS also degrade proteins, enzymes, nucleic acids, and other substances. Plants have their own mechanisms to overcome excess ROS and maintain homeostasis. Microbes, especially endophytes, have been reported to maintain ROS homeostasis in both biotic and abiotic stresses by multiple mechanisms. Endophytes themselves produce antioxidant compounds and also induce host plant machinery to supplement ROS scavenging. The structured reviews on how endophytes play a role in ROS homeostasis under biotic stress were very meager, so an attempt was made to compile the recent developments in ROS homeostasis using endophytes. This review deals with ROS production, mechanisms involved in ROS signaling, host plant mechanisms in alleviating oxidative stress, and the roles of endophytes in maintaining ROS homeostasis under biotic stress.
Collapse
Affiliation(s)
- Pramod Kumar Sahu
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Uttar Pradesh, India
| | - K. Jayalakshmi
- Plant Pathology, Indian Council of Agricultural Research (ICAR)-Directorate of Onion Garlic Research, Maharashtra, India
| | - Jyotsana Tilgam
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Uttar Pradesh, India
| | - Amrita Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Yalavarthi Nagaraju
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Uttar Pradesh, India
| | - Adarsh Kumar
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Uttar Pradesh, India
| | | | - Harsh Vardhan Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Uttar Pradesh, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Mahendra Vikram Singh Rajawat
- Indian Council of Agricultural Research (ICAR)-National Bureau of Agriculturally Important Microorganisms, Uttar Pradesh, India
| |
Collapse
|
24
|
Ayaz M, Ali Q, Jiang Q, Wang R, Wang Z, Mu G, Khan SA, Khan AR, Manghwar H, Wu H, Gao X, Gu Q. Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202769. [PMID: 36297795 PMCID: PMC9608499 DOI: 10.3390/plants11202769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/30/2023]
Abstract
Soil salinity is a major constraint adversely affecting agricultural crops including wheat worldwide. The use of plant growth promoting rhizobacteria (PGPR) to alleviate salt stress in crops has attracted the focus of many researchers due to its safe and eco-friendly nature. The current study aimed to study the genetic potential of high halophilic Bacillus strains, isolated from the rhizosphere in the extreme environment of the Qinghai-Tibetan plateau region of China, to reduce salt stress in wheat plants. The genetic analysis of high halophilic strains, NMCN1, LLCG23, and moderate halophilic stain, FZB42, revealed their key genetic features that play an important role in salt stress, osmotic regulation, signal transduction and membrane transport. Consequently, the expression of predicted salt stress-related genes were upregulated in the halophilic strains upon NaCl treatments 10, 16 and 18%, as compared with control. The halophilic strains also induced a stress response in wheat plants through the regulation of lipid peroxidation, abscisic acid and proline in a very efficient manner. Furthermore, NMCN1 and LLCG23 significantly enhanced wheat growth parameters in terms of physiological traits, i.e., fresh weight 31.2% and 29.7%, dry weight 28.6% and 27.3%, shoot length 34.2% and 31.3% and root length 32.4% and 30.2%, respectively, as compared to control plants under high NaCl concentration (200 mmol). The Bacillus strains NMCN1 and LLCG23 efficiently modulated phytohormones, leading to the substantial enhancement of plant tolerance towards salt stress. Therefore, we concluded that NMCN1 and LLCG23 contain a plethora of genetic features enabling them to combat with salt stress, which could be widely used in different bio-formulations to obtain high crop production in saline conditions.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifan Jiang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoyi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqi Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangyuan Mu
- Shenzhen Batian Ecological Engineering Co., Ltd., Shenzhen 518057, China
| | - Sabaz Ali Khan
- Biotechnology Department, College of Environmental Sciences, COMSATS, Abbottabad 22060, Pakistan
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
25
|
Feng Z, Xu M, Yang J, Zhang R, Geng Z, Mao T, Sheng Y, Wang L, Zhang J, Zhang H. Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. FRONTIERS IN PLANT SCIENCE 2022; 13:1019512. [PMID: 36325560 PMCID: PMC9618607 DOI: 10.3389/fpls.2022.1019512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Rhizoctonia solani Kühn naturally infects and causes Sheath blight disease in cereal crops such as wheat, rice and maize, leading to severe reduction in grain yield and quality. In this work, a new bacterial strain Bacillus halotolerans LDFZ001 showing efficient antagonistic activity against the pathogenic strain Rhizoctonia solani Kühn sh-1 was isolated. Antagonistic, phylogenetic and whole genome sequencing analyses demonstrate that Bacillus halotolerans LDFZ001 strongly suppressed the growth of Rhizoctonia solani Kühn sh-1, showed a close evolutionary relationship with B. halotolerans F41-3, and possessed a 3,965,118 bp circular chromosome. Bioinformatic analysis demonstrated that the genome of Bacillus halotolerans LDFZ001 contained ten secondary metabolite biosynthetic gene clusters (BGCs) encoding five non-ribosomal peptide synthases, two polyketide synthase, two terpene synthases and one bacteriocin synthase, and a new kijanimicin biosynthetic gene cluster which might be responsible for the biosynthesis of novel compounds. Gene-editing experiments revealed that functional expression of phosphopantetheinyl transferase (SFP) and major facilitator superfamily (MFS) transporter genes in Bacillus halotolerans LDFZ001 was essential for its antifungal activity against R. solani Kühn sh-1. Moreover, the existence of two identical chitosanases may also make contribution to the antipathogen activity of Bacillus halotolerans LDFZ001. Our findings will provide fundamental information for the identification and isolation of new sheath blight resistant genes and bacterial strains which have a great potential to be used for the production of bacterial control agents. IMPORTANCE A new Bacillus halotolerans strain Bacillus halotolerans LDFZ001 resistant to sheath blight in wheat is isolated. Bacillus halotolerans LDFZ001 harbors a new kijanimicin biosynthetic gene cluster, and the functional expression of SFP and MFS contribute to its antipathogen ability.
Collapse
Affiliation(s)
- Zhibin Feng
- College of Life Science, Ludong University, Yantai, China
| | - Mingzhi Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Renhong Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
26
|
Afridi MS, Fakhar A, Kumar A, Ali S, Medeiros FHV, Muneer MA, Ali H, Saleem M. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiol Res 2022; 265:127199. [PMID: 36137486 DOI: 10.1016/j.micres.2022.127199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
The rhizosphere is a narrow and dynamic region of plant root-soil interfaces, and it's considered one of the most intricate and functionally active ecosystems on the Earth, which boosts plant health and alleviates the impact of biotic and abiotic stresses. Improving the key functions of the microbiome via engineering the rhizosphere microbiome is an emerging tool for improving plant growth, resilience, and soil-borne diseases. Recently, the advent of omics tools, gene-editing techniques, and sequencing technology has allowed us to unravel the entangled webs of plant-microbes interactions, enhancing plant fitness and tolerance to biotic and abiotic challenges. Plants secrete signaling compounds with low molecular weight into the rhizosphere, that engage various species to generate a massive deep complex array. The underlying principle governing the multitrophic interactions of the rhizosphere microbiome is yet unknown, however, some efforts have been made for disease management and agricultural sustainability. This review discussed the intra- and inter- microbe-microbe and microbe-animal interactions and their multifunctional roles in rhizosphere microbiome engineering for plant health and soil-borne disease management. Simultaneously, it investigates the significant impact of immunity utilizing PGPR and cover crop strategy in increasing rhizosphere microbiome functions for plant development and protection using omics techniques. The ecological engineering of rhizosphere plant interactions could be used as a potential alternative technology for plant growth improvement, sustainable disease control management, and increased production of economically significant crops.
Collapse
Affiliation(s)
- Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil.
| | - Ali Fakhar
- Division of Applied Science, Gyeongsang National University, South Korea
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar 470003, MP, India
| | - Sher Ali
- NMR Lab, Department of Chemistry, Federal University of Paraná, Curitiba 81530-900, PR, Brazil
| | - Flavio H V Medeiros
- Department of Plant Pathology, Federal University of Lavras, CP3037, 37200-900 Lavras, MG, Brazil
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hina Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| |
Collapse
|
27
|
Ganie SA, Bhat JA, Devoto A. The influence of endophytes on rice fitness under environmental stresses. PLANT MOLECULAR BIOLOGY 2022; 109:447-467. [PMID: 34859329 PMCID: PMC9213282 DOI: 10.1007/s11103-021-01219-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Endophytes are crucial for the promotion of rice growth and stress tolerance and can be used to increase rice crop yield. Endophytes can thus be exploited in biotechnology and genetic engineering as eco-friendly and cost-effective means for the development of high-yielding and stress-tolerant rice plants. Rice (Oryza sativa) crop is continuously subjected to biotic and abiotic stresses, compromising growth and consequently yield. The situation is exacerbated by climate change impacting on ecosystems and biodiversity. Genetic engineering has been used to develop stress-tolerant rice, alongside physical and chemical methods to mitigate the effect of these stresses. However, the success of these strategies has been hindered by short-lived field success and public concern on adverse effects associated. The limited success in the field of stress-tolerant cultivars developed through breeding or transgenic approaches is due to the complex nature of stress tolerance as well as to the resistance breakdown caused by accelerated evolution of pathogens. It is therefore necessary to develop novel and acceptable strategies to enhance rice stress tolerance and durable resistance and consequently improve yield. In the last decade, plant growth promoting (PGP) microbes, especially endophytes, have drawn the attention of agricultural scientists worldwide, due to their ability to mitigate environmental stresses in crops, without causing adverse effects. Increasing evidence indicates that endophytes effectively confer fitness benefits also to rice under biotic and abiotic stress conditions. Endophyte-produced metabolites can control the expression of stress-responsive genes and improve the physiological performance and growth of rice plants. This review highlights the current evidence available for PGP microbe-promoted tolerance of rice to abiotic stresses such as salinity and drought and to biotic ones, with special emphasis on endophytes. Associated molecular mechanisms are illustrated, and prospects for sustainable rice production also in the light of the impending climate change, discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Javaid Akhter Bhat
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
28
|
Jalmi SK, Sinha AK. Ambiguities of PGPR-Induced Plant Signaling and Stress Management. Front Microbiol 2022; 13:899563. [PMID: 35633696 PMCID: PMC9136662 DOI: 10.3389/fmicb.2022.899563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
The growth and stress responses developed by the plant in virtue of the action of PGPR are dictated by the changes in hormone levels and related signaling pathways. Each plant possesses its specific type of microbiota that is shaped by the composition of root exudates and the signal molecules produced by the plant and microbes. Plants convey signals through diverse and complex signaling pathways. The signaling pathways are also controlled by phytohormones wherein they regulate and coordinate various defense responses and developmental stages. On account of improved growth and stress tolerance provided by the PGPR to plants, there exist crosstalk of signaling events between phytohormones and other signaling molecules secreted by the plants and the PGPR. This review discusses some of the important aspects related to the ambiguities of signaling events occurring in plants, allowing the interaction of PGPR with plants and providing stress tolerance to the plant.
Collapse
|
29
|
Bist V, Anand V, Srivastava S, Kaur J, Naseem M, Mishra S, Srivastava PK, Tripathi RD, Srivastava S. Alleviative mechanisms of silicon solubilizing Bacillus amyloliquefaciens mediated diminution of arsenic toxicity in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128170. [PMID: 35032955 DOI: 10.1016/j.jhazmat.2021.128170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Silicon (Si) has gained considerable attention for its utility in improved plant health under biotic and abiotic stresses through alteration of physiological and metabolic processes. Its interaction with arsenic (As) has been the compelling area of research amidst heavy metal toxicity. However, microbe mediated Si solubilization and their role for reduced As uptake is still an unexplored domain. Foremost role of Bacillus amyloliquefaciens (NBRISN13) in impediment of arsenite (AsIII) translocation signifies our work. Reduced grain As content (52-72%) during SN13 inoculation under feldspar supplementation (Si+SN+As) highlight the novel outcome of our study. Upregulation of Lsi1, Lsi2 and Lsi3genes in Si+SN+As treated rice plants associated with restricted As translocation, frames new propositions for future research on microbemediated reduced As uptake through increased Si transport. In addition to low As accumulation, alleviation of oxidative stress markers by modulation of defense enzyme activities and differential accumulation of plant hormones was found to be associated with improved growth and yield. Thus, our findings confer the potential role of microbe mediated Si solubilization in mitigation of As stress to restore plant growth and yield.
Collapse
Affiliation(s)
- Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vandana Anand
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jasvinder Kaur
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India
| | - Mariya Naseem
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Seema Mishra
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Pankaj Kumar Srivastava
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Rudra Deo Tripathi
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
pH and Redox Dual-Responsive Mesoporous Silica Nanoparticle as Nanovehicle for Improving Fungicidal Efficiency. MATERIALS 2022; 15:ma15062207. [PMID: 35329659 PMCID: PMC8948809 DOI: 10.3390/ma15062207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 01/08/2023]
Abstract
Prochloraz (Pro) controlled-release nanoparticles (NPs) based on bimodal mesoporous silica (BMMs) with redox and pH dual responses were successfully prepared in this study. BMMs was modified by a silane coupling agent containing a disulfide bond, and β-cyclodextrin (β-CD) was grafted on the surface of the NPs through host–guest interaction. Pro was encapsulated into the pores of nanoparticles by physical adsorption. NPs had a spherical structure, and their average diameter was 546.4 ± 3.0 nm as measured by dynamic light scattering. The loading rate of Pro was 28.3%, and it achieved excellent pH/redox dual-responsive release performance under acidic conditions. Foliage adhesion tests on tomato leaves showed that the NPs had good adhesion properties compared to the commercial formulation. Owing to the protection of the nanocarrier, NPs became more stable under ultraviolet light and high temperature, which improves the efficient utilization of Pro. Biological activity tests showed that the NPs exhibited effective antifungal activity, and the benign biosafety of the nanocarrier was also observed through toxicology tests on cell viability and the growth of Escherichiacoli (E. coli). This work provides a promising approach to improving the efficient utilization of pesticides and reducing environmental pollution.
Collapse
|
31
|
Rizvi A, Ahmed B, Khan MS, El-Beltagi HS, Umar S, Lee J. Bioprospecting Plant Growth Promoting Rhizobacteria for Enhancing the Biological Properties and Phytochemical Composition of Medicinally Important Crops. Molecules 2022; 27:molecules27041407. [PMID: 35209196 PMCID: PMC8880754 DOI: 10.3390/molecules27041407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Department, Faculty of Agriculture, Cairo University, Gamma St., Cairo 12613, Egypt
- Correspondence: (B.A.); (H.S.E.-B.)
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
32
|
Wang L, Liu H, Yin Z, Li Y, Lu C, Wang Q, Ding X. A Novel Guanine Elicitor Stimulates Immunity in Arabidopsis and Rice by Ethylene and Jasmonic Acid Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:841228. [PMID: 35251109 PMCID: PMC8893958 DOI: 10.3389/fpls.2022.841228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., Ltd., Tai’an, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
33
|
Liu H, Prajapati V, Prajapati S, Bais H, Lu J. Comparative Genome Analysis of Bacillus amyloliquefaciens Focusing on Phylogenomics, Functional Traits, and Prevalence of Antimicrobial and Virulence Genes. Front Genet 2021; 12:724217. [PMID: 34659348 PMCID: PMC8514880 DOI: 10.3389/fgene.2021.724217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is a gram-positive, nonpathogenic, endospore-forming, member of a group of free-living soil bacteria with a variety of traits including plant growth promotion, production of antifungal and antibacterial metabolites, and production of industrially important enzymes. We have attempted to reconstruct the biogeographical structure according to functional traits and the evolutionary lineage of B. amyloliquefaciens using comparative genomics analysis. All the available 96 genomes of B. amyloliquefaciens strains were curated from the NCBI genome database, having a variety of important functionalities in all sectors keeping a high focus on agricultural aspects. In-depth analysis was carried out to deduce the orthologous gene groups and whole-genome similarity. Pan genome analysis revealed that shell genes, soft core genes, core genes, and cloud genes comprise 17.09, 5.48, 8.96, and 68.47%, respectively, which demonstrates that genomes are very different in the gene content. It also indicates that the strains may have flexible environmental adaptability or versatile functions. Phylogenetic analysis showed that B. amyloliquefaciens is divided into two clades, and clade 2 is further dived into two different clusters. This reflects the difference in the sequence similarity and diversification that happened in the B. amyloliquefaciens genome. The majority of plant-associated strains of B. amyloliquefaciens were grouped in clade 2 (73 strains), while food-associated strains were in clade 1 (23 strains). Genome mining has been adopted to deduce antimicrobial resistance and virulence genes and their prevalence among all strains. The genes tmrB and yuaB codes for tunicamycin resistance protein and hydrophobic coat forming protein only exist in clade 2, while clpP, which codes for serine proteases, is only in clade 1. Genome plasticity of all strains of B. amyloliquefaciens reflects their adaption to different niches.
Collapse
Affiliation(s)
- Hualin Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Vimalkumar Prajapati
- Division of Microbiology and Environmental, Biotechnology, Aspee Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, India
| | - Shobha Prajapati
- SVP-A School of Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Harsh Bais
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
34
|
Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, Lyu D, Rabileh M, Zajonc J, Smith DL. PGPR in Agriculture: A Sustainable Approach to Increasing Climate Change Resilience. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Growing environmental concerns are potentially narrowing global yield capacity of agricultural systems. Climate change is the most significant problem the world is currently facing. To meet global food demand, food production must be doubled by 2050; over exploitation of arable lands using unsustainable techniques might resolve food demand issues, but they have negative environmental effects. Current crop production systems are a major reason for changing global climate through diminishing biodiversity, physical and chemical soil degradation, and water pollution. The over application of fertilizers and pesticides contribute to climate change through greenhouse gas emissions (GHG) and toxic soil depositions. At this crucial time, there is a pressing need to transition to more sustainable crop production practices, ones that concentrate more on promoting sustainable mechanisms, which enable crops to grow well in resource limited and environmentally challenging environments, and also develop crops with greater resource use efficiency that have optimum sustainable yields across a wider array of environmental conditions. The phytomicrobiome is considered as one of the best strategies; a better alternative for sustainable agriculture, and a viable solution to meet the twin challenges of global food security and environmental stability. Use of the phytomicrobiome, due to its sustainable and environmentally friendly mechanisms of plant growth promotion, is becoming more widespread in the agricultural industry. Therefore, in this review, we emphasize the contribution of beneficial phytomicrobiome members, particularly plant growth promoting rhizobacteria (PGPR), as a strategy to sustainable improvement of plant growth and production in the face of climate change. Also, the roles of soil dwelling microbes in stress amelioration, nutrient supply (nitrogen fixation, phosphorus solubilization), and phytohormone production along with the factors that could potentially affect their efficiency have been discussed extensively. Lastly, limitations to expansion and use of biobased techniques, for instance, the perspective of crop producers, indigenous microbial competition and regulatory approval are discussed. This review largely focusses on the importance and need of sustainable and environmentally friendly approaches such as biobased/PGPR-based techniques in our agricultural systems, especially in the context of current climate change conditions, which are almost certain to worsen in near future.
Collapse
|
35
|
de Moraes ACP, Ribeiro LDS, de Camargo ER, Lacava PT. The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture. 3 Biotech 2021; 11:318. [PMID: 34194902 PMCID: PMC8190246 DOI: 10.1007/s13205-021-02870-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
The impacts of chemical fertilizers and pesticides have raised public concerns regarding the sustainability and security of food supplies, prompting the investigation of alternative methods that have combinations of both agricultural and environmental benefits, such as the use of biofertilizers involving microbes. These types of microbial inoculants are living microorganisms that colonize the soil or plant tissues when applied to the soil, seeds, or plant surfaces, facilitating plant nutrient acquisition. They can enhance plant growth by transforming nutrients into a form assimilable by plants and by acting as biological control agents, known as plant growth-promoting bacteria. The potential use of bacteria as biofertilizers in agriculture constitutes an economical and eco-friendly way to reduce the use of chemical fertilizers and pesticides. In this context, nanotechnology has emerged as a new source of quality enrichment for the agricultural sector. The use of nanoparticles can be an effective method to meet the challenges regarding the effectiveness of biofertilizers in natural environments. Given the novel sustainable strategies applied in agricultural systems, this review addresses the effects of nanoparticles on beneficial plant bacteria for promoting plant growth.
Collapse
Affiliation(s)
- Amanda Carolina Prado de Moraes
- Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
- Biotechnology Graduation Program (PPG-Biotec), Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| | - Lucas da Silva Ribeiro
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| | - Emerson Rodrigues de Camargo
- Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| | - Paulo Teixeira Lacava
- Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
- Biotechnology Graduation Program (PPG-Biotec), Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil
| |
Collapse
|
36
|
Kaur J, Sharma J. Orchid Root Associated Bacteria: Linchpins or Accessories? FRONTIERS IN PLANT SCIENCE 2021; 12:661966. [PMID: 34249034 PMCID: PMC8264303 DOI: 10.3389/fpls.2021.661966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/19/2021] [Indexed: 05/28/2023]
Abstract
Besides the plant-fungus symbiosis in arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) plants, many endorhizal and rhizosphere bacteria (Root Associated Bacteria, or RAB) also enhance plant fitness, diversity, and coexistence among plants via bi- or tripartite interactions with plant hosts and mycorrhizal fungi. Assuming that bacterial associations are just as important for the obligate mycorrhizal plant family Orchidaceae, surprisingly little is known about the RAB associated with orchids. Herein, we first present the current, underwhelming state of RAB research including their interactions with fungi and the influence of holobionts on plant fitness. We then delineate the need for novel investigations specifically in orchid RAB ecology, and sketch out questions and hypotheses which, when addressed, will advance plant-microbial ecology. We specifically discuss the potential effects of beneficial RAB on orchids as: (1) Plant Growth Promoting Rhizobacteria (PGPR), (2) Mycorrhization Helper Bacteria (MHB), and (3) constituents of an orchid holobiont. We further posit that a hologenomic view should be considered as a framework for addressing co-evolution of the plant host, their obligate Orchid Mycorrhizal Fungi (OMF), and orchid RAB. We conclude by discussing implications of the suggested research for conservation of orchids, their microbial partners, and their collective habitats.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | |
Collapse
|
37
|
Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. Microorganisms 2021; 9:microorganisms9040682. [PMID: 33810209 PMCID: PMC8065915 DOI: 10.3390/microorganisms9040682] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.
Collapse
|
38
|
Vo KTX, Rahman MM, Rahman MM, Trinh KTT, Kim ST, Jeon JS. Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update. RICE (NEW YORK, N.Y.) 2021; 14:30. [PMID: 33721115 PMCID: PMC7960847 DOI: 10.1186/s12284-021-00461-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
Biotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Kieu Thi Thuy Trinh
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463 South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
39
|
Hashem AH, Abdelaziz AM, Askar AA, Fouda HM, Khalil AMA, Abd-Elsalam KA, Khaleil MM. Bacillus megaterium-Mediated Synthesis of Selenium Nanoparticles and Their Antifungal Activity against Rhizoctonia solani in Faba Bean Plants. J Fungi (Basel) 2021; 7:195. [PMID: 33803321 PMCID: PMC8001679 DOI: 10.3390/jof7030195] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.
Collapse
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Ahmed A. Askar
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Hossam M. Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Ahmed M. A. Khalil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
- Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia;
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Mona M. Khaleil
- Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
40
|
Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. SUSTAINABILITY 2021. [DOI: 10.3390/su13031140] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The quest for enhancing agricultural yields due to increased pressure on food production has inevitably led to the indiscriminate use of chemical fertilizers and other agrochemicals. Biofertilizers are emerging as a suitable alternative to counteract the adverse environmental impacts exerted by synthetic agrochemicals. Biofertilizers facilitate the overall growth and yield of crops in an eco-friendly manner. They contain living or dormant microbes, which are applied to the soil or used for treating crop seeds. One of the foremost candidates in this respect is rhizobacteria. Plant growth promoting rhizobacteria (PGPR) are an important cluster of beneficial, root-colonizing bacteria thriving in the plant rhizosphere and bulk soil. They exhibit synergistic and antagonistic interactions with the soil microbiota and engage in an array of activities of ecological significance. They promote plant growth by facilitating biotic and abiotic stress tolerance and support the nutrition of host plants. Due to their active growth endorsing activities, PGPRs are considered an eco-friendly alternative to hazardous chemical fertilizers. The use of PGPRs as biofertilizers is a biological approach toward the sustainable intensification of agriculture. However, their application for increasing agricultural yields has several pros and cons. Application of potential biofertilizers that perform well in the laboratory and greenhouse conditions often fails to deliver the expected effects on plant development in field settings. Here we review the different types of PGPR-based biofertilizers, discuss the challenges faced in the widespread adoption of biofertilizers, and deliberate the prospects of using biofertilizers to promote sustainable agriculture.
Collapse
|
41
|
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618230] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The above ground growth of the plant is highly dependent on the belowground root system. Rhizosphere is the zone of continuous interplay between plant roots and soil microbial communities. Plants, through root exudates, attract rhizosphere microorganisms to colonize the root surface and internal tissues. Many of these microorganisms known as plant growth promoting rhizobacteria (PGPR) improve plant growth through several direct and indirect mechanisms including biological nitrogen fixation, nutrient solubilization, and disease-control. Many PGPR, by producing phytohormones, volatile organic compounds, and secondary metabolites play important role in influencing the root architecture and growth, resulting in increased surface area for nutrient exchange and other rhizosphere effects. PGPR also improve resource use efficiency of the root system by improving the root system functioning at physiological levels. PGPR mediated root trait alterations can contribute to agroecosystem through improving crop stand, resource use efficiency, stress tolerance, soil structure etc. Thus, PGPR capable of modulating root traits can play important role in agricultural sustainability and root traits can be used as a primary criterion for the selection of potential PGPR strains. Available PGPR studies emphasize root morphological and physiological traits to assess the effect of PGPR. However, these traits can be influenced by various external factors and may give varying results. Therefore, it is important to understand the pathways and genes involved in plant root traits and the microbial signals/metabolites that can intercept and/or intersect these pathways for modulating root traits. The use of advanced tools and technologies can help to decipher the mechanisms involved in PGPR mediated determinants affecting the root traits. Further identification of PGPR based determinants/signaling molecules capable of regulating root trait genes and pathways can open up new avenues in PGPR research. The present review updates recent knowledge on the PGPR influence on root architecture and root functional traits and its benefits to the agro-ecosystem. Efforts have been made to understand the bacterial signals/determinants that can play regulatory role in the expression of root traits and their prospects in sustainable agriculture. The review will be helpful in providing future directions to the researchers working on PGPR and root system functioning.
Collapse
|
42
|
Tiwari S, Gupta SC, Chauhan PS, Lata C. An OsNAM gene plays important role in root rhizobacteria interaction in transgenic Arabidopsis through abiotic stress and phytohormone crosstalk. PLANT CELL REPORTS 2021; 40:143-155. [PMID: 33084964 DOI: 10.1007/s00299-020-02620-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/03/2020] [Indexed: 05/23/2023]
Abstract
Overexpression of Bacillus amyloliquefaciens SN13-responsive OsNAM gene in Arabidopsis reveals its important role in beneficial plant and plant growth promoting rhizobacteria interaction by conferring stress tolerance and phytohormone modulation. Salinity is one of the major constraints that affect crop development and yield. Plants respond and adapt to salt stress via complex mechanisms that involve morpho-physiological, biochemical, and molecular changes. The expression of numerous genes is known to alter during various abiotic stresses and impart stress tolerance. Recently, some known rhizospheric microbes have also been used to mitigate the effects of abiotic stresses; however, the molecular basis of such interactions remains elusive. Therefore, the present investigation was aimed to elucidate the plant growth-promoting rhizobacteria (PGPR; Bacillus amyloliquefaciens-SN13) -induced crosstalk among salinity and phytohormones in OsNAM-overexpressed Arabidopsis plants. Transgenic plants showed increased germination percentage compared to wild-type (WT) seeds under 100 mM of NaCl. Phenotypic data showed increased root length, rosette diameter, leaf size, and biomass in transgenics than WT plants. Transgenic plants can also better maintain membrane integrity and osmolyte concentration under salinity as compared to WT. Further, gene expression analysis of AP2/ERF, GST, ERD4, and ARF2 genes showed differential expression and their positive modulation in transgenic Arabidopsis exposed to salt stress in the presence of SN13 as compared to uninoculated WT. Modulation in IAA, ABA, and GA content in inoculated plants showed the more pronounced positive effects of SN13 on transgenic plants that supported our findings on Arabidopsis-SN13 interaction. Overall, the study concludes that SN13 positively modulated expression of stress-responsive genes under salinity and alter phytohormones levels in OsNAM-overexpressed plants suggesting its extensive role in cross-talk among salinity and phytohormones in response to PGPR.
Collapse
Affiliation(s)
- Shalini Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Sateesh Chandra Gupta
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| | - Charu Lata
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
- CSIR-National Institute of Science Communication and Information Resources, 14 Satsang Vihar Marg, New Delhi, 110067, India.
| |
Collapse
|
43
|
Tiwari P, Indoliya Y, Chauhan AS, Singh P, Singh PK, Singh PC, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122811. [PMID: 32540701 DOI: 10.1016/j.jhazmat.2020.122811] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The MYB TF family is an immensely large and functionally diverse class of proteins involved in the regulation of cell cycle, cell morphogenesis to stress signaling mechanism. The present study deciphered the hormonal cross-talk of wound inducible and stress-responsive OsMYB-R1 transcription factor in combating abiotic [Cr(VI) and drought/PEG] as well as biotic (Rhizoctonia solani) stress. OsMYB-R1 over-expressing rice transgenics exhibit a significant increase in lateral roots, which may be associated with increased tolerance under Cr(VI) and drought exposure. In contrast, its loss-of-function reduces stress tolerance. Higher auxin accumulation in the OsMYB-R1 over-expressed lines further strengthens the protective role of lateral roots under stress conditions. RNA-seq. data reveals over-representation of salicylic acid signaling molecule calcium-dependent protein kinases, which probably activate the stress-responsive downstream genes (Peroxidases, Glutathione S-transferases, Osmotins, Heat Shock Proteins, Pathogenesis Related-Proteins). Enzymatic studies further confirm OsMYB-R1 mediated robust antioxidant system as catalase, guaiacol peroxidase and superoxide dismutase activities were found to be increased in the over-expressed lines. Our results suggest that OsMYB-R1 is part of a complex network of transcription factors controlling the cross-talk of auxin and salicylic acid signaling and other genes in response to multiple stresses by modifying molecular signaling, internal cellular homeostasis and root morphology.
Collapse
Affiliation(s)
- Poonam Tiwari
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Department of Biotechnology, Kumaun University, Nainital 26300, India
| | - Yuvraj Indoliya
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Singh Chauhan
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradyumna Kumar Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poonam C Singh
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 26300, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
44
|
Sperandio EM, Alves TM, Vale HMMD, Gonçalves LDA, Silva ECE, Filippi MCCD. Signaling defense responses of upland rice to avirulent and virulent strains of Magnaporthe oryzae. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153271. [PMID: 32927133 DOI: 10.1016/j.jplph.2020.153271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rice blast (Magnaporthe oryzae) can cause large losses in crop yields, especially in upland rice systems. Avirulent strains of M. oryzae can induce resistance to subsequent attacks by virulent strains in plants. This study aimed to investigate the defense responses in upland rice challenged with a virulent strain of M. oryzae after acclimation with an avirulent strain. The avirulent strain decreased rice blast severity in the challenged plants. Induced resistance was characterized by a hypersensitive response and early accumulation of phenolic compounds. Scanning electron microscopy showed that M. oryzae conidia germinate and form appressoria, but do not colonize leaf tissues. The activities of pathogenesis-related proteins, total phenolic compounds, and salicylic acid (SA) were affected by acclimation to the avirulent strain. The activities of β-1,3-glucanase, phenylalanine ammonia-lyase, and peroxidase, as well as the SA levels explained most of the variability in the rice plant responses to M. oryzae. In addition, OsXa13, OsMAPKKK74, OsAOS2, OsACO7, and OsMAS1 expression was modulated depending on the virulence of the M. oryzae strains. This modulation in gene expression is critical for infection and some of these mechanisms are targeted by effectors, resulting in enhanced susceptibility and pathogen infection. These results have practical importance in plant-pathogen interaction studies to identify resistance-relevant mechanisms against M. oryzae in upland rice.
Collapse
Affiliation(s)
- Eugenio M Sperandio
- Polo de Inovação, Instituto Federal Goiano, Rodovia Sul Goiana Km 01, Rio Verde, GO, 75901-000, Brazil.
| | - Tavvs Micael Alves
- Polo de Inovação, Instituto Federal Goiano, Rodovia Sul Goiana Km 01, Rio Verde, GO, 75901-000, Brazil.
| | - Helson Mário Martins do Vale
- Departamento de Fitopatologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil.
| | - Letícia de Almeida Gonçalves
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Elienai Candia E Silva
- Programa de Pós-graduação em Botânica, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n - Campus Universitário, Viçosa, MG, 36570-900, Brazil.
| | | |
Collapse
|
45
|
Khan MA, Asaf S, Khan AL, Adhikari A, Jan R, Ali S, Imran M, Kim KM, Lee IJ. Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:850-862. [PMID: 32329163 DOI: 10.1111/plb.13124] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/28/2020] [Accepted: 04/13/2020] [Indexed: 05/07/2023]
Abstract
Salt stress negatively affects growth and development of plants. However, it is hypothesized that plant growth-promoting endophytic bacteria can greatly alleviate the adverse effects of salinity and can promote growth and development of plants. In the present research, we aimed to isolate endophytic bacteria from halotolerant plants and evaluate their capacity for promoting crop plant growth. The bacterial endophytes were isolated from selected plants inhabiting sand dunes at Pohang beach, screened for plant growth-promoting traits and applied to rice seedlings under salt stress (NaCl; 150 mm). Out of 59 endophytic bacterial isolates, only six isolates, i.e. Curtobacterium oceanosedimentum SAK1, Curtobacterium luteum SAK2, Enterobacter ludwigii SAK5, Bacillus cereus SA1, Micrococcus yunnanensis SA2, Enterobacter tabaci SA3, resulted in a significant increase in the growth of Waito-C rice. The cultural filtrates of bacterial endophytes were tested for phytohormones, including indole-3-acetic acid, gibberellins and organic acids. Inoculation of the selected strains considerably reduced the amount of endogenous ABA in rice plants under NaCl stress, however, they increased GSH and sugar content. Similarly, these strains augmented the expression of flavin monooxygenase (OsYUCCA1) and auxin efflux carrier (OsPIN1) genes under salt stress. In conclusion, the pragmatic application of the above selected bacterial strains alleviated the adverse effects of NaCl stress and enhanced rice growth attributes by producing various phytohormones.
Collapse
Affiliation(s)
- M A Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - S Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - A L Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - A Adhikari
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - R Jan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - S Ali
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - M Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - K-M Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - I-J Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
46
|
Relevance of Plant Growth Promoting Microorganisms and Their Derived Compounds, in the Face of Climate Change. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081179] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change has already affected food security in many parts of the world, and this situation will worsen if nothing is done to combat it. Unfortunately, agriculture is a meaningful driver of climate change, through greenhouse gas emissions from nitrogen-based fertilizer, methane from animals and animal manure, as well as deforestation to obtain more land for agriculture. Therefore, the global agricultural sector should minimize greenhouse gas emissions in order to slow climate change. The objective of this review is to point out the various ways plant growth promoting microorganisms (PGPM) can be used to enhance crop production amidst climate change challenges, and effects of climate change on more conventional challenges, such as: weeds, pests, pathogens, salinity, drought, etc. Current knowledge regarding microbial inoculant technology is discussed. Pros and cons of single inoculants, microbial consortia and microbial compounds are discussed. A range of microbes and microbe derived compounds that have been reported to enhance plant growth amidst a range of biotic and abiotic stresses, and microbe-based products that are already on the market as agroinputs, are a focus. This review will provide the reader with a clearer understanding of current trends in microbial inoculants and how they can be used to enhance crop production amidst climate change challenges.
Collapse
|
47
|
Xia Y, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, Tabassum T, Rehman SU, Hussain Munis MF, Sultan T, Chaudhary HJ. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:640-649. [PMID: 32339911 DOI: 10.1016/j.plaphy.2020.04.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 05/18/2023]
Abstract
Sustainability in crop production has emerged as one of the most important concerns of present era's agricultural systems. Plant growth promoting bacteria (PGPB) has been characterized as a set of microorganisms used for enhancing plant growth and a tool for biological control of phytopathogens. However, the inconsistent performance of these bacteria from laboratory/greenhouse to field level has emerged due to prevailing abiotic stresses in fields. Sugarcane crop encounters a combination of biotic and abiotic stresses during its long developmental stages. Nevertheless, the selection of antagonistic PGPB with abiotic stress tolerance would be beneficial for end-user by the successful establishment of product with required effects under field conditions. Stress tolerant Bacillus xiamenensis strain (PM14) isolated from the sugarcane rhizosphere grown in the fields was examined for various PGP activities, enzyme assays, and antibiotic resistance. Strain was screened for in vitro tolerance against drought, salinity, heat stress, and heavy metal toxicity. Inhibition co-efficient of B. xiamenensis PM14 was also calculated against six phyto-pathogenic fungi, including Colletotrichum falcatum (53.81), Fusarium oxysporum (68.24), Fusarium moniliforme (69.70), Rhizoctonia solani (71.62), Macrophomina phaseolina (67.50), and Pythium splendens (77.58). B. xiamenensis is reported here for the first time as the rhizospheric bacterium which possesses resistance against 12 antibiotics and positive results for all in vitro PGP traits except HCN production. Role of 1-aminocyclopropane-1-carboxylate deaminase in the amelioration of biotic and abiotic stress was also supported by the amplification of acds gene. Moreover, in vitro and in vivo experiments revealed B. xiamenensis as the potential antagonistic PGPR and bio-control agent. Results of greenhouse experiment against sugarcane red rot indicated that inoculation of B. xiamenensis to sugarcane plants could suppress the disease symptoms and enhance plant growth. Augmented production of antioxidative enzymes and proline content may lead to the induced systemic resistance against red rot disease of sugarcane. Thus, the future application of native multi-stress tolerant bacteria as bio-control agents in combination with current heat, drought, salinity, and heavy metal tolerance strategy could contribute towards the global food security.
Collapse
Affiliation(s)
- Ye Xia
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Muhammad Asad Farooq
- Crop Disease Research Institute, Department of Plant and Environmental Protection, NARC, Islamabad, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Government College University, 38000, Faisalabad, Pakistan
| | - Muhammad Aqeel Kamran
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, PR China
| | - Tehmeena Mukhtar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | | |
Collapse
|
48
|
Mishra SK, Khan MH, Misra S, Dixit VK, Gupta S, Tiwari S, Chandra Gupta S, Chauhan PS. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:1-14. [PMID: 32097873 DOI: 10.1016/j.plaphy.2020.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 05/01/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) improve plant health under various biotic and abiotic stresses. However, the underlying mechanisms of the protective effects of PGPR in deficit water stress (WS) remain less explored. This study aimed to characterize the role of Ochrobactrum sp. NBRISH6 inoculation on maize (Zea mays "Maharaja") under WS conditions using multiple approaches such as physiological, anatomical, metabolic, and molecular. The effect of NBRISH6 inoculation using maize as a host plant was characterized under greenhouse conditions in deficit water stress. Results from this study demonstrated that NBRISH6 significantly lowered the expression of genes involved in the abscisic acid cycle, deficit water stress-response, osmotic stress, and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and polyphenol oxidase). Phytohormones, i.e. indole acetic acid (IAA) and salicylic acid (SA) levels, intercellular CO2 concentration, metabolites such as simple sugars, amino acids, aliphatic hydrocarbons, and the number of shrunken pith cells modulated in maize roots inoculated with NBRISH6. The NBRISH6 inoculation also improved the plant vegetative properties (root length, 33.80%; shoot length, 20.68%; root dry weight, 39.21%; shoot dry weight, 61.95%), shoot nutrients, xylem cells, root hairs, vapor pressure deficit (75%), intrinsic water-use efficiency (41.67%), photosynthesis rate (83.33%), and total chlorophyll (16.15%) as compared to the respective stress controls. This study provides valuable insights into mechanistic functions of PGPR in WS amelioration and promoting plant physiological response.
Collapse
Affiliation(s)
- Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Haneef Khan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Sankalp Misra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Kant Dixit
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Swati Gupta
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shalini Tiwari
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Sateesh Chandra Gupta
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
49
|
Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Sci Rep 2020; 10:5855. [PMID: 32246044 PMCID: PMC7125087 DOI: 10.1038/s41598-020-62725-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
Phosphorus (P) availability and salinity stress are two major constraints for agriculture productivity. A combination of salinity and P starvation is known to be more deleterious to plant health. Plant growth promoting rhizobacteria are known to ameliorate abiotic stress in plants by increasing the availability of different nutrients. However, interaction mechanisms of plant grown under salinity and P stress condition and effect of beneficial microbe for stress alleviation is still obscure. Earlier we reported the molecular insight of auxin producing, phosphate solubilising Pseudomonas putida MTCC 5279 (RAR) mediated plant growth promotion in Arabidopsis thaliana. In present study new trait of proline and phosphatase production of RAR and its impact on modulation of physiological phenomenon under phosphate starved-salinity stress condition in A. thaliana has been investigated. Different physiological and molecular determinants under RAR- A. thaliana interaction showed that auxin producing RAR shows tryptophan dependence for growth and proline production in ATP dependant manner under salinity stress. However, under P deprived conditions growth and proline production are independent of tryptophan. RAR mediated lateral root branching and root hair density through modulation of abscisic acid signalling was observed. Acidic phosphatase activity under P starved and salinity stress condition was majorly modulated along with ROS metabolism and expression of stress responsive/phosphate transporter genes. A strong correlation of different morpho-physiological factor with RAR + salt conditions, showed We concluded that enhanced adverse effect of salinity with unavailability of P was dampened in presence of P. putida MTCC 5279 (RAR) in A. thaliana, though more efficiently salinity stress conditions. Therefore, alleviation of combined stress of salinity induced phosphate nutrient deficiency by inoculation of beneficial microbe, P. putida MTCC 5279 offer good opportunities for enhancing the agricultural productivity.
Collapse
|
50
|
Johnson N, Litt PK, Kniel KE, Bais H. Evasion of Plant Innate Defense Response by Salmonella on Lettuce. Front Microbiol 2020; 11:500. [PMID: 32318033 PMCID: PMC7147383 DOI: 10.3389/fmicb.2020.00500] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 01/10/2023] Open
Abstract
To establish host association, the innate immune system, which is one of the first lines of defense against infectious disease, must be circumvented. Plants encounter enteric foodborne bacterial pathogens under both pre- and post-harvest conditions. Human enteric foodborne pathogens can use plants as temporary hosts. This unique interaction may result in recalls and illness outbreaks associated with raw agricultural commodities. The purpose of this study was to determine if Salmonella enterica Typhimurium applied to lettuce leaves can suppress the innate stomatal defense in lettuce and utilization of UD1022 as a biocontrol against this ingression. Lettuce leaves were spot inoculated with S. Typhimurium wild type and its mutants. Bacterial culture and confocal microscopy analysis of stomatal apertures were used to support findings of differences in S. Typhimurium mutants compared to wild type. The persistence and internalization of these strains on lettuce was compared over a 7-day trial. S. Typhimurium may bypass the innate stomatal closure defense response in lettuce. Interestingly, a few key T3SS components in S. Typhimurium were involved in overriding stomatal defense response in lettuce for ingression. We also show that the T3SS in S. Typhimurium plays a critical role in persistence of S. Typhimurium in planta. Salmonella populations were significantly reduced in all UD1022 groups by day 7 with the exception of fliB and invA mutants. Salmonella internalization was not detected in plants after UD1022 treatment and had significantly higher stomatal closure rates (aperture width = 2.34 μm) by day 1 compared to controls (8.5 μm). S. Typhimurium SPI1 and SPI2 mutants showed inability to reopen stomates in lettuce suggesting the involvement of key T3SS components in suppression of innate response in plants. These findings impact issues of contamination related to plant performance and innate defense responses for plants.
Collapse
Affiliation(s)
- Nicholas Johnson
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Pushpinder K. Litt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Kalmia E. Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Harsh Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|